
CMSC 28400 Introduction to Cryptography Autumn 2021

Notes #6: Block Ciphers

Instructor: David Cash

Along with stream ciphers, block ciphers are a very widely-deployed type of algorithm used for
encryption and other cryptographic purposes. These notes cover the basic notion of a block ciphers
and some interesting attacks. In the next notes we’ll learn about how block cipher are put together
to build larger algorithms, such as encryption of large files or tools for authentication.

6.1 Introduction to Block Ciphers

Let’s start with the definition.

Definition 6.1. A cipher E : K ×M → C is called a block cipher if M = C = {0, 1}` for some
positive integer `. The integer ` is called the block length or block size of E.

When E is a block cipher, then for each k ∈ K, E(k, ·) must actually be computing a permutation
on {0, 1}`. In practice we will always have K = {0, 1}n for some positive integer n, and we say that
n is the key-length of E.

We will sometimes want to evaluate E−1, the decryption algorithm. Thus all practical block
ciphers, like DES and AES that follow, support efficient decryption.

Example 6.1. The DES blockcipher, described in Boneh-Shoup Chapter 3 and many other places,
is a function

DES : {0, 1}56 × {0, 1}64 → {0, 1}64.

The key length is 56 and the block length is 64. As we will see, both of these lengths are a major
limitation.

The replacement for DES is a family of three blockciphers, often called AES128, AES192, and
AES256, which have a common block length of 128 and key lengths of 128, 192, and 256 respectively.
The 128 bit version is the most commonly used. Later we’ll refer back to this as simply the AES
blockcipher, with the notation

AES : {0, 1}128 × {0, 1}128 → {0, 1}128.

We do not recall the structure of the AES block ciphers here, but you can read about them in
Boneh-Shoup as well.

The construction of DES, AES, and other commonly-used block ciphers like KASUMI is an deep
and active area of cryptography. It is also highly specialized, and unfortunately in a one-quarter
introduction we can’t do everything. In addition to Boneh-Shoup, you can also check out The
Block Cipher Companion by Knudsen and Robshaw, which is available as a pdf from the library:
https://catalog.lib.uchicago.edu/vufind/Record/8899690.

1



6.1.1 Security of Block Ciphers

What does it mean for a block cipher E : K×M→ C to be secure? Or, not secure? For a stream
cipher G : {0, 1}n → {0, 1}` we arrived at the notion of pseudorandom generators and distinguishing
advantage, which intuitive qualified the G to be used in place of a one-time pad. For a block cipher
however this definition does not fit; It’s not even clear what we should give an adversary.

In the next set of notes we will look at a formal a notion called pseudorandom permutation
distinguishing advantage. That definition will probably make more sense after we look at how
block ciphers are used. Just like the pseudo-one-time-pad motivated the pseudorandom generator
notion, applications of block ciphers will drive their security requirements.

For now we’ll point out some informal requirements. If we plan to encrypted blocks with E,
then it in almost any imaginable scenario we would want it to be hard to recovery the blocks we are
encrypting. In a bit more detail, suppose we are using a key k ∈ {0, 1}n and sending ci = E(k,mi)
for several blocks m1,m2, . . . ∈ {0, 1}`. If an adversary captures c1, c2, . . ., we might ask that it
be hard to recover m1,m2, . . .. This is called a known-ciphertext message recovery attack, so called
because the adversary knows the ciphertexts and is targeting the input message blocks.

An even more basic requirement is that the key k be difficult to recover from the blocks c1, c2, . . .;
call this known-ciphertext key recovery attack. If an adversary can recover k then it can certainly
recover m1,m2, . . ., but it is possible in principle that it finds a shortcut to recover the message
blocks without recovering the k; This means security against known-ciphertext key-recovery attacks
is weaker than security against known-ciphertext message recovery attacks.

We could go on like this for a while, thinking about different combinations of what an adversary
is given and what it is trying to find. We’ll stop with one more example that will drive a case-study
enlightening some interesting issues in the next section.

It turns out that very often an adversary learn not only some c1, c2, . . ., but also the input
message blocks m1,m2, . . .. Perhaps it doesn’t learn every single input message block (otherwise
nothing is really hidden), but in practice adversaries can often obtain some blocks like this. For
instance, if a web server is encrypting web pages, then adversary will very often know that particular
input blocks correspond to protocol boiler-plate text; In that case it can match up some blocks ci
with blocks mi that it knows.

This called a known plaintext attack. Abstractly, we’ll assume an adversary is given some
“examples” (m1, c1), (m2, c2), . . . where c1 = E(k,m1), c2 = E(k,m2), . . ., all computed under the
same unknown key k. As a natural goal for the adversary is to recover k, so that it can decrypt
future blocks as they’re sent. This is a known-plaintext key-recovery attack, which is the subject of
the next two sections.

6.2 Exhaustive Key Search

Consider the setting for a known-plaintext attack that has captured some message/ciphertext pairs
(m1, c1), (m2, c2), . . . where ci = E(k,mi). A simple strategy to find k is simply try every possible
key and see which one “works”. More formally, it could work as follows:

Input: Examples (m1, c1), (m2, c2), . . ., where ci = E(k,mi)

Output: A key k̂ ∈ K
For k̂ ∈ K:

If E(k̂,mi) = ci for all i: Output k̂

2



There are two primary properties to consider: Correctness and runtime. The algorithm will
always terminate and output some k̂ ∈ K, because it will at least stop when it gets the correct
key. However it may in principle output another key that also maps all of the mi to the respective
ci. In practice this basically never happens once more than a few examples are happened; We will
ignore this possibility and assume the algorithm is correct for our purposes.

For run time, we are mostly concerned with the number of iterations of the “For” loop, which
is |K| = 2n for a block cipher with n-bit keys. The DES block cipher only has 256 keys, which is
not very large by modern standards, and today even a modestly-equipped adversary can execute
this algorithm quickly (hours or minutes depending on their computer). Against AES, the runtime
is 2128, which is generally considered totally infeasible.

6.3 Double Encryption

DES was retired because of its small key length and block length, but many systems and protocols
were deployed with DES baked into them (ATMs are a famous example). Instead of completely
rebuilding the systems that used DES to convert them to a block cipher with larger parameters
like AES, many opted to use triple encryption where they ran DES three times instead of two.

In this section we investigate their interesting decision to encrypt three times rather than two.
Here are the options considered, which we denote 2DES and 3DES. “Double DES” has the form

2DES : {0, 1}112 × {0, 1}64 → {0, 1}64.

On input k ∈ {0, 1}112 and m ∈ {0, 1}64, 2DES will divide the key into two 56 bit keys k1 and k2
and outputs

2DES(k1‖k2,m) = DES(k2,DES(k1,m)).

You can check that 2DES satisfies the definition of a block cipher. The key length of 2DES is 112,
and an exhaustive key search would run on the order of 2112 time, which is likely infeasible. It
would appear that 2DES is strong enough for practice. However, due to the interesting “meet in
the middle” attack that we look at next, 2DES is not used; Instead three-key versions are used,
like

3DES : {0, 1}168 × {0, 1}64 → {0, 1}64

which maps
3DES(k1‖k2‖k3,m) = DES(k3,DES(k2,DES(k1,m)))

where k1, k2, k3 are 56 bits each. In order to save on key storage, sometimes a variant called 3DES2
is used, where

3DES2 : {0, 1}112 × {0, 1}64 → {0, 1}64

and
3DES2(k1‖k2,m) = DES(k1,DES−1(k2,DES(k1,m))).

This version seems to avoid known attacks. Note the middle application of DES is actually a
decryption operation; This allows for an easy fallback mode, where if one sets k1 = k2 then 3DES2
will collapse back to “single” DES.

3



6.3.1 Meet-in-the-Middle Attack on Double Encryption

We now give the attack that breaks 2DES with about 256 computation. It is a known-plaintext
key recovery attack, that works well with only three or more known-plaintext blocks. To some
approximation, it shows that that 2DES is no better than single DES! We are looking into this
because it is an elegant method, and also because it highlights the subtleties of security.

The attack is called meet-in-the-middle, and we give it shortly. This algorithm crucially uses a
hash table with some assumed properties; We won’t get into exactly how the table is implemented,
because it’s pretty standard and would involve quite a bit of detail that is not our focus. We will
just assume the table H gives us the following capabilities:

• Given any bit strings x and v, we can associate v with x in constant time. We write this as
H[x]← v.

• Given a bit string x, we can look up the string associated with x, or detect that none exists,
in constant time. We write H[x] for the string associated with x; if there is none, we express
this by saying H[x] = ⊥.

Intuitively, H is like an array, except we can use strings as indexes rather than numbers in some
range. If you’ve used Python dictionaries, they provide essentially this interface.

Now for the meet-in-the-middle attack:

Input: Examples (m1, c1), (m2, c2), . . . , (mt, ct) where ci = 2DES(k1‖k2,mi)

Output: A key k̂1‖k̂2 ∈ {0, 1}112
Initialize a hash table H

For k̂1 ∈ {0, 1}56:
x← DES(k̂1,m1) ‖ · · · ‖DES(k̂1,mt)

H[x]← k̂1
For k̂2 ∈ {0, 1}56:

x′ ← DES−1(k̂2, c1) ‖ · · · · · ·DES−1(k̂2, ct)
If H[x′] 6= ⊥:

k′1 ← H[x′]; k′2 ← k̂2
Output k′1 ‖ k′2

What’s going on in this algorithm? It is based on the following observation: For the correct key
k1‖k2, it holds that

(DES(k1,m1), . . . ,DES(k1,mt)) = (DES−1(k2, c1), . . . ,DES−1(k2, ct)).

So we can compute every possible value on each side of the equation and then search for the
collision (the “meeting in the middle”). The trick is that we are reusing our computational effort
here. Instead of trying each combination k1 and k2 together, we are able to reuse a single evaluation
with a guess for k1 for every guess of k2.

The attack runs in time about 2 · 256 = 257, which is approximately equal to the effort required
to break single DES.

Exercise 6.1. Let’s estimate how the value of t affects the probability that we get the correct key.
The probability can’t go down as t gets larger, but larger t result in more computational effort, so
we prefer to use some minimal value.

4



Actually computing the correct value of t would depend on the inner workings of DES. Instead
we’ll do it heuristically. Assume that all of the entries of H are uniformly random and independent
strings, except for the entries that correspond to k1 and k2, which are equal. Using the union bound
(see the probability notes), give a simple upper bound on the probability that the algorithm would
output an incorrect key pair under this heuristic.

Exercise 6.2. Adapt the meet-in-the-middle attack to 3DES. How long does your attack run, and
how much memory does it consume? Repeat the Exercise 6.1 to estimate the number of examples
required to get a good bound on the probability your algorithm will output the wrong key.

Exercise 6.3. Consider the block cipher E : {0, 1}112 × {0, 1}64 → {0, 1}64 defined as

E(k1‖k2,m) = DES(k1,m)⊕ k2,

where k1, k2 ∈ {0, 1}56. Find a known-plaintext key recovery against E that is not much more
expensive than attacking plain DES. Repeat exercise 6.1, but with your new attack.

Exercise 6.4. Consider the block cipher E : {0, 1}168 × {0, 1}64 → {0, 1}64 defined as

E(k1‖k2‖k3,m) = DES(k1,m⊕ k3)⊕ k2,

where k1 ∈ {0, 1}56 and k2, k3 ∈ {0, 1}64. Find a known-plaintext key recovery against E that takes
about 256+64 time. Repeat exercise 6.1, but with your new attack.

5


