1. (1 point) (Spell) Spell the singular of “vertices.” Print your answer.

2. (30 points) (Sandwich) Find three languages L_1, L_2, L_3 over the same alphabet such that $L_1 \subset L_2 \subset L_3$ and $L_2 \in \text{P}$ while L_1 and L_3 are undecidable.

3. (8 + 20 + 2B points) (Divide et impera) A divide-and-conquer algorithm reduces a problem instance of size n to two instances of size $n/2$ each. The overhead (cost of the reduction) is $O(\sqrt{n})$. (a) State the recurrence inequality for the complexity $T(n)$. (b) Prove: $T(n) = O(n)$. (c) What does the title of this problem mean? In what language?

4. (8+15+8B+8B points) (Boolean functions) (a) What is the number of Boolean functions in n Boolean variables? (b) Construct a 3-CNF formula (CNF formula with exactly 3 literals per clause) which is NOT satisfiable. Make your formula as short as possible. Prove that your formula is indeed not satisfiable. (c) (BONUS) Prove: almost all 3-CNF formulas with $m = 7n$ clauses are not satisfiable. Here n is the number of variables. A random clause is obtained by selecting a triple of distinct variables at random and assigning each variable either itself or its negation by flipping three coins. A random 3-CNF is the AND of m independently chosen random clauses (so repetition is possible). (Checknote: the size of the sample space is $(8)^m$.) (d) (BONUS) Find an explicit Boolean function in $n \geq 4$ variables which cannot be represented as a 3-CNF formula. Your function must have a very simple (mathematical) description. Prove.
5. (16+3+10+4 points) **Modular exponentiation** Given the positive integers a, b, m, compute the quantity $a^b \pmod{m}$ in polynomial time.
(a) Describe your algorithm in ELEGANT pseudocode. Your algorithm must NOT make recursive calls and must NOT make explicit use of the binary expansion of b.
(b) Name the method used.
(c) State the loop invariant from which the correctness of the algorithm immediately follows.
(d) If Alice wants to send Bob an RSA-encrypted message and Bob wishes to decrypt it, who needs to perform modular exponentiation?

6. (28 points) **Interval scheduling** The “weighted interval scheduling” problem takes as input a list of n intervals $(s(i), t(i))$ and corresponding weights $w_i > 0$ and asks to find a set of disjoint intervals among these of maximum total weight. Solve this problem in $O(n)$ plus sorting whatever needs to be sorted. Hint: dynamic programming. Half the credit goes for a clear definition of the array of problems to be solved (the “brain” of the algorithm), including a statement of what needs to be sorted.

7. (12+6 points) **Huffman code**
(a) The Qwerty language uses the 6-letter alphabet $\{Q, W, E, R, T, Y\}$. The Huffman code for the alphabet is $\{0, 10, 110, 1110, 11110, 11111\}$ (in this order). Find a frequency distribution that results in this code.
(b) Prove that no frequency distribution over this alphabet could result in the Huffman code $\{0, 10, 110, 1110, 11110\}$.

8. (10+10+10B points) **Large numbers**
(a) Given $n \geq 1$, prove that $n!$ cannot be computed in polynomial time. Clearly state the two relevant quantities about which you claim that one is not polynomially bounded as a function of the other.
(b) Can the quantity $n^{\lceil \log n \rceil}$ be computed in polynomial time? Prove your answer.
(c) Given the positive integers k and m, compute $F_k \pmod{m}$ in polynomial time (F_k is the k-th Fibonacci number). Assuming both m and k are n-bit integers, estimate the time; state the exponent of n.

9. (8+4+18+6 points) **Determinant** Let $A = (a_{i,j})$ be an $n \times n$ matrix.
(a) Define $\det(A)$. Prove: if A is integral (all entries $a_{i,j}$ are integers) then $\det(A)$ is an integer.
(b) Assume A is integral. Define the bit-length of A.
(c) Assume A is integral. Prove that the bit-length of the integer $\det(A)$ is not greater than the bit-length of A.
(d) Describe the significance of statement (c) to the complexity of Gaussian elimination.

10. (16+16 points) **Critical path** Let G be a weighted DAG (directed acyclic graph) (edge (i, j) is assigned weight $w(i, j) \in \mathbb{R}$). Find the cost of a max cost path from a vertex s to a vertex t (“critical path”). Your algorithm should run in linear time. Describe your algorithm in
pseudocode. You may not refer to known subroutines. Half the credit goes for a vital subroutine.

11. (15+20 points) (Good assignments) Given a 3-CNF formula with \(m\) clauses, a “good assignment” is an assignment of Boolean values to the variables that satisfies at least \(7m/8\) of the clauses. (Each clause involves 3 distinct variables.) (a) Prove: a good assignment always exists. If you use random variables, state the probability space you are referring to. (b) Give a deterministic algorithm which finds a good assignment in polynomial time. Prove that your algorithm is correct.

12. (8+18+6 points) (a) Define the min-cost spanning tree problem (input, output). Make sure you specify the conditions the input needs to satisfy. (b) Jarník’s (a.k.a. Prim’s) algorithm grows a tree from a start node. Describe the algorithm in pseudocode. (c) Name the three abstract data structure operations required for the implementation of the algorithm.

13. (10+10 points) (B-trees) What is the (a) minimum (b) maximum number of keys stored in a 3-4-5-6-tree (B-tree with parameter \(t = 3\)) of height \(h\)? Give simple closed-form expressions. Prove.

14. (12+12 points) (Batcher’s sort) (a) Batcher’s odd-even merging network has depth (parallel time) \(M(n)\). Write a recurrence for \(M(n)\). Evaluate \(M(n)\) for \(n = 2^k\). (b) Batcher’s sorting network has depth \(S(n)\). Write a recurrence for \(S(n)\). Evaluate \(S(n)\) (exactly) for \(n = 2^k\).