Physical Layer Networks

- Fourier Decomposition
- Transmission Media
Fourier Analysis

• Successive summations of harmonics
 • Sin + Cos + constant
• Skin depth
Bandwidth Limitations

- Nyfquist’s theorem
 - max data rate = $2H \log V$ bits/sec
- Example
 - 3 KHz channel = max data rate of 6000 bps
 - For binary data
Noise

• Signal-to-noise-ratio
 • S/N measured in decibels
 • 1 decibel = 1/10 of a Bell
 • 1 Bell = one order of magnitude (10x)
 • Bandwidth characterized as point where S/N is 1/2

• Shannon’s result
 • max bits/sec = H \log (1+ S/N)

• example
 • 3 KHz bandwidth, 30 db S/N
 • Max of 30,000 bits sec.
Magnetic Media

• “Sneaker Net”
 • 75 Gigabyte DLT tapes
 • 1000 tapes
 • = 75 TeraBytes
 • 24 hour overnight shipping
 • = 75 TB/86400 = 868 GB/sec
Twisted Pair

- Analog or digital transmission
- Twists in wire minimize magnetic coupling
 - Category 3
 - Typical for telephone wire
 - Category 5
 - More twists per inch
 - Used for higher speed data communications
- Unshielded Twisted Pair (UTP)
 - Crosstalk
 - External noise
Coaxial

- Baseband coaxial cable
- 50 Ohm typical for digital
- 75 Ohm typical for analog
- Ground braid provides excellent shielding
 - 1-2 Gbit/sec for 1 KM cables
- Broadband
 - Analog (historically anything with more than 4 Khz of bandwidth)
 - Typically standard Cable TV technology
 - 300-450 MHz
 - 100 Kilometers
Broadband

• 2 cable system
 • One transmit, one receive
• Multiple frequencies
 • subsplit: send 5-30 MHz, receive 40-300
 • midsplig: send 5-116, receive 168-300
• Lots of analog broadband exits for cable TV
Fiber Optics

- Cost vs. speed improvement
- Refraction at boundaries
 - Graded Index Fiber
 - Multi-Mode - 50 micron
 - Wide fiber, better light coupling
 - Single Mode - 10 micron
 - Narrow fiber, less light
Fiber Optics

- Communications
 - Three common wavelengths
 - 0.85, 1.30 and 1.55 microns
 - 5 percent loss per kilometer
 - 25,000 to 30,000 GHz wide
Connecting Fiber Networks

- Connectors
 - 10-20% light loss
- Mechanical splices
 - 10% light loss
- Fused splices
 - Can be as good as original
Components

• Transmitters
 • Light Emitting Diodes (LEDs)
 • Slower, less bright, inexpensive, long life
 • Semiconductor laser
 • Fast, brighter, expensive, short life
• Receivers
 • Photodiode
 • Response time of 1 nsec
 • 1 Gbps data rate
Fiber vs. Copper

- Topologies
- Fiber Advantages
 - Faster
 - Low attenuation
 - 30 KM, vs 5 for copper
 - Unaffected by electromagnetic interference
 - Lighter weight
 - Harder to tap
 - Photons do not couple
 - No equivalent of magnetic field
Wireless

- freq * wavelength = speed of light
 - 10^4--10^8 Radio
 - 10^8--10^{11} Microwave
 - 10^{11}--10^{14} Infrared
 - 10^{15} Visible light
 - 10^{15}--10^{16} UV
 - 10^{16}--10^{22} X-Ray
 - 10^{22}--10^{24} Gamma Ray
Radio Transmission

- Low frequencies pass through obstacles
 - Power falls off due to antenna limits
- Medium and High Frequency
 - Bounce from Ionosphere
 - Multipath problems
- Very High Frequency
 - Line of sight
- Microwave (above 100 MHz)
 - Line of sight
IR and Millimeter waves

- Good for very local use
- Rapidly attenuated
Lightwave transmission

• Air turbulence
Satellite

- Geo-sync--35,800
 - Limited slots
- Medium 5-15k km
 - GPS - tracking issues
- Low earth orbit (LEO)
 - low power transmitters
- Iridium 77--68
 - $5B invested, sold for $25M
Satellite

- L-Ka band 1.6 GHz-30 GHz
 - Weather interferences above 10 GHz
- VSATs
 - Hubs
- Examples
 - Teledesic
 - Internet access 100 Mbps up, 720 down
 - 30 Satellites, 2005, sat-to-sat switching
The Telephone System

- History
 - Local Loops, Inter Offices, Long Lines
- 1984 US AT&t Breakup
 - Local Access and Transport Areas
 - Local Exchange Carriers
 - Inter Exchange Carriers
- Cell Phone rules
 - In each LATA
 - One LEC and one non-LEC
1995 Free-For-All

- Point’s of Presence (POP)
- Most rules eliminated
Corporate Opportunities

• LD now inexpensive in US
• Digital Interfaces
• Corporate Phone switches
• Avoiding the LEC
• Intra-LATA calling
Modem Connections

• How digital is the connection
 • Analog lines
 • Cumulative attenuation, delay distor, noise
 • Digital lines
 • No cumulative affects
Modem Encoding

- Nyquist: 3000Hz line: 6 Khz samples
 - Put more bits per sample
 - Use Phase shift and amplitude
 - 4 phase, 4 values=2 bits, QPSK
 - 4 phase, 4 amp= 16 values= 4 bits QAM-16
 - QAM for 9600 baud
 - V.32 6 bits/sample=64 points
 - Trellis coding
- Error Correcting
- Compression (NMP5, LZ, etc.)
Echo Suppression

- Particularly bad for people speaking
 - Amplifiers make voice connections one way
 - half duplex
 - Bad for data connections
 - Turn off Echo suppression
 - 2.1 Khz in band signal
 - Echo Canceller
 - Add opposite signal
Trunk Signaling

- Frequency Division Multiplexing
- Wave Division Multiplexing-fiber
- Time Division Multiplexing
 - Pulse Code Modulation
 - Standard American T-1
 - 193 bit frame, 24 8 bit channels, one frame
 - European E-1
 - 32 8 bit samples in 2.048 Mbps