1. (4 points) Prove: if $0 \leq k < n/2$ then $\binom{n}{k} \leq \binom{n}{k+1}$.

2. (6 points) Suppose you receive equal amounts of spam email and non-spam email. Further suppose the probability that a spam email contains the word “free” is $\frac{1}{3}$ and the probability that a non-spam e-mail contains the word “free” is $\frac{1}{30}$. Your software tells you that you received an e-mail that contains the word “free.” What is the probability that the email is spam?

3. (18 points) Let p be a prime number and let $f(x) = 1+x+x^2+\cdots+x^{p-2}$. Prove: $(\forall x)(f(x) \equiv -1, 0 \text{ or } 1 \mod p)$.

4. (6+14 points) (a) Count the increasing functions $f: [k] \to [n]$. (Recall the notation $[k] = \{1, \ldots, k\}$.) (b) Count those functions $f: [k] \to [n]$ that satisfy $f(i+1) \geq f(i) + 2$ for every i. Your answers should be simple expressions involving binomial coefficients. Prove your answers.

5. (5+5+5 points) (a) Find a sequence a_n such that $\lim_{n \to \infty} a_n = 1$ but $\lim_{n \to \infty} a_n^n = \infty$. (b) Find a sequence b_n such that $\lim_{n \to \infty} b_n = \infty$ but $b_{n+1} \sim b_n$. (c) Prove: if $c_n > 1$ and $c_{n+1} = O(c_n)$ then $\ln c_n = O(n)$.

6. (3+5+2 points) Let I denote the $n \times n$ identity matrix and J the $n \times n$ all-ones matrix (every entry is 1). Let $A = I + J$.

 (a) For the case $n = 3$ write down in full detail the system $Ax = 0$ of homogeneous linear equations. Call the unknowns x_1, x_2, x_3. Using this notation, what does x mean?

 (b) For every n, prove: the columns of A are linearly independent.

 (c) What does item (b) say about the solutions of the system $Ax = 0$?

7. (5+3+5+3B+5B+4B points) Let $n \geq 3$ and let A be an $n \times n$ matrix with characteristic polynomial $f_A(t) = t^n - 3t + 2$.

 (a) Decide whether or not A is singular. Clearly say YES or NO. Prove your answer. (Recall that an $n \times n$ matrix is singular if $\det(A) = 0$.)

 (b) Prove that A has an eigenvalue that is an integer.
(c) Find the sum of all the n (complex) eigenvalues of A. Indicate the facts you use to obtain your answer.

(d) (BONUS) Prove: A is not a stochastic matrix.

(e) (BONUS) Prove: If $n \geq 4$ then A is diagonalizable.

(f) (BONUS) Prove: Disprove the conclusion of (c) when $n = 3$.

8. (6+4B+4B points) Let V be an n-dimensional euclidean space.

(a) Let v_1, \ldots, v_k be pairwise orthogonal non-zero vectors in V. Prove that they are linearly independent.

(b) (BONUS) Prove that the functions $\cos(t), \cos(2t), \ldots, \cos(kt)$ are linearly independent.

(b) (BONUS) Let U be a k-dimensional subspace of V. Let U^{\perp} denote the set of those vectors that are orthogonal to all vectors in U. Note that U^{\perp} is a subspace. (You don’t need to prove this.) Prove: $\dim(U^{\perp}) = n - k$.

9. (6+4+5+5+4B points) Let A be a real symmetric $n \times n$ matrix. We say that A is positive semidefinite if $(\forall x \in \mathbb{R}^n)(x^\dagger Ax \geq 0)$ (where \dagger indicates transpose). We say that A is positive definite if $(\forall x \in \mathbb{R}^n)(x \neq 0 \Rightarrow x^\dagger Ax > 0)$

(a) Prove: Prove that the all-ones matrix J is positive semidefinite.

(b) Prove: $I + J$ is positive definite.

(c) Prove: If A is positive definite then A is non-singular.

(d) Prove: if A is positive semidefinite then all eigenvalues of A are non-negative.

(e) (BONUS) State and prove the converse of (d).

10. (BONUS: 5B points) Let $A \in M_n(\mathbb{R})$ be a symmetric real matrix. Prove that all of its eigenvalues (over \mathbb{C}) are real. Do not use the Spectral Theorem.

11. (6+8+5+6+6B points)

(a) Draw the diagram of a weakly connected finite Markov Chain which has more than one stationary distribution. Give two stationary distributions for your Markov Chain. Use as few states as possible.

(b) Recall that a finite Markov Chain is irreducible if its transition digraph is strongly connected. Draw the diagram of a reducible (not irreducible) finite Markov Chain with a unique stationary distribution. State the stationary distribution. Do not prove. Use as few states as possible.
(c) Define ergodicity of a finite Markov Chain. Define the terms used in the definition in terms of directed graph concepts.

(d) Draw the diagram of an irreducible but non-ergodic finite Markov Chain.

(e) (BONUS) Prove: the stationary distribution of an irreducible finite Markov Chain is unique. (Prove uniqueness only. Do not prove the existence of a stationary distribution.) Do not use the Frobenius-Perron Theorem.

12. (15+7 points)

(a) Let $A \in M_n(\mathbb{R})$ be a symmetric real matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Let $\rho = \max\{|\lambda_i| : 1 \leq i \leq n\}$. Prove: $(\forall v \in \mathbb{R}^n)(\|Av\| \leq \rho\|v\|)$.

Hint: Recall that the Spectral Theorem says that A has an orthonormal eigenbasis. Represent v as a linear combination of this basis. Recall that $\|v\|^2 = v^\dagger v$.

(b) Find a real 2×2 matrix B with real eigenvalues and a vector $v \in \mathbb{R}^2$ such that $\|Bv\| > \rho\|v\|$. State the eigenvalues and the value ρ for your matrix.

Hint: Make B triangular.

13. (5+15+5 points) We roll n dice; the numbers shown are X_1, \ldots, X_n.

$(1 \leq X_i \leq 6.)$ Let $Y = \sum_{i=1}^{n-1} X_i X_{i+1}$. Compute (a) $E(Y)$ (b) $\text{Var}(Y)$.

(c) Asymptotically evaluate $\text{Var}(Y)$. Your answers to each question should be simple closed-form expressions.

14. (3+4+4+5B+5B points) Let (Ω, P) be a probability space with $|\Omega| = n$.

(a) What do we call the elements of the function space \mathbb{R}^Ω?

(b) What is the dimension of \mathbb{R}^Ω? Describe a basis.

(c) Let X_1, \ldots, X_k be pairwise independent random variables such that $(\forall i)(E(X_i) = 0$ and $\text{Var}(X_i) = 1)$. For all i and j, determine $E(X_i X_j)$.

(d) (BONUS) Prove: under the assumptions of (c), the random variables X_1, \ldots, X_k are linearly independent.

(e) (BONUS) Prove: If there exist k non-trivial, pairwise independent events in (Ω, P) then $n \geq k + 1$.

15. (5+6+10 points) (a) Draw a topological $K_{3,3}$ with 10 vertices. (b) State Kuratowski’s characterization of planar graphs. (c) Prove: if a connected graph has n vertices and $n + 2$ edges then it is planar.

16. (18 points) Prove: for all sufficiently large n, the probability that a random graph is planar is less than $2^{-0.49n^2}$.

3
17. **(20 points)** Prove: almost all graphs on \(n \) vertices have no clique (complete subgraph) of size \(\geq 1 + 2 \log_2 n \). (Hint: estimate the probability of cliques of size \(k \). Do not substitute the value \(1 + 2 \log_2 n \) for \(k \) until the very end to avoid messy formulas.)

18. **(8+12 points)** (a) State the multinomial theorem: express \((x_1 + \cdots + x_k)^n\) as a sum. Express the coefficients in terms of factorials.
 (b) Count the terms in your expression. Your answer should be a very simple expression (a binomial coefficient).

19. **(1+7 points)** (a) Define the little-o notation.
 (b) Prove: \(n^{100} = o(1.01^n) \). Elegance counts. Do not use L'Hospital's rule beyond using the fact that \(\lim_{x \to \infty} \frac{\ln x}{x} = 0 \). (Hint: substitute a new variable.)

20. **(1+9 points)** (a) Count the strings of length \(n \) over the alphabet \{A, B, C, D, E\}. (b) How many among these strings use all the five letters? Your answer should be a closed-form expression.

21. **(8 points)** Construct a probability space and two random variables that are uncorrelated but not independent. Make your sample space as small as possible. (Recall: the random variables \(X, Y \) are uncorrelated if \(E(XY) = E(X)E(Y) \).)

22. **(5+15 points)** (a) Prove: if \(p \) is a prime then the only solutions to the congruence \(x^2 \equiv 1 \pmod{p} \) are \(x \equiv \pm 1 \pmod{p} \). (b) Let \(p < q < r \) be three distinct odd primes. Let \(n = pqr \). Count the solutions to the congruence \(x^2 \equiv 1 \pmod{n} \). (Two solutions count as distinct if they are not congruent modulo \(n \).) Prove your answer.

23. **(10+10 points)** Let \(a_n > 2 \) and \(b_n > 2 \) be sequences of real numbers. Consider the following two statements: (1) \(a_n = \Theta(b_n) \); (2) \(\ln a_n \sim \ln b_n \). (a) Prove that (2) does not follow from (1). (b) Prove that if \(a_n \to \infty \) then (2) follows from (1).

24. **(2+8 points)** Let \(X \) be a random nonnegative integer with 100 decimal digits; initial zeros are permitted. (Each of the 100 digits is chosen at random from \{0, 1, \ldots, 9\}. (a) What is the size of the sample space of this experiment? (b) Estimate the probability that \(X \) is prime. Use the approximation \(\ln 10 \approx 2.303 \). Do not use a calculator. Your answer should be a simple fraction.

25. **(BONUS 6B points)** Let \(n = pq \) where \(p, q \) are distinct primes. Prove that the following statement is false:
 \((\forall a)(\text{if } \gcd(a, n) = 1 \text{ then } a^{n-1} \equiv 1 \pmod{n})\).