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Notes #10: Chosen-Ciphertext Security for Encryption

Instructor: David Cash

These notes present and briefly study a definition for chosen-ciphertext security of an encryption
scheme. To begin understanding the motivation for this definition, consider a setting where a server
S1 holding a key k is connected to the internet, and expects to talk to another computer S2 that
also has k. But by its very design the internet infrastructure is unauthenticated : Bits are delivered
to hosts by routers, and those bits could claim to be from anywhere. So when our server S1 receives
a packet containing a ciphertext c with the IP address indicating it came from S2, it can’t depend
on the IP address alone to ensure the packet is actually from S2.

Now suppose an adversary controls a router near S1, and injects a packet that looks like it
came from S2. What can S1 do? In reality it performs some sort of cryptographic authentication,
which we discuss in the next notes, but for now let us approach the question naively. Since S1

has no idea if the packet is “real” or not, it must run the decryption algorithm on the received
ciphertext c. Perhaps the decryption algorithm returns garbage, or perhaps c has been crafted to
return something more controlled. In any case, S1 must react to c in some way that is observable
to the adversary. Perhaps S1 closes the connection, or maybe it attempts to send an error code, or
maybe it even sends the next message in a protocol.

In summary, the ability to inject one or more ciphertexts c gives an adversary the power to
carry out attacks fitting the following template:

1. Cook up some ciphertext ĉ.

2. Have a receiver run m̂← Dec(k, ĉ).

3. Observe how the receiver reacts to the message m̂.

These are called chosen-ciphertext attacks, or CCAs. It’s hard to intuit if CCAs like this could
ever be damaging. Let’s look at an example that highlights how things might go catastrophically
wrong.

Example 10.1. Let Π = (Enc,Dec) be the (deterministic) OTP. Suppose a server uses Π to decrypt
messages it receives. Suppose further that if the server decrypts a ciphertext c and obtains a message
m that does not have the correct format (e.g. is not proper HTTP), then it replies with m in the
clear to the sender and requests a retransmission.

Here is a CCA that recovers the secret key from the server:

1. Set ĉ to a random string, and send it to the server.

2. The server computes m̂← Dec(k, ĉ). It’s likely that m̂ = k⊕ ĉ will not be a properly-formatted
message, so the server replies with m̂.

3. The attacker computes k = ĉ⊕ m̂.
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The above example is extreme, but bugs like this have been known to leak keys; One problem
in Project 2 gives a more practical version.

So we want a definition that ensures CCAs won’t be damaging. We certainly want that keys
won’t be leaked, but we’d like to ensure even more, akin to the guarantees we got from CPA security.
Thus we will aim for a left/right indistinguishability definition like CPA, but we need to give the
adversary some power similar to the template above. The types of reactions a server might have to
a ciphertext ĉ are quite wide, and we can’t hope to enumerate them. Instead, we’ll go completely
overkill, and give the adversary the ability to decrypt ciphertexts as it likes. We do this formally
with another oracle. That way, since the adversary can learn how any ĉ to decrypts to some m̂,
it can also learn about any possible reaction a server might have. And if a scheme resists these
attacks, then it should resist more realistic attacks fitting the template above.

There is one wrinkle, however: We must stop the adversary from using its decryption ability
to trivially win the experiment. After all, if the adversary is trying to learn what message was
encrypted (m0 or m1), decryption of arbitrary ciphertexts will allow it easily figure that out. Thus
we need an extra rule saying “free win” ciphertexts are not allowed to be decrypted.

The formal definition follows. It fits the template we’ve had so far, but with an extra oracle.

Definition 10.1. Let Π = (Enc,Dec) be a randomized encryption scheme with key-space K,
message-space M, randomness-space R, and ciphertext-space C. Assume that M⊆ {0, 1}∗. Let A
be an algorithm. Define algorithm Exptcca

Π (A) as

Alg Exptcca
Π (A)

01 Pick k
$←K, b $←{0, 1}

02 Run ALRk,b(·,·),Dec(k,·), where the first oracle is given below. Eventually A halts with output b̂
03 If A ever queried Dec(k, ·) at a ciphertext c previously output by LRk,b(·, ·): Output ⊥.

04 If b̂ = b: Output 1
05 Else: Output 0

Oracle LRk,b(m0,m1)

If m0,m1 are not the same length: Return ⊥
Pick r

$←R
Compute c← Enc(k,mb, r)
Return c

Define the CCA advantage of A against Π as

Advcca
Π (A) =

∣∣∣∣Pr[Exptcca
Π (A) = 1]− 1
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∣∣∣∣
This definition is exactly the CPA definition, except for the Dec(k, ·) oracle and for line 03, which

enforces the “free win” rule (see the next paragraph). Recall that with an oracle, an algorithm can
submit whatever it likes, and submit as many queries as it likes (bounded only by its runtime).
Thus an adversary above can ask for decryptions of many ciphertexts (millions), each of which it
gets to form. They could be malformed, all-zeros, or whatever else might help a break. The idea is
that all of the decryptions should not help the adversary break any of the “challenge” ciphertexts
from the LR oracle.

Note that the game is easy to win if we omit the rule on line 03; We leave this as an exercise to
check.
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Exercise 10.1. Suppose the definition above omitted line 03. Assume Π has more than one allowed
message, i.e. |M| > 1. Give an efficient adversary A such that

Advcca
Π (A) = 1/2.

Building encryption from a block cipher that resists chosen-ciphertext attacks is considerably
harder than chosen-plaintext attacks. In fact, we won’t even try in these notes and will defer it to
the next set. The following example is meant to highlight the challenge.

Example 10.2. Let E : {0, 1}n×{0, 1}` → {0, 1}` be a block cipher. Define a randomized encryp-
tion encryption scheme Π = (Enc,Dec) with key-space {0, 1}n, message- and randomness-spaces
M = R = {0, 1}`, and ciphertext-space C = {0, 1}` × {0, 1}` by

Enc(k,m, r) = (r, E(k, r)⊕m)

and Dec(k, (r, c)) = E(k, r)⊕ c.
Previously we showed that breaking the CPA-security of Π required breaking the PRF-security

of E. We now give an efficient adversary A that strongly breaks the CCA-security of Π, satisfying

Advcca
Π (A) = 1/2.

This shows the construction is not at all secure against chosen-ciphertext attack. The adversary
works follows:

Adversary ALRk,b(m0,m1),Dec(k,·)

Let m0 6= m1 ∈M, with m0 6= 0`. Query (r, c)← LRk,b(m0,m1).
Let c′ = c⊕m0. Query m′ ← Dec(k, (r, c′))
If m′ = 0`: Output 0
Else: Output 1.

Let us check that the adversary always win Exptcca
Π (A). First, A will never auto-lose the game,

because (r, c) is never queried to the decryption oracle (only (r, c′) is, but (r, c′) 6= (r, c) because
c′ 6= c, which is where we use that m0 6= 0`). Now suppose b = 0, so (r, c) = (r, E(k, r)⊕m0). Then
the ciphertext (r, c′) will decrypt as

c′ ⊕ E(k, r) = c⊕m0 ⊕ E(k, r) = E(k, r)⊕m0 ⊕m0 ⊕ E(k, r) = 0`,

and A will output 0. Otherwise, if b = 1, (r, c′) will decrypt as

c′ ⊕ E(k, r) = c⊕m0 ⊕ E(k, r) = E(k, r)⊕m1 ⊕m0 ⊕ E(k, r) = m1 ⊕m0 6= 0`,

because m0 6= m1. Thus A will output 1. This shows that A always wins and thus has the desired
advantage.

Intuitively, the problem is malleability of ciphertexts: The adversary A, without knowing the
key, is able to modify a ciphertext c into a new ciphertext c′ containing a message related to the
original one. This new ciphertext can be submitted for decryption (because it is different), and the
response can be used to win the experiment.

Don’t overthink the next exercise: It’s trivial.
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Exercise 10.2. Let Π be an encryption scheme. Show that for all A there exists a B running in
the same time such that

Advcpa
Π (A) ≤ Advcca

Π (B).

How are CCA and CPA security related?

Unfortunately, CTR and CBC modes are not CCA-secure. We’ll need new tools instead.

Exercise 10.3. Let Π be either AES-CTR or AES-CBC, defined in the previous notes. For each
one, find an efficient A such that

Advcca
Π (A) = 1/2.

4


