Diffie-Hellman, Cyclic Groups and Discrete Logarithms

CMSC 28400, Autumn 2021
University of Chicago

Instructor: David Cash

Today: Discrete-Log Based Crypto

RSA Encryption: Needs factoring to be hard. Large N required to defeat algorithms.

Diffie-Hellman (and others): Needs another problem called discrete logarithms to be hard. With right choice of group, can get much smaller parameters than RSA.

Second half of lecture (not on exam): Zero-Knowledge Proofs

Diffie-Hellman Protocol Parameters

Prime p, integers $g \in \mathbb{Z}_{p}^{*}$ and $q>1$.

2.2. 2048-bit MODP Group with 224-bit Prime Order Subgroup

The hexadecimal value of the prime is:
$\mathrm{p}=\mathrm{AD} 107 \mathrm{E} 1 \mathrm{E}$ 9123A9D0 D660FAA7 9559C51F A20D64E5 683B9FD1 B54B1597 B61D0A75 E6FA141D F95A56DB AF9A3C40 7BA1DF15 EB3D688A 309C180E 1DE6B85A 1274A0A6 6D3F8152 AD6AC212 9037C9ED EFDA4DF8 D91E8FEF 55B7394B 7AD5B7D0 B6C12207 C9F98D11 ED34DBF6 C6BA0B2C 8BBC27BE 6A00E0A0 B9C49708 B3BF8A31 7091883681286130 BC8985DB 1602E714 415D9330 278273C7 DE31EFDC 7310F712 1FD5A074 15987D9A DC0A486D CDF93ACC 44328387 315D75E1 98C641A4 80CD86A1 B9E587E8 BE60E69C C928B2B9 C52172E4 13042E9B 23F10B0E 16E79763 C9B53DCF 4BA80A29 E3FB73C1 6B8E75B9 7EF363E2 FFA31F71 CF9DE538 4E71B81C 0AC4DFFE 0C10E64F

The hexadecimal value of the generator is:
$\mathrm{g}=\mathrm{AC} 4032 \mathrm{EF}$ 4F2D9AE3 9DF30B5C 8FFDAC50 6CDEBE7B 89998CAF 74866A08 CFE4FFE3 A6824A4E 10B9A6F0 DD921F01 A70C4AFA AB739D77 00C29F52 C57DB17C 620A8652 BE5E9001 A8D66AD7 C1766910 1999024A F4D02727 5AC1348B B8A762D0 521BC98A E2471504 22EA1ED4 09939D54 DA7460CD B5F6C6B2 50717CBE F180EB34 118E98D1 19529A45 D6F83456 6E3025E3 16A330EF BB77A86F 0C1AB15B 051AE3D4 28C8F8AC B70A8137 150B8EEB 10E183ED D19963DD D9E263E4 770589EF 6AA21E7F 5F2FF381 B539CCE3 409D13CD 566AFBB4 8D6C0191 81E1BCFE 94B30269 EDFE72FE 9B6AA4BD 7B5A0F1C 71CFFF4C 19C418E1 F6EC0179 81BC087F 2A7065B3 84B890D3 191F2BFA

The generator generates a prime-order subgroup of size:
$q=801 \mathrm{C} 0 \mathrm{D} 34 \mathrm{C} 58 \mathrm{D} 93 \mathrm{FE} 99717710$ 1F80535A 4738CEBC BF389A99 B36371EB

Diffie-Hellman Protocol
Prime p, integers $g \in \mathbb{Z}_{p}^{*}$ and $q>1$.

Diffie-Hellman Protocol
Prime p, integers $g \in \mathbb{Z}_{p}^{*}$ and $q>1$.

pick $x \in\{0, \ldots, q-1\}$ $x \leftarrow\left[g^{x} \operatorname{mol} p\right]$
$K \in\left[Y^{x}\right.$ mol $\left._{z}\right]$

Sees: X, Y
wants: K

$$
\begin{aligned}
& \because \\
& \text { pick } y \in\left\{0_{1}, \ldots, q-1\right\} \\
& Y \in\left[S^{y} \operatorname{mol}_{p}\right] \\
& K \leftarrow\left[X^{y} \bmod _{p}\right]
\end{aligned}
$$

Cyclic Groups Preliminaries

Definition: Let G be a finite group and let $g \in G$. Define

$$
\langle g\rangle=\left\{g^{0}, g^{1}, g^{2}, \ldots\right\} \subseteq G
$$

Definition: Let G be a finite group and let $g \in G$. The smallest positive integer i such that $g^{i}=1$ is called the order of g (in G).

Cyclic Groups Preliminaries

Cyclic Groups Preliminaries

Lemma: Let G be a finite group and let $g \in G$ have order i. Then for all integers x,

$$
g^{x}=g^{[x \bmod i]} .
$$

Proof:

Cyclic Groups Preliminaries

Lemma: Let G be a finite group of order m and let $g \in G$ have order i.

 Then $i \mid m$.Proof:

Cyclic Groups Preliminaries
Lemma: Let G be a finite group of order m and let $g \in G$ have order i.
Then $i \mid m$.
Proof: We show that $\left[m \operatorname{mol} \operatorname{li}_{i}\right]=0$. Write $m=q_{i}+[m \bmod i]$.
Then $e=g^{m}=g^{q i+[m \bmod i]}=\left(g^{i}\right)^{q} g^{[m m o l i]}=g^{[m \operatorname{mol} i]}$.
So [maori] is a number in $\{0, \ldots, i-1\}$ such that $g^{\text {(mad })}=e$
But i is the smallest positive number such that $g^{i}=e$. So $\left[m m d_{i}\right]$ must he zero

Cyclic Group Definition

Definition: Let G be a finite group. If $G=\langle g\rangle$ for some $g \in G$ then we say that G is cyclic and that g is a generator of G (or that g generates G).

Examples:

$$
\mathbb{Z}_{S}^{*} \text { is cycle with senerdor } 2 \text { : }
$$

Prime-Order Groups are Cyclic

Theorem: Any prime-order group is cyclic.
Proof:

\mathbb{Z}_{p}^{*} is Cyclic; Primitive Roots

Theorem: For every prime p, the group \mathbb{Z}_{p}^{*} is cyclic.
(Note: \mathbb{Z}_{p}^{*} has order $p-1$, which is not prime for $p \neq 3$.)

Definition: Let p be prime. A primitive root of p is an integer x such that $[x \bmod p]$ generates \mathbb{Z}_{p}^{*}.
Example: 2 is a primitive root of 5 .

Discrete Logarithms

Claim: Let $G=\langle g\rangle$ be a finite cyclic group of order m. Then for any $h \in G$ there is a unique integer $x \in\{0, \ldots, m-1\}$ such that $h=g^{x}$.

Definition: In notation of the claim, define the function

$$
\operatorname{dlog}_{g}: G \rightarrow\{0, \ldots, m-1\}
$$

by $\operatorname{dlog}_{g}(h)=x$. This is called the discrete logarithm of h with base g (in the group G).

Example: $\operatorname{In} 7_{-\alpha}^{*}, d \log _{2}(1)=$

The Discrete Logarithm Problem

Informally: Let $G=\langle g\rangle$ be a finite cyclic group. The discrete logarithm problem in G with base g is finding $\operatorname{dlog}_{g}(h)$, given g and h.

DLog Algorithm 1: Brute Force

Alg. $A(h)$

$$
\begin{gathered}
\text { For } y=1,2, \ldots, m-1: \\
\text { If } g^{y}=h: \text { return } y
\end{gathered}
$$

Log Algorithm 2: Baby-Step Giant Step
Step 1: "Giant Steps"

Log Algorithm 2: Baby-Step Giant Step
$\frac{\text { Step 1: "Giant Steps" }}{g^{0}=g^{m}}=e$

Set $s=\lfloor\sqrt{m}\rfloor$
\rightarrow Save in hash table
\rightarrow About $\sqrt[3]{ }$ steps

Log Algorithm 2: Baby-Step Giant Step
Step 2. Baby Steps: Given $h \in G$, find $d \log _{g}(h)$.

Log Algorithm 2: Baby-Step Giant Step

Idea: Comose $h \cdot g, h \cdot g^{2}, h g^{3}, \ldots$ until a giant step is hit (it will be in hash table)
\rightarrow The inter $d \log _{g}(h)$:

$$
h \cdot g^{k}=g^{j \cdot s} \Rightarrow h=g^{j \cdot s-k}
$$

Code for Baby-Step-Giant-Step

Alg. $A(h)$ Run Time?
Initialize an empty hash table H

$$
\begin{aligned}
& \text { For } j=1,2, \ldots,\lceil\sqrt{m}\rceil: \\
& x \leftarrow g^{j \cdot\lceil\sqrt{m}\rceil} \\
& H[x] \leftarrow j \\
& y \leftarrow h
\end{aligned}
$$

For $k=1,2, \ldots,\lceil\sqrt{m}\rceil$:

$$
y \leftarrow y \cdot g
$$

$$
\text { If } H[y] \neq \perp: \quad \text { Output } j\lceil\sqrt{m}\rceil-k
$$

Conclusion: Selecting Diffie-Hellman Parameters

Prime p, integers $g \in \mathbb{Z}_{p}^{*}$ and $q>1$.

- $g \in \mathbb{Z}_{p}^{*}$ chosen to generate group of order q
- q chosen large enough to defeat Baby-Step-Giant-Step (ex: $q \approx 2^{256}$)
- p must be chosen much larger to defeat other attacks (similar to factoring) - $p \approx 2^{2048}$

Zero Knowledge Proofs: Proving with Explaining

Zero-Knowledge Proofs: Example

Set-up: In the back of a circular cave, there are two locked doors: Red door opens from bottom.
Blue door opens from top.
Person P (the "prover") has a key for exactly one of those doors.

Zero-Knowledge Proofs: Example

Goal: P wants to convince other person V (the "verifier") that they have a key to one of the doors, but not which key.

A Zero-Knowledge Proof Protocol

Protocol:

1. P goes into cave in direction they can open door
2. V flips a coin, and asks P to come out of cave from either top of bottom
3. If P comes out of correct side, V accepts. Otherwise, V rejects.

Proving Knowledge of a Discrete Logarithm

Common knowledge: Both P and V know a cyclic group G of order q, a generator $g \in G$ and another element $h \in G$.

Known to \mathbf{P} only: The discrete logarithm of h with base g; Call it x. (So $h=g^{x}$).
Goal: P wants to convince V that they know x without revealing x.

A ZK Protocol for Discrete Logarithms

Protocol:

1. P picks $r \in\{0, \ldots, q-1\}$, sets $R \leftarrow g^{r}$, and sends R to V.
2. V flips a coin and sends bit b to P .
3. If $b=0$: P sends r to V , and V checks that $g^{r}=R$.
4. If $b=1$: P sends $x+r \bmod q$ to V , and V checks that $g^{x+r}=h \cdot R$.

A ZK Protocol for Discrete Logarithms
Protocol:

1. P picks $r \in\{0, \ldots, q-1\}$, sets $R \leftarrow g^{r}$, and sends R to V.
2. V flips a coin and sends bit b to P.
3. If $b=0$: P sends r to V , and V checks that $g^{r}=R$.
4. If $b=1: \mathrm{P}$ sends $x+r \bmod q$ to V , and V checks that $g^{x+r}=h \cdot R$.

$$
\begin{aligned}
& \text { Px) } \\
& r \in\{0, \ldots q-1\}
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{P(x)}{r \in\left\{0_{\ldots}^{\ldots 19}-13\right\}} \\
& V(h) \\
& R \in g^{r} \\
& y \in r \\
& y \in r+x \bmod q \\
& g^{y} \stackrel{?}{=} h \cdot R
\end{aligned}
$$

Security for Verifier: Can P Cheat?
Protocol:

1. P picks $r \in\{0, \ldots, q-1\}$, sets $R \leftarrow g^{r}$, and sends R to V .
2. V flips a coin and sends bit b to P.
3. If $b=0$: P sends r to V , and V checks that $g^{r}=R$.
4. If $b=1: \mathrm{P}$ sends $x+r \bmod q$ to V , and V checks that $g^{x+r}=h \cdot R$.

If P car ans wee for both $b=0$ out $b=1, \ldots$

Security for Prover: Can V learn about x ?

Protocol:

1. P picks $r \in\{0, \ldots, q-1\}$, sets $R \leftarrow g^{r}$, and sends R to \vee.
2. V flips a coin and sends bit b to P.
3. If $b=0$: P sends r to V , and V checks that $g^{r}=R$.
4. If $b=1$: P sends $x+r \bmod q$ to V , and V checks that $g^{x+r}=h \cdot R$.

More subtle...

