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Instructor: David Cash

In these notes we introduce and briefly study the concept of a pseudorandom permutation
(PRP). This formalizes a notions of security that one can reasonably believe block ciphers like
AES achieve. Our plan is to use the PRP notion in the next set of notes to guide the design of
randomized encryption schemes.

For a preview and some motivation, we plan to analyze the following simple randomized en-
cryption scheme Π, which is a basic version of real commonly-used schemes. The relevant sets are
K =M = R = {0, 1}128,and C = {0, 1}128 × {0, 1}128. Encryption is defined by:

Enc(k,m, r) = (r,AES(k, r)⊕m).

Intuitively, this encryption scheme is picking r at random, and sending it “in the clear” in the
ciphertext. The “pad” is AES(k, r). (Decryption recomputes this pad and XORs it off.) The idea
is that the sender and receiver both know k and can easily compute the pad. But an attacker will
know r (from the ciphertext) but not k, and thus cannot evaluate AES(k, r). Based on the design of
AES and the lack of attacks, it is generally believed the pad in this scenario will “look random”, and
intuitively we’ll get security analogously to how we did with the pseudo-OTP. Even better, since r
is random each time, we can get many-time security if all of several such pads look random. The
concepts we outline next will give us a foundation for rigorously analyzing this situation, similar
to how we used PRGs for the pseudo-OTP.

7.1 Pseudorandom Permutations

We now give an abstraction describing a main security goal of block ciphers. The following defini-
tions use the concept of a random permutation π : {0, 1}` → {0, 1}`. Formally, this makes perfect
sense: the set of all possible permutations on the set {0, 1}`, and we mean to select one uniformly
at random. You can think of such a random variable as a table listing an output for every possi-
ble input, and such that the outputs are a uniformly random list of every possible output. For a
concrete example with ` = 3, we might have π represented by the table:

x f(x)

000 100
001 011
010 010
011 101
100 011
100 111
101 001
110 000
111 110
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So “picking a random permutation” means filling in the right side of the table with the elements
of {0, 1}3 in random order.

Example 7.1. Let π be a random function from {0, 1}128 to {0, 1}128. Then the following hold:

Pr[π(0128) = 0128] =
1

2128
,

Pr[π(0128) starts with 0] =
1

2
,

Pr[π(0128)⊕ f(1128) = 1128] =
1

2128 − 1
.

Things are not always so simple. For instance,

Pr[π(π(0128)) = 0128] =
1

2128
+ (1− 1

2128
)

1

2128 − 1
,

which can be seen by applying the law of total probability to split up the probability into the cases
where f(0128) = 0128 and f(0128) 6= 0128.

We can also define a random permutation π : {0, 1}` → {0, 1}` similarly: It’s just a randomly
chosen sample from the set of all possible permutations on {0, 1}`. We can sample π using the
table view above, except now we must ensure that the values on the right column are all distinct.

7.1.1 Psuedorandom Permutation Definition

We want to formalize a statement like “AES(K, ·) looks like a random permutation when K is a
random key”, and then use such an assumption to analyze encryption schemes. For PRGs we were
able to do this by asking that no distinguisher could effectively tell the PRG output from random.
But how do we do this for a block cipher? A quick attempt might be to give a distinguisher the table
for either AES(K, ·), or the table for a random permutation, and ask it to distinguish these cases.
But this definition isn’t very useful; The tables are absolutely gigantic, well beyond what is possible
to write down using all of the atoms in the universe (we’d need log2 |Perm({0, 1}`)| bits)! So while
that definition may make sense mathematically, the distinguishers involved wouldn’t correspond to
real attacks.

The definition we give next resolves this problem by only giving the adversary oracle access to
either AES(K, ·) or a random permutation. That is, the adversary gets input/output access to an
oracle computing one those functions, and attempts to determine which one it is talking to. It can
make as many queries as it wants, with whatever inputs it can come up with. The only bound
comes from the runtime of the adversary.

Definition 7.1. Let E : {0, 1}n×{0, 1}` → {0, 1}` be a block cipher and A be an adversary. Let K
be uniform on {0, 1}n, and let π be a random permutation on {0, 1}`. We define the pseudorandom
permutation (PRP) distinguishing advantage of A against E to be

Advprp
E (A) =

∣∣∣Pr[AE(K,·) = 1]− Pr[Aπ(·) = 1]
∣∣∣ .

One way to interpret this definition is to look at E as a “family of permutations,” indexed by
the key. Then E(K, ·) is a random member of this family, while π(·) is a random permutation
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from amongst all possibilities. Practical block ciphers like AES are designed to look like random
permutations in this manner, resisting all efficient attempts to find patterns in their outputs.

An adversary A can be judged according to its runtime, the number of queries it issues, and its
advantage. We won’t distinguish much between runtime and queries, but in practice an adversary
will usually have far more computation time than it does queries, because the queries need to be run
by the parties under attack. They won’t be enabling anything like 280 queries, but the adversary
might have that much computation. If the advantage of every reasonable A is small (say 2−64 or
2−128, depending on the application), we informally say that E is a good PRP.

In that case we think of E with a random key as “looking like a random permutation,” and
all of the properties of random permutations are thus inherited by E. So E(K, x) and E(K, x′)
(x 6= x′) should look like two random distinct strings, even when x and x′ differ only by one bit. If
not, then there would be an adversary with good PRP advantage.

Example 7.2. Suppose E : {0, 1}128 × {0, 1}128 → {0, 1}128 satisfies E(k, 0128) = 0128 for every
k ∈ {0, 1}128. We show that E is not a good PRP. Consider AO that queries 0128 to its oracle O
and calls the response y. If y = 0128 then A outputs 1, else 0. Then

Pr[AE(K,·) = 1] = 1

and

Pr[Aπ(·) = 1] =
1

2128
,

the latter because a random permutation satisfies f(0128) = 0128 with probability 1
2128

. Thus

Advprp
E (A) = 1− 1

2128
,

which is high. Moreover, A only issues one query and performs some trivial computation.

Note that we had to define A with respect to a generic oracle O; We don’t get to say how A
works with E(K, ·) and π(·) separately, since A only gets to see their input/output behavior. More
complicated patterns can be found with more clever attacks.

Exercise 7.1. Suppose E : {0, 1}128 × {0, 1}128 → {0, 1}128 satisfies E(k, 0128) = E(k, 1128) (the
bar indicates bitwise complement) for every k ∈ {0, 1}128. Similar to the previous example, show
that E cannot be a good PRP. What is the advantage of your adversary?
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