Artificial Intelligence at Chicago

Partha Niyogi

The University of Chicago
Statistics — data analysis and probabilistic models
Computer Science — design and analysis of algorithms
Mathematics — analytic tools

Artificial Intelligence:
Pattern recognition in speech, vision, text, bioinformatics, finance etc.

Cognitive and Neural Sciences:
Human learning of language, concepts, movement, vision, etc.
Canonical Problems

- Classification and Regression
- Clustering
- Dimensionality Reduction and Data Representation
- Density Estimation
A Pattern Recognition Example

\(P \) on \(X \times Y \)

\[X = \mathbb{R}^N; \ Y = \{0, 1\}, \mathbb{R} \]

\((x_i, y_i)\) labeled examples

find \(f : X \rightarrow Y \) \quad \text{Ill Posed}
Regularization Principle

\[f = \arg \min_{f \in H_K} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \gamma \|f\|_K^2 \]

- Splines
- Ridge Regression
- SVM

- \(K : X \times X \to \mathbb{R} \) is a p.d. kernel
 - e.g. \(e^{-\frac{\|x-y\|^2}{\sigma^2}} \), \((1 + x \cdot y)^d\), etc.

- \(H_K \) is a corresponding RKHS
 - e.g., certain Sobolev spaces, polynomial families, etc.
Simplicity is Relative
Intuitions

- $\text{supp } P_X$ has manifold structure
- *geodesic* distance v/s *ambient* distance
- geometric structure of data should be incorporated
- f versus f_M
Manifold Regularization

$$\min_{f \in H_K} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \gamma_A \|f\|^2_K + \gamma_I \|f\|^2_I$$

$$\|f\|^2_I = \begin{cases}
\text{Laplacian} & \int \langle \text{grad}_M f, \text{grad}_M f \rangle = \int f \Delta_M f \\
\text{Iterated Laplacian} & \int f \Delta_M^i f \\
\text{Heat kernel} & \text{e}^{-\Delta_M t} \\
\text{Differential Operator} & \int f(Df)
\end{cases}$$

Representer Theorem: $$f = \sum_{i=1}^{n} \alpha_i K(x, x_i) + \int_M \alpha(y) K(x, y)$$

Belkin, Niyogi, Sindhwani (2004)
Approximating $\|f\|_I^2$

\mathcal{M} is unknown but $x_1 \ldots x_M \in \mathcal{M}$

\[
\|f\|_I^2 = \int_{\mathcal{M}} \langle \nabla f, \nabla f \rangle \approx \sum_{i \sim j} W_{ij} (f(x_i) - f(x_j))^2
\]
\[M \approx G = (V, E) \]

\[e_{ij} \in E \text{ if } \|x_i - x_j\| < \epsilon \]

\[W_{ij} = e^{-\frac{\|x_i - x_j\|^2}{t}} \]

\[\Delta_M \approx L = D - W \]

\[\int \langle \text{grad} f, \text{grad} f \rangle \approx \sum_{i,j} W_{ij} (f(x_i) - f(x_j))^2 \]

\[\int f(\Delta f) \approx f^T L f \]
Manifold Regularization

\[
\frac{1}{n} \sum_{i=1}^{n} V(f(x_i), y_i) + \gamma_A \|f\|_K^2 + \gamma_I \sum_{i \sim j} W_{ij} (f(x_i) - f(x_j))^2
\]

Representer Theorem: \(f_{opt} = \sum_{i=1}^{n+m} \alpha_i K(x, x_i) \)

- \(V(f(x), y) = (f(x) - y)^2 \): Least squares
- \(V(f(x), y) = (1 - yf(x))_+ \): Hinge loss (Support Vector Machines)
Ambient and Intrinsic Regularization

\(\gamma_A = 0.03125 \) \(\gamma_I = 0 \)

\(\gamma_A = 0.03125 \) \(\gamma_I = 0.01 \)

\(\gamma_A = 0.03125 \) \(\gamma_I = 1 \)
Experimental Results: USPS
Convergence Theorem

with prob. $> 1 - \delta$

$$|E_{\gamma_A, \gamma_I, n} - E_{opt}| \leq C + \gamma_A \|f_{opt}\|_K^2 + \gamma_I \int_{\mathcal{M}} f_{opt}(\Delta^I f_{opt})$$

$$C = \frac{4}{\beta^{3/2}} \sqrt{\frac{1}{n} \log \left(\frac{2}{\delta} \right)}$$

$$\beta^2 = \frac{\gamma_A}{\kappa^2} + \frac{\gamma_I}{\mu^2}$$

$$\kappa^2 = \sup_{x \in X} K(x, x) \quad \mu^2 = \sup_{x \in \mathcal{M}} \sum_i \left(\frac{1}{\lambda_i} \right)^l \phi_i^2(x)$$
An Acoustic Example

\[u(t) \quad \rightarrow \quad s(t) \]

\[l \]
An Acoustic Example

\[u(t) \leftrightarrow l \leftrightarrow s(t) \]

One Dimensional Air Flow

(i) \[\frac{\partial V}{\partial x} = -\frac{A}{\rho c^2} \frac{\partial P}{\partial t} \]

(ii) \[\frac{\partial P}{\partial x} = -\frac{\rho}{A} \frac{\partial V}{\partial t} \]

\[V(x,t) = \text{volume velocity} \]

\[P(x,t) = \text{pressure} \]
\[u(t) = \sum_{n=1}^{\infty} \alpha_n \sin(n\omega_0 t) \in l_2 \]

\[s(t) = \sum_{n=1}^{\infty} \beta_n \sin(n\omega_0 t) \in l_2 \]
Vocal Tract modeled as a sequence of tubes. (e.g. Stevens, 1998)

Jansen and Niyogi (in prep.)
Machine vision: inferring joint angles.
Corazza, Andriacchi, Stanford Biomotion Lab, 05, Partiview, Surendran
1 (a) He ran from there with his money.

1 (b) He his money with there from ran. (⋆)
1 (a) He ran from there with his money.

1 (b) He his money with there from ran. (*)

Linguistic Experience \leftrightarrow Linguistic Knowledge
\mathcal{G} \hspace{5pt} $g_t \in \mathcal{G}$ target grammar

S_n \hspace{5pt} $+$ve examples

\mathcal{A} \hspace{5pt} Learner (Child)

$\mathcal{A}(S_n) = h_n$
\[G \quad g_t \in G \text{ target grammar} \]

\[S_n \quad +ve \text{ examples} \]

\[A \quad \text{Learner (Child)} \]

\[A(S_n) = h_n \]

Learnability \[h_n \rightarrow g_t \]

Gold (1967); Valiant (1984)
The Evolution of English

Her ... Aelfred cyning ... gefeaht wid ealne, here, and hine

Here Alfred king fought against whole army and it

geflymde and him aefter rad od pet geweorc, and paer saet

put to flight and it after rode to the fortress and there camped

XIII niht, and pa sealde se here him gislas and myccl
das, pet he of his rice woldon, and him eac geheton

fourteen nights and then gave the army him hostages and great oaths that they from his kingdom would [go] and him also promised

pet heora cyng fulwithe onfon wolde, and hi paet gelaston

that their king baptism receive would and they that did
pa Darius geseah paet he oferwunnen beon wolde
then Darius saw that [he conquered be would]

& him aefterfylgende waes
and [him following was]

Nu ic wille eac paes maran Alexandres gemunende beon
now I will also [the great Alexander considering be]

(Orosius 128.5)

(Orosius 236.29)

(Orosius 110.10)
How does the mind/brain work?

How can we replicate intelligent phenomena in machines?
Faculty

Language
 - John Goldsmith
 - Gina Levow
 - Partha Niyogi
 - Terry Regier (Psychology)
 - Howard Nusbaum (Psychology)
 - Yasemin Altun (Toyota)

Vision
 - Yali Amit
 - Pedro Felzenszwalb
 - Christin Sminchesescu (Toyota)
Partha Niyogi
Yali Amit
Marc Coram (Statistics)
David McAllester (Toyota)
Stephen Smale (Toyota)
Adam Kalai (Toyota)
Friends

- Statistics and Mathematics
- Linguistics and Psychology
- Computational Neuroscience
- Toyota Technological Institute