Euler's Theorem and Public-Key Encryption

Outline
(1) Recall groups and prove Euler's Theorem
(2) The groups \mathbb{L}_{N} and \mathbb{F}_{N}^{*}
(3) Public Key Encryption Definitions
(4) RSA Encryption

Outline
(1) Recall groups and prove Euler's Theorem
(2) The groups \mathbb{L}_{N} and \mathbb{F}_{N}^{*}
(3) Public Key Encryption Definitions
(4) RSA Encryption

Definition of a Group (Recall)
Def A nou-empty set \mathbb{G} with binary. peration o is called a soup it the following hold:
(Identity) (1) There exists $e \in \mathbb{G}$ soch that $e \cdot g=g \circ e=g$ for all $g \in G$.
(Inverses) (2) For all $g \in \mathbb{G}$ there is $h \in \mathbb{G}$ och that $g \circ h=h \circ g=e$.
(Associativity) (3) Fox all $g_{1}, g_{2}, g_{3} \in G_{1}\left(g_{1} \circ g_{2}\right) \circ g_{3}=g_{1} \circ\left(g_{2} \circ g_{3}\right)$.
(f) is called on ahelian group if it also satisfies
(Commutativity) (4) For all $g, h \in b, \quad g \cdot h=h \circ g$.

Notation

$$
g^{a}=\underbrace{g \cdot g \cdot \cdots g}_{a \text { times }}
$$

$\underline{\text { Claim }} g^{a} \cdot g^{b}=g^{a+b}$
Claim $\left(g^{a}\right)^{b}=g^{a b}$

- g^{-1} is the inverse ηg

$$
\cdot g^{-a}=\underbrace{g^{-1} \cdot g^{-1} \cdot \cdots \cdot g^{-1}}_{a \text { times }}
$$

Exaple
$G=\{0,1\}^{n}$, opecation bitwise $X O R . \quad x \oplus y$

ID: $D^{n} \quad x \oplus 0^{n}=\theta^{n} \oplus x=x$
Invise: $x^{-1}=x: x \oplus x^{-1}=x \oplus x=\theta^{4}$ (identity)
Assoc: $(x \oplus y) \oplus z=x \oplus(y \oplus z)$

Comm: $x \oplus y=y \boxplus x$

Identity is Unique in a Group.

Claim Let \mathbb{G} be a group. If $e_{1}, e_{2} \in \mathbb{G}$ both satisfy the condition for being an identity, then $e_{1}=e_{2}$.

Identity is Unique in a Grues.

Claim Let \mathbb{G} be a group. If $e_{1}, e_{2} \in \mathbb{G}$ both satisfy the condition for being an identity, them $e_{1}=e_{2}$.

Proof We are given that

$$
\begin{equation*}
h \circ g=g \circ e_{1}=g \text { for all } g \in \mathbb{G}, \tag{*}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{2} \circ g=g \cdot e_{2}=g \text { for all } g \in \mathbb{G} \text {. } \tag{**}
\end{equation*}
$$

Apply (*) with $g=e_{2}: e_{1} \circ e_{2}=e_{2}$. Next apply (**) with $g=e_{1}$ to set $e_{1} \cdot e_{2}=e_{1}$. Since $e_{1} \cdot e_{2}=e_{2}$ and $e_{1} \cdot e_{2}=e_{1}, e_{1}=e_{2}$.

Inverses are Unique in a Group

Claim Let \mathbb{G} be a group and $g \in \mathbb{G}$. If $h_{1}, h_{2} \in \mathbb{G}$ both satisfy the condition for being an inverse of g, then $h_{1}=h_{2}$.

Irises are Unique in a Group
Claim Let \mathbb{G} be a group and $g \in \mathbb{G}$. If $h_{1}, h_{2} \in \mathbb{G}$ both satisfy the condition for being an inverse of g, then $h_{1}=h_{2}$.
Proof We are given that $g \circ h_{1}=h_{1} \circ g=e$, and $g \circ h_{2}=h_{2} \circ g=e$.
Consider $h_{2} \cdot g \cdot h_{1}$. Since h_{1} is an inverse or g_{1}

$$
h_{2} \circ g \cdot h_{1}=h_{2} \circ\left(g \circ h_{1}\right)=h_{2} \cdot e=h_{2}
$$

But h_{2} is also an inverse of g_{1}, so

$$
h_{2} \circ g \circ h_{1}=\left(h_{2} \circ g\right) \cdot h_{1}=e \cdot h_{1}=h_{1}
$$

Thus $h_{2} \circ g \circ h_{1}=h_{2}$ and $=h_{1}$, so $h_{1}=h_{2}$.

Cancelation in Groups
Lets start omitting the "."
Claim Let \mathbb{G} he a group and $g, h, k \in \mathbb{G}$. It $g h=k h$, then $g=k$.

Cancelation in Groups
Claim Let \mathbb{G} he a group and $g, h, k \in \mathbb{G}$. It $g h=k h$, then $g=k$.
Proof The following are equivalent:
$\left.\begin{array}{l}\text { existence } \\ \text { ot inverses } \\ (1) \\ g h\end{array}\right) k h$
of inverses
(2) $(g h) h^{-1}=(k h) h^{-1}$

Assointinty!,
(3) $g\left(h h^{-1}\right)=k\left(h h^{-1}\right)$

Set Inv. C
(4) $g e=k e$

Dod Intent $h_{\text {(}}(5) \quad g=k$

Order of a Group + An Interesting Theorem

Def The order of grope \mathbb{F} is simply $|\mathbb{G}|$, the size $\mathfrak{b} \mathbb{F}$ as a set when \mathbb{G} is finite.

Theorem Let (Gb be an abelian group of (finite) order m. Then for every $g \in G$,

$$
g^{m}=e
$$

$$
\begin{aligned}
& G=\{0,1\}^{n} \\
& \mid G=2^{n} \\
& g \in G \\
& \underbrace{\operatorname{gog} \theta \cdot \theta g}_{2^{n}}=0^{n}
\end{aligned}
$$

A Lemma used to Prove Theorem

Lemma Let \mathbb{G} be an akelian group of order m, and let $g_{1}, g_{2}, \ldots, g_{m}$ be the elements of \mathbb{G} written in sone order. Let $g \in \mathbb{G}$ and de tine $h_{1}=g g_{1}, h_{2}=g g_{2}, \ldots, h_{m}=g g_{m}$. Then $h_{1}, h_{2},-, h_{m}$ are all distinct. Thus $h_{1} \ldots h_{m}$ is just all of the elements of f, possibly in a different order.

Prob: If $h_{i}=h_{j}$ then $g g_{i}=g g_{j}$. By Carcelation, $g_{i}=g_{j}$. But we assumed these were distinct, so this is a contradiction.

Theorem Let (be an akelian group of (finite) order m. Then for every $g \in G$,

$$
g^{m}=e
$$

Theorem Let (Gb be an abelian group of (finite) order m. Then for every $g \in G$,

$$
g^{m}=e
$$

Prot We claim that $g_{i} g_{i} \cdots \circ g_{m}=\left(g_{g_{1}}\right) \circ\left(S_{S_{2}}\right) \cdots \cdots\left(S S_{m}\right)$.
By the lemma, both sides are products of all elements of \mathbb{G}, possibly in a different order. But since \mathbb{G} is abelian, order does not change the product.
Neat, the right harl side equals $g^{m}\left(g_{1} \circ g_{2} \cdots \circ g_{m}\right)$, so

$$
g_{1} \circ g_{2} \circ \cdots \cdot g_{m}=g^{m}\left(g_{1} \circ g_{2} \circ \cdots \circ g_{m}\right)
$$

How to finish? Cancel grog2"gm on both sides: $e=S^{\text {un }}$.

Theorem Let (be an akelian group of (finite) order m. Then for every $g \in \mathbb{G}$,

$$
g^{m}=e
$$

Corollary Let \mathbb{C} he a finite abelian group of order $m>1$. Then for any $g \in \mathbb{G}$ and any $i^{\text {integer }}, g^{i}=g^{[i \bmod m]}$.

Corollary Let \mathbb{E} he a finite abelian group of order $m>1$. Then for any $g \in G$ and any $i, g^{i}=g^{[i \bmod m]}$.

Proof Use division with re mainder to find q,r such that

$$
i=q m+r, \quad 0 \leq r<m .
$$

Then $r=[i \operatorname{mol} m]$. We set

$$
g^{i}=g^{q m+r}=g^{q^{m}} \circ g^{r}=\left(g^{m}\right)^{q} \circ g^{r}=e^{b} \circ g^{r}=g^{r}
$$

which is $g[i m o l m]$.

Corollary Let \mathbb{E} he a finite abelian group of order $m>1$. Let $e>0$ be an integer relatively prime to m. Then the function $f e$,

$$
\begin{array}{rlrl}
f_{e}: G & \rightarrow r^{r}, & g^{e} & \\
g & \mapsto g)=g^{e}
\end{array}
$$

is a peronutation. More over, if d is an inverse of e modulo m, then

$$
\begin{aligned}
f_{d}: G & \rightarrow G \\
g & \mapsto g^{d}
\end{aligned}
$$

$$
f_{d}(s)=s
$$

For all g
is the inverse of f_{e}.

$$
\begin{aligned}
& f_{d}\left(f_{e}(s)\right)=g \\
= & f_{e}\left(f_{d}(s)\right)
\end{aligned}
$$

Prot For any $g \in \mathbb{G}$

$$
f_{d}\left(f_{e}(g)\right)=f_{d}\left(g^{e}\right)=\left(g^{e}\right)^{d}=g^{e d}
$$

Since we can mol down the exponent by the group order,

$$
g^{e d}=g^{[e d \bmod m]}=g^{I}=g
$$

Since d is an inverse of e modulo m, $[$ ed $\bmod m]=1$, and we set

$$
f_{d}\left(f_{e}(s)\right)=g
$$

This show f_{d} is the inverse rf f_{e}, and that f_{e} must be a perm!

Outline
(1) Recall groups and prove Euler's Theorem
(2) The groups \mathbb{L}_{N} and \mathbb{H}_{N}^{*}
(3) Public Key Encryption Definitions
(4) RSA Encryption
$\mathbb{Z}_{N}:$ Groups with Modular Addition
Deft For a positive integer N, define $\mathbb{Z}_{N}=\{0,1, \ldots, N-1\}$.

Claim For each positive integer N, \mathbb{Z}_{N} with operator

$$
\left|\mathbb{Z}_{H}\right|=N
$$

$$
x \cdot y=[x+y \bmod N]
$$

is a group.

Proof: $10: D$

$$
\begin{aligned}
x & \cdot(N-x) \\
& =[x+N-x \text { mel } N] \\
& =[N \text { mad } N] \\
& =D \in \mathbb{Z}_{N}
\end{aligned}
$$

Aspca: (4)

Groups with Modular Multiplication

Is \mathbb{Z}_{N} also a group with operation $x \cdot y=[x y \operatorname{mol} N]$?

Groups with Modular Multiplication

Is \mathbb{Z}_{N} also a group with operation $x \cdot y=[x y \operatorname{mol} N]$?
G No! $D \in \mathbb{Z}_{N}$ causes problems. (What is identity? Inverse of 0 ?)

Groups with Modular Multiplication

Is \mathbb{Z}_{N} also a group with operation $x \cdot y=[x y \operatorname{mol} N]$?
\rightarrow No! $D \in \mathbb{Z}_{N}$ causes problems. (What is identity? Inverse of D ?)

What it we toss ort D ? $\quad L_{N} \leq\{D\}$

Groups with Modular Multiplication

Is \mathbb{Z}_{N} also a group with operation $x \cdot y=[x y \bmod N]$?
$\rightarrow N_{0}!D \in \mathbb{Z}_{M}$ causes problems. (What is identity? Inverse if D ?)

What it we toss ort \varnothing ?
G No, see example.
Example $\mathbb{L}_{n} \backslash\{0\}=\{1,2,3\}$ is still not a sop with $x_{0} y=\{x y$ mol 4$\}$.
The group operation Bn't even valid! $2 \in \mathbb{Z}_{H}$, but $202=[22 \operatorname{nol} 4]=0 \notin \mathbb{Z}_{N}$.

The Group \mathbb{Z}_{N}^{*}
Intuition: Need to throw out not just $D \in T L_{N}$, but every thing that does not have an inverse.
molnar
Dat For a pritive integer N, define

$$
I_{N}^{*}=\{x \mid 1 \leq x<N, \operatorname{gcd}(x, N)=1\} .
$$

Claim For each positive integer N, \mathbb{Z}_{N}^{*} with operation $x \circ y=[x y$ mol $\times]$ is a group.
Plot Sketch: ID 1 l
INV X^{-1} is wobbler
insure of $x \operatorname{mad} N$ Assoc: (1)

The Ordu of \mathbb{Z}_{N}^{*}

Exaples

$$
\begin{aligned}
& \mathbb{Z}_{4}^{*}= \\
& \mathbb{Z}_{5}^{*}= \\
& \mathbb{Z}_{15}^{*}=
\end{aligned}
$$

Det The "Ever-phi functan" φ is defined to be $\varphi(N)=\left|Z_{N}^{*}\right|$.
Iraphi

$$
\text { not }+\operatorname{lin}^{2}
$$

Two Special Cases of $p(N)$

Claim If p is prime, then $f(p)=p-1$.
Exams $\left(7 \perp_{5}^{*}\right)=5-1=4$

Claim It $p \neq q$ are thoth prime, the $p(p q)=(p-1)(q-1)=p q-p-q+1$
$P_{\text {roo }} T_{\text {or }}=\{01 \ldots-p q \ldots 2 p-2 q \ldots . . \mid p q-1\}$
$\rightarrow q$ milts of ρ
\rightarrow Polis
r_{0} of

Euler's Theorem (!)

Theorem For any positive integer N, and integer a relatively prime to N,

$$
a^{\varphi(N)}=1 \operatorname{mal} N .
$$

Proof
In $T_{N}^{*}, g_{\mid}^{\left|7 L_{N}^{*}\right|}=1$ for an $\delta \in 7 L_{N}^{*}$.

$$
\varphi(N)
$$

Outline
(1) Recall groups and prove Euler's Theorem
(2) The groups \mathbb{L}_{N} and \mathbb{F}_{N}^{*}
(3) Public Key Encryption Definitions
(4) RSA Encryption

Puble-Key Encryption Syntax
Def A public-key encryption scheme π onsists of three algorithes $\pi=$ (keygen, Enc, Dec), where

- Keygen is randomized, takes no inpt he sides racudom bits, and ouncuts two kap ($p k, s k$).
- Enc is rondonized (with inpet r witten explicity), tates (wore impts p^{k}, m, and octpats a ciphertext.
- Der is deterministic, tales inpots sk, c and outpats m.

Correctness of Rublic-Key Encryption
Π is correct it for all ($\mathrm{p}_{\mathrm{k}, \mathrm{sk} \text {) output by Keygen, and all messages } \mathrm{m} \text {, }}$, md all r_{1}

$$
\operatorname{Dec}(s k, \operatorname{Enc}(p k, m, r))=m .
$$

Chosen-Plaintext Attack Security: Motivation

- If has pk and c, but not sk or r
- Wants into about m; can in flvence what seedy encrypts

Chosen-Plaintext Attack Security: Definition

Det Let $\Pi=$ (keygen, Eve, Dec) he a public-Key encryption scheme, and let At be an adversary. Define Expt $\pi_{\pi}^{\text {cpa }}(A)$ by
$\operatorname{Expt}_{\mathrm{cpa}}^{\mathrm{cpa}}(A)$

1. Run $(p x, s t) \leftarrow$ Keysenl $)$
2. Give $p k$ to A. It chooses two messages m_{0}, m_{1}.
3. Pick $b \in\left\{0,13\right.$, random r, compute $c \leftarrow E_{a c}\left(p k, m_{b}, r\right)$.
4. Give c to A. It outats \hat{b}.
5. If $\hat{b}=5$ output 2 . Else outat θ.

Define $A d v_{\pi}^{c p a}(A)=\left|\operatorname{Pr}\left[E_{x p t}^{c p a}(\eta)=1\right]-\frac{1}{2}\right|$.

Chosen-Plaintext Attack Security: Discussion

* No oracle for Enc; Just "one shot" for A.
G BAt giving an aracle actually does not change definition much.
* Deterministic Enc algorithm \Rightarrow Can't have sod CPA security

