
CMSC 28400 Introduction to Cryptography Autumn 2021

Notes #8: Randomized Encryption and Chosen-Plaintext Attack Security

Instructor: David Cash

So far we’ve studied stream ciphers and block ciphers. We previously discussed the pseudo-
OTP, and how it can be built with any stream cipher. In future notes we’ll look at how to build
ciphers for large messages from block ciphers as well.

For these notes we consider the goal of securely encrypting several messages, towards addressing
the one-time weakness of the OTP and Pseudo-OTP.

8.1 Randomized Encryption

The OTP and psuedo-OTP are ciphers, which means they are functions satisfying a certain property
we defined in the very first set of notes. Implicit in the definition of a cipher is that encryption is
“deterministic,” meaning that if one encrypts the same message with the same key multiple times,
then the same ciphertext will be emitted each time. A closer look at these ciphers reveals that
their security behavior when encrypting multiple messages is even more concerning. For instance,
suppose we use the OTP to encrypt a message m1, producing a ciphertext c1. Later, say we want
to encrypt message m2 that is exactly m1, but with its first bit flipped. Using the same key, we
would produce a ciphertext c2 that is equal to c1, except with its first bit flipped!

Should this property concern us, as cryptographers? Security always depends on the application,
and the OTP has its place. But here is an example of the sort of thinking that suggests we should
consider stronger security: Suppose we encrypt a super-secret number m using the OTP, which is
the number of widgets sold so far this year. Each day we add to m the number of sales, and encrypt
the number again, producing a new ciphertext. Now consider the point of view of an adversary:
It will see a sequence of ciphertexts, and be able to detect which bits have been changed each
time. This will tell the adversary a lot about how our day-to-day sales, even though everything is
encrypted, and each ciphertext is (in some sense) “unbreakable” on its own.

This issue played a role in some classical ciphers, like the homophonic cipher you broke in
Project 1. Recall that this wasn’t really a cipher, since the encryption process was not really a
function but a recipe of sorts which could produce different ciphertexts when run on the same input
twice. Another example is the famous Enigma cipher used in the mid 20th century, notably by the
Germans in World War II. That cipher explicitly instructed senders to pick a random “message
key” to randomize ciphertexts.

Basically all commonly-used modern encryption is designed to avoid these problems when en-
crypting multiple messages with the same key. (The ones that aren’t are explicitly marked as good
for one-time use only.) Because of the deterministic nature of a cipher E, we need a new definition
that allows for randomization. The following allows for this, and is called an encryption scheme.
The name is just a convention, but it is pretty standard. Intuitively, a randomized encryption
scheme is like a cipher, except the encryption direction takes an extra input that can be used to
randomized the process. Decryption still have to recover the message, but doesn’t to need recover
that extra input.

1



Definition 8.1. A pair of functions Π = (Enc,Dec),

Enc : K ×M×R→ C

and

Dec : K × C →M,

is called a randomized encryption scheme with key-space K, message-space M, randomness-space
R, and ciphertext-space C if for every k ∈ K, m ∈M, r ∈ R, and c ∈ C

Enc(k,m, r) = c =⇒ Dec(k, c) = m.

The intended usage is for someone to pick r ∈ R and then run c← Enc(k,m, r). An interesting
point is that decryption must work with k and c only. In particular, the value r chosen by the
sender is not assumed to be available for decryption unless it is communicated in c; Of course one
can always put r there, but doing so may have implications for security.

The OTP and pseudo-OTP do not really fit this definition (if R is a trivial set or something
they can be formally viewed this way, but that is not the spirit of the definition). Intuitively, it’s
not even clear syntactically how to mix in randomness into these ciphers. In the next set of notes
we’ll begin looking at how randomness might be used effectively, but with a block cipher. For these
notes will define a new security notion for randomized encryption and give a few examples.

8.2 Analyzing the Security of a Cipher

Since about the 1980’s, an approach for thinking about security has been developed that extends
Shannon’s idea of giving mathematical definitions of security. For better or worse, this approach is
called “provable security.” We have seen a bit of this already in our analysis of stream ciphers and
block ciphers, when we used definitions of PRG and PRP distinguishing advantage.

At a high level, the provable security approach works in three distinct steps: (1) Defining
security goals, (2) Defining computational assumptions, and (3) Proving security via reductions.
Each of these steps involves idiosyncrasies particular to cryptography. In CS 284, we’ll be looking
at (1) mostly, with the idea of learning about how definitions can be used as a tool for evaluating
cryptography. The other steps require a little background in complexity theory and will only be
mentioned in passing (but are covered in great detail in CS 384).

8.2.1 Defining Security Goals

The first step is finding a definition of “security” that enumerates what an adversary is allowed to
do and how much computational effort it my expend. In this step we seek to formalize something
like

“We should prevent an adversary mounting a chosen-plaintext attack, and employ any algorithmic
strategy in 2100 time, from learning any non-trivial information about plaintexts it does not already
know.”

The salient features of this informal definition include the adversary capabilities (chosen-plaintext
attack), a resource bound (2100 time), and a goal (learning information about plaintexts that it

2



does not already know). Also central to this approach is that we want to allow any algorithmic
strategy, including ones we don’t know about ourselves. This is remarkable because the current
state of theoretical computer science is not very good at reasoning about the limits of general time-
bounded algorithms. This situation is very similar to that of pseudorandom generators, where we
wanted to think only of time-bounded distinguishers failing, but we have no real tools for proving
anything conclusive about them.

8.3 Chosen-Plaintext Security of Randomized Encryption Schemes

We next formalize a security goal for randomized encryption schemes. The idea is to require that
an adversary cannot learn anything non-trivial about (several) encrypted messages. It should not,
in particular, be able to detect if the same message was encrypted multiple times or not. We’d
also like our encryption scheme to securely encrypt any type of messages selected by an arbitrary
underlying protocol (e.g. HTTP), and not rely on messages avoiding any pathologies.

More interestingly is that we want our encryption to remain secure even when an adversary can
influence what we encrypt. Here is a modern example where an adversary has this type of power:
Suppose we are encrypting traffic between a front-end web server and a backend database holding
user account information. Anyone on the internet can create a free account, and upon account
creation, the username u and password p are encrypted by the webserver and sent to the database.
Now suppose the link between these machines is visible to an adversary. This adversary1 can create
accounts just like anyone else! Thus it can choose u and p as it likes, and then observe the resulting
ciphertext. Moreover, it can do this many times, perhaps thousands.

More subtle versions of this problem can arise as well. Sometimes adversaries will know we’re
encrypting information from a network protocol. By interfering with our connection, it may be
possible for the adversary to induce us to encrypt predictable error messages.

With that motivation, we give a definition that should hold up against those types of attacks:
The solution is to make a definition where the adversary gets to pick the messages, sort of like in
one-time CPA, but now for many messages. Formally, this definition uses the concept of an oracle.
You can think about oracles intuitively as “subroutines” that an algorithm can call. When A is
an oracle algorithm and O1 is a function, we write AO1 for A connected to the oracle (subroutine)
O1. If O2 is another oracle, we write AO2 for A connected to O2, and so on. A key point in this
formalism is that A can only observe the input/output behavior of its oracle, and not the code
implementing the oracle. So if O1 and O2 are the same function, then AO1 and AO2 will behave
exactly the same.

Now for the definition. It uses the notation x
$←X to mean “select a random sample from the

set X, and call it x.”

Definition 8.2. Let Π = (Enc,Dec) be a randomized encryption scheme with key-space K, message-
space M ⊆ {0, 1}∗, randomness-space R, and ciphertext-space C. Let A be an algorithm. Define
algorithm Exptcpa

Π (A) as

1This adversary may really be multiple coordinating people or machines, but we consider it to be one adversary.

3



Alg Exptcpa
Π (A)

01 Pick k
$←K, b $←{0, 1}

02 Run ALRk,b(·,·), where the oracle is given below. Eventually A halts with output b̂

03 If b̂ = b: Output 1
04 Else: Output 0

Oracle LRk,b(m0,m1)

If m0,m1 are not the same length: Return ⊥
Pick r

$←R
Compute c← Enc(k,mb, r)
Return c.

We define the CPA advantage of A against Π to be

Advcpa
Π (A) =

∣∣∣∣Pr[Exptcpa
Π (A) = 1]− 1

2

∣∣∣∣ .
The algorithm Exptcpa

E (A) should be thought of as a “test-harness” for A. This algorithm is
not something we would ever use in practice, as it does not nothing useful other than evaluate a
potential adversary A. As with pseudorandom generators, the advantage Advcpa

E (A) is a “score”,
this time between 0 and 1/2; The higher the advantage, the better the adversary.

Most of the complexity in this definition is in Exptcpa
E (A). The experiment picks a random

key k and a random bit b. The adversary then runs with access to an oracle LRk,b(·, ·) which uses

k and b. The goal of this adversary is to guess b; Eventually it will output its guess b̂. When
querying the oracle, the adversary is picking left/right messages m0,m1, and it is given as many
shots as it likes (subject to any limitations on its runtime, since each query costs at least one basic
operation). Note that each query is answered by picking a fresh, independent value r to be used
for encryption. Also, every call to the oracle uses the same values of k and b. That is, the same
key is used, and whether the left or right message is encrypted is determined across all queries,
not per-query (so either every query is answered by encrypting the left message, or every query is
answered by encrypting the right message).

Note that even a very simple A can win with probability 1/2, say by always outputting 1 or
always 0. The goal of the adversary is to do better than that, so the definition subtracts 1/2 (if we
didn’t do this, we could just mentally calibrate our expectations, but this is simpler). In practice,
an adversary running in time (say) 2100 and achieving Advcpa

E (A) = 1/2100 may be considered a
“break,” depending on the exact parameters like key-length.

In practice we are concerned with adversaries A with a similar level of resources to those we
considered before. For example, we might hope for security against an adversary running time 2128

and issuing 2128 queries, achieving advantage 2−128. As before, the maximum advantage is 1/2,
and anything remotely large (like 2−50) is considered to be a complete break.

The next claim shows that deterministic encryption schemes cannot have good CPA security.

Claim 1. Suppose Π = (Enc,Dec) is an encryption scheme with K,M,R, where M ⊆ {0, 1}∗
contains at least two equal-length messages. Assume Enc is deterministic (i.e. it does not use its
input from R). Then there exists an adversary A making two queries such that

Advcpa
Π (A) = 1/2.

4



Proof. Let m,m′ ∈M be distinct messages of the same length. The adversary A works as follows:
Given access to an oracle O(·, ·), do the following:

Query O(m,m) and call the response c1

Query O(m,m′) and call the response c2

If c1 = c2 output 0, Else output 1.

We claim that Pr[Exptcpa
Π (A) = 1] = 1. This is equivalent to saying that A always outputs the

correct bit b̂ = b. This follows by the assumption that Enc is deterministic: if b = 0, then c1 and
c2 are both Enc(k,m) and A outputs b̂ = 0. If b = 1 then c1 = Enc(k,m) and c2 = Enc(k,m′). But
then c1 and c2 cannot be equal, because decryption must be correct. Thus A will output b̂ = 1 in
this case, completing the proof.

Exercise 8.1. Check the above proof and pinpoint where we used the fact that m and m′ have the
same length, and where we used the fact that they distinct. What happens if we relax either of these
conditions?

Notice how the adversary above was described: It’s defined to work with any oracle O that fits
the correct syntax (i.e. accepting two messages). We have to describe A in this way because it
cannot “see” what oracle its interacting with. But when it comes time to analyzing A, we actually
instantiate O with a particular function and calculate probabilities.

Exercise 8.2. Let Π be the OTP cipher, viewed as an encryption scheme with deterministic en-
cryption scheme. Describe a simple adversary A that never inputs the same message to its oracle
more than once and yet Advcpa

Π (A) = 1/2. Note the above adversary inputs m more than once (in
fact three times) to its oracle, so that adversary does not count.

Exercise 8.3. Define Enc : K ×M×R→ C, where K =M = R = {0, 1}` and C = {0, 1}2`, as

Enc(k,m, r) = (r ⊕ k,m⊕ r).

• Give an algorithm Dec that makes Π = (Enc,Dec) into a randomized encryption scheme (i.e.
so that Dec correctly recovers the message).

• Give a simple adversary A such that Advcpa
Π (A) = 1/2.

Those exercises only gave us some examples of encryption schemes with bad CPA security.
The following exercise guides our search for good constructions by showing that we cannot achieve
perfect CPA security against all adversaries. The proof is a little technical and omitted, but you
may like to try proving it.

Exercise 8.4 (Harder, optional). Let Π be a randomized encryption scheme. Show there exists an
adversary A (not necessarily efficient) such that Advcpa

Π (A) > 0.

Construction encryption schemes with good CPA security is usually done from block ciphers in
practice, and that is the subject of the next set of notes.

5


