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These notes introduce some probability theory that we’ll use routinely. As we will quickly see,
probability theory is central to cryptography: When we want to pick a key that our adversaries
do not “know”, simply choosing a key at random is the best way to do so meaningfully. Our
treatment of probability in CMSC 28400 will not typically be so formal, but I find it very useful to
have a precise foundation (i.e. formal definitions and basic theorems) to refer to when things get
complicated.

3.1 Distributions and Probability Measures

The type of probability we review now is discrete in the sense that all of the sets involved are
countable. (By countable we mean finite or countably infinite.) Intuitively, this means we’re
concerned with choosing random things from amongst a lumpy set with separated outcomes (maybe
a random positive integers), and not a continuous space of outcomes (like a real number between
zero and one).
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3.1.1 Probability Distributions

Let’s start with a definition.

Definition 3.1. Let Ω be a non-empty countable set. A probability mass function (pmf) or dis-
tribution on Ω is a function p : Ω→ [0, 1] such that

∑
w∈Ω p(w) = 1.

A distribution p can be seen as a way of assigning to every element of Ω a number between 0
and 1 (a “probability”) so that the probabilities sum to one. When modeling the outcome a fair
coin, we could take Ω = {0, 1} (representing Heads and Tails as we like) and let p(0) = p(1) = 1/2.
To model a biased coin, we could take the same Ω but with p(0) = 1/4, p(1) = 3/4. For rolling a
die, we can take Ω = {1, 2, 3, 4, 5, 6}, and so on.

Example 3.1. Here is an example with an infinite Ω. Suppose we flip a fair coin repeatedly until
we get a Heads for the first time, and then let w be the number of times we flipped the coin. To
model this, we take Ω = {1, 2, . . .} to be positive integers, and define p(w) = 1/2w (we stop at
w = 1 with probability 1/2, w = 2 with probability 1/4, and so on). This is a distribution because
0 ≤ p(w) ≤ 1 for every w ∈ Ω, and moreover,

∑
w∈Ω

p(w) =
∞∑

w=1

1/2w = 1/2 + 1/4 + 1/8 + · · · = 1.

The infinite sum can be evaluated using a geometric series.

Note that when Ω is infinite, the sum is in fact a limit. Since Ω is countable and the values of
p(w) are non-negative, the order of elements in the sum does not matter. We caution that when Ω
is uncountable, dramatically more complicated definitions are required to give a useful theory. We
will not stray into such territory for CMSC 28400, and even the formal details of countable sums
will not be important.

Definition 3.2. Let p be a distribution on Ω. We say that p is uniform if p(w) = p(w′) for all
w,w′ ∈ Ω. When Ω is finite, this implies p(w) = 1

|Ω| .

The following example isn’t directly relevant for CMSC 28400, but hopefully it will get you
thinking.

Example 3.2. If Ω is infinite, then there does not exist a uniform distribution on Ω. To prove
this, take some w ∈ Ω (recall that Ω is non-empty). Then either p(w) = 0 or p(w) 6= 0. If
p(w) = 0, then

∑
w∈Ω p(w) = 0 since p is uniform. If on the other hand p(w) = c > 0, then∑

w∈Ω p(w) =
∑

w∈Ω c → ∞ because p is uniform and Ω is infinite. Either way,
∑

w∈Ω p(w) 6= 1
and p is not a distribution on Ω.

Consider this point of view on uniform probability distributions: If you pick an element of Ω
according the uniform distribution without showing me, then I effectively have “no idea” what
you picked. From this perspective, the latter part of the example gives a deep fact: When Ω is
countably infinite, it’s impossible to pick a sample from Ω so that I have “no idea” what you picked,
because it’s impossible to pick a uniform sample! Even more remarkably, it is possible to pick a
uniform sample from an uncountable set (like, say, real numbers between 0 and 1) in a sense that
is justified by a more complete theory.
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3.1.2 Probability Measures

The theory of discrete probability could, in principle, begin and end with distributions only. But
things get more interesting when we introduce other perspectives on understanding distributions.
The first such perspective is probability measures, which shift from looking at the probability of
individual elements w ∈ Ω to the probability of subsets of Ω. Defining “the probability of a subset”
isn’t quite a simple as distributions, which define “the probability of a specific outcome”.

In this following definition, we write 2Ω to be the collection of all subsets of Ω. For example, if
Ω = {a, b} then 2Ω = {∅, {a}, {b}, {a, b}}. When Ω is finite, |2Ω| = 2|Ω|.

Definition 3.3. Let Ω be a non-empty countable set. We say that a function Pr : 2Ω → [0, 1] is a
discrete probability measure on Ω if the following hold:

• Pr[Ω] = 1.

• For any countable sequence E1, E2, . . . of disjoint subsets of Ω, Pr[
⋃∞

i=1 Ei] =
∑∞

i=1 Pr[Ei].
This property of Pr is called countable additivity.

When Pr is a probability measure on Ω, the pair (Ω,Pr) is called a discrete probability space. In
these notes we will just call it a probability space.

When a probability space (Ω,Pr) has been fixed, we refer to any subset of Ω as an event. Thus
Pr is a function that maps events to numbers between zero and one.

Why should this be the definition of a probability measure? It’s not because it’s the most
intuitive definition of what probability should be. As far as I can tell, this definition is used because
it is very compact (just two rules!), and it implies that Pr has all of structure that corresponds to
anything you’d intuitively expect probability to satisfy.1

Note that the additivity condition includes finite sequences E1, . . . , En of disjoint sets; We can
take Ej = ∅ for all j > n, which will technically be a sequence of disjoint sets.

Definition 3.4. Let Ω be a non-empty countable set and p be a distribution on Ω. The function
Pr : 2Ω → [0, 1] defined by

Pr[E] =
∑
w∈E

p(w)

is called the probability measure (on Ω) induced by p.

Exercise 3.1. When Ω is finite, verify that Pr is indeed a probability measure according to the
definition. (Verifying this carefully for infinite Ω requires some appeal to properties of infinite
series.)

Note that Pr is a function that takes as input a subset E of Ω, and outputs a number between
0 and 1. Instead of writing Pr(E) we write Pr[E], but don’t be distracted by the notation: Pr
is a function in every usual sense. We use the Pr[E] notation to help us keep straight what is a
“probability”. It can be easily shown that the sums defining Pr all converge. Finally, note that
when E = ∅, the sum defining Pr[E] is trivial and taken to be zero by convention.

1As usual, I caution that when Ω is uncountable, another, more complicated, definition is required because often
there won’t exist a measure satisfying this definition. If you read another mathematical text on probability, they
usually refer to this more complicated definition. For CMSC 28400, don’t worry about this case.

3



The dependence on the distribution p in the notation Pr[E] is implicit. Note that Pr depends
on p; If we were ever in a setting with multiple distributions, we would need different notation
like Prp to keep this dependence straight. Thankfully we will not to need to do so, but it is
important to internalize that Pr is a specific function on subsets, defined by context, and not a
universally meaningful symbol like, say, d/dx from calculus. I have noticed that this custom is often
fundamentally confusing for people encountering formal probability theory for the first time.

Exercise 3.2. Fix some non-empty finite Ω, and suppose you are given a function Pr : 2Ω → [0, 1]
and told that Pr is a probability measure. Show that Pr is induced by some unique distribution
p. Conclude that there is a one-to-one correspondence between distributions and the probability
measures they induce.

When p is uniform, we also say that the measure Pr induced by p is uniform.

Exercise 3.3. Show that when Ω is finite and Pr is uniform, we have that

Pr[E] =
|E|
|Ω|

.

Thus for uniform measures, calculating probabilities reduces to calculating the sizes of E and
Ω.

Example 3.3. Equating the notion of an event with a subset of Ω gives us a convenient language
for connecting intuitive descriptions of outcomes with the formalism. For instance, let Ω = {0, 1}n
with the uniform distribution. E = {0‖x : x ∈ {0, 1}n−1}. Then

Pr[“a uniformly random n-bit string starts with zero”] = Pr[E] =
1

2
.

Another example takes F = {0n/2‖x : x ∈ {0, 1}n/2}. Then

Pr[“a uniformly random n-bit string starts with n/2 zeros”] = Pr[F ] =
2n/2

2n
=

1

2n/2
.

With calculations like this one usually skips the formalism and jumps straight to the answer; In a
sense the theory is justified by giving the right answer more than the other way around. But it is
good to know what exactly is being formalized, in case a proof makes a more subtle jump.

The following exercise begins to justify the definition of a probability space; From those simple
conditions, a lot of intuitively-true properties must also hold.

Exercise 3.4. Let (Ω,Pr) be a probability space. Prove the following:

• For disjoint events E,F ⊆ Ω, Pr[E ∪ F ] = Pr[E] + Pr[F ].

• For any two events E,F ⊆ Ω, Pr[E ∪ F ] = Pr[E] + Pr[F ]− Pr[E ∩ F ].

• For any two events E,F ⊆ Ω, if E ⊆ F then Pr[E] ≤ Pr[F ].

• For an event E, let Ec = Ω \ E be the compliment of E (i.e. everything in Ω that is not in
E). Then Pr[Ec] = 1− Pr[E].
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One could go on generating lists of theorems like in the exercises. The essential idea if the
following: Any formula relating the size of events as sets remains true when we replace with
“|E|” with “Pr[E]” everywhere, up to some corner cases that occur when some elements of Ω have
probability zero. So for example: |E ∪ F | ≤ |E|+ |F |, and thus Pr[E ∪ F ] ≤ Pr[E] + Pr[F ]. But it
might be that Pr[E] = 0 yet |E| > 0.

We’ll use the following facts later on in the course.

Fact 3.1 (Union Bound). Let (Ω,Pr) be a probability space and let E1, . . . , En ⊆ Ω be events. Then

Pr[E1 ∪ · · · ∪ En] ≤ Pr[E1] + · · ·+ Pr[En].

Fact 3.2 (Law of Total Probability). Let (Ω,Pr) be a probability space and let E,F ⊆ Ω be events.
Then

Pr[E] = Pr[E ∩ F ] + Pr[E ∩ F c].

More generally, if F1, . . . , Fn ⊆ Ω are disjoint events and F1 ∪ · · · ∪ Fn = Ω, then

Pr[E] = Pr[E ∩ F1] + · · ·+ Pr[E ∩ Fn].

3.2 Conditional Probability

Probability starts to get really interesting when you introduction conditioning. This brief introduc-
tion probably won’t be enough to give you full intuition for conditional probability, so I recommend
reading up, say, in Prof. Kurtz’s notes you feel rusty (http://cmsc-27100.cs.uchicago.edu/
2018-winter/Lectures/14/).

Definition 3.5. Let (Ω,Pr) be a probability space and let E,F ⊆ Ω be events with Pr[F ] 6= 0. We
define the conditional probability of E given F to be

Pr[E|F ] =
Pr[E ∩ F ]

Pr[F ]
.

The notion of independence is tightly connected to conditional probability.

Definition 3.6. Let (Ω,Pr) be a probability space and let E,F ⊆ Ω be events. We say that E and
F are independent if

Pr[E ∩ F ] = Pr[E] Pr[F ].

Note that if E and F are independent and Pr[F ] 6= 0, then Pr[E|F ] = Pr[E].
The next fact is called the chain rule.

Fact 3.3. Let (Ω,Pr) be a probability space and let E,F be events. Then

Pr[E ∩ F ] = Pr[E] Pr[E|F ].

More generally, if E1, . . . , En are events, then

Pr[E1 ∩ · · · ∩ En] = Pr[E1] · Pr[E2|E1] · Pr[E3|E1 ∩ E2] · · ·Pr[En|E1 ∩ · · · ∩ En−1].

This is proved by simply writing out the definition of conditional probability and canceling.
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Example 3.4. Suppose we deal 5 cards from a standard deck. What is the probability the hand is
all spades?

There are several ways to work this; here’s one. For i = 1, . . . , 5 define Ei to be the event that
the i-th card is a spade. Then we want Pr[E1 ∩ · · · ∩ E5]. We can calculate the probabilities in
the chain rule intuitively: Pr[E1] = 13/52. Next, Pr[E2|E1] = 12/51, since given E1, there are 12
spades left amongst the remaining 51 cards. Continuing this pattern, we get

Pr[E1 ∩ · · · ∩ E5] =
13

52
· 12

51
· 11

50
· 10

49
· 9

48
.

One application of conditional probably which will be useful later, is the following.

Fact 3.4 (Lazy Cryptographer’s Law of Total Probability). Let (Ω,Pr) be a probability space and
let E,F be events. Then

Pr[E] ≤ Pr[F ] + Pr[E|F c].

Proof. By the Law of Total Probability and the Chain Rule,

Pr[E] = Pr[E ∩ F ] + Pr[E ∩ F c]

≤ Pr[F ] + Pr[E ∩ F c]

= Pr[F ] + Pr[F c] Pr[E|F c]

≤ Pr[F ] + Pr[E|F c].

The first inequality uses Pr[E ∩ F ] ≤ Pr[F ]. The second inequality uses the simple fact that
Pr[F c] ≤ 1.

Note this is mixing probabilities of two different “types” (conditional and unconditioned), which
is not normally recommended. But anyway this inequality is used when one wants to bound the
probability of E when the probability that E, given F c is easy to a analyze and the probability of
F is easy to analyze. We will point to examples later in the course, so for now you can treat it as
an exercise to understand the proof.

Exercise 3.5. Let Ω = {00, 01, 10, 11} and Pr be the uniform measure on Ω, which models choosing
two random bits. Let E be the event that the first bit is zero, and F be the event that the chosen
bits are the same. Verify that E and F are independent.

Exercise 3.6. Let (Ω,Pr) be a probability space, and let F be an event with non-zero probability.
Show that the function PrF : 2Ω → [0, 1], defined by PrF [E] = Pr[E|F ] is a probability measure. If
p is the distribution that induces Pr, what distribution induces PrF ?

Finally we discuss how to define independence of several events E1, E2, . . . En. At first glance,
it may seem intuitive to define them to be independent if Ei and Ej are independent for all i 6= j;
This however turns out to be too weak, as the follow classic example argues.

Exercise 3.7. Suppose we roll two dice, and define E to be the event that the sum is 7, F to be the
event that first die is a 1, and G to be the event that the second die is a 6. Then you can check that
each pair is independent. But intuitively all three events should not be considered “independent”,
for if we know that E and F happened, then we can be certain than G also happened.
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The condition that Ei and Ej be independent for all i 6= j is called pairwise independence. The
following definition gives a stronger condition, called mutual independence.

Definition 3.7. Let (Ω,Pr) be a probability space, and let E,F,G ⊆ Ω be events. We say E,F,G
are mutually independent if they are pairwise independent and also

Pr[E ∩ F ∩G] = Pr[E] Pr[F ] Pr[G].

More generally, if E1, . . . , En ⊆ Ω are events, we say they are mutually independent if for all
S ⊆ {1, . . . , n},

Pr[
⋂
k∈S

Ek] =
∏
k∈S

Pr[Ek].

You can check that in the example above, the extra condition for mutual independence is
violated. In the general case, the definition is saying that all possible subsets of events should
“split” when you consider the probability of their intersection. It is a subtle point that you actually
need to include all of the subsets of all sizes in order to intuitively capture “indpendence.”

3.3 Random Variables

We next review random variables, which are an abstraction to make sense of informal statements
like “Let X and Y be the outcomes of two fair die rolls.” By augmenting our theory with a bit more
abstraction, we can increase the expressiveness and comprehensibility of the theory of probability
similar to how measures (and events) were more powerful and convenient than distributions.

Definition 3.8. Let (Ω,Pr) be a probability space. A random variable on (Ω,Pr) with range R is
a function X : Ω→ R.

At first glance this is not a very enlightening definition. Let us start with some examples.

Example 3.5. Let Ω = {00, 01, 10, 11} and Pr but the uniform measure on Ω. Define X1 : Ω →
{0, 1} and X2 : Ω→ {0, 1} by setting X1(w) to the first bit of w and X2(w) to the second bit of w,
and define Y : Ω→ {0, 1, . . . , n} by setting Y (w) to be the number of 1 bits of w.

Then X1, . . . , Xn, Y are all random variables. We have for all w ∈ Ω,

Y (w) = X1(w) + X2(w)

One typically expresses this relationship by writing Y = X1 + X2, leaving out the w entirely. One
sees this type of notation occasionally in calculus, where you might write f = g + h instead of
f(x) = g(x) + h(x).

In this example, we can think of the random variables as measurements on the outcomes in
Ω. Above, we can think of Y as representing the outcome of picking a random bit string and
then counting the number of 1 bits. Of course, when pressed, we must admit that formally Y is a
function and not an actual random outcome.

Why should we formalize random variables as functions? The answer will hopefully be clear
after we develop some more concepts using random variables. But a first benefit is they give us
some language for discussing events compactly, via the following notation.
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Notation 1. Let (Ω,Pr) be a probability space and let X : Ω → R be a random variable on this
space. For i ∈ R, we define

Pr[X = i] = Pr[{w ∈ Ω : X(w) = i}].

Note that Pr, X are still functions; Prior to this definition, the left-hand side of the equation would
not make sense. The right-hand side, however, did already make sense: Pr is a function that takes
as input subsets of Ω, and {w ∈ Ω : X(w) = i} is such a set.

The point of this notation is that “Pr[X = i]” is a natural notion to think about: It should
be the probability that a random variable takes the value i. The notation makes this natural
notion precise. Note that this notation is not Pr[X(w) = i] – It omits the w, being consistent with
convention mentioned in the previous example. We remark that this notation is part of why we
prefer Pr[X = i] over Pr(X = i): Pr is a function, but one we use strangely. (This preference is
not universal, particularly not amongst mathematicians).

Example 3.6. Let Ω = {(a, b) : 1 ≤ a, b,≤ 6} with the uniform probability measure (i.e. we
model the outcome of rolling a pair of fair dice). Define X on this space as X(a, b) = a + b. Then

Pr[X = 4] = Pr[{(a, b) ∈ Ω : X(a, b) = 4]

= Pr[{(a, b) ∈ Ω : a + b = 4]

= Pr[{(1, 3), (2, 2), (3, 1)}]
= 3/36 = 1/12.

Definition 3.9. Let (Ω,Pr) be a probability space and let X : Ω → R be a random variable. The
distribution of X, denoted pX , is defined to be

pX : R → [0, 1]

i 7→ Pr[X = i]

.

Example 3.7. Let X be the sum of two fair dice (as in Example 3.6). Then R = {2, . . . , 12}, and
pX(2) = 1/36, pX(3) = 2/36, etc.

The next example deserves special attention.

Example 3.8. Again using the same probability space as in Example 3.6. Define Z1 to be the
outcome of the first roll, and Z2 to be the outcome of the second roll. (Formally: Z1(a, b) = a and
Z2(a, b) = b.) Then Z1 and Z2 have the same distribution: That is, pZ1 and pZ2 are exactly the
same function. Both of them map every element of {1, 2, 3, 4, 5, 6} to 1/6.

When two (or more) random variables have the same distribution, we say they are identically
distributed.

This example begins to point to the power of random variables: Z1 and Z2 have the same
distribution (“uniform on numbers between 1 and 6”), but they are still different random variables.
Intuitively, this is because they are measuring different dice. Concretely, Z1 and Z2 are just different
functions from Ω to R.
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Definition 3.10. Let (Ω,Pr) be a probability space, and let X and Y be random variables on this
space with the same range R. We say that X and Y are independent if, for every i, j ∈ R

Pr[X = i, Y = j] = Pr[X = i] Pr[Y = j].

The notation “X = i, Y = j” means X = i and Y = j simultaneously; That is,

Pr[X = i, Y = j] = Pr[{w ∈ Ω : X(w) = i and Y (w) = j}].

This definition is requiring that the events X = i and Y = j are independent for all i and j.

Example 3.9. One can check that Z1 and Z2 from the previous example are independent, but Z1

and Z1 + Z2 are not.

The notion of mutual independence adapts to random variables as follows.

Definition 3.11. Let (Ω,Pr) be a probability space, and let X1, . . . , Xn be random variables on
this space with the same range R. We say that X1, . . . , Xn are mutually independent if for every
S ⊂ {1, . . . , n} and every i1, . . . , in,

Pr[
⋂
k∈S

Xk = ik] =
∏
k∈S

Pr[Xk = ik].

We will revisit the notion of mutual independence when we study perfect secrecy.

3.4 Expectation

Random variables can be very complicated, and a big part of probability theory is finding ways to
understand even badly-behaved random variables. One major approach is find features of random
variables that we can compute. For example, a notion of “average value” will often be helpful
in understanding a random game. Knowing the average value alone doesn’t tell the whole story,
since very different games can have the same averages (consider a game where you win and lose $1
with equal probability versus one where you win or lose $100 with equal probability; the average
winnings is $0 in both cases). But knowing the average is frequently very useful.

Here is a rigorous definition capturing the “average value” of a random variable.

Definition 3.12. Let X : Ω → R be a random variable on a probability space (Ω,Pr). The
expectation or expected value of X is defined to be

E[X] =
∑
w∈Ω

p(w)X(w).

The formula in the definition is useful in some proofs, but is rather clunky. We will usually
think of the random variable in terms of its distribution pX , not in terms of its actual values X(w).
(See below for an example.) The following lemma gives another very useful formula for expectation.

Lemma 1. Let X : Ω→ R be a random variable on a probability space (Ω,Pr). Let S ⊆ R consist
of values that X takes with non-zero probability, i.e. S = {s ∈ R : Pr[X = s] > 0}. Then the
expectation of X can equivalently be written

E[X] =
∑
s∈S

s · Pr[X = s].
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The set S in the statement of the lemma is called the support of X.

Proof. The set Ω is partitioned in sets Ωs = {w : X(w) = s} as s ranges over S. (More formally,
Ω = ∪s∈SΩs, and all the Ωs are disjoint.) Thus we can break a sum over Ω into a bunch of sums
over Ωs and get the same value, since each w will be accounted for exactly once.

Thus we can calculate

E[X] =
∑
w∈Ω

p(w)X(w)

=
∑
s∈S

∑
w∈Ωs

p(w)X(w)

=
∑
s∈S

∑
w∈Ωs

p(w)s

=
∑
s∈S

s
∑
w∈Ωs

p(w)

=
∑
s∈S

sPr[X = s].

Example 3.10. What is the expected value of rolling a fair six-sided die? The two formulas work
out sort of the same here, but we’ll use the second. Let X be a random variable modeling the
outcome. Then

E[X] =

6∑
i=1

i · Pr[X = i]

=
6∑

i=1

i · (1/6)

= 3.5.

Note that the expected value 3.5 is never actually taken as an output of X.

3.4.1 Linearity of Expectation and the Indicator Method

The following simple theorem is frequently useful for computing expectations. It is called the
“linearity of expectation”, and allows you to split up an expectation of a sum into individual
expectations.

Theorem 1 (Linearity of Expectation). Let X,Y be random random variables on a probability
space (Ω,Pr) with range R. Then

E[X + Y ] = E[X] + E[Y ]

More generally, if X1, . . . , Xn are random variables on a probability space (Ω,Pr) then

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi].
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Proof. We prove the first part; The second part is an exercise in induction on n. Let Z be the
random variable defined by Z(w) = X(w) + Y (w). We use the original formula for E[Z]:

E[Z] =
∑
w∈Ω

p(w)Z(w)

=
∑
w∈Ω

p(w)(X(w) + Y (w))

=
∑
w∈Ω

p(w)X(w) + p(w)Y (w)

=
∑
w∈Ω

p(w)X(w) +
∑
w∈Ω

p(w)Y (w)

= E[X] + E[Y ].

To get some intuition for this, consider a course instructor computing the average grade for a
quarter. In this class, quarter grades are simply the sum of three exam scores. One way to compute
the average is sum each student’s scores on three exams, and then average over all the students’
quarter scores. This corresponds to computing an expectation using the formula E[X1 +X2 +X3] =∑

s∈S sPr[X1 + X2 + X3 = s]. Another way is to compute the average on each exam, and then
sum those averages, with corresponds using the linearity formula.

Example 3.11. Suppose we roll five fair six-sided dice and take their sum. What is the expected
value?

Let X1, . . . , X5 be the outcomes of the five dice. Each is uniform on {1, 2, 3, 4, 5, 6}, and we can
computed E[Xi] = 3.5 above. Using linearity we have

E[X1 + X2 + X3 + X4 + X5] = E[X1] + E[X2] + E[X3] + E[X4] + E[X5]

= 3.5 + 3.5 + 3.5 + 3.5 + 3.5

= 17.5.

Let’s pause to see what linearity bought us here. If we tried to use the second formula for expectation,
we’d be stuck with computing the probabilities Pr[X1 +X2 +X3 +X4 +X5 = s] for s ranging from 5
to 30, which is tractable but annoying. Even better, the linearity approach gives us some intuition
for why the sum is 17.5.

The next example highlights the power of linearity: It works even when the random variables
involved are not independent, which can be highly counter-intuitive at first.

Example 3.12. Suppose an urn contains six balls, numbered 1,2,3,4,5,6. We draw two of the balls
without replacement and take their sum. What is the expected value?

We can try to compute this without linearity, but we’ll run into the same sort of pain as in the
previous example. So let’s try linearity. Let X1 be the first draw and X2 be the second draw. We are
interested in E[X1 + X2], which we know to E[X1] + E[X2]. What are these two expectations? It’s
pretty intuitive that E[X1] = 3.5, the same as a die roll, since it’s just a random number between 1
and 6. Slightly harder to see is that E[X2] is also 3.5. To understand this, imagine covering up the
first outcome and only looking at the second. If you do this, the second outcome is also a uniformly
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random number between 1 and 6, and thus its expectation is 3.5. We can conclude that the expected
sum is 3.5 + 3.5 = 7. This is exactly the same expectation that we’d get by rolling two dice.

If you find this calculation sneaky, you can resort to working with the actual sample space Ω
and map out what X1 and X2 are doing by hand. The point is that Pr[X2 = i] = 1/6 for each i, as
a mathematical fact. In reality, the person doing the draw will always know the first outcome, but
that doesn’t matter in this calculation; X2 only “looks” at the second draw.

A common trick for computing expectations is to use linearity even when the original random
variable is not presented as a sum. One version of this is called the indicator method. An indicator
random variable for an event E is simply a random variable I that takes value one if E happens
and zero otherwise2. It is easy to compute the expectation of an indicator random variable for an
event E:

E[I] = 1 · Pr[I = 1] + 0 · Pr[I = 0] = Pr[I = 1] = Pr[E].

Here is an example of the indicator method.

Example 3.13. Suppose we deal 5 cards from a standard deck. What is the expected number of
spades in the hand?

Let X be the number spades in the hand. We want to find E[X]. A not-so-easy way to do this
is to find Pr[X = 0],Pr[X = 1], . . . ,Pr[X = 5] and then use the formula for expectation. This gives

E[X] =
5∑

i=0

i ·
(

13
i

)(
39

5−i
)(

52
5

) .

A better way uses indicators. For i = 1, . . . , 5 define the event Ei to be that the i-th card is a spade,
and let Ii be the indicator for Ei. The key observation is that

X = I1 + I2 + I3 + I4 + I5.

That is, we can count the spades by checking if each card is a spade. Using linearity, we only need
to calculate E[Ii] for each i and then add them up. But E[Ii] = Pr[Ei] = 13/52 = 1/4, using the
formula for the expectation of an indicator. Thus E[X] = 5 · 1/4 = 1.25.

Note that this quickly generalizes to a k-card hand, for 1 ≤ k ≤ 52; The answer in that case
is k/4. Compare this to awful formula you’d get solving this the straightforward way with the
expectation formula. It would be quite difficult to notice that it simplified so nicely!

3.4.2 Markov’s Inequality

We close our discussion of expectation with an application. Suppose you’ve computed the average
score of a set of exams, and assume that negative scores are impossible. Consider the following
observation:

“At most half of the class can have double the average score.”

Why? Intuitively, if more than half the class had double the average, then they’d pull up the
average score above where it is even if everyone else got zero! (Note that we need to assume no
one got a negative score; otherwise the negatives could pull down the average.) We can extend this
reasoning to statements like

2More formally, I(w) = 1 if w ∈ E and 0 if w /∈ E.
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“At most one third of the class can have triple the average score.”

by the same type of argument.
The following theorem, called Markov’s inequality, makes this thinking precise and rigorous.

Theorem 2 (Markov’s inequality.). Let X be a random random variables on a probability space
(Ω,Pr) with range R that only takes non-negative values. Then for any c > 0,

Pr[X ≥ c] ≤ E[X]/c.

Proof. Let S be the support of X. Then

E[X] =
∑
s∈S

s · Pr[X = s]

≥
∑

s∈S,s≥c
s · Pr[X = s]

≥
∑

s∈S,s≥c
c · Pr[X = s]

= c
∑

s∈S,s≥c
Pr[X = s]

= cPr[X ≥ c].

The first “≥“ uses that all s ∈ S are non-negative to conclude that the sum can only go down when
we can omit those s that are less than c. If negative s were allowed, the sum might go up!

Applications of Markov’s inequality are often very “loose”, in the sense that Pr[X ≥ c] is
actually way smaller than E[X]/c for lots of problems.

3.5 Algorithms and Randomized Algorithms

For this class, you won’t need to know what a formal algorithm is exactly. But in case you’ve
seen the concept of a Turing Machine or (uniform) circuit family, that’s what we mean. If you
haven’t seen those, or don’t recall the definitions, you can think of an algorithm as a piece of code
that accepts an input, performs some computation than can be counted in discrete steps while
consuming some amount of memory, and finally emits an output.

We will at various times consider algorithms that make internal random choices as part of their
computation. You can think of these as machines with a special input that should be as many
random bits as they need to run. This is akin to reading from the special file /dev/random in
Unix-like operating systems. For cryptography, we’ll be interested in making our algorithms (like
selecting a key) randomized in order to achieve certain security goals. We’ll also be interested in
analyzing the possibility of adversaries using randomized algorithms, just in case they might help
break our systems. In either case, randomized algorithms are rather exotic in the “real world”, and
will hopefully become more motivated as we encounter examples.

Definition 3.13. A randomized algorithm A is an algorithm with a distinguished input from some
associated finite probability space ΩA with the uniform measure. For any “input” x, and w ∈ ΩA,
we write A(x;w) to mean running A on x with distinguished input w. We define the notation

Pr[A(x) = y] = Pr[{w ∈ ΩA : A(x;w) = y}]
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to formalize “the probability that randomized algorithm A outputs y when given input x.”

Here A(x;w) is a random variable, as defined in the previous section. And since we like to
suppress the placeholder variable w, we will always just write A(x).

Finally, we can speak of running a randomized algorithm A on a random input. In this case,
we’d usually take the sample space to include pairs (x,w), and think of A(x;w) as a random
variable.

3.6 Probability Theory “In Practice”

Now that you’ve waded through that very quick review, I will close with a discussion of how discrete
probability is used, both in this class and in other domains, from theoretical to applied.

As with many mathematical concepts, it is possible to maintain two modes of thinking about
probability theory: The first is intuitive, meaning that when you read “let X be a uniformly random
bit-string”, you don’t have to connect it a sample space, a measure, or a random variable. If you
asked “What’s the probability that X starts with a zero?”, you can say 1/2 without the help of all
this formalism. Similarly, you usually can answer questions of independence intuitively.

This intuitive approach often proceeds without even mentioning a sample space or measure.
In a sense, statements like “Pr[X = 1]” use Pr as a symbol to indicate that probability is being
modeled, but do not mean to refer a particular measure Pr as we’ve defined it. This is fine, but
sometimes weird steps happen: A sequence of steps in a proof will usually use the symbol Pr
everywhere, even when referring multiple distinct probability measures on different sample spaces.
This is almost always fine, in that one can formalize the true intention if necessary, and in fact
it’s best to not cloud proofs with too much formalism. Occasionally in this class we’ll pause to
examine these statements, but the point will only be to understand, at a mathematical level, what
the symbols mean. The justification for the steps will almost always be intuitive. We will see
examples of this when learning about perfect secrecy.

3.7 Case Study: The Birthday Problem

The material in this section is borrowed from Introduction to Modern Cryptography by Bellare and
Rogaway3.

Consider the following question: If a group of n people are in a room, what is the probability
that at least two people have the same birthday? A related question is: How large should n be
before we have a 50% chance that two people have the same birthday? To idealize the problem,
assume birthdays are uniformly random and independent samples from {1, . . . , 365}.

Surely 366 is enough, because the pigeonhole principle will guarantee a “collision” with proba-
bility 1. But if n < 366, then it might not be clear how the probability scales. Maybe n = 365/2
are required for a 50% chance? Take a moment to think it over.

To get a handle on the problem, let’s compute the expected number of X, the number pairs of
people that have the same birthday. (This is a bit artificial; If three people have the same birthday,
then we consider this to be three pairs. But it’s useful enough to start.)

For each pair {i, j} of people, with 1 ≤ i < j ≤ n, create an indicator random variable Ii,j
indicating if people i and j have the same birthday. Then X =

∑
1≤i<j≤n Ii,j .

3See Appendix A of https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf.
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We have that E[Ii,j ] = 1/365, since this is just the probability of the even being indicated.
There are

(
n
2

)
= n(n− 1)/2 pairs (i, j) in the sum defining X. So we get that

E[X] = E

 ∑
1≤i<j≤n

Ii,j

 =
∑

1≤i<j≤n
E[Ii,j ] =

n(n− 1)

2

1

365
.

Okay, so what do we make of that? Try graphing the function f(x) = x(x− 1)/2 · 365 using a tool
like https://www.desmos.com/calculator. Zoom out enough to see when the function is greater
than 1.

This calculation reveals that the expected value crosses above 1 when n = 28! This is remarkable
small to most peoples’ intuition. It says that in a room of 28 people, we expect about one pair to
have the same birthday. The key to understanding this intuitively is that the probability is growing
relative n(n− 1) ≈ n2 and not just n; In other words, including an n-th person has a much larger
affect than including the second person.

3.7.1 An Accurate Estimate

Let’s go further than the expectation, and get bounds on the probability of at least one collision.
Instead of sticking to just birthdays, let’s generalize the problem to a level where it will be useful
for other problems.

For integers M,n, let C(M,n) be the probability that we get a repeated sample amongst n
independent uniform samples from a set of size M . (With birthdays, M = 365.) We’d like to
estimate C(M,n) as a function of M and n.

Theorem 3. For all positive integers M,n,

1− e−n(n−1)/2M ≤ C(M,n) ≤ 0.5
n(n− 1)

M
.

If 1 ≤ n ≤
√

2M then this implies

0.3
n(n− 1)

M
≤ C(M,n) ≤ 0.5

n(n− 1)

M
.

Before we prove this, let me point out that in cryptographic contexts, we’ll typically care about
the latter case, where n is at most

√
2M . So focus on this bound: It tells us that we know C(M,n)

to a remarkable accuracy: It’s basically “some-constant” times n(n−1)
M . When M and n are huge

numbers, we won’t usually even care about the constant!

Example 3.14. Let’s apply this theorem for birthdays. With M = 365 and n = 23 we get

0.45 ≤ C(365, 23) ≤ 0.75.

The lower bound is the surprising part; With 23 people, there’s at least a 45% chance of getting two
people with the same birthday.

See https: // en. wikipedia. org/ wiki/ Birthday_ problem for finer estimates. The correct
answer is actually n = 23 for a 50% chance! So our estimate is off by a little bit, but good enough
for the cryptography we have planned.
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Proof of Theorem 3. For each i, let Fi be the event that there is no repeat amongst the first i
samples. Then C(M,n) = 1−Pr[Fn]. Here’s the calculation for the lower bound first; Justification
is given afterwards.

1− Pr[Fn] =
n−1∏
i=1

Pr[Fi+1|F1, . . . , Fi]

=
n−1∏
i=1

Pr[Fi+1|Fi]

=

n−1∏
i=1

(
1− i

M

)

≤
n−1∏
i=1

e−
i
M

= e−
∑n−1

i=1
i
M

= e−n(n−1)/2M .

The first equality uses that Fn = F1 ∩ · · · ∩ Fn and applies the chain rule to this intersection. The
next uses this identity again, this time in the form Fi+1 = F1 ∩ · · · ∩ Fi+1. For the next equality,
Pr[Fi+1|Fi] = (1− i/M) since given Fi, there are i choices that could cause a repeat. The inequality
uses the fact that 1 + x ≤ ex for all real x (including negative x). The next-to-last equality is just
arithmetic with the product, and the final equality uses the fact that 1+2+· · ·+(n−1) = n(n−1)/2.
Rearranging this inequality gives the lower bound in the theorem.

The upper bound is a lot easier. For each i, let Ci be the event that the i-th sample is a repeat.
Then Pr[Ci] ≤ (i− 1)/M , since there will always be at most i− 1 choices that cause a repeat. Now
use the union bound:

C(M,n) = Pr[C1 ∪ C2 ∪ · · · ∪ Cn]

≤ Pr[C1] + Pr[C2] + · · ·+ Pr[Cn]

≤ 0

M
+

1

M
+ · · ·+ n− 1

M

=
n(n− 1)

2M
.

Finally, when 1 ≤ n ≤
√

2M , we can derive the other form of the lower bound using calculus;
In particular we need to the following inequality: For all 0 ≤ x ≤ 1,

(1− e−1)x ≤ 1− e−x.

Then under the assumption 1 ≤ n ≤
√

2M we can apply the inequality. (The details are omitted.)
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