Some Encryption Attacks
CMSC 28400, Autumn 2021, Lecture 10

David Cash
University of Chicago
Two Attacks

1. ECB: The Penguin, and Worse
2. Compression + CTR = Insecure
AES-ECB(K,M)

- Parse M into blocks M_1, M_2, ..., M_t

 // all blocks except M_t are 16 bytes
- Pad M_t up to 16 bytes
- For $i=1$...t:
 - $C_i \leftarrow \text{AES}(K,M_i)$
- Return $C_1,...,C_t$
The ECB Penguin

Plaintext

ECB Ciphertext

CTR Ciphertext

No

Looks random
Detecting ECB in Practice

Repeated ciphertext blocks (when plaintext repeats blocks)

- Good modes like CTR and CBC basically never repeat a block
CPAs and Partial Plaintext Recovery

- Goal: Recover token
- Capability: Submit user data, observe ciphertext (many times)
PKCS7 Padding

- Need to pad a byte string up to a multiple of 16 bytes
- First look at how many bytes are missing. Here, need 10 bytes
- Fill missing k bytes with value k (k = 10 = 0x0A in example)

- If data is already a multiple of 16 bytes long, add an entire block of 0x10 bytes

Can’t leave data unchanged;
Bytes might be interpreted as padding.

- Un-padding is easy
- Sometimes un-padding will throw error (ex: message ends in ... 06 03 03)
ECB and Partial Plaintext Recovery: One Byte

- Plan: Learn AES(K, ??0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F) for all 256 values of ??.
- Easily read off value of last byte
Learning the Padded Blocks

username = 0x??0F0F0F0F0F0F0F0F0F0F0F0F0F

userdata=… ; token=uchic4gos3cr34

Encrypt()

Look for username block

- 256 Queries
- Easy if username is block-aligned.
- Harder but still possible if not aligned, or if alignment is random
 - Need to pre-pend username with bytes to shift it around
ECB and Partial Plaintext Recovery: Second Byte

(username one char longer)

- Plan: Learn AES(K, ??770E0E0E0E0E0E0E0E0E0E0E0E0E) for all 256 values of ??.
- Easily read off value of next byte
- Continue for each byte, then move onto next block
Compress-then-CTR-Encrypt

Compress()

AES-CTR()

3F C2 12 FF 32 12 99 D2 3E 42 4A 2C 27 DA 04 07

CD 3E 82 98 67 6C BF 69 BA C2 67 E2 4A 11 06

65 6E 74 73 21

85 5B EE F4 08 4C FC 3A 8B F5 5F C2 39 99 73

62 71 3D 23 89

48 65 6C 6F 20 43 53 31 37 30 73 74 75 64

48 65 6C 6F 20 43 53 31 37
Real-world attacks against:
- TLS (2012)
- HTTPS (2013)

Adversary can see ciphertext length.

More overlap with secret means better compression, i.e. shorter ciphertext.

Project 2: Seeing several ciphertexts enables full plaintext recovery.
The End