
CMSC 28400 Introduction to Cryptography Autumn 2021

Notes #2: Permutations and Enigma

Instructor: David Cash

Contents

2.1The Simplified Enigma Machine 1
2.1.1 Message Keys and Rejewski’s Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2Permutations and Cycle Decompositions 3
2.2.1 Cycles in Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Conjugates of Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3Application to Enigma: Rejewski’s Theorem 6
2.3.1 Permutation Structure of the Initial Setting . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 The Effect of a Rotor Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3 The Types of ∆i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4Rejewski’s Theorem and Attack 8
2.4.1 Step One: Learning ∆4∆1,∆5∆2, and ∆6∆3 . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Step Two: Factoring ∆4∆1,∆5∆2, and ∆6∆3 . . . . . . . . . . . . . . . . . . . . . . 9
2.4.3 Step Three: Identifying ∆1,∆2, and ∆3 . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.4 Proof of Rejewski’s Theorem (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . 10

These notes cover the permutation-based attack of Rejewski against the early Enigma machines,
along with some mathematical background used in the attack.

2.1 The Simplified Enigma Machine

We will study a somewhat simplified version of the Enigma machine used in early 1930s. In
Figure 2.1 two versions of the Enigma are pictured. The relevant parts of the machine are a
keyboard, a light-board, a plug-board, and a rotor assembly consisting of three rotors along with
a special reflector (not visible). The rotors are electrical implementations of a substitution cipher
on Σ = {A, . . . , Z}: They have 26 connections (with labels) on each side, and in between is a mess
of wires that physically permutes how they are connected. The rotors are designed to be chained
together, and also so that they can rotate to change how their 26 connections line up. The rotors
are also designed so their their rotational position is externally visible after they are placed in the
machine, and they can be manually rotated in discrete 1/26th steps.

An Enigma user would actually have several rotors stored in a box, but only three would be
used at a time (in this version; other rotor-based ciphers and later Enigmas had more than three
rotors).
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To operate these machines, one would start by configuring the machine according to the day
key which were distributed to everyone in order for them to communicate. These settings included
which rotors to use, how to align them with respect to the rest of the machine, which connections
to make on the plugboard, as well as something called the ring setting that we will ignore.

Figure 2.1: Two images of Enigma. Credit: Left image by Karsten Sperling (public domain, downloaded
at https://commons.wikimedia.org/wiki/File:EnigmaMachineLabeled.jpg, Right image by Alessandro
Nassiri (https://creativecommons.org/licenses/by-sa/4.0/deed.en, no changes.)

Once configured, the operation is simple: To encipher a letter one presses a key on the keyboard.
A electric signal passes from the keyboard through the plugboard, three rotors, the reflector, and
then through the rotors again and the plugboard again before lighting up a letter on the lightboard,
which is the enciphered letter. This is partially diagrammed in top part of Figure 2.2, which is
drawn as if the Enigma does not have a plugboard. We note that the reflector is always wired to
avoid ever mapping a letter to itself.

The force of pressing the key would also rotate the rotors. The right-most “first” rotor will
always rotate, and the other two rotors will rotate on a schedule depending on the positioning of a
physical catch between the rotors. In these notes, we’ll work under the assumption that only the
first rotor moves. The effect of a rotating on the electrical connections is diagramed in the bottom
of Figure 2.2.

2.1.1 Message Keys and Rejewski’s Attack

It was recognized that if everyone were to set their Enigma to same day key and then encipher
messages, than basic frequency analysis would defeat the encryption (since the same permutation
would be applied to ith letter by everyone).

In the early usage of the Enigma, this was mitigated by using message keys. The sender would
choose a random three-letter message key xyz. The sender would then begin the transmission
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Figure 2.2: A diagram of the electrical connections in an Enigma without a plugboard, for the alphabet
Σ = {A, B, C, D}. The top diagram shows an initial configuration, while the bottom shows the configuration
after the right rotor rotates by one step (upwards in the diagram). The labeling will be discussed later.

by enciphering the letters xyz twice. After this, the sender would manually rotate the rotors to
positions x, y, z, and then encipher the payload of the message as before.

Example 2.1. Suppose the sender chooses message key TAQ. The sender enciphers the messages
twice using the day key; Suppose this produces the six letters ICPWLV. The sender then resets the
three rotors to positions T,A, and Q, and then enciphers the rest of the message.

The idea was that message keys would provide enough randomization to defeat frequency anal-
ysis. However, it did not work against more clever attacks. Specifically, we will show that given
many ciphertexts (about fifty in practice), a clever attack easily recovers all of the message keys!
Thus if one know the day keys (say by stealing them), then all messages can be decrypted.

2.2 Permutations and Cycle Decompositions

Our first order of business will be to give a clear and useful mathematical description of an Enigma
machine. The most useful language for doing so turns out to be permutations, which we turn to in
the next section before returning to the attack later.

Definition 2.1. A permutation on a set Σ is a one-to-one and onto function from Σ to itself.

Recall that one-to-one means that x 6= y implies π(x) 6= π(y), and onto means that for every
y ∈ Σ there exists x ∈ Σ such that π(x) = y.

Here are two examples of permutations on the set Σ = {1, 2, 3, 4, 5, 6}. They are presented in
“table form”, so given x we can simply look up π(x).
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x 1 2 3 4 5 6

π(x) 4 1 6 5 2 3
and

x 1 2 3 4 5 6

σ(x) 2 1 5 4 6 3
.

Exercise 2.1. Suppose Σ is finite. Show that any one-to-one function π : Σ→ Σ is a permutation.
Do the same for any onto function.

Show that neither of these hold in general when Σ is infinite by finding a counterexample. (We
won’t need permutations on infinite sets again in this class.)

We will write πσ for the composition of π and σ (where we mean: “first apply to σ, then apply
π”). So in table notation πσ is

x 1 2 3 4 5 6

πσ(x) 1 4 2 5 3 6
.

If πσ = σπ then we say that π and σ commute.
We write π−1 for the inverse of π; You can prove that π−1 is also a permutation. The inverse

π−1 for our example is given in table form as:

x 1 2 3 4 5 6

π−1(x) 2 5 6 1 4 3
.

For any permutation π, the product ππ−1 is always the identity permutation e : Σ→ Σ defined by
e(x) = x.

Exercise 2.2. Show by induction on t

(π1 · · ·πt)−1 = π−1
t · · ·π

−1
1

for any permutations π1, . . . , πt.

2.2.1 Cycles in Permutations

The table setting is intuitive, but the real structure of permutations is revealed if we use them to
create a graph, as follows. Let π be a permutation on Σ, and define a directed graph Gπ = (V,E)
with vertex set V = Σ and an edge from each x ∈ Σ to π(x). For example, here is the graph Gπ
created from the table above:

1 2 3

4 5 6

And here is the graph for Gσ:

1 2 3

4 5 6
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What these graphs have in common is that every node is a member of exactly one directed cycle
(which may be a self loop). Indeed this will be true for any permutation on a finite set: Start from
any node and iteratively apply the permutation to walk on nodes. Since the set is finite, you must
eventually repeat a node. Since the permutation is one-to-one, the first repetition must bring you
back to where you started. Starting at another node not on this cycle will generate yet another
cycle, and so on. The upshot is: There is a one-to-one correspondence between permutations on Σ
and graphs that consist of a covering of all of Σ with disjoint directed cycles.

This structure motivates the following notation:

Definition 2.2. We write (a1 a2 · · · at), where all of the ai ∈ Σ, for the permutation on Σ that
maps a1 to a2, a2 to a3, etc, at to a1, and for the rest of the x ∈ Σ maps x to itself.

We use this notation combined with our product notation. So for example π = (1 4 5 2)(3 6) is
another way of writing π from above, which can be checked by hand (and of course, the notation
still means that we apply the permutation (3 6) first, and then permutation (1 4 5 2)).

Exercise 2.3. Call two cycles (a1 a2 . . .) and (b1 b2 . . .) disjoint if the sets {a1, a2, . . .} and
{b1, b2, . . .} are disjoint. Show that disjoint cycles commute.

Permutations can be written as a product of cycles in several ways. For example, we can check
that (1 4)(1 4 5 2) = (2 4 5). However, if we require that cycles be disjoint, then there is essentially
only one way to express the permutation.

Theorem 1. Every permutation on a finite set Σ can be written as a product of disjoint cycles.
Moreover, this product is unique up to ordering the cycles and rotating elements within cycles.

We will not prove this theorem formally, but if one accepts the equivalence between graphs
of cycles and permutations then it is very intuitive; The cycles in the product expression of π
correspond to the cycles of the graph, and the order of the cycles or how they are rotated does not
affect the corresponding graph.

As an example of the theorem in action, π = (1 4 5 2)(3 6) is a product of disjoint cycles, and

π = (1 4 5 2)(3 6) = (3 6)(1 4 5 2) = (6 3)(1 4 5 2) = (6 3)(5 2 1 4) = . . .

and so on all are all equal π; These are the only ways to write π as a product of disjoint cycles.
We shall refer to these ways (collectively) as the cycle decomposition of π, with the understanding
that it is not exactly unique (only sort-of-unique).

It is important to remember that every element not appearing in a cycle is assumed to be fixed
by the permutation; So in effect there are often extra unwritten cycles of length 1 hanging around.

Definition 2.3. Let π be a permutation on Σ. We say that π has type [1z12z2 · · ·nzn ] if for all
i = 1, . . . , n, the cycle decomposition of π has exactly zi cycles of length i.

When some zi = 0 we omit izi from the notation.
It takes a moment to verify that this definition is “well defined”, which means that we if take

any way of writing π as a disjoint product of cycles, and check their lengths, we will get the same
type. For example, our π has type [2141], and it does not matter which ordering or rotations of the
cycles we take.

Example 2.2. Let Σ = {1, 2, 3, 4, 5, 6}.
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• The permutation (1 2)(3 4)(5 6) has type [23].

• The permutation (1 2 3 4) has type [1241].

• The permutation (1 4 3)(5 6) has type [112131].

2.2.2 Conjugates of Permutations

The structure of the Enigma machine can be simplified by introducing the concept of conjugates
of permutations.

Definition 2.4. Let π, σ be permutations on Σ. The conjugate of σ by π is defined to be the
permutation πσπ−1.

If τ is the conjugate of σ by π for some π, then we say that τ is “a conjugate of σ.”

Theorem 2. Let σ have cycle decomposition (a1 a2 . . .)(b1 b2 . . .) · · · . Then the conjugate πσπ−1

has cycle decomposition
(π(a1) π(a2) . . .)(π(b1) π(b2) . . .) · · · .

In other words, conjugation by π acts on the cycle decomposition of σ by applying π the elements
of the cycles.

Proof. We show that if σ(x) = y, then the conjugate πσπ−1 maps the element π(x) to π(y). This
is easy to check:

πσπ−1(π(x)) = π(σ(x)) = π(y).

We can finish the proof by constructing the cycles of the conjugate step-by-step from the cycles of
σ.

Corollary 1. A permutation σ has the same type as any of its conjugates.

This relationship is actually if-and-only-if: If two permutations have the same type, then they
are conjugates.

Exercise 2.4. Prove the last sentence.

2.3 Application to Enigma: Rejewski’s Theorem

Now let’s apply all of this to analyze an Enigma machine.

2.3.1 Permutation Structure of the Initial Setting

Looking at the top of Figure 2.2, we can see that the permutation computed by an Enigma machine
in that initial configuration is

∆1 = α−1
1 α−1

2 α−1
3 ρα3α2α1, (2.1)

where αi (i = 1, 2, 3) and ρ refer to the labeled rotors in the diagram.
This looks complicated, but it becomes simpler if we let τ = α3α2α1 be the effect of the three

rotors going right-to-left. Then
∆1 = τ−1ρτ,

so ∆1 is the conjugate of ρ by τ−1 (it’s by τ−1. and not τ because the inverse appears on the left
side instead of the right).
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Figure 2.3: Writing the effect of rotation of a rotor as a conjugation by the “shift forward” permutation
σ. The permutations diagrammed on the left and right are equal.

2.3.2 The Effect of a Rotor Rotation

You can visually see the effect of rotating the left rotor by looking at difference between the top
and bottom of Figure 2.2. We now describe this in terms of permutations. Let ∆1 be as above,
and let ∆2 be the permutation computed after rotating the left rotor (only). If we let α̂1 be the
permutation computed by the α1 rotor after a rotation, then

∆2 = α̂−1
1 α−1

2 α−1
3 ρα3α2α̂1, (2.2)

that is, the same as ∆1 but with α̂1 instead of α1. Again ∆2 is a conjugate of ρ, and we only need
to understand α̂1.

Let σ be the shift-forward permutation, defined by σ(A) = B, . . . , σ(Z) = A. It is intuitive that
the expression for α̂1 should involve σ, but it might not be immediately clear exactly how. In
Figure 2.3, and example α̂1 is diagrammed along with how to produce α1 from σ. The key is that
rotation is equivalent to keeping α1 fixed but conjugating it by σ−1. You can check that the two
sides of Figure 2.3 compute the same permutation. Intuitively, rotation is conjugating because
the action on one side of the rotor (moving forward in the alphabet) induces the opposite action
(moving backward in the alphabet) on the other side of the rotor. But if that doesn’t make sense,
perhaps the diagram is convincing.

We can continue with this thinking to ∆i, the permutation computed on the ith step. We get

∆i = σ−iα−1
1 σiα−1

2 α−1
3 ρα3α2σ

−iα1σ
i, (2.3)

which is just a nasty-looking conjugate of ρ, but a conjugate nonetheless. Note that we have cut
through a very complicated-looking machine and at least reduced it to a few equations.

2.3.3 The Types of ∆i

The next key observation in understanding the behavior of an Enigma machine is that, at any
given time, the machine will compute a permutation on the letters that has a specific type, namely
[213]. In other words, the permutation computed will always be the product of 13 disjoint cycles of
length 2. This will follow easily from the results of the previous section, plus the observation that
the reflector ρ is wired to never map a letter to itself.

We generalize the type of permutation under consideration to any even size alphabet.
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Definition 2.5. Let n = |Σ| be even. A permutation on Σ is called a reflector if it has type [2n/2].

These permutations are more commonly called proper involutions. (A (non-proper) involution
is a permutation with cycle decomposition consisting of cycles of length of 1 or 2, i.e. type [1z12z2 ]
for some z1, z2.)

Lemma 1. Let |Σ| be even and ρ be a reflector on Σ. Then the following hold:

• ρ−1 = ρ,

• For all x ∈ Σ, ρ(x) 6= x.

Exercise 2.5. Prove this lemma. The reverse direction also holds; Prove that as well.

Lemma 2. Let ∆i be the permutation computed by the simplified Engima machine at step i, as
defined in Equation (2.1). Then ∆i is a reflector.

Proof. We showed above that ∆i is a conjugate of ρ, and by Corollary 1, ∆i has the same type as
the reflector ρ, i.e. type [2n/2]. Thus ∆i is a reflector.

2.4 Rejewski’s Theorem and Attack

Rejewski’s attack assumes it is given several ciphertexts generated with message keys chosen by
senders; It will recover those message keys with only a little effort. In fact, the attack is efficient
enough to do by hand!

The attack proceeds in three steps:

1. Use the ciphertexts to compute the entire tables (or cycle decomposition) of the permutations
∆4∆1,∆5∆2, and ∆6∆3.

2. Find all possible factorizations of ∆4∆1, ∆5∆2, and ∆6∆3 into products of two reflectors.

3. From amongst the possible factorizations, figure out which ones are the correct ones, and
hence learn ∆1,∆2,∆3. Now message keys can be recovered.

2.4.1 Step One: Learning ∆4∆1,∆5∆2, and ∆6∆3

This step is based on the following lemma:

Lemma 3. Let ρ1 and ρ2 be reflectors on Σ. Then for x ∈ Σ, if ρ1(x) = y1, and ρ2(x) = y2, then
ρ2ρ1(y1) = y2.

Proof. Since ρ1 is a reflector and ρ1(x) = y1, we have that ρ1(y1) = x. This can been seen in either
of two ways: First, since ρ1 is a reflector, ρ−1

1 = ρ1, and

ρ1(x) = y1 ⇐⇒ ρ−1
1 (ρ1(x)) = ρ−1

1 (y1) ⇐⇒ x = ρ−1
1 (y1) ⇐⇒ x = ρ1(y1).

Alternatively, we could just observe that since ρ1 is a reflector then it must have (x y1) in its cycle
decomposition.

Finally, using ρ1(y1) = x we get

ρ2ρ1(y1) = ρ2(x) = y2,

as desired.
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Here is an example of how it is used against a single ciphertext:

Example 2.3. Suppose we observe a ciphertext starting with ICPWLV. We know that there exist
x, y, z ∈ Σ such that

ICPWLV = ∆1(x)∆2(y)∆3(z)∆4(x)∆5(y)∆3(z),

where the ∆i are unknown permutations computed by the Enigma machine. We do however know
that they are all reflectors, by Lemma 2. Applying Lemma 3, we can infer that

∆4∆1(I) = W, ∆5∆2(C) = L, and ∆6∆3(P) = V.

To learn all of ∆4∆1,∆5∆2, and ∆6∆3, the Polish team would look over many ciphertexts.
Each ciphertext would tell them how one letter is mapped in each of the products; After enough
time, they would typically see how all of the letters are mapped by each product. This completes
step one.

2.4.2 Step Two: Factoring ∆4∆1,∆5∆2, and ∆6∆3

Now we assume we know the products, and want to recover the individual ∆i. One approach is
try all possible combinations of reflectors until we find a combination that composes to each one.
Rejewski found a much faster way, based on the following theorem:

Theorem 3 (Rejewski). Let ρ1 and ρ2 be reflectors on Σ. Then if (a1 a2 · · · at) appears in the
cycle decomposition of their product ρ2ρ1, the cycle

(ρ1(at) ρ1(at−1) · · · ρ1(a1))

also appears in the cycle decomposition of ρ2ρ1, and moreover this cycle is distinct from (a1 a2 · · · at).

We will prove this theorem in the last section. For now we state an interesting corollary and
then show how to apply the theorem.

Corollary 2. Let ρ1 and ρ2 be reflectors, and let [1z12z2 · · ·nzn ] be the type of their product ρ2ρ1.
Then all of the zi are even.

Exercise 2.6. Prove the corollary.

This lemma is applied once one has the cycle decomposition of ∆4∆1 from the previous step.
By the lemma, we know that the cycles must appear in pairs, where one cycle in the pair is the
reverse of the other with ∆1 applied to each element. If we knew exactly how the cycles were paired
up, we could just read off the values of ∆1. Unfortunately we don’t know exactly how they pair
up, but it will turn out that there aren’t usually too many ways they could pair up. In the next
step we’ll figure out which is the correct one.

Example 2.4. Suppose we have determined that

∆4∆1 = (OGKRYSD)(ZUQWFIB)(MJXCP)(HLNVE)(A)(T).

Here, the cycles of size one are written explicitly to emphasize their presence.
This is the type of cycle decomposition predicted by the Theorem: We have a pair of cycles of

length 7, a pair of size 5, and a pair of size 1. Since there are only two cycles of each length, we
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know how they must pair up. But we don’t know how to cyclically align them as the theorem says.
For instance, we may pair up

(OGKRYSD)(ZUQWFIB) = (OGKRYSD)(∆1(D) · · ·∆1(G)∆1(O))

and guess that ∆1(O) = B,∆1(G) = I, etc. Alternatively, the cycles may also be written

(OGKRYSD)(UQWFIBZ) = (OGKRYSD)(∆1(D) · · ·∆1(G)∆1(O))

in which case we would guess that ∆1(O) = Z,∆1(G) = B, etc. Each of the 7 possible rotations
generates a different guess for that part of ∆1. The same issue happens with the cycles of size 5.
With the 1-cycles there is thankfully no ambiguity.

Example 2.5. A further complication comes up when ∆4∆1 has more than two cycles of a given
length. For instance, if

∆4∆1 = (AILNMC)(RGYBOF)(WZESQU)(DHVXJP)(K)(T),

then we have to decide how to pair up the cycles of size 6, and there are 3 different ways doing so;
After pairing them up, we again of 6 ways of rotating each pair independently.

Exercise 2.7. Suppose ∆4∆1 has type [1z12z2 · · ·nzn ]. Give a formula (in terms of the zi) for the
number of factorizations that the process above will give. Can you find the type that maximizes that
number?

2.4.3 Step Three: Identifying ∆1,∆2, and ∆3

The previous step generates several guesses for the ∆i. To determine which is most likely the
correct one, the team would exploit the fact that senders sometimes chose non-random message
keys. Message keys like AAA, BBB, ABC, etc were chosen by operators, and these characteristics
enabled a limited form of frequency analysis. An easy property is that the first character of the
message key was most frequently A; This yields a guess for ∆1(A), and then the above technique
will extend it to guess the rest of cycle containing A.

Exercise 2.8. Let ∆4∆1 be as in Example 2.5, and suppose you observe that the most frequent
first letter of message keys is Y. What values of ∆1 does this lead you to guess?

This process takes some guesswork, but is reported to have worked well. It helped that a guess
could be checked, because even less frequent message keys would often have some structure (like
HIJ), and these would appear once the correct permutations had been recovered.

2.4.4 Proof of Rejewski’s Theorem (Optional)

Let ρ1 and ρ2 be reflectors, and suppose (a1 a2 · · · at) appears in the cycle decomposition of their
product ρ2ρ1. We need to show that (ρ1(at) ρ1(at−1) · · · ρ1(a1)) also appears and is distinct.

Start by writing ρ1(ai) = bi for i = 1, . . . , t. Since ρ1 is a reflector we also have that ρ1(bi) = ai.
We claim that none of the bi will equal any aj (more formally, that {a1, . . . , at} and {b1, . . . , bt}
are disjoint sets). We’ll assume that’s true for now and finish proving the theorem, and then come
back to verify that fact at the end.
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Since ρ2ρ1(ai) = ai+1 mod t, we must have ρ2(bi) = ai+1 mod t; Again since ρ2 is a reflector, we
have ρ2(ai) = bi−1 mod t for all i = 1, . . . , t (note that we swapped up the subscript to subtract on
one side instead of add to the other side, but this still true for general i). Then

ρ2ρ1(bi) = ρ2(ai) = bi−1 mod t.

In other words, we have shown that ρ2ρ1 maps bi to bi−1 mod t, i.e. ρ1(ai) to ρ1(ai−1 mod t). This is
exactly what we wanted to show.

We now return to the claim that {a1, . . . , at} and {ρ1(a1), . . . , ρ1(at)} are disjoint sets. This
will follow from the following lemma.

Lemma 4. Suppose ρ1 and ρ2 are reflectors and that ρ1(x) = y. Then x and y are in different
cycles in the decomposition of ρ2ρ1.

Proof. To show that x and y are in different cycles of ρ2ρ1, it suffices to show that (ρ2ρ1)
k(x) 6= y

for every k ≥ 1. For any k ≥ 1 we have

(ρ2ρ1)
k(x) = (ρ2ρ1)

k−1ρ2ρ1(x) = (ρ2ρ1)
k−1ρ2(y).

We need to show that (ρ2ρ1)
k−1ρ2(y) 6= y. We’ll do this by showing that (ρ2ρ1)

k−1ρ2 is a reflector.
This follows by checking that (ρ2ρ1)

k−1ρ2 is actually a conjugate of either ρ1 or ρ2 for every k ≥ 1.
For example, if k = 1 this is just ρ2. If k = 2 then

(ρ2ρ1)
2−1ρ2 = ρ2ρ1ρ2 = ρ2ρ1ρ

−1
2 ,

which is a conjugate of ρ1 and hence a reflector. Working out the exact formula is left as an
exercise.
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