

Definition of a Group (Recall)

Notation

$$g^{a} = g \cdot g \cdot g \cdot g \cdot g$$

a times

$$\underline{Claim} (g^{a})^{b} = g^{ab}$$

$$\cdot 5^{-2} = 5^{-1} \cdot 5^{-1} \cdot 5^{-1}$$

a times

Exaple

$$G = \{0, 13^{n}, \text{ operation bituise XOR}, \mathcal{X} \neq \mathcal{Y}$$

$$ID: O^{n} \qquad \mathcal{X} \neq O^{n} = O^{n} \otimes \mathcal{X} = \mathcal{X}$$

$$In \text{ More: } \mathcal{X}^{1} = \mathcal{K} \qquad : \qquad \mathcal{X} \neq \mathcal{X}^{n} = \mathcal{X} \otimes \mathcal{X} = O^{n} (idn \text{ bit)}$$

$$Assoc: (\mathcal{X} \otimes \mathcal{Y}) \neq \mathcal{Z} = \mathcal{X} \Rightarrow (\mathcal{Y} \otimes \mathcal{Z})$$

$$(o_{\text{mm}}: \mathcal{X} \otimes \mathcal{Y} = \mathcal{Y} \otimes \mathcal{X}$$

I dentity is Unique in a Group.

Claim Let
$$G$$
 be a group. It $e_1, e_2 \in G$ both satisfy the wordition for being an identity, then $e_1 = e_2$.

Claim Let G be a group. It
$$e_1, e_2 \in G$$
 both satisfy the wordition for heing an identity, then $e_1 = e_2$.

I dentity is Unique in a Group.
Claim Let G be a group. It energe G both satisfy the
condition for being an identity, then
$$e_1 = e_2$$
.
Proof We are given that
 $e_1 \circ g = g \circ e_1 = g$ for all $g \in G$, (*)
and
 $e_2 \circ g = g \circ e_2 = g$ for all $g \in G$. (**)

Apply (*) with $g = e_2$: $e_1 \circ e_2 = e_2$. Next apply (***) with $g = e_1$ to set $e_1 \circ e_2 = e_1$. Since $e_1 \circ e_2 = e_2$ and $e_1 \circ e_2 = e_1$, $e_1 = e_2$.

Inverses are Unique in a Group

Claim Let G be a group and g t G. It h,
$$h_2 \in G$$
 both satisfy the condition for being an inverse of g, then $h_1 = h_2$.

Inverses are Unique in a Group

Chaim Let G be a group and
$$g \in G$$
. It h, $h_2 \in G$ both satisfy the condition for heing an inverse of g , then $h_1 = h_2$.
Proof We are given that $g \circ h_1 = h_1 \circ g = e$, and $g \circ h_2 = h_2 \circ g = e$.
(onsider $h_2 \circ g \circ h_1$. Since h_1 is an inverse $g = g$.
 $h_2 \circ g \circ h_1 = h_2 \circ (g \circ h_1) = h_2 \circ e = h_2$.
But h_2 is also an inverse of g_1 so
 $h_2 \circ g \circ h_1 = (h_2 \circ g) \circ h_1 = e \circ h_1 = h_1$.
Thus $h_2 \circ g \circ h_1 = h_2$ and $= h_1$, so $h_1 = h_2$.

Cancelation in Groups
Claim Let G be a group and
$$g,h,k \in G$$
. It $gh=kh$, then $g=k$.
Proof The following are equivalent:
 $gh=kh$
 $gh=hh$
 gh

Theorem Let G be an abelian group of (finite) order m. Then for
every
$$g \in G$$
,
 $g^m = C$.
 $g^{0} = C$.
 $g = f_{0,1}$
 G

A Lemma used to Prove Theorem
Lemma Let G be an abelian group of order m, and let ginger..., gm
be the elements of G written in some order. Let g & G and define

$$h_1 = 3g_1, h_2 = 3g_2, ..., h_m = 3g_m$$
. Then $h_1, h_2, ..., h_m$ are all
distinct. Thus $h_1 - h_m$ is just all of the elements of t, possibly
in a different order.

Proble II
$$h_i = h_j$$
 then $3S_i = 3S_j$. By Cancelation, $S_i = 3j$. But
we assumed these were distinct, so this is a contradiction.

Theorem Let G be an abelian group of (finite) order m. Then for every ge G, $a^m = e$.

Theorem Let G be an abelian group of (finite) order m. Then for every g & G, $g^m = e$. Irost We claim that gigi "Sm = (ggi) · (SG2) ···· · (SSm). By the benny, both sides are groducts of all elements of G, possibly in a different order. But since G is abelian, order does not change the product. $g_1 \circ g_2 \circ \cdots \circ g_m = g^m (g_1 \circ g_2 \circ \cdots \circ g_m).$ How to finish? Cancel gigz- Sm on hoth sides: e= Sm.

Corollary Let
$$G$$
 be a finite abelian group of order mol. Then
for any $g \in G$ and any i , $g^{i} = g^{Ci} \operatorname{mod} m$.

Resoft Use division with remainder to find g, r such that
 $i = g m + r$, $o \leq r < m$.

Then $r = Ci \operatorname{mod} m$. We get
 $g^{i} = g^{gm} + r = g^{gm} \circ g^{r} = (g^{m})^{5} \circ g^{r} = e^{5} \circ g^{r} = g^{r}$
which is $g^{i} \operatorname{mod} m$.

Corollary Let & he a finite abelian group of order mol. Let ero be an integer relatively prime to m. Then the function fe,

$$f_e: G \rightarrow G,$$

 $g \mapsto g^e$
 $f_e(g) = g^e$

is a permutation. More over, if d is an inverse of e modulo m_1 then $f_d: G \rightarrow G$ $g \mapsto g^d$ $f_d(s) = g^d$

$$\frac{Proof}{f_{1}} \quad \text{For any g \in G}$$

$$f_{d}(f_{e}(g)) = f_{d}(g^{e}) = (g^{e})^{d} = g^{ed}$$
Since we can mode down the expansion by the group order,
$$g^{ed} = g^{[ed mod m]} = g^{I} = g$$
Since d is an inverse of e modulo in, $\text{Zed mrd m}] = 1$, and
we get
$$f_{d}(f_{e}(g)) = g$$
This show f_{d} is the inverse of f_{e} , and that f_{e} must be a perm!

$$\frac{\mathbb{Z}_{N}}{\mathbb{Z}_{N}} : Groups with Modular Addition
Det For a positive integer N, define $\mathbb{Z}_{M} = \underbrace{1000}{\mathbb{Z}_{N}} =$$$

[] No! OE TLA causes problems. (What is identify? Inverse of O?)

Example
$$\mathbb{Z}_{N} = \{0\} = \{1, 2, 3\}$$
 is still not a group with $\pi \circ y = [\pi y \mod 4]$.
The group operation isn't even valid! $2 \in \mathbb{Z}_{N}$, but $2 \circ 2 = [2 2 \mod 4] = 0 \notin \mathbb{Z}_{N}$.

The Group
$$\overline{Z}_{N}^{*}$$

Intuition: Need to Harow out not just $O \in \overline{Z}_{N}$, but everything that
does not have an inverse.
Nodewar
Det for a printive integer N, define
 $\overline{Z}_{N}^{*} = \{ x \mid 1 \leq x \leq N, gcd(x, N) = 1 \}$.
Claim For each positive integer N, \overline{Z}_{N}^{*} with operation $x \circ y = Gay \mod M$
is a grap.
Proof Skatch: ID 1 \longrightarrow INV \overline{X}_{N}^{*} with $Oxeration$ $\overline{X}_{N} \subseteq Gay \mod M$

The Order of 71 * Exaples ON BOART 7/4= $7_{5}^{*} =$ 7 =

Det The "Euler-phi function" of is defined to be $\varphi(N) = |Z_N^*|$.

/varphi ing the

Chaim If p is prime, then
$$P(p) = p - 1$$
.
Example $(7L_5^+) = 5 - 1 = 4$
Chaim If $p \neq q$ are both prime, the $P(pq_b) = (P - 1)(q - 1) = P_b - P_b + 1$
Prof $7p_b = \{0, 1, \dots, p, \dots, q\} - 2p - 2q - \dots - p_b - p_b$
 $= 7 q m_b + s = 3b p$
 $= 7 p m_b + s$

N 3

Evler's Theorem (!)
Theorem For any positive integer N, and integer a relatively
prime to N,

$$q^{(N)} = 1 \mod N$$
.
 $\frac{P(N)}{1} = 1 \mod N$.
 $\frac{P(N)}{1} = 1 \mod N$.
 $\frac{P(N)}{1} = 1 \mod N$.

· D wants into about m; can in fluence what sender encrypts

Det Let
$$TT=(keygen, Eve, Dec)$$
 be a public-key encryption scheme, and let
A be an adversary. Destine $Expt_{TT}^{cpn}(A)$ by
 $Expt_{TT}^{cpn}(A)$
I. Run $(pk_1sk) \in Keygen()$
 $\partial_{\cdot} Give pk to A. It chooses two messages $m_{0,m_{1}}$.
 $3. Pick beford, roution r, compute $c \in Enc(pk_1m_{0,r})$.
 $4. Give c to A. It outputs b.$
 $5. It b=5 output 1, Else output 0.$$$

Define $Adv_{\pi}(\mathbf{R}) = |Pr(E_{x}pr_{\pi}(\mathbf{R}) = 1] - \frac{1}{2}|$

Chusen-Plaintext Attack Security: Discussion

- * No procle for Euc; Just "one shot" for A. Ly Bot giving an arache actually does not change definition much.
- * Deterministic Enc algorithm =) Can't have soul CPA security

