
CMSC 28400 Introduction to Cryptography Autumn 2021

Notes #11: Message Authentication

Instructor: David Cash

So far we’ve been concerned with secrecy of messages, and have considered ciphers and random-
ized encryption with various secrecy security goals. These notes consider a different security goal:
authenticity of messages. Intuitively, we’d like tools that help prevent adversaries from changing or
inserting messages on communications links. A typical setting is a compromised connection on the
internet, where an untrusted router controls all of the messages being sent. Another setting is a cell
connection, where an adversary with a powerful antenna may interfere with traffic between a device
and a cell tower. While in those settings secrecy is also a goal, we’re going to focus exclusively on
authenticity first, and then return to how it may combined with secrecy.

11.0.1 Message Authentication Codes (MACs)

Let us start with an abstract setting. A sender and receiver are connected via a channel that is
controlled by an adversary A who may change their messages (See Figure 11.1). If the endpoints
don’t share something, then there’s not much they can do: The bits arriving at the receiver could
just as well have come from the sender as the adversary. So we’ll assume, like we did with encryption,
that the two endpoints share a key k, and that they’ll try use k to somehow stop A, who doesn’t
know k.

A first idea might be to encrypt m using a cipher or randomized encryption scheme, and send
c instead. The receiver could then decrypt and consider the output as the received message. (See
Figure 11.2.) Assuming encryption is secure (say many-time CPA secure), does this ensure that
when m̂ is received, it was really sent by the sender? The answer is “not always” (at least). This
is because malleability attacks may be possible, where an adversary can change the contents of a
ciphertext even when it does not know the key. Whether or not the change is meaningful is a
separate issue, but we can say with confidence that sometimes A may sneak in a m̂ that wasn’t
actually sent.

Sender A Receiver
m m̂m m̂

Figure 11.1: An unprotected channel.

Sender
c← Enc(k,m, r)

A
Receiver

m̂← Dec(k, ĉ)

k k

m m̂c ĉ

Figure 11.2: An attempt at authentication using encryption.
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Instead of trying to use encryption schemes for authentication, we’re going to define a new
primitive, called a message authentication code (MAC) that is purpose-built. The term MAC is
very standard, to the point where we almost never call them by the full name, so we’ll just say
MAC everywhere below.

Our plan to prevent messages changes is to require that all received messages be accompanied
by a tag. A tag is a just a message-specific bitstring, which intuitively should only be computable
by the sender who knows the secret key k. For security, we want that it should be hard to “forge”
a tag when someone doesn’t know the key.

We start with a definition, which is very simple.

Definition 11.1. A function

Mac : K ×M→ T

is called a MAC with key-space K, message-space M, and tag-space T .

This doesn’t say anything about security, but the names at least guide usage (see Figure 11.3).
The idea is that the endpoints share a random k ∈ K. When they want to send a message
m ∈ M, they compute t← Mac(k,m) and send m and t together. Upon receiving some (possibly
modified) message and tag pair (m̂, t̂), the receiver checks if the tag is correct, meaning it checks if

t̂
?
= Mac(k, m̂). If not, then it throws an error, and otherwise it accepts m̂ as authentic.

Sender
t← Mac(k,m)

A
Receiver

t̂
?
= Mac(k, m̂)

k k

m m̂ or ⊥m, t m̂, t̂

Figure 11.3: A channel protected with a MAC.

Before going further, let’s stop to note one attack that we won’t prevent: if A observes a
message/tag pair m, t being sent, then later it can replay this pair by sending it again. In our
diagram above there’s nothing the MAC can do stop this, since it really is the correct t. Thus
we’ll have to deal with replay attacks by changing the message we send, or by other means like
timestamps in the messages themselves.

11.0.2 MAC Security: Unforgeability

It’s clear that we need some security property from MAC in order for it to do any good. We’d like
to somehow say that producing a tag for a message is hard if you don’t know the key. As with
our encryption definitions, we’ve going to think “worst case”. Namely, we’ll want the following
properties of a security definition:

1. An adversary is trying to win an experiment by “forging” a tag on a message.

2. We’ll declare an adversary to have won if it can produce a tag on any message m̂ ∈ M that
was not tagged by the sender. It doesn’t matter if m̂ is “meaningful” or not (because we
can’t formalize this; what’s meaningful will depend on the application).
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3. We won’t count replay attacks as winning, for the reasons discussed above.

4. We’ll assume that the adversary can observe several message/tag pairs to help it try to forge
a tag. In practice these examples come from some protocol run by the endpoints. In our
worst-case thinking, we’ll let A pick these example messages to be tagged. That way, no
matter protocol the endpoints run, we’ll have confidence that forging is hard.

5. We’ll assume that the adversary can try injecting messages and see if the receiver rejects the
tags or not. In practice an adversary can often tell whether or not a server rejects a message,
so the definition will give the ability explicitly.

With those points in mind, here’s the definition.

Definition 11.2. Let Mac : K×M→ T and let A be an algorithm. Define algorithm ExptufF (A)
as

Alg ExptufF (A)

01 Pick k
$←K

02 Run AMac(k,·),Vrfyk(·,·), where the second oracle is given below.

03 If A ever queried Vrfy(·, ·) on an input (m̂, t̂) such that

(1) t̂ = Mac(k, m̂), and
(2) m̂ was not previously queried to the first oracle,

then output 1.
04 Else: Output 0

Oracle Vrfyk(m̂, t̂)

If t̂ = Mac(k, m̂): Return 1
Else: Return 0

Define the unforgeability advantage of A against Mac as

Advuf
Mac(A) = Pr[ExptufMac(A) = 1].

We’ll only need one security definition for MACs this quarter.
The Mac(k, ·) oracle in the experiment gives the adversary the ability to look at whatever tag

it wants. The second oracle Vrfyk(·, ·) serves two purposes: First, the adversary can probe it to see
if a message/tag pair is acceptable to the receiver. Second, it uses this oracle to win the game, but
submitting a message/tag pair m̂, t̂ that counts as a forgery, meaning that m̂ was not previously
tagged by the first oracle and yet A cooked up an acceptable tag anyway. The rationale for these
oracle follows the desired features we listed before the definition.

To solve the next exercise, use the ideas from the CCA notes to mount a malleability attack,
but phrase it in terms of an A that fits the syntax of the unforgeability experiment.

Exercise 11.1. Let Mac : {0, 1}`×{0, 1}` → {0, 1}` be the `-bit one-time page (Mac(k,m) = k⊕m).
Give a simple adversary issuing one query to each oracle such that Advuf

Mac(A) = 1.
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11.0.3 Constructing a Fixed-Length MAC

The exercise above gives a non-example of a MAC. Constructing an example of a secure MAC is
much harder; Actually proving any particular function Mac is secure is well beyond our current
abilities, so we’ll need to start with some other object as a foundation. For MACS, a block cipher
is a natural starting point. In fact, a block cipher that has good PRP security will already be a
good MAC!

One can intuitively sum up the relation between MAC and PRP security as: MAC security is
about predicting a function F on a point before you query it. But if the output space T is large,
and you can predict a function like that, then you must actually be distinguishing it from a random
permutation.

Given a MAC that is secure for more than one message block is quite hard (this is in contrast
to randomized encryption, where something simple like CTR mode is easy to state and not too
hard to analyze). The next exercise shows that some simple attempts don’t work.

Exercise 11.2. Let AES be the 128-bit AES block cipher as usual. Consider F1 : K×M→ T1 and
F2 : K×M→ T2, with K = {0, 1}128, M = {0, 1}128×{0, 1}128, T1 = {0, 1}256, and T2 = {0, 1}128,
defined by

F1(k,m1‖m2) = AES(k,m1)‖AES(k,m2),

F1(k,m1‖m2) = AES(k,m1)⊕ AES(k,m2).

Give a simple adversaries A1,A2 such that Advuf
F1

(A1) = 1 and Advuf
F2

(A2) = 1.

11.0.4 A MAC for Long, Variable-Length Messages: CBC-MAC

In practice, something called CBC-MAC is often used for multi-block messages. We won’t even
attempt to analyze it, as the proof is a bit too complicated. But it’s worth knowing in case you
ever come across it. Here is the code: It takes message-space M consisting of strings of at most
2128 − 1 bits long; This is almost, but not quite, infinite, and is just a technical condition. The
key-space and tag-space are K = T = {0, 1}128. The construction works as follows:

Alg Mac(k,m)

Let len ∈ {0, 1}128 be the bit-length of m, encoded as a 128-bit integer.
m← padcbc(m)
Parse m[1]‖ · · · ‖m[L]← m (128-bit blocks)
v ← len
For i = 1, . . . , L:

v ← AES(k, v ⊕m[i])
Output v

The padding function padcbc here is different from the PKCS padding we saw before (I’m not sure
why, actually). Luckily, padcbc is simple: it just appends a 1 bit followed by the required number
of zero bits to get the resulting output to be a multiple of 128 bits long.

As the name suggests, CBC-MAC is similar to CBC encryption. The main differences are that

1. CBC-MAC is deterministic. Instead of randomness, the first block is set to an encoding of
the length.
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2. Only the final value of v is output. Outputting the intermediate values of v results in an
insecure MAC (a good exercise!). You can check this even for messages such that L = 2.

Exercise 11.3. Consider a version of CBC-MAC where the length block is not used. More precisely,
define Mac0 to be exactly like Mac above, change the line just before the “for” loop to v ← 0128

instead of v ← len. Give a simple A such that Advuf
Mac0(A) = 1. (Hint: A single, one-block query

to Mac0(k, ·) is enough. The simplest attack I can think of then forges a tag on a two-block message
m̂.) This shows that we can’t simply ignore then length block!

Exercise 11.4. Requiring the length block at the start of the message is annoying, since it means
you can’t start processing until you know many bits you’re sending. It’d be nice if we could move
the length block to the end, but unfortunately this makes it insecure!

Concretely, give a simple attack against the following MAC:

Alg Mac(k,m)

Let len ∈ {0, 1}128 be the bit-length of m, encoded as a 128-bit integer.
m← padcbc(m)
Parse m[1]‖ · · · ‖m[L]← m (128-bit blocks)
v ← 0` //start with zeros instead of length
For i = 1, . . . , L:

v ← AES(k, v ⊕m[i])
v ← AES(k, v ⊕ len) // length block last
Output v
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