
CMSC 28400 Introduction to Cryptography Autumn 2021

Notes #12: Collision Finding

Instructor: David Cash

These notes cover the latter part of Lecture 14. For definitions of collision resistance and
constructions of hash functions, please refer to the slides.

12.1 Birthday Attack

Let’s look at the simplest attack that comes to mind when trying to find a collision: Just try
computing H(k, x) for different values of x until you find two inputs that collide. A bit more
precisely, the attack would look like this:

Alg A(k)

Initialize a hash table Y
For x = 1, . . . , q :

y ← H(k, x)
If Y [y] 6= ⊥:

x′ ← Y [y]
Output x, x′

Y [y]← x
Output “fail”

For what value of q do we expect this attack to generate a collision with good probability? Certainly
q = |R|+ 1 is enough, since by the pigeonhole principle we will get a repeated value by then. But
in practice it turns out that this attack performs much better, finding a collision when q is on the
order of the square root of |R|. So for |R| = 2128, we could set q =

√
|R| = 264, which is feasible

for some adversaries, while q = 2128 is not. It is because of this attack that hash function outputs
need to have length 2n to have any chance of resisting 2n-time attacks. (So, for example, resisting
2128-time attacks requires a hash with 256 bit output.) The algorithm is often called a “birthday
attack” because it exploits the birthday paradox to succeed surprisingly quickly.

We now explain why the attack succeeds with good probability with q ≈
√
|R|. Heuristically,

we can think of the q values for y generated in the loop as uniform and independent samples from
R. When modeled this way, the algorithm succeeds if any of these q samples are equal. The notes
on probability analyzes this event (in the last section), which happens with probability Col(|R|, q),
a value which satisfies

0.3
q(q − 1)

|R|
≤ Col(|R|, q) ≤ 0.5

q(q − 1)

|R|
when q ≤

√
2|R|. Here we only need the lower bound. Setting q =

√
|R| gives

Col(|R|, q) ≥ 0.3

√
|R|(

√
|R| − 1)

|R|
= 0.3− 0.3/

√
|R| ≈ 0.3.

For our purposes, this is a very high advantage! And as q goes above
√
|R| this probability will

get very close to 1.

1

12.2 Small-Space Collision-Finding

One might object to the previous attack because of the amount of space it consumes. The space
required to store the hash table Y will grow with q, and quickly become impractical. For instance,
it is possible that adversaries can actually run an attack taking q = 280 hash evaluations, but can’t
store a hash table with 280 entries.

It turns out that there is a different attack that also finds a collision in about
√
|R| time, but

runs with very little space. In fact, it only needs to store two hash values and a counter! The
algorithm is called Floyd’s tortoise and hare algorithm. Here’s the pseudocode:

Alg Afloyd(k)

xtort ← 0; xhare ← 0
Do:

xtort ← H(k, xtort)
xhare ← H(k,H(k, xhare))

Until xtort = xhare

xtort ← 0
While H(k, xtort) 6= H(k, xhare):

xtort ← H(k, xtort)
xhare ← H(k, xhare)

Output xtort, xhare

The algorithm maintains two values xtort, xhare ∈ R. In the first loop, each iteration updates xtort

by evaluating H on the current value of xtort; Think of this as a “single step” (it’s the slow tortoise).
The loop also updates xhare to H(k,H(k, xhare)), which you can think of as a “double step” (it’s the
fast hare). The loop terminates when the values are equal (a condition which does not obviously
happen, but we will argue that it does!).

Once the values are made equal, xtort is reset to the starting value 0, and the second loop now
updates both values in single steps until their next hash values are equal. Once this happens, a
collision is found, since xtort 6= xhare (unless we got very unlucky and had H(k, 0) = 0, but if this
is true then the hash function is broken for other reasons).

12.2.1 Analyzing Floyd’s Algorithm

We will explain why this algorithm works in two steps: First, assuming it works, why it succeeds
in time ≈

√
|R|, and then why it works at all.

Define a0 = 0 and for i ≥ 1 define ai = H(k, ai−1). Then the values of ai are the hash values
computed by the tortoise as it walks. When the tortoise is at ai, the hare will be at a2i, since it
takes twice as many steps.

By the pigeonhole principle, we know that the ai must eventually repeat. Once this happens, the
values will loop indefinitely. (See Figure 12.1. See also the slides and video for another drawing;
The rest of this paragraph is much easier to understand with a picture.) In fact, the sequence
a0, a1, . . . must have the following structure: After some initial “tail” a0, a1, . . . , a`tail of `tail + 1
distinct values, the subsequent values of ai loop, repeating the values a`tail+1, a`tail+2, . . . , a`tail+`loop ,
where `loop is the size of “loop”. Here, a`tail = a`tail+`loop = a`tail+2`loop = · · · as the walk loops
indefinitely.

2

a0 a1 a2 a3 a4

a5

a6a7

Figure 12.1: A visualization of the values computed in Floyd’s algorithm. Here, `tail = 3 and `loop = 5. In
the execution of the algorithm, the first loop will exit after 5 iterations, since the hare will catch the tortoise
at node a5 = a10. Afterwards the walks from a0 and a5 will reach a2 and a7 respectively, at which point the
algorithm will exit, since they collide at a3.

We first claim that the total combined size of the tail and loop will be about
√
|R|, heuristically.

This follows by the same reasoning as above: We can think of the values a0, a1, . . . as uniform and
independent samples, so we expect a repeated value after about

√
|R| steps.

Assuming that a collision happens, we will now bound the running time of the algorithm by
showing that the first loop executes at most `tail + `loop times and the second loop executes exactly
`tail − 1 times. This gives a total run time of 2`tail + `loop iterations, which is still on the other of√
|R|, as desired.
The main insight is the following claim:

Claim 1. For any m ≥ `tail and any n ≥ 0, am = am+n if any only if n is a multiple of `loop.

This claim is true because once the walk has left the tail (i.e. m ≥ `tail) the only way a repeat
can happen is if one makes some number of complete trips around the loop. (A formal proof could
use modular arithmetic, but we won’t insist on doing this.)

We now prove three small corollaries, and afterwards relate them to the algorithm.

Corollary 1. For any i, ai = a2i if and only if i is a multiple of `loop greater than `tail.

Proof. Suppose first that i is multiple of `loop greater than `tail. Now apply Claim 1 with m = i
and n = i. Since we have m ≥ `tail and n is a positive multiple of `loop, Claim 1 tells us that
am = am+n. But this is just ai = a2i since we took m = i and m + n = 2i.

Now suppose i satisfies ai = a2i. We must have i ≥ `tail since the values on the tail are never
repeated. Now apply the other direction of Claim 1, again with m = i and n = i. Since am = am+n,
it must be that n is a multiple of `loop, as desired.

Corollary 2. For some 1 ≤ i < `tail + `loop, ai = a2i.

Proof. Let i the smallest multiple of `loop that is at least `tail. Then i < `tail + `loop, since there is
always a multiple of `tail in any interval `loop numbers, and in particular in {`tail, `tail +1, . . . , `tail +
`loop − 1}. Finally, since our chosen i is a multiple of `loop greater than `tail, the previous corollary
implies ai = a2i.

Corollary 3. If i is a multiple of `loop, then ai+`tail = a`tail.

Proof. Apply the “⇐= ” direction of Claim 1 with m = `tail and n = i.

3

Now let’s wrap up the analysis of the algorithm. The first loop will exit at the first i such that
ai = a2i; By the second corollary, this happens in less than `tail + `loop iterations. By the first
corollary, we know that this value of i must be a multiple of `loop. Finally, we can see that the
second loop finds the collision after exactly `tail− 1 steps, since it will walk xtort from a0 to a`tail−1

and xhare from ai to ai+`tail−1, and their next steps collide by the third corollary.

4

