1. (5 points) Draw a strongly connected digraph with period 3 that has no directed cycle of length 3. Use as few edges as possible; state the number of edges you use.

2. (6 points) Prove: if a finite Markov Chain has two stationary distributions then it has infinitely many.

3. (15 points: 1 point for each answer, 3+4+5 points for the proofs)
 True or false (circle one, prove). (a) If two vectors are linearly dependent then one of them is a scalar times the other. T F
 (b) If the determinant of a 3×3 matrix is zero then one of the columns is a scalar times another column. T F
 (c) If A and B are 3×3 matrices with positive entries then
 \[
 \text{rk}(A + B) \geq \text{rk}(A). \quad T \quad F
 \]
4. (7 points) Find the characteristic polynomial and the eigenvalues of the
matrix \(B = \begin{pmatrix} 5 & 2 \\ 4 & 7 \end{pmatrix} \).

5. (7 points) Find an \(n \times n \) matrix \(A \) such that \(\text{rk}(A) = 1 \) and all the \(n^2 \)
entries of \(A \) are distinct.

6. (10 points) Let \(\alpha_1, \ldots, \alpha_n \) be distinct real numbers. Let
\(f(x) = \prod_{i=1}^{n} (x - \alpha_i) \) and let \(g_i(x) = f(x)/(x - \alpha_i) \). (So each \(g_i \) is a poly-
nomial of degree \(n - 1 \).) Prove that \(g_1, \ldots, g_n \) are linearly independent
in the space \(\mathbb{R}[x] \) of polynomials over \(\mathbb{R} \).

7. (BONUS: 4B points) Let \(A \) be an \(n \times n \) matrix with integer entries.
Suppose all diagonal entries are odd and all other entries are even.
Prove that \(A \) is non-singular (i.e., \(\det(A) \neq 0 \)).

8. (BONUS: 4B points) Prove: every non-singular \(n \times n \) matrix can be
turned into a singular matrix by changing just one entry.

9. (BONUS: 2B points) Let \(A, B \) be \(n \times n \) stochastic matrices. Prove:
\(A - B \) is singular.