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ABSTRACT

In many applications there has been an increasing interest in computing certain properties of a

changing set of input objects where the changes may be of dynamic nature in terms of insertions

and deletions of an input object, or of kinetic nature in terms of continuous motion of these objects.

For solving problems that involve dynamic or kinetic modifications to the input, one needs to first

solve the static version of the same problem where no modifications are allowed, and then develop

efficient update algorithms for handling various changes to the input. For developing dynamic

and kinetic update algorithms, Acar et al. recently proposed a framework called self-adjusting

computation. Given a dynamic or kinetic problem, the principal algorithmic technique of the self-

adjusting computation framework, called change propagation, uses a static solution to the problem

to automatically generate a dynamic or a kinetic update algorithm. The efficiency of their update

algorithm directly depends on the stability of the static algorithm: a static algorithm is stable if

its executions with similar inputs produce outputs and intermediate data that are different only by

a small fraction. Under this framework, designing an efficient update algorithm can therefore be

reduced to designing a stable static algorithm.

Motivated by the self-adjusting computation framework, we follow a stable design approach in

this thesis. We first design static algorithms that are stable, and then present update algorithms that

are in the form of change propagation and guarantee efficient responses to dynamic and kinetic

changes. We apply this approach for solving several open problems in computational geometry.

First, we propose a robust motion simulator and experimentally evaluate its effectiveness on ki-

netically maintaining convex hulls in three dimensions. Then, we consider the mesh refinement

problem and provide update algorithms that dynamically and kinetically maintain quality meshes.

Mesh refinement is an essential step in many applications in scientific computing, graphics, etc.

The idea behind mesh refinement is to break up a physical domain into well-shaped discrete ele-

ments, e.g., almost equilateral triangles in two dimensions, so that certain functions defined on the

domain may be computed approximately by considering these discrete elements. The refinement
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process is carried out by inserting additional Steiner points into the given point set, taking care to

insert a small number of them. This problem has been studied extensively in the static setting with

several recent results achieving fast runtimes. In the dynamic and kinetic settings, however, there

has been relatively little progress. In this thesis, we propose efficient solutions in both settings: in

the dynamic setting, we design a dynamic algorithm for the closely related problem of well-spaced

point sets in arbitrary dimensions; in the kinetic setting, we propose the first kinetic data structure

for maintaining quality meshes of continuously moving points on a plane.

The results we present in this thesis demonstrate that the stable design approach not only pro-

vides an alternative perspective in designing dynamic and kinetic algorithms, but also transfers

the inherent complexity of the update algorithms to the stable design and analysis of a static algo-

rithm. This in turn strengthens the connection between static algorithms and dynamic and kinetic

algorithms assisting us to solve several open problems.
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CHAPTER 1

INTRODUCTION

Increasingly, many applications in computer science require computing certain properties of an

input that changes over time. For example, the information that is available through the inter-

net changes every minute, therefore a search engine must revise its database and respond to user

queries with updated content in just a matter of seconds. Another example is the collision-detection

problem where one needs to model two moving objects and determine whether the two would hit

each other, typically by checking continuously if the two objects intersect. A third example is

the kinetic maintenance of an accurate model of the continuously changing atmosphere for under-

standing the complex processes that affect our climate globally. For such problems, solutions vary

depending on the nature of changes that the input goes through. The type of these changes clas-

sifies the problems (and their solutions) as dynamic or kinetic. In a dynamic problem, the input is

modified by insertions and deletions in a discrete fashion. On the other hand, in a kinetic problem,

the size of the input does not change, but instead, the objects that constitute the input move. For

most such dynamic and kinetic problems, the underlying static problem, where the input is not

allowed to change, is well understood but the dynamic and kinetic versions are much harder to

develop. We need to dedicate special attention, therefore, to solving the nonstatic versions of even

those problems whose static versions have well-established results. Towards this goal, over the

past three decades, certain algorithmic techniques have been proposed and successfully applied to

obtain theoretical guarantees over a range of problems. Our understanding of dynamic and kinetic

problems, however, has not reached the level of our understanding of static problems.

In the dynamic setting, the objective is to design algorithms and data structures that can answer

certain queries efficiently as the input changes dynamically due to insertions and deletions. In

general, given a set of objects, a dynamic solution is composed of a data structure that represents

these objects, a construction algorithm that initially creates the data stucture, an update algorithm

that modifies the data structure upon a dynamic change to the input, and certain algorithms that
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answer the queries that are of interest. The effectiveness of a solution is measured by the space

required to store the data structure and by the runtime efficiency of the algorithms proposed. The

attempts to solve a given dynamic problem often aim towards designing a data structure that can be

maintained efficiently under dynamic changes, usually in the form of a single insertion or a single

deletion. In certain cases, handling deletions is much harder than handling insertions (or vice

versa), motivating many people to consider solutions for the partial problems. Namely, incremental

problems consider dynamic changes only in the form of insertions, and decremental problems

consider dynamic changes only in the form of deletions [26, 31].

In the kinetic setting, the kinetic data structures (KDS) framework, proposed by Basch et

al. [18, 19, 34], sets forth a unified design scheme for solving kinetic problems and provides four

criteria for measuring a solution’s effectiveness. A kinetic data structure consists of a data structure

that represents the property of interest being computed, and a set of certificates that validate the

property so long as the outcomes of the certificates remain the same. When the outcome of a

certificate changes—a certificate failure, in other words—the data structure updates the computed

property and the set of certificates validating the updated property. A KDS is called local if each

input object participates in a small number of certificates, compact if the total number of certificates

is small, responsive if the data structure can be updated quickly after a certificate failure, and

efficient if the number of certificate failures over a period of time is not significantly larger than the

number of combinatorial changes in the property computed in that period.

Recently, Acar et al. proposed a framework called self-adjusting computation that offers an

alternative line of thought on algorithms that are required to handle several types of modifications,

including dynamic and kinetic [3, 4]. Given an algorithm that solves the static version of a dy-

namic or kinetic problem, the principal algorithmic technique of this framework, called change

propagation, generates an update algorithm for the same problem using the given static algorithm.

The effectiveness of the update algorithm generated by this approach directly depends on the sta-

bility of the static algorithm: informally, an algorithm is called stable if its executions with two

2



similar inputs produce outputs and intermediate data that are different only by a small fraction,

i.e., the execution remains mostly unchanged. Therefore, using change propagation, the problem

of designing an efficient update algorithm can be reduced to the problem of designing a stable

construction algorithm.

In this thesis, motivated by the self-adjusting computation framework, we strive for designing

stable construction algorithms and develop update algorithms in the form of change propagation for

solving certain dynamic and kinetic problems in computational geometry, namely, kinetic convex

hulls and dynamic and kinetic mesh refinement.

• We extend to three dimensions a previous result of Acar et al. on kinetically maintaining

convex hulls in two dimensions [8]. The result is twofold: first, we propose a robust motion

simulator; second, we evaluate the effectiveness of this simulator by designing a kinetic

algorithm for maintaining convex hulls in three dimensions (Chapter 2).

• We improve the algorithm proposed by Hudson [43] for dynamically updating meshes, or

more specifically, well-spaced point sets. Our algorithm reduces the runtime and memory

requirements by a logarithmic factor and it is easier to implement (Chapter 3).

• We propose the first kinetic data structure for solving the problem of kinetic mesh refinement

on a plane (Chapter 4).

Our results demonstrate that the stable design approach strengthens the connection between the

construction and the update algorithms by transferring the inherent complexity of the dynamic and

kinetic update algorithms to the stable design and analysis of a static construction algorithm.

In the rest of this chapter, we introduce dynamic algorithms and data structures, kinetic data

structures framework, self-adjusting computation framework, and the mesh refinement problem.

Finally, we summarize our results.
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1.1 Dynamic Algorithms and Data Structures

Classically, problems in computer science require computing certain properties of a given input. In

many applications, however, we need to compute these properties once again after some dynamic

modifications—insertions and deletions—are applied to the input. For such applications, recom-

puting these properties “from scratch” may be the best approach we can hope for, but in many

instances, it may be possible to take advantage of the already structured data by running a more

efficient update algorithm for putting these insertions and deletions into effect. A common exam-

ple is sorting a given set of numbers, and facilitating insertion and/or deletion of numbers while

maintaining a sorted representation of the resulting set. The standard solution of this problem is to

maintain a balanced binary tree for representing the sorted list of numbers. The initial run, i.e., the

construction, takes O(n log n) time, and each insertion or deletion takes just O(log n) time; here

n represents the size of the resulting set of numbers, and the update algorithm makes it n times

faster to insert or delete a number.

In the example above, we know the objective function ahead of time (sorting). It is possible

that we do not know the objective function ahead of time, in which case it would be desirable to

answer certain queries as the input undergoes dynamic changes. A simple example is a search

engine. The internet goes through dynamic changes as some new sites are built, others cease to

exist, links between sites are added and/or removed, and the content of the sites is changed. A

successful search engine retrieves the relevant information in seconds as it receives new search

queries. For efficiency, any search engine must maintain a current representation of the web and

update this representation as the web dynamically changes.

Generalizing these examples, we can formulate a dynamic problem as follows: given a set of

input objects, the goal is to design a data structure that represents these objects, a construction

algorithm that initially creates the data structure, an update algorithm that modifies the data struc-

ture upon a dynamic change to the input, and certain algorithms that answer the queries that are of

interest. Moreover, construction and update algorithms must respectively compute and update the
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value of any objective function known in advance. To measure the effectiveness of a given dynamic

algorithm and data structure, the standard analysis involves considering the space required to store

the data structure and the runtime efficiency of the algorithms proposed (construction, update, and

query). Since designing efficient dynamic algorithms and data structures has proven to be a diffi-

cult task, it is widely accepted to study restricted problems. Some algorithms and data structures

called semidynamic—incremental or decremental to be more specific—support only insertions or

only deletions to the input, while algorithms called fully dynamic support both kinds of dynamic

changes, insertions and deletions. We refer the reader to survey articles [26, 31] for examples of

dynamic algorithms and data structures.

For the problems we consider in this thesis, instead of designing specific update algorithms, we

design stable construction algorithms and generate update algorithms in the form of change prop-

agation by following the principles of the self-adjusting computation framework. For improved

efficiency, we design certain dynamic algorithms and data structures as tools for providing solu-

tions to partial problems, and integrate these tools into the change-propagation mechanism. We

provide examples of such dynamic algorithms and data structures in each chapter. In Chapter 2,

we use an incremental construction algorithm and when a certificate fails, our kinetic update al-

gorithm (in the form of change propagation) updates this dynamic construction. In Chapter 3, we

use a dynamic point location data structure, which internally is not self adjusting. In Chapter 4,

we organize the construction of the mesh in levels and when a certificate fails, our kinetic update

algorithm (in the form of change propagation) applies a dynamic update algorithm at each level.

1.2 Kinetic Data Structures

In many areas of computer science (e.g., graphics, scientific computing), we must compute with

continuously moving objects. For these objects, kinetic data structures framework [19, 34] allows

efficient computation of their properties as they move. A kinetic data structure (KDS) consists of a

data structure that represents the property of interest being computed, and a proof of that property.
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The proof is a set of certificates that validate the property in such a way that as long as the outcomes

of the certificates remain the same, the combinatorial property being computed does not change.

To simulate motion, a kinetic data structure is combined with a motion simulator that monitors

the times at which certificates fail, i.e., the value of certificates change; a certificate failure is also

known as a kinetic event. Upon a kinetic event, the motion simulator notifies the data structure

representing the property. The data structure then updates the computed property and the proof by

deleting the certificates that are no longer valid and by inserting new certificates. The performance

of a KDS is analyzed according to four properties: compactness, responsiveness, efficiency, and

locality.

• Compactness requires the number of the certificates to be not much larger than the smallest

size of the proof that certifies the property the KDS computes.

• Responsiveness requires the data structure to respond to events in a small amount of time; in

many instances, we would like the update time to be bounded by a polylogarithmic function

in the size of the input.

• Efficiency is related to the total number of events processed. In a kinetic simulation, we

can categorize events as being external or internal. An event is external if the property

computed by the KDS changes with the certificate failure; conversely, an event is internal

if the certificate failure does not affect the property being computed by the KDS. A kinetic

data structure is then called efficient if the number of internal events is asymptotically of the

same order as, or at most a polylogarithmic factor larger than, the number of external events.

• To handle discrete changes to the data structure such as motion plan changes or dynamic

insertions and deletions, locality is the criterion that requires each input point to participate

in a small number of certificates; generally, this bound is desired to be a polylogarithmic

bound.
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Since their introduction, many kinetic data structures have been designed and analyzed. See

survey articles [15, 35] for references to descriptions of various kinetic data structures. Yet, several

difficulties remain in making them effective in practice [15, 38, 62, 61]. Furthermore, many prob-

lems, especially in three dimensions, remain essentially open [35]. One set of difficulties stems

from the fact that current KDS update mechanisms depend on the assumption that the update is

invoked to repair a single certificate failure [15]. This assumption requires a precise ordering of

the certificate failure times so that the earliest can always be selected, possibly requiring exact

arithmetic. The assumption also makes it particularly difficult to deal with simultaneous events.

In Chapter 2, we propose another approach to advancing time. Our approach is a hybrid be-

tween kinetic event-based scheduling and classic fixed-time sampling. The idea is to partition time

into a lattice of intervals of fixed size, and identify events only to the resolution of an interval. If

many events fall within an interval, they are processed as a batch without regard to their ordering.

More specifically, in exact separation, one finds smaller and smaller intervals (e.g., using binary

search) until all events fall into separate intervals. In our case, once we reach the lattice interval,

we can stop without further separation, thus avoid potentially expensive separation costs.

In Chapter 4, for the kinetic mesh refinement problem, we focus on the construction and the

update algorithms rather than the motion simulator, since the most challenging aspects of this

problem have been geometric in nature: the selection of Steiner points that fit into the kinetic

setting and the guarantee of their well-spacedness. Therefore, we use the original KDS framework;

however, since our update algorithm is a change-propagation algorithm, our hybrid approach in

Chapter 2 can be applied to support simultaneous updates for motion simulation.

1.3 Self-Adjusting Computation

In many applications that process dynamically changing data, small changes to input data often

require small changes to the output. This observation creates the potential for designing efficient

dynamic algorithms for updating the output rather than recomputing it from scratch after each
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change. As mentioned earlier, designing dynamic algorithms that exploit this potential turns out to

be difficult. Nevertheless, efficiency being the most important concern, the same observation also

creates an opportunity for a generic approach to designing dynamic algorithms. More specifically,

given a static algorithm and a dynamic modification to its input, the same algorithm can be re-

executed without having to duplicate parts of the execution by storing certain trace information

during the computation. Indeed, Acar et al. have shown that this idea can be used to automate the

process of translating a static algorithm into a dynamic one. Their approach, which is based on

a combination of dynamic dependence graphs [6] and memoization (function caching), is called

self-adjusting computation [3]. Self-adjusting computation has been realized by extending the

C [39, 41, 40] and ML [13, 52, 51, 50] programming languages.

In self-adjusting computation, the main idea is to generate a computation dependence graph

while running an algorithm A on the input data. Each node of this graph stores information repre-

senting the code that needs to be re-executed if its current execution becomes invalid when input

changes. After any such change, the update mechanism, called change propagation, propagates

the changes through this graph, updating the parts of the graph and the computation that depend

on them, ultimately updating the output. During propagation, memoization enables the update

mechanism to identify unchanged portions of the graph, thus avoiding the need to re-execute them

and instead spending time only on the portions of the graph that need to be updated. The change-

propagation mechanism updates the dependence graph so that it always becomes isomorphic to

the dependence graph that would have been generated by running algorithm A on the modified

input. Since change propagation virtually transforms the dependence graph before the input mod-

ification into the one after, the time taken by change propagation can therefore be stated in terms

of the distance between the two dependence graphs. Consequently, the efficiency of the update

algorithm depends on how stable the dependence graphs of algorithm A are with respect to input

changes [51], making it critically important how dependencies are structured during the execution

of the algorithm.
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By default, the change-propagation mechanism traces dependencies of an algorithm at the level

of data access in terms of reads and writes of a memory cell. With recent advances in self-adjusting

computation [7], it is now possible to also trace dependencies at the level of data structures in

terms of query and update operations on them. So-called traceable data types do this, by directly

handling input changes and propagating changes externally only at the interface. Intuitively, a

traceable data type can be thought as a dynamic data structure integrated into the self-adjusting

computation framework. The use of such specialized dynamic data structures reduces space and

time overhead; for some, it improves the runtime of change propagation asymptotically and greatly

simplifies the design of stable algorithms.

Besides these advantages, using traceable data types also makes it possible to develop self-

adjusting programs for kinetically changing data using the kinetic data structures framework. Sim-

ply put, the kinetic data structures framework handles continuous changes to data in a discrete and

dynamic fashion through the use of certificates. The certificates, which prove that the computation

is valid as long as certificate outcomes do not change, can be considered as traceable data types,

allowing change propagation to trace dependencies at the level of certificates. Instead of tracing de-

pendencies at the level of more primitive time data (which continually change and therefore are not

suitable for self-adjusting computation), at the level of certificates, self-adjusting programs remain

oblivious to time changes. To identify the times when the outcome of a certificate changes, these

programs then employ a motion simulator that implements a traceable priority queue for storing

certificate failure times. Therefore, self-adjusting programs become capable of kinetizing static

algorithms through the use of traceable data types. Because of their inherent flexibility, kinetic

self-adjusting programs can also overcome some of the restrictions that currently limit many ki-

netic data structures, such as processing multiple certificate failures. We discuss the kinetic aspects

of self-adjusting computation in more detail in Chapter 2.

Motivated by the advantages of self-adjusting computation framework, we design stable al-

gorithms, i.e., algorithms that have stable dependence graphs, and use the change-propagation
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technique to develop update algorithms. In the rest of this section, we discuss change propagation,

its runtime analysis, and traceable data types.

1.3.1 Change Propagation

A self-adjusting program, which is based on a static algorithm, when run initially, constructs a

trace of its execution in the form of a dynamic dependence graph. This graph stores the function-

call tree of the execution, and the data dependencies between the function calls and the data,

i.e., the memory accesses performed in each of the function calls. Also, while the trace is being

constructed, these function calls get assigned two time stamps indicating the beginning and the

end of the call, so that the function calls can be ordered sequentially together with the caller-callee

relationship information. Using the dynamic dependence graph and the ordering on the function

calls, the self-adjusting computation framework defines a generic update mechanism for updating

the execution of the program after some modifications are applied to its input data. This update

mechanism is called change propagation.

In a nutshell, the change-propagation mechanism propagates input changes throughout the de-

pendence graph, identifies and stores affected function calls in a priority queue, and processes them

in execution order. More specifically, it identifies those function calls that read data that has been

changed because of propagation, marks them as affected, and re-executes them in increasing time

order. When re-executing a function call, the propagation mechanism uses memoization to iden-

tify and reuse any unchanged function calls made within the time frame of the function call being

re-executed. At the end of re-execution, it removes the function calls that were not reused within

the same time frame. This process of re-executing a function call further invalidates some other

data; by following the dependencies in the graph, the propagation mechanism identifies other af-

fected function calls and puts them into the priority queue to be re-executed later. Throughout this

process, the propagation mechanism updates the dependence graph and the output as necessary;

propagation ends when all affected function calls are re-executed.
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In this thesis, we design update algorithms in the form of change propagation. However, in-

stead of referring to the description contained in this section, we explain in detail the dependence

propagation for each of the problems we consider in their respective chapters.

1.3.2 Trace Stability

Acar [3] provides correctness and runtime analyses of the change propagation mechanism in its

most general form. Correctness relies on an important isomorphism property: after change propa-

gation updates the current execution trace of an algorithm, the updated trace becomes isomorphic to

the execution trace of the same algorithm with the modified input. Furthermore, this isomorphism

property together with memoization form a basis for bounding the update runtime. Intuitively, if

the traces of any two executions of a given algorithm with inputs that differ by a single modification

are similar, then change propagation should not take too much time. To realize this intuition, self-

adjusting computation framework defines a labelling scheme for matching and memoizing function

calls that are common to both executions. Using memoization, change propagation mostly needs

to remove or execute the unmatched function calls, i.e., the function calls that are not common to

both executions. Then, an algorithm is calledO(f(n))-stable if the trace distance between any two

executions with inputs that differ by a single modification is bounded by O(f(n)), where the trace

distance is defined as the time to execute the unmatched function calls. The interesting result is

that change propagation takes O(f(n) log f(n)) time, provided that the algorithm is monotone.

In order to define the notion of monotonicity, let us first define two function calls in two differ-

ent executions related with a dynamic input change as cognates if their labels and the caller callee

relationships are the same. Provided that all function calls in a trace are labelled uniquely, an algo-

rithm is called monotone, if all cognates are executed in the same order in any two executions (of

the algorithm) that are related with a dynamic input change. During change propagation of mono-

tone algorithms, all cognates, if needed, can be reused via memoization, and memoizing a function

call does not remove any cognates from the trace. Therefore, time is spent only on removing and

11



executing function calls that do not have cognates; this argument supports the runtime proof of

change propagation. For further details, we refer the reader to the dissertation of Acar [3].

In this thesis, we do not refer to the proofs summarized in this section but explain in detail the

stability analysis for each of the problems we consider.

1.3.3 Traceable Data Types

By default, self-adjusting computation techniques rely on tracing dependencies at the data level

by recording the memory operations, both reads and writes. When designing certain data struc-

tures, this fine-grained approach can be problematic, because updates to the input may significantly

change internals of the data structure, even though the set of changes that propagate to the interface

is small. With recent advances in self-adjusting computation [7], we can overcome this problem

by extending the tracing of dependencies at the level of arbitrary data types (structures). This ex-

tension involves developing traceable versions of these data types, which are called traceable data

types. For these data types, dependencies must be traced directly, so that the change-propagation

mechanism can handle more general dependence tracing. In other words, one can think of trace-

able data types as dynamic data structures that are integrated into the self-adjusting computation

framework.

With traceable data types, i.e., integrated dynamic data structures, the change-propagation

mechanism remains insensitive to the specifics of the data structure, and the update algorithm

of the data structure itself handles the changes within the data structure. Using such specialized

dynamic data structures within the self-adjusting computation framework reduces the number of

dependencies that are traced, thus reducing space and time overhead. It can even improve the

runtime of change propagation asymptotically because some data structures display suboptimal

behavior when made self-adjusting at the memory cell level (e.g., priority queues). In addition to

improving performance, using dynamic data structures can also greatly simplify the design of algo-

rithms with stable dependence graphs, since one needs to consider dependencies only between the
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operations on the data structure instead of all the memory accesses inside of it. In summary, inte-

grating certain dynamic data structures and tracing dependencies at varying levels of the algorithm

proves useful for efficiency and stability. In this thesis, we employ certain dynamic data structures

(mentioned at the end of Section 1.1) in this fashion and integrate them into the change-propagation

mechanism.

1.4 Mesh Refinement

Meshing is an essential step in many applications such as physical simulations, surface recon-

struction, computer graphics, etc. The idea behind meshing is to break up a physical domain into

discrete elements—e.g., triangles in two dimensions; more generally, simplices in n-dimensions—

so that certain functions defined on the domain may be computed approximately by considering

the discrete elements. If the accuracy achieved on a given mesh is not satisfactory, one may want

to enhance the quality of the mesh and therefore increase the precision of the computation. The

common procedure to enhance mesh quality is to insert additional so-called Steiner points into

the mesh, taking care to insert as few Steiner points as possible to keep output size small. This

procedure is known as mesh refinement.

In general, the input to a refinement procedure describes a geometric object (e.g., a plane, a

lake) inside a domain, and the output is a refined mesh of the object and the domain. Common

practice in mesh refinement sets the domain to be a large enough bounding box so that the domain

itself is simple and the applications using the output mesh receive minimal influence from outside

the domain. The refinement procedure outputs a mesh by partitioning the domain and the input

object into simplices that should be “well shaped” and therefore easy to manipulate. Since the

output mesh becomes a part of the input to the applications, it is also important that the size of

the output mesh be small enough and the smallest sized simplices in the mesh be large enough. A

mesh refinement algorithm, therefore, needs to take these quality criteria into consideration when

generating a mesh.
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Figure 1.1: Let M = {v, u, w, y, z}. The
nearest-neighbor distance of v, NNM(v), is
|vu|. The polygon with solid boundary lines
depicts the Voronoi cell of v, VorM(v). The
vertex v is 6-well-spaced, but not 9
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Since the specific quality criteria for the mesh refinement procedure vary greatly depending on

the application (also on the functions to be approximated), instead of considering the diverse set of

quality criteria and investigating refinement procedures that are appropriate for different types of

applications, we restrict our attention to a specific one, known as well-spacedness. In this thesis,

we theoretically approach the mesh refinement problem, more specifically, the well-spaced point

sets problem, and abstract it out from the applications as a goal on its own. Using stable algorithms,

we propose solutions to this problem in dynamic and kinetic settings. In the rest of the section, we

introduce the well-spaced point sets problem, summarize our Steiner point selection schemes, and

provide a brief survey of mesh refinement.

1.4.1 Well-Spaced Point Sets

Given a domain Ω in Rd, we call a set of points M ⊂ Ω well-spaced if for each point p ∈ M the

ratio of the distance to the farthest point of Ω in the Voronoi cell of p divided by the distance to the

nearest neighbor of p in M is small [66]. Well-spaced point sets are strongly related to meshing

and triangulation for scientific computing, which require meshes to have certain qualities. In two

dimensions, a well-spaced point set induces a Delaunay triangulation with no small angles, which

is known to be a good mesh for the finite element method. In higher dimensions, well-spaced point

sets can be postprocessed to generate good simplicial meshes [22, 53]. The Voronoi diagram of a

well-spaced point set is also immediately useful for the control volume method [55].
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Given a domain Ω ⊂ Rd, we define the well-spaced point set problem as constructing a well-

spaced output M ⊂ Ω that is generated by inserting Steiner points into a given set of input

points N ⊂ Ω. We define the geometric spread, denoted by ∆, to be the ratio of the diameter

of N to the distance between the closest pair in N. The geometric spread is a natural measure that

yields a log ∆ = O(log |N|) bound when input points are at fixed-point coordinates represented

by log-size words. Given N as input, our algorithm constructs a well-spaced output M ⊂ Ω that

is a superset of N. We use the term point to refer to any point in Ω and the term vertex to refer

to the input and output points. Consider a vertex setM⊂ Ω. The nearest-neighbor distance of v

inM, written NNM(v), is the distance from v to the nearest other vertex inM. The Voronoi cell

of v in M, written VorM(v), consists of points x ∈ Ω such that for all u ∈ M, |vx| ≤ |ux|.

Following Talmor [66], a vertex is ρ-well-spaced if the intersection of its Voronoi cell with Ω is

contained in the ball of radius ρNNM(v) centered at v;M is ρ-well-spaced if every vertex inM

is ρ-well-spaced. Figure 1.1 illustrates these definitions.

Well-spaced point sets problem, by definition, emphasizes the Voronoi diagram of a given point

set, instead of drawing direct attention to the triangles that constitute a mesh. However, Voronoi

diagrams are closely related to Delaunay triangulations; in fact, they are the dual graphs of each

other provided that the points are in general position. More formally, given an input point set N,

the Delaunay triangulation of N is defined as a triangulation that satisfies the condition that the

circumscribing circle of any triangle of the triangulation does not contain a point of N in its interior.

As part of the duality property, every edge {u, v} of the Delaunay triangulation corresponds to the

relation that the Voronoi cells of u and of v are adjacent; such vertices are also called Voronoi

neighbors. Furthermore, every triangle {u, v, w} of the Delaunay triangulation corresponds to the

relation that the Voronoi cells of u, of v, and of w intersect at a single point which is referred

to as a Voronoi node; this point coincides with the circumcenter of the triangle. Because of this

strong connection between Voronoi diagrams and Delaunay triangulations, we sometimes shift the

attention of the reader from one setting to the other.
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1.4.2 Steiner Point Selection

Regardless of runtime considerations, the fundamental question in mesh refinement is where to

insert the Steiner vertices [63]. Traditional solutions place Steiner vertices as far from any other

vertex as possible, namely, at the circumcenters of Delaunay simplices (equivalently, at the nodes

of the Voronoi diagram) [24, 60, 63, 44]. In two dimensions, Har-Peled and Üngör instead place

Steiner vertices close to a vertex, but not too close: at the off-centers [42]. This local scheme

allows them to build a data structure that can locate the off-centers in constant time. Jampani and

Üngör extends this idea to three dimensions using core disks [47]. Another approach based on

quadtrees generates an appropriately refined quadtree over the input points and adds the corners of

the quadtree squares as Steiner points [20].

In our proposed algorithms for mesh refinement, we use varyious techniques for picking Steiner

vertices. For the dynamic problem, we define a local picking region that includes those Steiner

vertices proposed by the approach of Üngör et al. [42, 47]. For the kinetic problem we use a

spherical version of the quadtree method to pick Steiner vertices. We explain the details of our

Steiner vertex selection schemes in their respective chapters.

1.4.3 History of Mesh Refinement

The mesh refinement problem has been studied since the invention of computers, receiving atten-

tion both in practice and in theory. In practice, researchers and engineers have been considering

specific types of polygon meshes, e.g., uniform, quadrilateral, hexagonal, and refining or optimiz-

ing them mostly using heuristic techniques without regards to theoretical analyses of runtime or

mesh quality. Employing heuristic techniques has continued to be the customary approach in many

applications to this day, because establishing a theory for assessing mesh quality that is appropri-

ate for various kinds of applications has proven to be difficult, if not impossible. The effectiveness

of the meshes used in these applications, therefore, has been analyzed experimentally. On the

other hand, focusing on applications that rely on widely used methods such as the finite element
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method or the control volume method, theoreticians were able to identify certain quality measures

for triangular meshes. Since the late 1980s, starting with Chew [24], several results in theory have

achieved guarantees for mesh quality and for fast runtimes. We survey these theoretical results in

the rest of this subsection.

The first theoretical result in mesh refinement, due to Chew [24], is motivated by the observa-

tion that finite element applications achieve more accurate solutions when the triangles constituting

a mesh are closer to being equilateral. He devised an approach to generate an almost uniform tri-

angular mesh in two dimensions and to ensure that all angles in the resulting triangulation are

between 30◦ and 120◦. This guarantee on the angles also identified and set the mesh quality cri-

terion for all other theoretical results to follow: a quality mesh should not contain small angles,

thereby eliminating large angles as well. In two dimensions, this criterion directly corresponds to

the well-spacedness criterion defined in terms of Voronoi diagrams.

The next milestone result is due to Ruppert [60] for improving the size of the resulting meshes

of Chew’s algorithm and setting a framework for analyzing the size of a mesh. Observing that

the meshes generated by Chew’s algorithm are almost uniform and equally refined accross the

whole domain, he came up with the idea to refine a mesh only where it is needed so as to avoid

unnecessary Steiner point insertions. He adapted Chew’s algorithm in this manner and proved that

his algorithm outputs a size-optimal mesh, that is, the size of the output mesh is within a constant

factor of the size of the smallest possible mesh that meets the same quality criterion. He showed

that for achieving size-optimality, one can prove that the output mesh is size-conforming. Formally,

given an input set N, an output M ⊃ N is called size-conforming if there exists a constant c

independent of N such that for all v ∈ M, we have NNM(v) > c · lfs(v), where lfs(v), the local

feature size of v, is defined to be the distance from v to the second-nearest vertex in N. These

definitions lay the foundations of analyzing the size of a mesh, and in this thesis, we include size-

optimality as an integral part of our objective for the mesh refinement problem.

Subsequent research by Chew [25] and Shewchuk [63] extended these results to higher dimen-
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sions by bounding the radius/edge ratio in the output, which corresponds to the well-spacedness

criterion. However, in dimensions three or higher, well-spacedness criterion does not guarantee

that all angles are above some threshold. Even though the Voronoi diagram of a point set is well-

spaced, the Delaunay triangulation may include slivers, which are almost-flat simplices that have

dihedral angles close to 0◦ and 180◦. Some techniques that eliminate slivers have been introduced

in the last decade [30, 22, 53]; however, dealing with slivers remain an important challenge in both

theory and practice.

In the last decade, several recent results have achieved fast runtimes [42, 44, 64]. The first im-

portant efficiency result, due to Spielman, Teng, and Üngör [65], was on parallel mesh refinement.

By parallelizing Ruppert’s method in two dimensions and Shewchuk’s method in three dimensions,

they proved that their parallel mesh refinement algorithm takes O(log2 ∆) parallel iterations. The

same authors improved their result toO(log ∆) parallel iterations by inserting off-centers as Steiner

points [64]. This result also led Har-Peled and Üngör to propose and anaylze the first time-optimal

Delaunay refinement algorithm in two dimensions [42]. Their algorithm is guaranteed to run in

O(n log n + m) time where n and m are the input and output sizes respectively. Later, Hud-

son, Miller, and Phillips [44] extended this result to arbitrary dimensions by always maintaining a

sparse mesh throughout their algorithm. They proved that their algorithm, called Sparse Voronoi

Refinement, is guaranteed to run in O(n log ∆ +m) time.

All of the above results focus on the static setting. In both dynamic and kinetic settings, there

has been relatively little progress on solving the mesh “maintenance” problem where one needs to

refine as well as coarsen the mesh as the input changes dynamically or kinetically. In the dynamic

setting, existing solutions either do not produce size-optimal outputs because they do not coarsen

their outputs [23, 59], or they are asymptotically no faster than running a static algorithm from

scratch [28, 54]. Similarly, in the kinetic setting, existing solutions either locally refine the current

mesh without coarsening it, therefore, failing to maintain size-optimality [21, 56], or they throw

away an almost quality mesh and generate a fresh one from scratch, possibly resulting in a whole
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new set of triangles [17, 49]. In this thesis, we strive for keeping the current mesh intact as much

as possible and replacing only parts of the mesh that need to be refined or coarsened.

1.5 Our Contributions

Using the stable design approach we advocate in this thesis, we offer solutions to the problems

of kinetic convex hulls, and of dynamic and kinetic mesh refinement. We present either empirical

evidence or theoretical guarantees for these solutions. We summarize our contributions as follows:

• Kinetic Convex Hulls in 3D

We propose a robust motion simulation technique that combines kinetic event-based schedul-

ing and the classic idea of fixed-time sampling. The idea is to divide time into a lattice of

fixed-size intervals, and process events at the resolution of an interval. We apply this ap-

proach to the problem of kinetic maintenance of convex hulls in 3D—a problem that has

been open since the 1990s. We evaluate the effectiveness of our proposal experimentally.

Using this approach, we are able to run robust simulations consisting of tens of thousands of

points.

• Dynamic Well-Spaced Point Sets

We present a dynamic algorithm for the well-spaced point sets problem in any fixed dimen-

sion. Our construction algorithm generates a well-spaced superset in O(n log ∆) time, and

our dynamic update algorithm allows inserting and/or deleting points into/from the input in

O(log ∆) time, ∆ being the geometric spread. We show that this update algorithm is efficient

by proving a lower bound of Ω(log ∆) for a dynamic update. We also show that our algo-

rithms maintain size-optimal outputs: the well-spaced supersets are within a constant factor

of the minimum size possible. To the best of our knowledge, this is the first time-optimal

and size-optimal algorithm for dynamically maintaining well-spaced point sets.
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• Kinetic Mesh Refinement in 2D

We provide a kinetic data structure (KDS) for the planar kinetic mesh refinement problem,

which concerns computation of meshes of continuously moving points. Our KDS computes

the Delaunay triangulation of a size-optimal well-spaced superset of a set of moving points

with algebraic trajectories of constant degree. Our KDS satisfies the following criteria:

– It is compact, requiring linear space in the size of the output.

– It is local, involving an input point in O(log ∆) certificates.

– It is responsive, repairing itself in O(log ∆) time per event.

– It is efficient, processing O(n2 log3 ∆) events in the worst case. This is optimal to

within a polylogarithmic factor: we prove a lower bound of Ω(n2 log ∆) in the worst

case.

In addition to satisfying these criteria, our KDS is also dynamic, responding to point inser-

tions and deletions in O(log ∆) time. To the best of our knowledge, this is the first KDS for

mesh refinement.

1.5.1 References

The results presented in Chapter 2 are based on the following two articles: “Robust Kinetic Convex

Hulls in 3D” published in the proceedings of the sixteenth annual European Symposium on Algo-

rithms, with coauthors Umut A. Acar, Guy E. Blelloch, and Kanat Tangwongsan [9] and “Traceable

Data Types for Self-Adjusting Computation” published in the proceedings of the ACM SIGPLAN

conference on Programming Language Design and Implementation with coauthors Umut A. Acar,

Guy E. Blelloch, Ruy Ley-Wild, and Kanat Tangwongsan [7].

The results presented in Chapter 3 are submitted to the journal of Computational Geometry

Theory and Applications [10]. These results are based on the following two articles: “An Efficient
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Query Structure for Mesh Refinement” published in the proceedings of the twentieth annual Cana-

dian Conference on Computational Geometry coauthored with Benoît Hudson [46], and “Dynamic

Well-Spaced Point Sets” published in the proceedings of the twenty-sixth annual Symposium on

Computational Geometry with coauthors Umut A. Acar, Andrew Cotter, and Benoît Hudson [11].

The results presented in Chapter 4 are based on the article “Kinetic Mesh Refinement in 2D”

published in the proceedings of the twenty-seventh annual Symposium on Computational Geome-

try with coauthors Umut A. Acar and Benoît Hudson [12].
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CHAPTER 2

KINETIC CONVEX HULLS IN 3D

As mentioned in the introductory chapter, kinetic data structures (KDS) [19, 34] is a framework for

computing properties of moving objects that has been applied to many problems in computational

geometry. A KDS maintains a proof of the computed property via certificates, and it updates

the property and its proof when kinetic events happen (when one of the certificates fails). In

order to simulate motion, a KDS interacts with a motion simulator that monitors the times of

kinetic events. The motion simulator continuously reports the upcoming kinetic events so that

the KDS performs the necessary kinetic updates. Although there are no inherent restrictions on

motion simulators, since almost all KDS update mechanisms can be invoked to repair only a single

certificate failure [15], motion simulators must generally order the certificate failure times so that

the earliest failure can always be selected. This requirement enforces exact separation of failure

times, which can be costly due to exact arithmetic, and makes it particularly difficult to deal with

simultaneous events. In this chapter, using self-adjusting programs, we demonstrate how to process

multiple certificate failures simultaneously, and propose another approach to advancing time for

robust motion simulation. We then design a kinetic self-adjusting algorithm for maintaining 3D

convex hulls and evaluate our motion-simulation approach experimentally.

For motion simulation, our approach is a hybrid of kinetic event-based scheduling and classic

fixed-time sampling. The idea is to partition time into a lattice of intervals of fixed size δ, and

identify events only to the resolution of an interval. If many events fall within an interval, they

are processed as a batch without regard to their ordering. As with kinetic event-based scheduling,

we maintain a priority queue, but in our approach, the queue maintains nonempty intervals each

possibly with multiple events. To separate events to the resolution of intervals, we use Sturm

sequences similar to their use for exact separation of roots of a polynomial [36], but the fixed

resolution allows us to stop the process early. More specifically, in exact separation, one finds

smaller and smaller intervals (e.g., using binary search) until all events fall into separate intervals.
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In our case, once we reach the lattice interval, we stop without further separation. This means

that if events are degenerate and happen at the same time, we need not determine this potentially

expensive fact.

For 3D kinetic convex hulls, we use a static randomized incremental convex hull algorithm [27,

58] and kinetize it using self-adjusting computation. To ensure that the algorithm responds to

kinetic events efficiently, we make some small changes to the standard incremental 3D convex-hull

algorithm. This makes progress on the problem of 3D kinetic convex hulls, which was identified in

late 1990s [34]. To the best of our knowledge, computing the 3D kinetic convex hulls prior to this

work was done by the kinetic Delaunay algorithm of the CGAL package [1], which computes the

convex hull as a byproduct of the 3D Delaunay triangulation (of which the convex hull would be

a subset). As shown in our experiment, this existing solution generally requires processing many

more events than necessary for computing convex hulls.

We present experimental results for the the proposed kinetic 3D convex hull algorithm with the

robust motion simulator. Using our implementation, we can run simulations with tens of thousands

of moving points in 3D and test their accuracy. We can perform robust motion simulation by

processing an average of about two certificate failures per step. The 3D hull algorithm seems to

take (poly) logarithmic time on average to respond to a certificate failure as well as to an integrated

event—an insertion or deletion that occurs during a motion simulation. We include the code for

the math library and the code for the self-adjusting convex hull program in Appendix A.

2.1 Robust Motion Simulation on a Lattice

We propose an approach to robust motion simulation that combines event-based kinetic simulation

and the classic idea of fixed-time sampling. The motivation behind the approach is to avoid order-

ing the roots of polynomials, because it requires high-precision exact arithmetic when the roots are

close. To achieve this, we discretize the time axis to form a lattice {k · δ | k ∈ Z+} defined by

the precision parameter δ. We then perform motion simulations at the resolution of the lattice by
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processing the certificates that fail within an interval of the lattice simultaneously. This approach

requires that the update mechanism used for revising the computed property be able to handle

multiple certificate failures at once. We use self-adjusting computation, where computations can

respond to any change in their data correctly by means of a generic change propagation algorithm.

Assuming that the coordinates of the trajectories of all points can be expressed as polynomial

functions of time, for robust motion simulations, we will need to perform the following operations:

• Compute the signs of a polynomial and of its derivatives at a given lattice point.

• Compute the intervals of the lattice that contain the roots of a polynomial.

In our approach, we assume that the coefficients of the polynomials are integers (up to a scaling

factor) and use exact integer arithmetic to compute the signs of the polynomial and its derivatives.

For finding the roots, we use a root solver described below.

The Root Solver. Our root solver relies on a procedure, which we call a Sturm query, that returns

the number of roots of a square-free polynomial that are smaller than a given lattice point. To

answer such a query, we compute the Sturm sequence (a.k.a. standard sequence) of the polynomial,

which consists of the intermediary polynomials generated by Euclid’s algorithm for finding the

greatest common divisor (GCD) of the polynomial and its derivative. The answer to the query is

the difference in the number of alternations in the signs of the sequence at −∞ and at the query

point. Using the Sturm query, we can find the roots of a square-free polynomial by performing a

variant of a binary search. We can eliminate the square-free assumption by a known technique that

factors the polynomial into square and square-free polynomials.

Motion Simulation. We maintain a priority queue of events (initially empty), and a global sim-

ulation time (initially 0). We start by running the static algorithm in the self-adjusting framework.

This computes a certificate polynomial for each comparison. For each certificate, we find the

24



time
0 1 2 3 4 5 6 7* * * *

a cb d e f xi
h

Figure 2.1: The lattice (δ = 1) and the events (certificate failures).

lattice intervals at which the sign of the corresponding polynomial changes, and for each such in-

terval, we insert an event into the priority queue. After the initialization, we simulate motion by

advancing the time to the smallest lattice point t such that the lattice interval [t− δ, t) contains an

event. To find the new time t we remove from the priority queue all the events contained in the

earliest nonempty interval. We then change the outcome of the removed certificates and perform a

change propagation at time t. Change propagation updates the output and the queue by inserting

new events and removing invalidated ones. We repeat this process until there is no more certificate

failure. Figure 2.1 shows a hypothetical example with δ = 1. We perform change propagation

at times 1, 2, 3, 5, 7. Note that multiple events are propagated simultaneously at time 2 (events b

and c), time 5 (events e and f ), and time 7 (events h, i and, x).

When performing change propagation at a given time t, we may encounter a polynomial that

is zero at t, representing a degeneracy. In this case, we use the derivatives of the polynomial to

determine the sign immediately before t. Using this approach, we are able to avoid degeneracies

throughout the simulation, as long as the certificate polynomials are not identically zero.

We note that the approach described here is quite different from the approach suggested by

Abam et al. [2]. In that approach, root isolation is avoided by allowing certificate failures to be

processed out of order. This can lead to incorrect transient results and requires care in the design

of the kinetic structures. We do not process certificates out of order but rather as a batch.

2.2 Algorithm

In the kinetic framework based on self-adjusting computation [8], we can use any static algorithm

directly. The performance of the approach, however, depends critically on the cost of the change
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propagation algorithm when applied after changes are made to input or predicate values. In par-

ticular, when invoked, the change-propagation algorithm updates the current trace (sequence of

operations together with their data) by removing outdated operations and re-executing parts of the

algorithm that cannot be reused from the current trace. The performance of change propagation

therefore depends on some form of the edit distance between the execution trace before and after

the changes. This edit distance has been formalized in the definition of trace stability. In this

section, we describe a variant of the randomized incremental convex-hull algorithm, and remark

on some of its features that are crucial for stability—i.e., that minimize the number of operations

that need to be updated when a certificate fails.

Given an input S ⊆ R3, the convex hull of S, denoted by conv(S), is the smallest convex

polyhedron enclosing all points in S. We assign each input point p ∈ S a random priority and

construct the convex hull conv(S) incrementally by inserting the input points one by one into the

current convex hull in priority order; higher priority points first. During this construction, we say

that a face of the hull is visible from a point if the point and the convex hull lies on opposite sides of

the plane defined by the face. Letting Ai denote the set of i highest-priority points, the next highest

priority point pi+1 is associated with a set Φ(pi+1) ⊂ conv(Ai) of faces that is visible from pi+1.

We use this set to determine the next convex hull.

More formally, our algorithm takes as input an ordered set of points S with random priorities;

p1, p2, . . . , pn being the list in decreasing priority order, and performs the following steps:

1. Create the initial convex hull conv(A4), where A4 is the set of four highest-priority points.

2. Pick a center point c inside conv(A4).

3. For each next highest priority point pi+1

(a) Find the associated face fj in each of the convex hulls conv(A4), . . . , conv(Aj), . . . ,

conv(Ai) satisfying the condition that the ray −−−→cpi+1 intersects fj .
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(b) If the associated face fi of conv(Ai) is not visible from pi+1 discard pi+1; conse-

quently, set conv(Ai+1) = conv(Ai).

(c) Otherwise, construct conv(Ai+1) by following the below rip and tent procedures

Rip Starting from the associated face fi of conv(Ai), identify the set of visible faces

Φ(pi+1) and the set of horizon edges which are defined to be the edges incident to

both visible and invisible faces.

Tent Create a new set Φ̂ of faces each of which consists of the point pi+1 and a horizon

edge; set conv(Ai+1) = Φ̂ ∪ conv(Ai) \ Φ(pi+1).

In our implementation (Appendix A), we maintain a “killer” relationship between a point p

and a face f to indicate that p takes out f during the rip procedure. This allows us to perform

step 3(a) efficiently, by considering the appropriate convex hulls instead of traversing all of them,

and by stopping earlier whenever the point pi+1 is guaranteed to be inside the current convex hull

conv(Ai).

Even though the algorithm presented above is fairly standard, certain key elements of this

implementation appear to be crucial for stability—without them, the algorithm would be unstable.

For stability, we want the edit distance between the traces to be small. Towards this goal, the

algorithm should always insert points in the same order—even when new points are added or old

points deleted. We ensure this by assigning a random priority to every input point. The use of

random priorities makes it easy to handle new points, and obviates the need to explicitly remember

the insertion order.

Additionally, we want the insertion of a point p to visit faces of the convex hull in the same

order every time. Indeed, the presented algorithm guarantees this by using the following heuristic.

The point-to-face assignment with respect to a center point c ensures that the insertion of p always

starts excavating at the same face. Furthermore, if p visits a face f in one execution, it will visit

the same face f in any other execution provided that f is created as part of some convex hull. Note

that the choice of the center point is arbitrary, with the only requirement that the center point has
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to lie in the convex hull. Our implementation takes c to be the centroid of the tetrahedron formed

by A4.

2.3 Implementation

Our implementation consists of three main components: 1) the self-adjusting-computation library,

2) the incremental 3D convex-hull algorithm, and 3) the motion simulator. Previous work [5]

provided an implementation of the self-adjusting computation library. The library requires that the

user adds some notations to their static algorithms to mark what values can change and what needs

to be memoized. These notations are used by the system to track the dependences and know when

to reuse subcomputations.

In our experiments, we use both the original static 3D convex-hull algorithm and the self-

adjusting version with the annotations added. The static version uses exact arithmetic predicates

to determine the outcomes of comparisons precisely (we use the static version for checking the

robustness of the simulation). The self-adjusting version uses the root solver to find the roots of

the polynomial certificates, and inserts them into the event queue of the motion simulator. We

implement a motion simulator as described in Section 2.1. Given a precision parameter δ and

a bound Mt on the simulation time, the simulator uses an event scheduler to perform a motion

simulation on the lattice with precision δ until Mt is reached. We model the points with an initial

location traveling at constant speed in a fixed direction. For each coordinate, we use B` and Bv

bits to represent the initial location and the velocity respectively; B` and Bv can be assigned to

arbitrary positive natural numbers.

2.4 Experiments

We describe an experimental evaluation of our kinetic 3D convex-hull algorithm. The evaluation

investigates the effectiveness of our approach according to a number of metrics which are respon-
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siveness, efficiency, locality, and compactness. Following that, we report timing results for the

integrated dynamic and kinetic experiments.

Experimental Setup. All of the experiments were performed on a 2.66Ghz dual-core Xeon ma-

chine, with 8 GB of memory, running Ubuntu Linux 7.10. We compiled the applications with the

MLton compiler with the option “-runtime ram-slop 0.75,” directing the run-time system

to allocate at most 75% of system memory. Our timings measure the wall-clock time (in seconds).

Input Generation. In our experiments, we pick the initial positions of the points on each axis to

fit into 20 bits, i.e., B` = 20, and the velocity along each axis to fit into 8 bits, i.e, Bv = 8. We pick

both the initial locations and the velocities uniformly randomly from the cube [−1.0, 1.0]3. We

perform motion simulations on lattice defined by δ = 2−10, with a maximum time of Mt = 227.

With this setting, we process an average of about two certificates simultaneously.

Checking for robustness. We check that our algorithm simulates motion robustly by comparing

it to our exact static algorithm after each event in the kinetic simulation. When the inputs are

large (more than 1000 points), we check the output at randomly selected events (with varying

probabilities between 1 and 20%) to save time.

Baseline Comparison. To assess the efficiency of the static version of our algorithm, we com-

pare it to CGAL 3.3’s implementation of the incremental convex-hull algorithm. Figure 2.2 shows

the timings for our static algorithm and for the CGAL implementation. Inputs to the algorithms

are generated by sampling from the same distribution; the reported numbers averaged over three

runs. Our implementation is about 30% slower than CGAL’s.

We also want to compare our kinetic implementation with an existing kinetic implementation

capable of computing 3D convex hulls. Since there is no direct implementation for kinetic 3D

convex hulls, we compare our implementation with CGAL’s kinetic 3D Delaunay-triangulation

implementation, which computes the convex hull as part of the triangulation. Figure 2.3 shows
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Figure 2.2: Static algorithms compared.

CGAL Our Algorithm
Input # Total # Total
Size Events Time (s) Events Time (s)
22 357 13.42 71 2.66
49 1501 152.41 151 11.80
73 2374 391.31 218 23.42
109 4662 1270.24 316 40.37
163 7842 3552.48 380 70.74
244 15309 12170.08 513 125.16

Figure 2.3: Simulations compared.
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Figure 2.4: Kinetic and static runs.
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Figure 2.5: Time per kinetic event.

the timings for our algorithm and for CGAL’s implementation of kinetic 3D Delaunay (using

the Exact_simulation_traits traits). These experiments are run until the event queue

is empty. As expected, the experiments show that kinetic Delaunay processes many more events

than necessary for computing convex hulls.

Kinetic motion simulation. To perform a motion simulation, we first run our kinetic algorithm

on the given input at time t = 0, which we refer to as the initial run. This computes the certificates

and inserts them into the priority queue of the motion scheduler. Figure 2.4 illustrates the running

time for the initial run of the kinetic algorithm compared to that of our static algorithm which does

not create certificates. Timings show a factor of about 15 gap between the kinetic algorithm (using

Sturm sequences) and the static algorithm that uses exact arithmetic. The static algorithm runs

by a factor of 6 slower when it uses exact arithmetic compared to using floating-point arithmetic.

These experiments indicate that the overheads of initializing the kinetic simulations is moderately

high: more than an order of magnitude over the static algorithm with exact arithmetic and almost

two orders of magnitude over the the static algorithm with floating-point arithmetic. This is due to

both the cost of creating certificates and to the overhead of maintaining the dependence structures

used by the change propagation algorithm.

After completing the initial run, we are ready to perform the motion simulation. One measure
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Figure 2.6: Speedup for a kinetic event.

of the effectiveness of the motion simulation is the average time for a kinetic event, calculated as

the total time for the simulation divided by the number of events. Figure 2.5 shows the average

times for a kinetic event when we use our δ-precision root solver. These averages are for the first

5 · n events on an input size of n. The average time per kinetic event appears asymptotically

bounded by the logarithm of the input size. A kinetic structure is said to be responsive if the cost

per kinetic event is small, usually in the worst case. Although our experiments do not indicate

responsiveness in the worst case, they do indicate responsiveness in the average case.

One concern with motion simulation with kinetic data structures is that the overhead of comput-

ing the roots can exceed the speedup that we may hope to obtain by performing efficient updates.

This does not appear to be the case in our system. Figure 2.6 shows the speedup for a kinetic event,

computed as the time for change propagation divided by the time for a from-scratch execution of

the static algorithm using our solver.

In many cases, we also want to be able to insert and remove points or change the motion

parameters during the motion simulation. This is naturally supported in our system, because self-

adjusting computations can respond to any combination of changes to their data. We perform

the following experiment to study the effectiveness of our approach at supporting these integrated

changes. During the motion simulation, at every event, the motion function of an input point is

updated from r(t) to 3
4r(t). We update these points in the order they appear in the input, ensuring
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Figure 2.7: Time per integrated event.
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Figure 2.8: Number of certificates.

that every point is updated at least once. From this experiment, we report the average time per

integrated event, calculated by dividing the total time to the number of events. Figure 2.7 shows the

average time per integrated event for different input sizes. The time per integrated event appears

asymptotically bounded by the logarithm of the input size and are similar to those for kinetic

events only. A kinetic structure is said to have good locality if the number of certificates a point is

involved in is small. We note that the time for a dynamic change is directly affected by the number

of certificates it is involved in. Again, although our experiments do not indicate good locality in

the worst case, they do indicate good locality averaged across points.

Another measure of the effectiveness of a kinetic motion simulation is compactness, which is a
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measure of the total number of certificates that are live at any time. Since our implementation uses

change-propagation to update the computation when a certificate fails, it guarantees that the total

number of certificates is equal to the number of certificates created by a from-scratch execution at

the current position of the points. Figure 2.8 shows the total number of certificates created by a

from-scratch run of the algorithm with the initial positions. The number of certificates appears to

be bounded by O(n log n).
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CHAPTER 3

DYNAMIC WELL-SPACED POINT SETS

In this chapter, we present a dynamic algorithm for the well-spaced point set problem. Our al-

gorithm always returns size-optimal outputs and requires worst-case O(log ∆) time for an input

modification (an insertion or a deletion), ∆ being the geometric spread (the ratio of the diameter

of the input set to the distance between the closest pair of points in the input). Our update runtime

is optimal in the worst case, and our algorithm consumes linear space in the size of the output.

To solve the dynamic problem, we first present an efficient construction algorithm for gener-

ating size-optimal, well-spaced supersets (Section 3.2). In addition to the output, the construction

algorithm builds a computation graph that represents the operations performed during its execution

and the dependencies between them. A key property of this algorithm is that it is stable: when run

with similar inputs, e.g., inputs that differ by one point, it produces similar computation graphs and

outputs. We make this property precise by describing a distance measure between the computation

graphs of two executions and bounding this distance by O(log ∆) when inputs differ by a single

point (Section 3.3.3). Taking advantage of this bound, we design a change-propagation algorithm

that performs dynamic updates in O(log ∆) time by identifying the operations that are affected by

the modification to the input and deleting or re-executing them as necessary (Section 3.4.1). For

the lower bound, we show that there exist inputs and modifications that require Ω(log ∆) Steiner

points to be inserted into or deleted from the output (Section 3.4.2).

The efficiency of our dynamic update algorithm directly depends on stability. In order to

achieve stability, we use several techniques in the design of our construction algorithm. Gen-

eralizing the recently suggested choices of Steiner points [42, 47], we propose an approach for

picking Steiner points by making local decisions only, using clipped Voronoi cells. Picking Steiner

points locally makes it possible to structure the computation into Θ(log ∆) ranks, inductively en-

suring that at the end of each rank the points up to that rank are well spaced [65]. Processing points

in rank order alone does not guarantee stability; we further partition points at a given rank into a
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Figure 3.1: Let M = {v, u, w, y, z}. The
nearest-neighbor distance of v, NNM(v), is
|vu|. The polygon with solid boundary lines
depicts the Voronoi cell of v, VorM(v). The
shaded region displays the (2, 4) picking region

of v, Vor
(2,4)
M (v). Vertices y and z are 4-clipped

but not 2-clipped Voronoi neighbors of v. �����������
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constant number of color classes such that the points in each color class depend only on the points

in the previous color classes. These techniques enable us to process each point only once and

help isolate and limit the effects of a modification. Furthermore, our dynamic update algorithm

returns an output and a computation graph that are isomorphic to those that would be obtained by

re-executing the static algorithm with the modified input (Lemma 3.4.2). Consequently, the output

remains both well spaced and size optimal with respect to the modified input (Theorem 3.4.3).

3.1 Steiner Vertices and Spatial Data Structure

We present some definitions used throughout the chapter, describe the technique we use for select-

ing Steiner vertices, and present a brief overview of the dynamic balanced quadtrees.

3.1.1 Clipped Voronoi Cells

Regardless of runtime considerations, the fundamental question in mesh refinement is about where

to insert the Steiner vertices [63]. Traditional solutions place Steiner vertices as far from any

other vertex as possible, namely, at the circumcenters of Delaunay simplices (equivalently, at the

nodes of the Voronoi diagram). In two dimensions, Har-Peled and Üngör instead place Steiner

vertices close to a vertex, but not too close: at the off-centers [42]. This local scheme allows them

to build a data structure that can locate the off-centers in constant time. More recent work by

Jampani and Üngör extends this idea to three dimensions using core disks [47]. In this chapter,
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Figure 3.2: M = {a, b, v, u, w, y, z}. NNM(v) = |vu|. The thick boundary depicts the β-
clipped Voronoi cell of v, Vor

β
M(v), for β = 4. The thin boundary depicts the certificate region

of Vor
β
M(v). Vertices a and b are not β-clipped Voronoi neighbors of v since there is no empty

certificate ball for a and the empty certificate balls for b have radii exceeding β NNM(v).

we generalize their results, by describing a local picking region that gives us a variety of Steiner

vertex choices including the aforementioned ones. The definition of our picking region extends to

arbitrary dimensions in a straightforward way.

In order to form the basis for our picking region, we begin by identifying a local neighborhood

of a vertex: the β-clipped Voronoi cell of v, written Vor
β
M(v), is the intersection of VorM(v) with

the ball of radius β NNM(v) centered at v. For any β > ρ, we define the (ρ, β) picking region of v,

written Vor
(ρ,β)
M (v), as Vor

β
M(v)\Vor

ρ
M(v), the region of the Voronoi cell bounded by concentric

balls of radius ρNNM(v) and β NNM(v). Note that v is ρ-well-spaced if and only if the (ρ, β)

picking region is empty, i.e., Vor
ρ
M(v) = Vor

β
M(v) = VorM(v). Figure 3.1 illustrates these

definitions.

In order to correctly compute the β-clipped Voronoi cell Vor
β
M(v) of a vertex v, an algorithm

must certify that v is the closest vertex to any point inside Vor
β
M(v) and that any point on the

boundary of Vor
β
M(v) is either equidistant to v and another vertex or at the clipping distance

β NNM(v) from v. Defining a vertex u to be a β-clipped Voronoi neighbor of v if the β-clipped

Voronoi cell of v contains a point equidistant from v and u, we reduce the problem of computing

the β-clipped Voronoi cell of v to computing the set of β-clipped Voronoi neighbors of v. Simply,
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given the set of β-clipped Voronoi neighbors of v, one can construct its β-clipped Voronoi cell

efficiently. In order to ensure that the computation of the set of β-clipped Voronoi neighbors is

correct, an algorithm needs to certify that for any x ∈ Vor
β
M(v) the ball centered at x with radius

|vx| is empty of vertices. We call these balls certificate balls and define the certificate region of

Vor
β
M(v) as their union. Figure 3.2 illustrates these definitions.

3.1.2 Dynamic Balanced Quadtrees

To permit the efficient calculation of such things as nearest neighbors and clipped Voronoi cells,

we use a point location data structure based on the balanced quadtrees of Bern, Eppstein, and

Gilbert [20]. We extend their balanced quadtrees to arbitrary (d) dimensions and dynamize them

by describing an update algorithm for inserting/deleting an input vertex in O(log ∆) time. We use

the term quadtree to mean 2d-tree and the term quadtree node to mean d-hypercube. Our well-

spaced point set algorithms treat the quadtree data structure almost as a black box; they use only

the leaves of the quadtree, which we refer to as (quadtree) squares. Our quadtrees are minimal

among those that satisfy the crowding and the grading properties defined as follows:

• Crowding: every quadtree square (leaf node) contains at most one vertex, and if it does, none

of its neighbors contains a vertex.

• Grading: all neighbors of any internal node must exist in the quadtree.

Here, we define the neighbors of a quadtree node to be the same size nodes in each of the 3d − 1

cardinal and diagonal directions. To support fast traversal and access, a quadtree node keeps point-

ers to its parent, children, and neighbors. Additionally, every square contains a pointer to an input

vertex it may contain, and a list of Steiner vertices. We define two squares to be adjacent if their

intersection contains at least one point. Given any two adjacent squares, the grading condition

ensures that either they are neighbors or one of them is a neighbor of the parent of the other.
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For computing the clipped Voronoi cells, our quadtree data structure supports the function

QTClippedVoronoi, details of which we explain in Section 3.2.4. Briefly, given a vertex v

and a parameter β > 1, this function returns the set of β-clipped Voronoi neighbors of v. Taking

advantage of the careful scheduling of the operations in the construction algorithm, we prove that

QTClippedVoronoi runs in O(1) time. For efficiently locating and inserting Steiner vertices,

our quadtree data structure supports the QTInsertSteiner function. Given a Steiner vertex w

that is inside the (ρ, β) picking region of a vertex v, this function finds the quadtree square that

contains w by a traversal starting from the square of v towards w. Since w is inside the β-clipped

Voronoi cell of v, this function runs in O(1) time.

For constructing the quadtree, we provide the function QTBuild. For inserting and/or delet-

ing an input vertex v̂ into/from a quadtree, we provide the functions QTInsertInput and

QTDeleteInput. Given the original quadtree Q and the vertex v̂, these two functions return

the updated quadtree Q′ and the set of obsolete squares of Q. For insertions, the obsolete squares

are those that become internal nodes in Q′; for deletions, they are the deleted leaf nodes of Q.

In the rest of this section, we explain the construction and the dynamic modification functions

and prove some results which will be useful in the analysis of the dynamic well-spaced point set

algorithms. QTBuild function iteratively inserts each input vertex into an empty quadtree using

QTInsertInput. Given an input vertex v̂ to be inserted, QTInsertInput first determines

the square that contains v̂ by performing a top-down traversal of the quadtree. If this square

already contains an input vertex, it then splits this square and descends into the child containing v̂,

repeating as necessary. Finally, it inserts v̂ into the resulting (currently empty) square, and in order

to restore the quadtree, it imposes the crowding and the grading conditions. For crowding, the

algorithm simply enumerates every square which could possibly be crowded by v̂, check if it is

crowded, and if so, split it. The following lemma follows immediately from the definition of the

crowding property; it implies that there are only a constant number of squares at each level, and

hence O(log ∆) overall, which need to be checked:
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Lemma 3.1.1 During a call to QTInsertInput to insert v̂, if a quadtree node is split due to

crowding, then either that node or one of its neighbors contains v̂.

The algorithm imposes the grading condition similarly: by enumerating all squares which could

possibly be split due to grading in response to the insertion of v̂, checking the grading condition,

and performing splits as necessary. The following lemma (very similar to Lemma 1 of [57]),

when combined with Lemma 3.1.1, implies that there are only O(log ∆) squares which need to be

checked:

Lemma 3.1.2 During a call to QTInsertInput, if a quadtree node is split due to grading, then

a descendent of one of its neighbors must have been split due to crowding.

Proof: For this result, suppose that we enforce the grading condition after each crowding split

(the resulting quadtree would be exactly the same). Assuming that s is a quadtree node at depth `

split due to crowding, let s′ be a quadtree node at depth λ < ` which must be split due to grading

in response to s being split. We claim that the Chebyshev distance (L∞-metric) from s to s′

(minimum among the pair of points in s and s′) is bounded by 2−λ− 2−(`−1). Then, assuming s′′

to be the ancestor of s at depth λ, the distance from s′′ to s′ is also bounded by 2−λ − 2−(`−1).

Therefore s′ and s′′ must be neighbors and this completes our proof.

We prove our claim by induction on λ < `. For the base case, λ = `− 1, the only nodes which

may be split are the nodes that are adjacent to s, and they are at 0 distance. Assuming our claim

for some λ < `, let σ be a quadtree node at depth λ − 1 which must be split. By the definition of

the grading property, it follows that a node σ′ at depth λ and adjacent to σ must have been split

and become an internal node. By the inductive hypothesis, σ′ is within 2−λ − 2−(`−1) distance

of s. Since, the maximum distance between any pair of points in σ′ is bounded by 2−λ, using the

triangle inequality, we show that σ is within 2−(λ−1) − 2−(`−1) distance of s. This concludes our

claim.

We have shown that the entire QTInsertInput function may be implemented in O(log ∆)

time. Next, we prove a result that characterizes the squares which became internal nodes during
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the call to QTInsertInput:

Lemma 3.1.3 For any square s ∈ Q that is returned by QTInsertInput(Q, v̂), we have |sv̂| ∈

O(|s|).

Proof: Lemmas 3.1.1 and 3.1.2 prove that every split square s is at most a neighbor’s neighbor

of the quadtree node containing v̂ at the same depth as s. Hence, the distance between v̂ and s

satisfies |sv̂| ≤ 2
√
d|s|.

The QTDeleteInput function essentially performs the same steps as the QTInsertInput

function, in reverse. First, descending through the quadtree, it locates the quadtree square contain-

ing v̂ and deletes it from the square. Next, motivated by Lemmas 3.1.1 and 3.1.2, it checks all

ancestors of this square, their neighbors and neighbors’ neighbors, all in a bottom-up fashion,

merging them if they are no longer crowded, and do not need to be split due to grading. An

analogue of Lemma 3.1.3 holds for QTDeleteInput, and the proof follows similarly.

Lemma 3.1.4 For any square s ∈ Q that is returned by QTDeleteInput(Q, v̂), we have |sv̂| ∈

O(|s|).

Finally, we prove a lemma demonstrating that the quadtree data structure we describe in this

section can be used to approximate the local feature size of the points up to a constant factor.

By definition of lfs, this implies an approximation on the nearest-neighbor distances of the input

vertices.

Lemma 3.1.5 Given an input N, let Q be the minimum quadtree that represents N satisfying the

crowding and the grading conditions, and let s ∈ Q be a square and p be a point in s. We have

lfs(p) ∈ Θ(|s|); also, if p ∈ N, then lfs(p) > |s|.

Proof: If p ∈ N or there exists an input vertex in s, then by the crowding condition, the

neighbors of s do not contain a vertex. This implies that there are no other input vertices in a
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ball of radius |s| around p, i.e., lfs(p) > |s|. Otherwise, let v ∈ s′ 6= s be the vertex near-

est p. If s′ is not adjacent to s, since all the adjacent squares have size at least |s|/2 by the

grading condition, we have lfs(p) ≥ NNN(p) > |s|/2. If s′ is adjacent to s, then by the Lip-

schitz condition lfs(p) + |pv| ≥ lfs(v), and lfs(v) > |s′| from the analysis above. Therefore, if

|pv| > |s′|/2 then lfs(p) ≥ NNN(p) = |pv| > |s|/4; otherwise, the same lower bound still holds,

lfs(p) ≥ lfs(v)− |pv| > |s′|/2 ≥ |s|/4.

For the upper bound, we use the minimality of the quadtree, that σ, the parent of s, must have

been split because of one of the two conditions. If σ is split because of crowding then there exist

two vertices within 2
√
d|σ| distance of p. If σ is split due to grading, this split must have been

caused by a crowding split due to vertices v, u 6= p. Lemmas 3.1.1 and 3.1.2 prove that σ is at most

a neighbor’s neighbor of the quadtree node containing v, also u. This implies that there exist two

vertices within 3
√
d|σ| distance of p. In either case, lfs(p) < O(|s|).

3.2 Construction Algorithm

For any given β > ρ > 1, consider filling a vertex, which we define as inserting Steiner vertices

in the (ρ, β) picking region of that vertex until it becomes ρ-well-spaced. Given an input set of

vertices, we can construct a ρ-well-spaced superset of it by repeatedly filling vertices until the

resulting superset becomes ρ-well-spaced. Although correct, this basic algorithm is not efficient

because vertices may need to be filled multiple times. More specifically, a Steiner vertex inserted

while filling a vertex may become the nearest neighbor of an already filled vertex making it lose its

ρ-well-spacedness and requiring it to be filled more than once. This algorithm is not stable either;

that is, it can generate very different outputs when run on similar inputs, because the presence or

absence of a single vertex can affect the choice of many subsequent Steiner vertices. To address

these problems and achieve efficiency and stability, we refine the basic algorithm by specifying an

order in which vertices are filled.
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3.2.1 Ranks

In order to ensure efficiency and avoid filling vertices multiple times, we fill vertices in increasing

order according to their nearest-neighbor distances. Before we explain the details of this schedule,

we discuss the intuition behind it by pointing out several facts about our Steiner vertex selection

scheme. Given a vertex setM, consider filling a vertex v ∈M that is not ρ-well-spaced. Let w be

a Steiner vertex inserted while filling v. The first fact is that w is in the (ρ, β) picking region of v.

Fact 1 The Steiner vertex w is in Vor
(ρ,β)
M (v). That is, ∀u ∈ M, |wv| ≤ |wu| and ρNNM(v) ≤

|wv| < β NNM(v).

Since v is the nearest neighbor of w, i.e., |wv| = NNM(w), this fact implies that NNM(w) ≥

ρNNM(v). Now, let us suppose that the vertices whose nearest neighbors are at distance less

than α are all ρ-well-spaced. Since v is not ρ-well-spaced inM, we have NNM(v) ≥ α. Then,

we infer the following fact.

Fact 2 For any given α > 0 if every vertex u ∈ M with NNM(u) < α is ρ-well-spaced then

NNM(w) ≥ ρα.

This fact implies that the Steiner vertices that will be inserted intoM are all at least ρα away from

any vertex inM. Therefore, inserting a Steiner vertex does not change the nearest neighbors and

hence the well-spacedness of the vertices whose nearest neighbors are at distance less than ρα.

Motivated by this property, we define the rank of a vertex v ∈ M as the logarithm in base ρ of

its nearest neighbor distance, i.e.,
⌊
logρ NNM(v)

⌋
and fill the vertices in a single pass using the

rank order. With this partial ordering, for example, the vertices with nearest neighbor distances in

[ρr, ρr+1) would be at rank r. Note that for any ρ > 1, this partial order has only a logarithmic

number of ranks,O(log ∆) in particular. As we prove in Lemma 3.3.9, filling vertices in rank order

guarantees that filling each vertex takes O(1) time, yielding an efficient construction algorithm.

However, these refinements are not enough to ensure stability.
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3.2.2 Colors

}

}

`(r)

κ`(r)

Figure 3.3: Illustration of a color-

ing scheme in 2D. The coloring

parameter κ is 2 and there are 4

colors in total.

In order to achieve stability, we take advantage of the locality of

our Steiner vertex selection scheme and geometrically partition

the vertices at each rank into a constant number of color classes

and fill them in color order so that vertices of the same color

class can be filled independently. More specifically, we say

that two vertices at the same rank are independent if at least

one of them is not ρ-well-spaced and the certificate region of

the β-clipped Voronoi cell of any of them does not intersect the

(ρ, β) picking region of the other. Intuitively, two vertices are

independent if the Steiner vertices inserted while filling one of

them do not alter the picking region of the other. We identify

independent vertices by using a coloring scheme that partitions the space based on a coloring

parameter κ, and a real valued function `(r) defined on ranks. At each rank r, we partition the

space into d-dimensional hypercubes or r-tiles with side length `(r). We color r-tiles such that they

are colored periodically in each dimension with period κ, using κd colors in total. A vertex v has

color c ∈ {0, 1, . . . , κd − 1} if it lies in a c colored r-tile. Figure 3.3 illustrates a coloring scheme.

By choosing `(r) small enough and κ large enough, we prove that two vertices at the same rank

are independent if they have the same color (Lemma 3.3.12). Therefore, at a given rank, filling

vertices in color order restricts the dependencies between vertices: filling a vertex may affect only

the unprocessed vertices of different colors. During a dynamic update, this makes it possible to

re-fill a vertex without affecting other independent vertices at the same rank and color.

3.2.3 Algorithm

The efficiency and stability of our algorithm critically relies on filling vertices in rank and color

order. In order to fill a vertex v that is currently at rank r, the algorithm schedules a fill operation
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acting on v at rank r. However, since the rank of a vertex depends on its nearest neighbor and

since that can change as Steiner vertices are inserted, we need to update the ranks of the vertices

dynamically. In order to ensure that the ranks of the vertices are up-to-date, in our algorithm, we

use another type of operation called dispatch. For each vertex v, our algorithm creates a single dis-

patch operation acting on v. This operation computes the rank of v, updates the ranks of β-clipped

Voronoi neighbors of v, and schedules new fill operations as necessary. In order to ensure timely

execution of dispatch operations, the algorithm assigns ranks to dispatch operations as well and

executes both types of operations in rank order with dispatches having precedence over fills at the

same rank. For an input vertex v, the algorithm assigns the logarithm in base ρ of the side length of

the quadtree square that contains v as the rank of the dispatch operation acting on v. As we prove

in Lemma 3.1.5 this rank is O(1) ranks below the actual rank of v. For a Steiner vertex w, at the

time of its insertion, since we know that the nearest neighbor of w is the vertex being filled, the fill

operation that inserts w easily computes the current rank of w and schedules a dispatch operation

acting on w at its current rank.

Using dispatch operations, the algorithm guarantees that for each vertex there exists a fill oper-

ation acting on it at its most up-to-date rank (Lemma 3.3.1). When executed, a fill operation makes

the vertex it acts on ρ-well-spaced; subsequent fill operations terminate immediately without in-

serting Steiner vertices. Instead of creating a single fill operation per vertex and updating its rank

as the ranks of the vertices change, we prefer the approach of recording and executing multiple fill

operations acting on a single vertex because it simplifies the analysis by making the dependencies

between the operations explicit.

Figure 3.4 shows the pseudo-code of our algorithm StableWS. The algorithm starts by con-

structing a quadtree Q and stores it for use in dynamic updates. It then constructs a ρ-well-spaced

output by performing dispatch and fill operations that it enqueues in Ω. When enqueueing a dis-

patch or a fill operation acting on a vertex w, the algorithm computes the rank rw of w by using

its current nearest neighbor distance. (For dispatch operations acting on input vertices, it uses an
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Dimension: d, Parameters: ρ, β, κ, `(r)

StableWS (N) =
Q ← QTBuild(N)

for each v ∈ N

apxnnv ← |square of v|
Enqueue

(
v,D, apxnnv, v(0),Ω

)
for r = min rank in Ω to

⌊
logρ
√
d
⌋

for each v(r,D) ∈ Ω

Dispatch(v(r,D),Ω)

for c = 0 to κd − 1

for each v(r,F,c) ∈ Ω

Fill(v(r,F,c),Ω)

return Q

Dispatch
(
v(t),Ω

)
=

CV ← QTClippedVoronoi
(
v(t), β

)
nnv ← min {|vu| : u ∈ CV }
Enqueue

(
v,F, nnv, v(t),Ω

)
for each w ∈ CV
Enqueue

(
w,F, |wv|, v(t),Ω

)

Fill
(
v(t),Ω

)
=

CV ← QTClippedVoronoi
(
v(t), β

)
while v is not ρ-well-spaced

Pick w ∈ Vor(ρ,β)(v)

QTInsertSteiner
(
v(t), w

)
CGInsertEdge

(
v(t) −→ square of w

)
Enqueue

(
w,D, |wv|, v(t),Ω

)
CV ← CV ∪ {w}

Enqueue
(
w, flag, nnw, v(t),Ω

)
=

rw ←
⌊
logρ nnw

⌋
, cw ← Color(w, rw, κ)

if flag = D then tw ← (rw,D)

else tw ← (rw,F, cw)

if tw > t then
if @ edge · −→ w(tw) then

Ω← Ω ∪
{
w(tw)

}
CGInsertEdge

(
v(t) −→ w(tw)

)
Color (v, r, κ) =
for i = 1 to d do ci ← bvi/`(r)c mod κ

return c = c1c2 . . . cd in base κ

Figure 3.4: The pseudo-code of the stable construction algorithm.

approximation.) Then, computing the color cw of w at this rank, it determines the time of this

operation, which is comprised of the rank rw, a flag indicating a dispatch (D) or a fill (F), and the

color cw only if the operation is a fill operation. In the pseudo-code, we represent this operation

with the vertex w itself and its time tw in the subscript (w(tw)). The algorithm executes the opera-

tions in Ω in time order, first by rank then by operation type and then by color order (for fills): it

performs the dispatch operations before the fill operations, ordering fill operations at the same rank

by color. For brevity, we define time t = 0 to be the beginning of time, when the input vertices are

enqueued for dispatch operations but before any of them are performed, and define time t =∞ to

be the end of the algorithm. We write Mt to refer to the output at time t, e.g., M0 is the input, N,

and M∞ is the output, M. For readability, we use t instead of Mt in the subscript, e.g., NNt instead

of NNMt
.

To support efficient dynamic updates, the construction algorithm builds a computation graph

of all executed operations and various dependencies between them. The computation graph G =

(V,E) consists of nodes, V = Σ ∪ Ω, comprised of the set of quadtree squares (Σ) and the
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Figure 3.5: Illustration of the distance function δv. In
this example, CVt = {u,w} and the thick curve is
the set of points with distance δvCVt(x) = t, e.g., y
is at distance t. Since y is guaranteed to be a Voronoi
neighbor, the algorithm inserts y into CVt. There is no
empty ball that touches both v and z, so δvCVt(z) =∞.

t v u

w

y

z

set of operations (Ω), and directed edges representing various dependencies between operations

and squares. Consider executing an operation represented by v(t). If the QTClippedVoronoi

function executed by v(t) reads a square s, it records this dependency by the edge s −→ v(t) (Sec-

tion 3.2.4). If v(t) calls Enqueue to schedule an operation op acting on w into Ω, the Enqueue

function first computes the rank and color of w and determines the time tw of op = w(tw). If

tw > t, Enqueue records this dependency by the edge v(t) −→ w(tw). In order to avoid du-

plicate operations in Ω, it schedules w(tw) into Ω only if there is no edge from another operation

towards w(tw). Finally, to account for the dependencies that arise by inserting Steiner vertices,

for each Steiner vertex w that v(t) inserts, the algorithm inserts the edge v(t) −→ s, where s is

the square that contains w. For the analysis, we tag each edge with the time of the operation that

creates it, in the examples above, this time is t.

3.2.4 Computing Clipped Voronoi Cells

We represent the β-clipped Voronoi cell of a vertex v using the set of β-clipped Voronoi neighbors

of v. To determine this set, CV , we perform a scan starting at v and proceeding along a circular

frontier that moves away from v up to a maximum distance tmax = β NNM(v); at time t the

frontier is the boundary of the ball of radius t. When the scan reaches a vertex u, we determine

whether u is a Voronoi neighbor of v or not. If it is, we add u to CV , otherwise, we discard it. This

way, throughout the scan, we maintain the set CV , which consists of the β-clipped Voronoi neigh-
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bors of v within the current scan distance. For efficiency, we need to ensure that the scan does not

exceed the certificate region. Therefore, we use a distance function that differs from the Euclidean

one. For any point x, we define the distance δvM(x) as the diameter of the smallest certificate ball

that includes v and x on its boundary. If no such ball exists then we define δvM(x) =∞. By using

this distance function, we eliminate the need to check whether a vertex that the scan reaches is a

Voronoi neighbor or not, because the empty ball that defines its distance to v is a certificate ball

for x. Figure 3.5 illustrates an example.

It is not clear how to compute the distance δvM(x) exactly without a prohibitive overhead.

However, we can relax the requirement that the balls be empty of vertices in M. Instead, using

CVt, which we define as the set of β-clipped Voronoi neighbors of v up to time t, we compute

δvCVt(x), the diameter of the smallest ball with v and x on its boundary that includes no vertex of

CVt in its interior. As we advance time, this distance function does not decrease because adding

new vertices into CV can only make it harder for a ball to be empty. Therefore, δvCVt(x) ≤ δvM(x)

for all t. We also prove that at time t, when the scan reaches a vertex x, the distance to x is

accurately computed, that δvCVt(x) = δvM(x) = t (Lemma 3.2.1). A corollary of this result is that

CVtmax = CV and that the scan visits the certificate region of Vor
β
M(v) because all points in the

certificate region have distance less than tmax.

Lemma 3.2.1 During the computation of Vor
β
M(v), when the scan reaches time t, for any vertex u

satisfying δvCVt(u) ≤ t, we have δvCVt(u) = δvM(u).

Proof: Pick any vertex u satisfying δvCVt(u) ≤ t, i.e., there exists a ball of diameter δvCVt(u)

touching both v and u and containing no vertex of CVt in its interior. By the monotonicity of the

distance function, we know that δvCVt(u) ≤ δvM(u). We want to show that δvCVt(u) < δvM(u) is not

possible by proving that there is no vertex ofM\CVt inside this ball. Towards a contradiction, as-

sume that there exists one, say w. Then, there exists a smaller ball for w, i.e., δvCVt(w) < δvCVt(u).

Again, by monotonicity, we have δvCVt′
(w) ≤ δvCVt(w) for all t′ < t. Therefore, w must have been
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QTClippedVoronoi
(
v(t), β

)
=

tmax ←∞, E ← {square of v}, CV ← ∅
while ∃p ∈ E w/ δvCV (p) < tmax

p← arg minp∈E δ
v
CV (p)

if p is a vertex then
if CV = ∅ then tmax ← β|vp|
CV ← CV ∪ {p}

else (p is a square)
CGInsertEdge

(
p −→ v(t)

)
E ← E ∪ {vertices of p}
E ← E ∪ {squares adjacent to p}

return CV

For computing the distance δvCV (p)

minimize |cv|
subject to |cv| = |cp|

|cv| ≤ |cu| ∀u ∈ CV
distance δvCV (p) = 2|cv|

Figure 3.6: Pseudo-code for computing clipped
Voronoi cells.

discovered at some time t′ < t and inserted into CVt′ ⊂ CVt. This contradicts our assumption that

w is a vertex inM\ CVt.

Figure 3.6 shows the pseudo-code for the scan we describe above. The algorithm discretizes the

scan using quadtree squares. Starting at the square of v, it explores outward from v using a queue

E of events — reaching vertices and squares. Upon reaching a vertex, it updates CV , and upon

reaching a square, it enqueues the vertices that the square contains and the unvisited squares it is

adjacent to. To compute δvCVt(p), the algorithm finds a point c that is the center of a certificate ball

of minimum radius using a convex program. For a quadtree square, the distance is the minimum

distance to any point p in the square. This corresponds to letting p to be free variables in the above

program and adding a box constraint (2d linear constraints) on the coordinates of p. This leaves us

with a quadratic program rather than a convex one, but it remains a program with O(1) variables

and constraints.

3.3 Analysis

3.3.1 Output Quality and Size

This section includes the proofs of the quality of the output of our algorithm, i.e., M is ρ-well-

spaced and size-optimal. Lemma 3.3.3 proves size-optimality by showing that M is size-conforming.

For ρ-well-spacedness, the first two lemmas prove that our algorithm fills vertices in an order such
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that after filling a vertex the key invariant is satisfied—the vertex becomes and remains ρ-well-

spaced. Therefore, our algorithm incrementally progresses towards a ρ-well-spaced output. In

these two lemmas, letM be the set of vertices in the output at the beginning of rank r.

Lemma 3.3.1 At the beginning of rank r, assume that every vertex u ∈ M with NNM(u) < ρr

is ρ-well-spaced. Then, for every vertex w ∈ M with NNM(w) ∈ [ρr, ρr+1), there exists a fill

operation that acts on w at rank r.

Proof: Consider a vertex w ∈ M, let u be its nearest neighbor in M, and assume that ρr ≤

|wu| < ρr+1. Let w(rw,D) and u(ru,D) be the dispatch operations that act on w and u respectively.

If rw ≤ r and u is in the output at the beginning of rank rw then w(rw,D) schedules a fill operation

that acts on w at rank r. Alternatively, u(ru,D) schedules such a fill operation if ru ≤ r and w is

a β-clipped Voronoi neighbor of u at the beginning of rank ru. We prove that one of the two

conditions holds.

Analyzing the vertices w and u, whether they are both input vertices or one of them is a Steiner

vertex inserted when the other one was in the output, in two of the three cases, we prove that the

first condition holds. In the first case, if both w and u are input vertices then by Lemma 3.1.5,

rw ≤ r. In the second case, in which w is a Steiner vertex and u is in the output when w is being

inserted, consider the vertex v that creates w. By Fact 1, we know that |wv| ≤ |wu|, which implies

that rw ≤ r.

We prove that the second condition holds in the remaining case, in which u is a Steiner vertex

and w is already in the output when u is being inserted. Similar to the previous case, we deduce

that ru ≤ r. Since u is the nearest neighbor of w in M, w is a Voronoi neighbor of u in M′,

whereM′ ⊂M is the output at the beginning of rank ru. If u is ρ-well-spaced inM then |wu| ≤

2ρNNM(u) < 2β NNM′(u). Otherwise, the assumption of the lemma implies ρr ≤ NNM(u).

Since |wu| < ρr+1, we get |wu| < ρNNM(u) < 2β NNM′(u). Either way, w is a β-clipped

Voronoi neighbor of u inM′.
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Lemma 3.3.2 (Progress) At the beginning of rank r, every vertex u ∈ M with NNM(u) < ρr is

ρ-well-spaced.

Proof: We use induction. At the minimum rank, there are no vertices with smaller nearest-

neighbor distance, so the claim is trivially true. Assume that the lemma holds up to rank r, that

is, every vertex u ∈ M with NNM(u) < ρr is ρ-well-spaced. For rank r + 1, letM′ ⊃ M be

the set of vertices in the output at the beginning of rank r + 1 and consider a vertex w ∈ M′ with

NNM′(w) < ρr+1. We claim that w ∈ M; towards a contradiction, assume that w ∈ M′ \M.

Then, w is a Steiner vertex inserted at rank r. Repeatedly applying Fact 2 for each (Steiner) vertex

in M′ \ M, we see that the nearest neighbors of these Steiner vertices are at distance ≥ ρr+1;

in particular, NNM′(w) ≥ ρr+1. This is a contradiction to our criteria NNM′(w) < ρr+1, thus,

w ∈ M. Furthermore, NNM(w) < ρr+1 for similar reasons. If NNM(w) < ρr then by our

induction hypothesis w is ρ-well-spaced. Otherwise, if ρr ≤ NNM(w) < ρr+1, by Lemma 3.3.1,

there exists a fill operation that acts on w at rank r. After executing that operation, w becomes

ρ-well-spaced. Finally, Fact 2 implies that w remains ρ-well-spaced.

Lemma 3.3.3 The output M is size-conforming and size-optimal with respect to N.

Proof: We use induction over the order in which the algorithm inserts Steiner vertices and show

that there exists a constant c such that for every v ∈ M, cNNM(v) ≥ lfs(v), thereby proving that

M is size-conforming. In the base case, every vertex is an input vertex and the nearest neighbor of

an input vertex is exactly the local feature size. For the inductive case, assume that there exists a

constant c such that, for every v ∈ M, we have cNNM(v) ≥ lfs(v). Furthermore, assume that

v inserts a Steiner vertex w and the new output is M′ = M ∪ {w}. We analyze the inductive

claim for w and for any vertex u ∈ M separately. For w, by Fact 1 we know that |wv| ≥

ρNNM(v) and NNM′(w) = |wv|. By the triangle inequality, lfs satisfies the Lipschitz condition:

lfs(v) + |wv| ≥ lfs(w). By the inductive hypothesis, cNNM(v) ≥ lfs(v). Therefore, we have

( cρ + 1)|wv| = ( cρ + 1) NNM′(w) ≥ lfs(w).
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For any vertex u ∈ M, if NNM(u) = NNM′(u) then the claim holds trivially. Otherwise,

assume that NNM(u) > NNM′(u) = |wu|. By the Lipschitz condition, we have |wu|+ lfs(w) ≥

lfs(u) and by Fact 1 we know |wu| ≥ |wv|. Combining these by the bound we obtained for lfs(w),

we get ( cρ + 2)|wu| = ( cρ + 2) NNM′(u) ≥ lfs(u). Solving for c ≥ c
ρ + 2, we conclude that

any c ≥ 2ρ
ρ−1 suffices to prove the inductive step. Therefore, M is size-conforming and hence

size-optimal [60].

Theorem 3.3.4 StableWS constructs a size-optimal ρ-well-spaced superset M of its input N.

Proof: The property that M is ρ-well-spaced follows from the Progress Lemma and the fact that

StableWS iterates over all ranks. Lemma 3.3.3 proves the size bound.

3.3.2 Runtime

We analyze the running time of our static algorithm and rely on two lemmas that are useful in the

analysis of our dynamic algorithm. The first lemma (Lemma 3.3.5) proves that throughout the al-

gorithm, the nearest-neighbor distance of a vertex v changes only by a constant factor. The second

lemma (Lemma 3.3.6) proves that all operations acting on v have rank blogρ NN∞(v)c ±O(1);

none are scheduled too early nor too late.

Lemma 3.3.5 Let t be the time at which v is created (t = 0 for input vertices). Then, NNt(v) ∈

Θ(NN∞(v)).

Proof: As time progresses, more vertices are added, so the nearest neighbor distance can only

shrink: NNt(v) ≥ NN∞(v). For the upper bound, we analyze input vertices and Steiner vertices

separately. By definition, an input vertex v has lfs(v) = NN0(v). The algorithm is size-conforming

(Lemma 3.3.3), so NN0(v) = lfs(v) ∈ O(NN∞(v)). For a Steiner vertex w that is created at time

t = (r,F, c), Fact 1 implies that ρr+1 ≤ NNt(w) ≤ βρr+1. For any other Steiner vertex u that is

created later, the same fact implies that ρr+1 ≤ |uw| which means ρr+1 ≤ NN∞(w). Therefore,

NNt(w) ≤ βρr+1 ≤ β NN∞(w).
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Lemma 3.3.6 If an operation at rank r acts on v then NN∞(v) ∈ Θ(ρr).

Proof: Consider an operation v(tv) at rank r. Lemma 3.3.5 implies that it suffices to prove

NNt(v) ∈ Θ(ρr), where t is the time v(tv) is created. If v(tv) is a dispatch operation and v is an

input vertex then t = 0 and our algorithm uses the size of the square that contains v to approximate

NN0(v) and Lemma 3.1.5 implies that NN0(v) ∈ Θ(ρr). If v(tv) is a dispatch operation and v is a

Steiner vertex then we know that v is created at time t by a fill operation acting on a vertex u and

that r = blogρ |vu|c. Since v is picked from the Voronoi cell of u, |vu| = NNt(v), thus NNt(v) ∈

Θ(ρr). If v(tv) is a fill operation created by the dispatch operation acting on v, then we know that

the rank is computed exactly, i.e., r = blogρ NNt(v)c. The last case is that v(tv) is a fill operation

created by a dispatch operation op acting on another vertex u at rank r′. We know that op assigns

the rank of v to be r =
⌊
logρ |vu|

⌋
. Since NNt(v) ≤ |vu|, we get NNt(v) < ρr+1, thus, the upper

bound holds. For the lower bound, since |vu| ≥ ρr, it suffices to show that NNt(v) ∈ Ω(|vu|).

If NNt(v) ≥ ρr
′
, we show that ρr

′ ∈ Ω(|vu|) by applying the result from above for op, that

NNt(u) ∈ Θ(ρr
′
), and by using the fact that v is a β-clipped Voronoi neighbor of u at time t, that

2β NNt(u) ≥ |vu|. Otherwise, if NNt(v) < ρr
′

then by the Progress Lemma, v is ρ-well-spaced

at time t. Since v and u are Voronoi neighbors at time t, this implies that u is a ρ-clipped Voronoi

neighbor of v. Therefore, 2ρNNt(v) ≥ |vu| and we prove in all cases that NN∞ ∈ Θ(ρr).

Lemma 3.3.7 At the beginning of rank r, any point p inside an empty ball of radius ρr satisfies

lfs(p) ∈ Ω(ρr).

Proof: Let c be the center of an empty ball of radius ρr, i.e., NNt(c) ≥ ρr, where t = (r,D).

Given this ball, let p be a point inside it. For some constant ε whose value we will set later, if

NNt(p) ≥ ερr then our proof is done. Otherwise, if NNt(p) < ερr, let q be the point at distance

ρr/2 away from c on the ray from c to p, and let u ∈ Mt be the vertex nearest q. Then, we

claim that NNt(u) > ρr/2ρ and for some small enough ε that u is the vertex nearest p as well.

Using the Lipschitz condition, we get lfs(p) + |pu| ≥ lfs(u) ≥ NNt(u). Then, our claims imply

lfs(p) > ρr/2ρ− |pu| > (1/2ρ− ε)ρr and consequently prove our lemma statement.
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Figure 3.7: Illustration of the proof of Lemma 3.3.7.
There is an empty ball centered at c of radius ρr and p is a
point inside this ball. The nearest neighbor of p is within
ερr distance (the small ball). The point q, ρr/2 away
from c on the ray from c to p, has its nearest neighbor
within (1/2 + ε)ρr distance (the midsize ball), inside the
shaded region. The point x in the shaded region is one of
the farthest away from b. The lemma is proven by show-
ing that the shaded region can be made small enough.
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Our first claim is trivially true if NNt(u) ≥ ρr; otherwise, u must be ρ-well-spaced by

Lemma 3.3.2, which implies that q, being a point inside the Voronoi cell of u, is within ρNNt(u)

distance of u. In other words, NNt(u) > |qu|/ρ. Since u is outside the empty ball, |qu| ≥ ρr/2,

therefore, we prove our first claim.

For proving the second claim, we first observe that u, the nearest neighbor of q, lies inside

the ball of radius (1/2 + ε)ρr centered at q because there is a vertex inside the ball of radius ερr

centered at p. Since the ball of radius ρr centered at c is empty, the crescent defined by this empty

ball and the ball centered at q contains u. We will show that this region, shaded in Figure 3.7,

is contained in a ball of diameter ρr/2ρ. Then, using the fact that the nearest neighbor of u is at

least ρr/2ρ far away from u, we prove that u is the only vertex in this region and therefore the

vertex nearest p. In order to bound the diameter, for appropriate ε, we show that any point of the

shaded region is within ρr/4ρ distance of the point b, that is located ρr away from c on the ray

from c to p: observe that any point x on the intersection of the ball centered at c of radius ρr and

the ball centered at q of radius (1/2 + ε)ρr is the farthest away from b. Since xq is the median

of the side cb of the triangle cbx, using Apollonius’ theorem, one can get |xb|2 = 2ε(ε + 1)ρ2r.

Solving for |xb| ≤ ρr/4ρ, we see that any ε ≤
√

1/4 + 1/32ρ2 − 1/2 suffices to prove our claim

and therefore our lemma.

Theorem 3.3.8 Computing the β-clipped Voronoi cell of a vertex takes O(1) time.
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Proof: When the QTClippedVoronoi function visits a quadtree square, that square either

intersects the certificate region, or it is a neighbor of a square that intersects the certificate region.

Let r be the rank at which the function is called and s be a square that intersects the certificate

region. By Lemma 3.3.7, for any point p ∈ s, that is inside the certificate region, lfs(p) ∈ Ω(ρr).

Furthermore, by Lemma 3.1.5, lfs(p) ∈ Θ(|s|), which implies that s covers a volume of Ω(ρr). By

Lemmas 3.3.5 and 3.3.6, the certificate region of the β-clipped Voronoi cell of v is within a ball

of radius O(ρr). This implies that there are only O(1) squares that intersect the certificate region.

Thanks to the grading condition, the squares have bounded number of squares adjacent to them,

therefore QTClippedVoronoi visits only O(1) squares. The function also does work iterating

over the vertices each square contains. By Lemma 3.3.3, a vertex u has a nearest neighbor no

closer than Ω(lfs(u)); meanwhile, again by Lemma 3.1.5, the quadtree square that contains u has

side lengthO(lfs(u)). Hence, each square contains only a constant number of vertices and the total

work is O(1).

Lemma 3.3.9 Dispatch and fill operations run in O(1) time.

Proof: The main costs of an operation v(t) are the β-clipped Voronoi cell computations and the

loops. Theorem 3.3.8 shows that Steiner vertex insertions and the clipped Voronoi cell compu-

tations take constant time. This implies that there are a constant number of β-clipped Voronoi

neighbors of v. If v(t) is a dispatch operation, it iterates over each of them, this takes constant

time. If v(t) is a fill operation, it has a loop that inserts Steiner vertices until v is ρ-well-spaced.

For each inserted Steiner vertex w, Fact 1 implies NNt(w) ≥ ρNNt(v). Thus, we can associate

non-overlapping empty balls of radius ρNNt(v)/2 around every Steiner vertex. Since the Steiner

vertices are in a ball of radius β NNt(v) around v, a packing argument shows that v(t) inserts a

constant number of Steiner vertices. This concludes that the operation represented by v(t) runs in

constant time.

Lemma 3.3.10 For every vertex v ∈ M, there are O(1) operations that act on v.
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Proof: By Lemma 3.3.6, any operation acting on v has rank
⌊
logρ NN∞(v)

⌋
±O(1). Therefore, if

we can bound the number of operations acting on v at each rank by a constant, our claim will hold.

There is only one dispatch operation for each vertex, so we only need to count the fill operations

scheduled by other dispatch operations. Fix r and consider a dispatch operation acting on u at time

t′ = (r′,D) scheduling a fill operation acting on v at rank r. Then, v is β-clipped Voronoi neighbor

of u, in other words, |uv| ≤ 2β NNt′(u). The fact that the fill operation is scheduled for rank r

implies ρr ≤ |uv| < ρr+1. Considering the dispatch operation, Lemmas 3.3.5 and 3.3.6 show that

NNt′(u) = O(ρr
′
). These facts imply ρr = O(ρr

′
). Again by Lemma 3.3.6, we know that there

exists an empty ball around u with radius Ω(ρr
′
) which is Ω(ρr) by the previous assertion. We

already know that |uv| < ρr+1, therefore, a packing argument proves our claim.

Theorem 3.3.11 StableWS runs in O(n log ∆) time.

Proof: As shown in Section 3.1.2, building the quadtree takesO(n log ∆) time. By Lemmas 3.3.9

and 3.3.10, the rest of the algorithm takes O(m) time, where m = |M|. The total runtime is

O(n log ∆ +m). That m ∈ O(n log ∆) follows from our dynamic bounds.

3.3.3 Dynamic Stability

We call two inputs N and N′ related if they differ by one vertex, i.e., N′ can be obtained from N

by inserting or deleting a vertex. To analyze the stability of the algorithm StableWS, we define

a notion of distance between two executions with related inputs. We prove that this distance is

bounded by O(log ∆) in the worst-case, where ∆ is the larger geometric spread of the inputs N

and N′ (Lemma 3.3.16).

As described in Section 3.2, StableWS(N) constructs a computation graph G = (V,E)

by building quadtree squares Σ and a set of operations Ω. The set of nodes V is Σ ∪ Ω; the

edges E represent the dependencies in the computation. For another input set N′ which is related

to N, consider running StableWS(N′) and creating G′ = (V ′, E′), Σ′, and Ω′ similarly. We
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define a recursive matching between the nodes of the two executions: two operations v(t) ∈ Ω

and v′
(t′) ∈ Ω′ match, if v = v′, t = t′, and either the times t = t′ = 0 or there exist match-

ing operations w(τ) ∈ Ω and w′
(τ ′) ∈ Ω′ such that the computation graphs G and G′ include

the edges w(τ) −→ v(t) and w′
(τ ′) −→ v′

(t′) respectively; and, two squares s ∈ Σ and s′ ∈ Σ′

match if s and s′ have the same corner points. We denote this matching by µ : V ′ → V , where

µ = {(v′
(t′), v(t)) | v′(t′) and v(t) match}. We denote the domain and the range of µ by dom(µ)

and range(µ). Using this matching, we define µ′ = µ ∪ {(u, u) | u ∈ V ′ \ dom(µ)} to be a total

function defined on the nodes V ′ of G′. We combine the computation graphs in a union graph

G∪ = (V ∪ µ′(V ′), E ∪ µ′(E′)), where µ′(E′) = {(µ′(u), µ′(v)) | (u, v) ∈ E′}. Intuitively, the

union graph injectsG′ intoG under the guidance of µ by extendingGwith the unmatched nodes of

G′, unifying the matched nodes, and adding the edges of G′ while redirecting them to the matched

nodes appropriately. In order to capture the dependencies between two operations, we define a path

in the union graph to be a dependency path if the times of the edges on the path do not decrease.

Lemma 3.3.12 allows us to refine this definition: a path (x0, x1, . . . , xk) is a dependency path if

the times of the edges x0 −→ x1, x1 −→ x2, · · · , xh−1 −→ xh increase monotonically.

Lemma 3.3.12 Consider coloring parameters `(r) and κ that satisfy the inequalities `(r) < ρr/
√
d

and κ > 1 + 3βρr+1/`(r). Then, any two fill operations at the same rank are independent if the

vertices they act on have the same color.

Proof: Consider two operations v(t) and u(t), where t = (r,F, c). Let M be the set of ver-

tices in the output at the beginning of rank r. If both v and u are ρ-well-spaced in M then v(t)

and u(t) are independent. Otherwise, if v is not ρ-well-spaced the Progress Lemma implies that

NNM(v) ≥ ρr. Since `(r) < ρr/
√
d, the diameter of an r-tile is less than ρr, and thus v and u can-

not be in the same r-tile. Since v and u have the same color, v and u are far apart, more precisely,

|vu| ≥ (κ− 1)`(r) > 3βρr+1. The fact that our construction algorithm creates these operations

implies NNM(v),NNM(u) < ρr+1. Then, the (ρ, β) picking regions and the certificate regions

of the β-clipped Voronoi cells of v and u are inside balls of radii βρr+1 and 2βρr+1 around these
57



vertices respectively. Using the triangle inequality, we know that that the (ρ, β) picking region

of one of them does not intersect the certificate region of the β-clipped Voronoi cell of the other;

therefore, v(t) and u(t) are independent.

We partition the nodes of the union graph G∪ = (V ∪, E∪) into several categories. The nodes

V − = V \ range(µ) are called obsolete (squares Σ−, operations Ω−); these are the nodes of G

that have no matching pairs in G′. The nodes V + = V ′ \ dom(µ) are called fresh (squares Σ+,

operations Ω+); these are the nodes of G′ that have no matching pairs in G. Furthermore, we

call a square s ∈ V ∪ inconsistent if it is fresh or obsolete, or if it contains the vertex v̂ of the

symmetric difference of N and N′. We define an operation v(t) ∈ range(µ) to be inconsistent if it

is reachable from an inconsistent square via a dependency path. We represent inconsistent nodes

with V × (squares Σ×, operations Ω×). We define the distance between the executions with related

inputs N and N′ to be the number of obsolete, fresh, or inconsistent operations of the union graph,

i.e., |Ω− ∪ Ω+ ∪ Ω×|.

Lemma 3.3.13 For every operation in Ω− ∪ Ω+ ∪ Ω×, there exists a dependency path from a

square in Σ×.

Proof: By definition, an inconsistent operation can be reachable via a dependency path from Σ×.

For unmatched operations, assume towards a contradiction that there exist an operation in Ω−∪Ω+

that is not reachable from Σ×. Let v(t) be the earliest of such operations. Let us assume that v(t)

represents a dispatch operation, and that v is an input vertex. Since v(t) does not depend on an

inconsistent square, it does not read one. Therefore, v is in N ∩ N′ and lies in identical squares

in both executions, which implies that its nearest neighbor approximation is the same in both

executions. Hence, there exists an operation v(t) in the other execution as well. The definition

of µ matches these operations because in both computation graphs contain the edge v(0) −→ v(t).

For the remaining cases, there exists an edge w(τ) −→ v(t) for some unmatched or inconsistent

operation w(τ) with τ < t. By the minimality of v(t), w(τ) can be reached via a dependency path

from a square in Σ×. Extending that path to v(t) proves the contradiction.
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As proven in the previous section, the function QTClippedVoronoi satisfies the following

locality property: for a given input N, a size-conforming set of verticesM ⊃ N, and a square s

read by QTClippedVoronoi, for all x ∈ s, |vx| ∈ O(NNM(v)). This property allows us to

relate the operations on a dependency path geometrically.

Lemma 3.3.14 Consider two operations w(τ) and v(t) in G∪. If there exists a dependency path

from w(τ) to v(t) and rank of t is r, then |vw| ∈ O(ρr).

Proof: First, we show that for any edge in G∪, the distance between its nodes is short. We define

the distance between a square and an operation to be the distance from the vertex of the operation to

the farthest point in the square, and the distance between two operations to be the distance between

their vertices. Consider an edge e ∈ E with time te whose rank is re. The edge e consists of an

operation u(te) ∈ Ω and either a square s that u(te) accesses (reads/writes) or another operation

u′
(t′) that it schedules. Using the locality result stated above, we bound the distance between u(te)

and s by O(NNte(u)). Also, u′
(t′) is within the same distance. Lemmas 3.3.5 and 3.3.6 bound

NNte(u) by O(ρre); thus, the distance between the nodes of e is at most αρre , where α is a

constant in the big-Oh notation. The same analysis applies for any edge e′ ∈ E∪.

By definition of dependency paths, the times of the edges on a dependency path from w(τ) to

v(t) monotonically increase. Assuming that the rank of τ is r′, there can be at most κd edges for

each rank between r′ and r. Therefore, in the worst case, the distance between v and w is bounded

by
∑r
i=r′ κ

dαρi = ακd ρ
r+1−ρr′
ρ−1 < ακd ρ

r+1

ρ−1 . Consequently, |vw| ∈ O(ρr).

In order to bound the distance between the executions with inputs N and N′ which generate

outputs M and M′, we focus on the vertices rather than the operations. We define a vertex to be

affected if there exists an obsolete, a fresh, or an inconsistent operation of it. Since there is a

constant number of operations acting on a given vertex (Lemma 3.3.10), the number of affected

vertices measures the distance asymptotically. We define the sets of affected vertices in both exe-

cutions: M̂ = {v | v(t) ∈ Ω−∪Ω×} and M̂′ = {v | v(t) ∈ Ω+∪Ω×}. The next two lemmas bound

the number of affected vertices.
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Lemma 3.3.15 For any vertex v ∈ M̂, |vv̂| ∈ O(NNM(v)) and for any v ∈ M̂′, |vv̂| ∈ O(NNM′(v)).

Proof: We prove the lemma for v ∈ M̂; symmetric arguments apply for M̂′. By definition of M̂,

there exists an operation v(tv) ∈ Ω− ∪ Ω× at rank r. Lemma 3.3.13 suggests that there exists a

dependency path from a square s ∈ Σ× to v(tv). Let s −→ u(tu) be the first edge on this path,

where the rank of tu is ru. By Lemma 3.3.14, we know that |vu| ∈ O(ρr). By the fact that the

operation that u(tu) represents reads s, we know |us| is in O(ρru) and by lemmas 3.1.3 and 3.1.4

the quadtree functions QTInsertInput and QTDeleteInput guarantee that |sv̂| ∈ O(|s|)

which is in O(ρru) as well. Using the triangle inequality and the fact that ru ≤ r, we bound |vv̂|

by O(ρr). It only remains to prove that there is a ball around v of radius Ω(ρr) empty of vertices

of M. Lemma 3.3.6 proves precisely this.

Lemma 3.3.16 (Distance) The distance between two executions with related inputs is bounded by

O(log ∆).

Proof: The distance is asymptotically bounded by the sizes of the affected sets of vertices |M̂|

and |M̂′|. Consider the vertices v ∈ M̂ with |vv̂| ∈ [2i, 2i+1). By Lemma 3.3.15, we can assign

non-overlapping empty balls of radius Ω(2i) to them. Therefore, there is a constant number of such

vertices for any i. At most O(log ∆) values of i cover M̂, so |M̂| ∈ O(log ∆). Similar arguments

apply to M̂′.

3.4 Dynamic Update

We describe an algorithm for dynamically updating the output of StableWS when the input is

modified by insertion/deletion of a vertex, prove it correct (Lemma 3.4.2) and efficient (Theo-

rem 3.4.3). Furthermore, we prove a lower bound for the update runtime by showing that there

exists examples for which inserting/deleting an input vertex causes Ω(log ∆) Steiner vertices to be

inserted/deleted (Theorem 3.4.5).
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Global queues: Ω	,Ω⊕,Ω⊗

PropagateWS (Σ−, v̂) =
for each s ∈ Σ− ∪ {square of v̂}

MarkReaders (s, 0)

for each input vertex v 6= v̂ ∈ s
Undo

(
v(0)
)

apxnnv ← |square of v|
Enqueue

(
v,D, apxnnv, v(0),Ω

⊕)
rmin ← min rank in Ω	 ∪ Ω⊕ ∪ Ω⊗

for r = rmin to
⌊
logρ
√
d
⌋

for each v(r,D) ∈ Ω	 ∪ Ω⊗

Undo
(
v(r,D)

)
for each v(r,D) ∈ Ω⊕ ∪ Ω⊗

Dispatch
(
v(r,D),Ω

⊕)
for c = 0 to κd − 1

for each v(r,F,c) ∈ Ω	 ∪ Ω⊗

Undo
(
v(r,F,c)

)
for each v(r,F,c) ∈ Ω⊕ ∪ Ω⊗

Fill
(
v(r,F,c),Ω

⊕)
for each Steiner w inserted by v

MarkReaders(square of w, (r,F, c))

MarkReaders (s, t) =
for each edge s −→ v(tv)
if tv > t then Ω⊗ ← Ω⊗ ∪ {v(tv)}

Insert (Q, v̂) =
(Q′,Σ−)← QTInsertInput (Q, v̂)

appnnv̂ ← |square of v̂|
Enqueue

(
v̂,D, apxnnv̂, v̂(0),Ω

⊕)
PropagateWS (Σ−, v̂)

return Q′

Delete (Q, v̂) =
(Q′,Σ−)← QTDeleteInput(Q, v̂)

Undo
(
v̂(0)
)

PropagateWS (Σ−, v̂)

return Q′

Undo (v(t)) =
for each edge s −→ v(t)

CGDeleteEdge
(
s −→ v(t)

)
for each edge v(t) −→ w(tw)

CGDeleteEdge
(
v(t) −→ w(tw)

)
if @ edge · −→ w(tw) then

Ω	 ← Ω	 ∪
{
w(tw)

}
if t = (r,F, c) then
sw ← square of w

MarkReaders(sw, t)

CGDeleteEdge
(
v(t) −→ sw

)
if v(t) ∈ Ω	 then

Ω⊗ ← Ω⊗ \ {v(t)}

Figure 3.8: The pseudo-code of the dynamic algorithm.

3.4.1 Update Algorithm

Our dynamic update algorithm is a change-propagation algorithm. Given the input modification,

the update algorithm re-executes the actions of the stable algorithm for the part of the computation

affected by the modification and undoes the part of the computation that becomes obsolete. More

precisely, the algorithm maintains distinct set of operations for removal Ω	 (obsolete operations),

for execution Ω⊕ (fresh operations), and for re-execution Ω⊗ (inconsistent operations), which

contain operations representing the operations that become obsolete, that need to be executed, and

that become inconsistent respectively. The inconsistent operations are updated by deleting their

old versions and executing them again, which may now perform actions different than before.

The algorithm removes and executes operations in the same order as the stable algorithm. It uses
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Figure 3.9: Dynamic update after insertion
of v̂. Solid vertices are input (N), vertices
marked + are inserted, vertices marked − are
deleted. Gray squares are inconsistent. The
four smaller gray squares are fresh; they re-
place the bigger obsolete square.

v*

the Undo function to remove obsolete operations and the Dispatch and Fill functions of the

stable algorithm for executing fresh operations.

Figure 3.8 shows the pseudo-code for the Insert and Delete functions for inserting and

deleting a vertex v̂ into and from the input, and the PropagateWS function for dynamic updates.

Given v̂, Insert/Delete updates the quadtree, determines the set of inconsistent squares Σ⊗,

and initializes the fresh/obsolete set by creating a dispatch operation or by marking the old dispatch

operation acting on v̂. Both functions then call PropagateWS.

The PropagateWS function starts by updating the operation sets by finding the input vertices

that are contained in the inconsistent squares, deleting their dispatch operations, and creating new

dispatch operations for them. It also initializes the inconsistent operation set, as MarkReaders

marks inconsistent all operations that read an inconsistent square. The algorithm then proceeds

in time order, first undoing the obsolete and inconsistent operations and then performing the fresh

and inconsistent operations by calling Dispatch and Fill (Figure 3.4). The Undo function

undoes the work of obsolete and fresh operations by removing the Steiner vertices they insert (if

any) and by removing the edges incident to them (dependencies) from the computation graph.

While removing these edges, it also marks for removal the operations that lose their last incoming

edge from other operations—these operations would not be created in a fresh execution with the

modified input. The Undo function also calls the MarkReaders function to expand the set of

inconsistent operations as the set of vertices in a square changes due to the removal of Steiner
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vertices. After Undo finishes its work and as the algorithm executes fresh fill operations, it calls

the MarkReaders function for a similar reason: to update the set of inconsistent operations due

to the insertion of fresh Steiner vertices.

As their notation suggests, the obsolete, fresh, and inconsistent operations used by the algo-

rithm are related to those defined in the stability analysis; the following lemma makes the relation-

ship between them precise.

Lemma 3.4.1 The set of operations processed in the dynamic update algorithm, Ω	 ∪ Ω⊕ ∪ Ω⊗,

is a subset of the set of obsolete, fresh, and inconsistent operations, Ω− ∪ Ω+ ∪ Ω×.

Proof: Let A = Ω	 ∪Ω⊕ ∪Ω⊗ and B = Ω− ∪ Ω+ ∪ Ω×. Towards a contradiction, assume that

A 6⊂ B and let v(t) be the earliest operation in A \ B. If v(t) ∈ Ω	 then either v(t) is a dispatch

operation acting on an input vertex or there is an edge from another operation w(τ) ∈ Ω	 ∪ Ω⊗

towards v(t). In the first case, v(t) depends on a square in Σ×, which implies v(t) ∈ B. In

the second case, by minimality of t, since τ < t, w(τ) ∈ B. Lemma 3.3.13 implies that w(τ)

is reachable from a square in Σ× by a dependency path, therefore, v(t) is also reachable using

dependency paths. Then v(t) must be in B, either because it is inconsistent or because there it has

no matching operation. Similar arguments show that v(t) ∈ Ω⊕ implies v(t) ∈ B. Therefore v(t)

must be in Ω⊗, i.e., v(t) reads a square s for which the algorithm calls the function MarkReaders

(s, t′) with a time t′ < t. If s ∈ Σ⊗ then clearly v(t) ∈ B; otherwise, there is another operation

v′
(t′) that writes into s. Again, by minimality of v(t), v

′
(t′) ∈ B and by Lemma 3.3.13 there exists a

dependency path from v′
(t′) to v(t) which puts v(t) in B. Contradiction.

When completed, PropagateWS updates the output to M̃ and the computation graph to G̃ as

if StableWS is run from-scratch with N′ as input, computing M′ and G′.

Lemma 3.4.2 (Isomorphism) The output sets M̃ and M′ are equal and there exists an isomor-

phism φ : G̃→ G′ that preserves the vertex and time of each operation.

Proof: We prove equality of the output and build φ by induction on time. Define the following

sets of operations: Ω	t = {v(τ) ∈ Ω	 | v(τ) is created at time < t} based on their creation times.
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(Ω	0 is the set of dispatch operations acting on input vertices). Also, define a similar assemblage

for the ⊕, ⊗, and ′ sets. Let G̃t be the subgraph of G̃ induced by the nodes Ω̃t ∪ Σ̃ excluding the

edges with time ≥ t; the excluded edges are related to the execution of operations at time ≥ t.

Define G′t similarly and let M̃t be the updated set of vertices obtained by removing and inserting

vertices until time t, just before the executing operations at time t.

Initially, M̃0 = M′0 = N′ and Σ̃ = Σ′. Therefore, there exists an isomorphism φ0 : G̃0 → G′0.

Assume the inductive hypothesis at time t, that M̃t = M′t and that we have an isomorphism

φt : G̃t → G′t. Pick op ∈ Ω̃t with time t and let op′ = φt(op). We aim to prove that op and

op′ execute in the same way. Because our functions are all deterministic, it suffices to show that op

and op′ read the same data. There are three cases: op is either in Ω⊕t , or in Ω⊗t , or otherwise op is

an operation that has not been modified.

Assume that op is in Ω⊕t . We know Σ̃ = Σ′, therefore, op and op′ traverse the same quadtree

structure in their execution. For a vertex v that op reads, v cannot be in M	t because the vertices

in M	t are removed at time < t. Thus, op reads only the vertices in M̃t = M′t, in other words

op reads the same data as op′ does. The case that op ∈ Ω⊗t is similar, because the re-execution

of the inconsistent operations follow the same rules. In the remaining case, op is not modified.

Consider a square s that op accesses. Because the update algorithm did not schedule op for re-

execution, we know that s is not in Σ−. Furthermore, for the same reason, s does not contain

a vertex in M	t ∪ M⊕t . Therefore, op only reads vertices in M′t ∩ Mt; op reads the same data as

op′ does. Hence, in all cases, op and op′ execute similarly.

We have a natural correspondence between the operations that op and op′ create and the Steiner

vertices they insert (in any). Therefore, M̃t+1 = M′t+1. Furthermore, because op and op′ read and

write the same squares the edges incident to these operations have natural correspondences as well.

Extending φt to φt+1 by adding these correspondences completes proof of the inductive step.

Theorem 3.4.3 The Insert and Delete functions modify the output in O(log ∆) time and

maintain a ρ-well-spaced output of optimal-size with respect to the updated input.
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Proof: By Lemma 3.4.2, we know that the output is the same as what would have been generated

by executing from scratch StableWS with the new input, therefore, Theorem 3.3.4 applies. As

discussed in Section 3.1.2, the quadtree can be updated in O(log ∆) time. Also, Lemma 3.4.1

relates the runtime of the update algorithm to the distance between the executions with the old and

new inputs. Finally, Lemma 3.3.16 bounds the runtime of PropagateWS as desired.

3.4.2 Lower Bound

Figure 3.10: Insert-

ing x creates Ω(log ∆)

fresh Steiner vertices.

We present a lower bound proving that any algorithm which explicitly

maintains a well-spaced superset requires Ω(log ∆) time per dynamic up-

date. Consider dynamically inserting a new point very close to an existing

input vertex. Even the optimal dynamic algorithm is forced to insert geo-

metrically growing rings of new Steiner vertices around the dynamically

inserted vertex. We prove that we can iterate this process using a gadget.

This shows that our algorithm is worst-case optimal compared to all other

explicit algorithms, even in an amortized setting.

We define a gadget (see Figure 3.10) consisting of points in the hyper-

cube [0, k−1/d]d. Consider two vertices at distance 1/∆ from each other

in the middle of the box; let one of them be the dynamic vertex x which will be inserted later. Also,

consider a grid of O(1) vertices on each of the faces of the hypercube, chosen according to the

scheme of Hudson [43, p.79]. The input N consists of tiling [0, 1]d with the gadgets, k1/d for each

dimension, without any dynamic vertex. The dynamic modification sequence consists of inserting

k dynamic vertices, one for each gadget.

Lemma 3.4.4 Inserting the dynamic vertex to a single gadget requires inserting Ω(log ∆) Steiner

vertices.

Proof: Let N be the input before adding the dynamic vertex x. Any size-optimal output M of N

has O(1) Steiner vertices inside the gadget box. Consider inserting x and let N′ = N ∪ {x} and
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δ = NNN′(x). Draw the segment from x to the farthest point in VorN′(x). This segment has length

at least ` = 1
4−

δ
2 . Consider the Voronoi diagram of a ρ-well-spaced superset M′ of N′ and consider

the Voronoi cells that this segment cuts. Let v1, v2, . . . be the vertices of those Voronoi cells, in

order. We know that the vertices in M′ are ρ-well-spaced, therefore, |v1x| ≤ 2ρNNN′(x) = 2ρδ.

Also, the nearest neighbour distance of v1 is at most |v1x|. We can use the same argument to get

|v1v2| ≤ 2ρ|v1x| and repeat. In other words, distance from x grows only geometrically as we walk

down the segment: covering the distance ` requires Ω(log 1/δ) = Ω(log ∆) many Steiner vertices.

This implies that M differs from M′ in at least O(log ∆) vertices.

Theorem 3.4.5 (Lower Bound) There exists an initial input and a set of n dynamic insertions that

forces any algorithm to insert Ω(n log ∆) new Steiner vertices.

Proof: In the above scheme, let k = n. Then, we would like to prove that inserting n dynamic

vertices requires inserting Ω(n log ∆) Steiner vertices. We refer to a technique of inserting vertices

to the hypercube faces [43]. It was developed precisely to make sure that certain algorithms need

not add vertices outside the hypercube when making the interior ρ-well-spaced. Contrapositively,

adding vertices outside a gadget does not help make the gadget, with its dynamic vertex, be ρ-

well-spaced. Thus the prior lemma applies to each gadget individually, showing that the final

ρ-well-spaced superset must contain at least Ω(n log ∆) Steiner vertices, for a carefully selected ρ.

Since there exists a constant ρ > 1 such that the original input of n gadgets is ρ-well-spaced, the

initial output must be of size O(n). This completes our proof.
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CHAPTER 4

KINETIC MESH REFINEMENT IN 2D

In this chapter, our main focus is the case in which points have kinetics: each point has an associ-

ated velocity function, and we maintain a quality mesh at all times. We develop our solution in the

kinetic data structures framework, KDS in short [19, 34]. Previous work proposes KDSs for the

related problem of kinetic triangulations, without inserting Steiner points. Regardless of insertion

of Steiner points, maintaining a Delaunay triangulation has proven to be a difficult task: the most

efficient kinetic Delaunay triangulation schemes [32, 37] are a linear factor less efficient than opti-

mal. Recent research therefore considers maintaining triangulations that are not Delaunay. Indeed,

in two dimensions, some results achieve efficiency [16, 48]. Furthermore, Agarwal et al. [14] show

how to maintain the stable Delaunay graph, namely the subset of the Delaunay triangulation that

has large minimum angles. In this work, by inserting Steiner points, we efficiently maintain the

Delaunay triangulation, i.e., the full Delaunay graph, of the output point set, and ensure that all

triangles have large minimum angles.

To see the challenges in providing an effective kinetic data structure for meshing, it helps to

consider the techniques that work well for the static version of the problem. One approach, based

on balanced quadtrees, generates an appropriately refined quadtree over the input points and adds

the corners of the quadtree squares as Steiner points [20]. Because the quadtree is fixed, this

approach can generate a large number of events. For example, if the input contains two close

points that move along parallel linear trajectories preserving the distance, say ε, between them,

then the quadtree may need to be restructured every time the points leave their quadtree cell, which

is only Θ(ε) distance. In other words, a quadtree approach cannot be efficient. Another approach

computes Voronoi diagrams and inserts the corners of the Voronoi cells (equivalently, the Delaunay

circumcenters) as Steiner points [44]. The main difficulty in kinetizing the algorithms that follow

this approach is that the position function of a Steiner point depends on three points, some of which

may themselves be Steiner points. The description length of the position function can thereby build
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up to be polynomial in n. Since computing just one event time could take polynomial time, such a

structure cannot be responsive.

In this chapter, we provide an effective kinetic data structure for computing meshes of a dy-

namically changing set of points that move along algebraic trajectories of constant degree. Our

KDS yields triangulations of size-optimal well-spaced point sets (Section 4.4). We analyze the

responsiveness, efficiency, locality, and compactness of our data structure as functions of the input

size and the geometric spread (the ratio of diameter to closest pair). Since the spread changes as

time evolves, we define ∆ to be the ratio of the maximum diameter of the input at any time, to the

minimum distance between closest pair of input points at any time. If the spread is polynomially

bounded by the input size, our data structure yields bounds all in the problem size with logarithmic

factors. Our KDS guarantees the following properties:

Responsiveness. A certificate failure requires O(log ∆) update time (Theorem 4.3.7).

Locality. A point participates in O(log ∆) certificates (Lemma 4.4.1).

Compactness. The total number of certificates is O(m), where m is the output size and m ∈

O(n log ∆) (Lemma 4.4.1).

Efficiency. The number of events is O(n2 log3 ∆) which is within a O(log2 ∆) factor of the

optimal (Lemma 4.4.4).

Dynamic updates. A point insertion or deletion requiresO(log ∆) update time (Theorem 4.3.7).

At a high level, our solution is in essence a balanced quadtree method, replacing the quadtree

with a variant of the deformable spanners of Gao, Guibas, and Nguyen [33]. Regarding Steiner

points, our solution hinges on a technique for determining their position and their motion plans

(Section 4.1). Our KDS consists of a construction algorithm (Section 4.2) that computes a quality

mesh of the input, and an update algorithm (Section 4.3) that enables kinetic motion simulation

and dynamic changes. Given a set of input points, the construction algorithm first builds a well-

spaced superset of the input, organizing the computation in O(log ∆) levels. It then computes the
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u w

Figure 4.1: The satellites of an input point v in relation to the input points u and w. The first two
orbits of v and some rays illustrates the definition of the location of v’s satellites: intersections of
odd rays with orbits at odd ranks and of even rays with orbits at even ranks form satellites shown
in smaller dots.

Delaunay triangulation of the well-spaced set by performing local operations only, yielding a trian-

gulation with no small angles. Upon a kinetic event or a dynamic modification to the input set, the

update algorithm repairs the well-spaced superset and its Delaunay triangulation, by propagating

the changes through the construction algorithm. Taking advantage of the organization in O(log ∆)

levels, our update algorithm repairs each level by performing amortized constant work per level.

4.1 Steiner Vertices and Spatial Data Structure

We present some definitions used throughout the chapter, describe the technique we use for select-

ing Steiner vertices, and present a brief overview of the deformable spanners.

4.1.1 Satellites

The key problem in mesh refinement is determining Steiner vertices, i.e., where should they be

inserted and how should they move. To solve this problem, we propose a local template-based

approach. This approach specifies for each input vertex v, a nucleus, an infinite number of satellites
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that may be inserted as Steiner vertices. A nucleus and its satellites form a well-spaced point set

and the satellites move together with their nucleus: the position functions of the satellites are the

same as their nucleus’ position function plus a fixed translation. To ensure a size-conforming

output, we set the spacing between the satellites proportional to the distance to their nucleus, i.e.,

for each satellite, the distance to the nearest other satellite is within a constant multiplicative factor

of the distance to their nucleus.

For the planar case, we use a particular template (illustrated in Figure 4.1) defined by a fixed set

of rays emanating from a nucleus and their intersections with concentric circles of geometrically

increasing radii. Consider 24 rays leaving each input vertex at angles θ, 2θ, . . . , 24θ, where θ =

π/12. Also, consider concentric circular orbits of radius 2` around every input vertex where ` ∈ Z

is the rank of these orbits. Defining odd (even) rays to be rays at angles that are odd (even) multiples

of θ, we choose certain translations to define the satellites: the intersections of odd rays with orbits

at odd ranks and the intersections of even rays with orbits at even ranks. In this template, a nucleus,

a rank, and a ray with the same parity as that of the rank defines a unique satellite. Intuitively, this

is a discrete polar coordinate system, where the nucleus defines the origin, the rank defines the

radius (exponentially), and the ray defines the polar angle. In the rest of the chapter, we use the

term `-satellite to refer to a satellite on an orbit at rank `.

4.1.2 Deformable Spanners

Our algorithm uses the kinetic deformable spanners of Gao, Guibas, and Nguyen as a point location

data structure [33]. In our algorithms, in order to generate a quality mesh, we insert certain satel-

lites into the deformable spanner data structure. Taking advantage of the location of the satellites,

we achieve accuracy and efficiency by extending the deformable spanners with exact nearest neigh-

bor queries and more efficient vertex insertion procedures. In this section, we briefly overview the

original deformable spanners data structure; we explain the extension in the next section. In the

most general form, given a parameter ε > 0, the deformable spanner (1 + ε)-approximates the
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Euclidean distance between the vertices. Throughout the chapter, we use the spanner with ε = 1,

guaranteeing 2-approximation. A spanner represents a hierarchical discretization of a vertex set

at geometrically increasing scales. Given a vertex set M and any s > 0, a discretization of M at

scale s is a subset M′ ⊆ M of vertices which satisfy the following two conditions:

• The minimum distance between any two vertices of M′ is at least s.

• The set of balls {B(v, s) | v ∈ M′} cover M.

Note that there can be multiple discretizations of a vertex set. A spanner is based on a hierarchy of

discretizations M = Mλ ⊇ Mλ+1 ⊇ · · · ⊇ MΛ that satisfy the following properties:

• λ is the minimum integer such that the condition 2λ−1 ≤ δ < 2λ is satisfied, where δ is the

closest pair distance in M.

• For each ` ∈ {λ+ 1, λ+ 2, . . . ,Λ}, M` is a discretization of M`−1 at scale 2`.

• MΛ is the only singleton in the hierarchy.

We call M` a discretization at rank `. Note that this definition coincides with the rank definition

that is used to describe the satellites—both definitions provide a logarithmic scale with base 2.

One could use different bases; for simplicity, we choose base 2 for both. We refer to the vertices

of M` as discrete centers at rank `, or shortly as `-centers. A spanner connects discrete centers at

the same and at the consecutive ranks with neighbor, parent, and child pointers. Specifically, two

`-centers are `-neighbors if the distance between them is at most c · 2`, where c = 4 + 16/ε = 20.

If v is both an `-center and an (` + 1)-center, v is its own parent/child. Otherwise, an (` + 1)-

center w whose distance to v is at most 2`+1 is designated to be the parent of v; and v to be a

child of w at rank `. For a vertex v, we define its maximum rank, written Λv, to be the highest rank

where v is a discrete center. We define its minimum rank, written λv, to be the lowest rank ` where

v is a discrete center with at least one `-neighbor. Now, we briefly explain the construction of the
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spanner using a somewhat different presentation than the one used by Gao et al. [33]. Also, we

describe their certificates and summarize their update algorithm.

Construction. We start by assigning an arbitrary input vertex v to be the root of the spanner S

and set the maximum rank Λ of S to maxw∈N dlg |vw|e, i.e., we set SΛ = {v}. Furthermore,

we temporarily set v to be the parent of every other input vertex. In a top-down pass, at each

rank `, we greedily determine the set of `-centers (S`) as follows: initializing S` = S`+1 and

performing a linear pass on the set of remaining vertices, N \ S`+1, we insert a vertex w into S` if

the ball B(w, 2`) does not contain an `-center. This can be done by checking the cousins (parent’s

neighbors’ children) of w. Otherwise, if w is 2`-close to an `-center v, we update the parent of w

to be v. We also insert neighbor edges between any two `-centers within c ·2` distance, again using

cousins. We stop at rank ` = λ, when S` = N.

Certificates. To certify the spanner, Gao et al. describe four kinds of certificates:

• Parent-child certificates for certifying that |vu| ≤ 2`+1 for an `-center v and its parent u at

rank `+ 1.

• Separation certificates for certifying that |vu| > 2` for `-neighbors v and u.

• Edge certificates for certifying that |vu| ≤ c · 2` for `-neighbors v and u.

• Potential-neighbor certificates for certifying that |vu| > c · 2` for two `-centers v and u,

whose parents are (`+ 1)-neighbors.

Maintenance. When some certificates fail, we update the discretizations in a top-down pass.

Assuming that the spanner at ranks above ` is updated, we fix the spanner at rank `. First, we check

if any of the parent-child certificates at rank ` has failed. If an `-center v is no longer a child of an

(`+ 1)-center w, we check to see if there is another (` + 1)-center, an (` + 1)-neighbor of w, that

is 2`+1-close to v. If there is, we assign that vertex as the new parent of v, if not we promote v

to rank ` + 1 and repeat the promotion procedure until we assign a new parent to v. In promoting

to a higher rank `′ > ` + 1, we use the rank `′ ancestor of v for locating v, e.g., parent of w for
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Construct a spanner S for N

∀v ∈ N, activation rank ρv ← λv
for ` = λ to Λ + 4

∀v ∈ N, v is active if
ρv = ` or ∃ a converted (`− 1)-satellite of v

for each `-satellite s of each active v ∈ N

if BallEmpty(S, s, 2`−2) then Convert(S, s, `)

for each Steiner vertex s ∈ S`
TryToPromote(S`+1, s)

for each rank `

for each s ∈ N with ρs = ` or `-satellite s ∈ M \ N
V ← ∪`′∈{`−6,...,`−3}`′-neighbors of s

IdentifyVoronoiNeighbors(s, V )

Figure 4.2: The pseudo-code for the construction

`′ = ` + 2. Next, if a separation certificate has failed, i.e., an `-center v becomes a child of an

(` + 1)-center, we remove v from ranks ` + 1 and above. This leaves the children of v at ranks

` + 1 and above without a parent. We promote these children as necessary, by applying the above

procedure. In repairing both types of certificate failures, we insert and remove neighbor edges in

order to maintain a valid spanner structure. In addition, we update the neighbor edges, if any of

the edge or potential-neighbor certificates has failed. During maintenance, besides updating the

spanner, we update the set of certificates as necessary in order to certify the updated spanner.

4.2 Construction Algorithm

Our construction algorithm builds a mesh in three stages (Figure 4.2). First, it constructs a spanner

for the input vertices by running the construction algorithm described in Section 4.1.2; second, it

constructs a well-spaced superset M of the input by inserting certain satellites into the spanner;

third, it constructs the Delaunay triangulation of M.

In the second stage, our algorithm iterates over ranks bottom-up and determines a set of active

input vertices and applies a conversion and a promotion process at each rank. In the conversion
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process, it selects certain satellites of active input vertices and inserts them into the spanner as

Steiner vertices. In the promotion process, it inserts certain Steiner vertices into the discretization

at the next rank in order to represent the current superset correctly at the next rank.

As part of determining the active status of input vertices, our algorithm starts the second stage

by assigning each input vertex an activation rank, which is defined as the minimum rank in the

initial spanner. At each rank `, our algorithm then determines the active input vertices—an input

vertex is active at rank ` if its activation rank is ` or it was active at rank `−1 and one of its (`−1)-

satellites was converted to a Steiner vertex. It continues by applying the conversion process on the

`-satellites of active input vertices. Specifically, iterating through each `-satellite s of each active

vertex, our algorithm converts s if and only if s has an empty certificate ball, which is defined

as the ball B(s, 2`−2). When converting an `-satellite s, our algorithm inserts s into the spanner

hierarchy beginning at Sλs and promotes s to the highest possible rank up to rank `. Once the

algorithm is done with the conversion process, it updates the discretization at the next rank (S`+1)

and prepares the spanner for the next iteration by promoting certain `-centers. In this promotion

process, by calling TryToPromote (details below) for each Steiner vertex s ∈ S`, the algorithm

determines whether there is an (`+ 1)-center 2`+1 close to s. If there is one, the algorithm assigns

it to be the parent of s. Otherwise, the algorithm inserts s into S`+1, i.e., promotes s to rank `+ 1,

and determines the (`+ 1)-neighbors of s.

In the third stage, the algorithm identifies the Voronoi neighbors of the vertices. For each

Steiner vertex s at rank ` and each input vertex with activation rank `, it first generates a candidate

set consisting of the spanner neighbors of s at ranks {` − 6, . . . , ` − 3}. It then computes the

Voronoi cell of s in this candidate set in O(1) time; this computation yields the true Voronoi cell

of s in the well-spaced superset M (Lemma 4.2.9). Then, the complete Voronoi diagram yields the

Delaunay triangulation of M.
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4.2.1 Analysis

In the rest of this section, we prove the correctness and the O(n log ∆) runtime bound of our

algorithm. For realizing the run-time bound, we focus on efficiently locating any `-satellite s in

the spanner using its nucleus v. We extend the spanner data structure with O(1) time functions,

BallEmpty, Convert, and TryToPromote, details of which we describe in the next two

paragraphs. Taking advantage of these O(1) time functions, we bound the total runtime converting

satellites to Steiner vertices by O(n log ∆) as there are O(n log ∆) many satellites to consider.

Then, we bound the runtime of the discretization step by O(n log ∆), by proving that there are

O(n) `-centers in the spanner at each rank ` (Lemma 4.2.11) and O(log ∆) ranks. In the third

stage, since the computation of the Voronoi cell of each vertex in M takes O(1) time, we achieve

the desired runtime bound.

In order to efficiently locate an `-satellite s of an active vertex v, we define the notion of `-sites.

An `-site of s is an input vertex w ∈ S` (at rank `) that satisfies the condition |sw| ≤ c · 2`−2.

By Lemma 4.2.1, the rank ` ancestor of v, say w, is an `-site of s. A naive approach locates w in

O(`− ρv) time by walking up the parent chain of v. If the activation rank of v is `, this is efficient,

however, it might be as costly as O(log ∆) if ` is significantly higher than the activation rank ρv.

In this case, the rank ` ancestor, say w′, of the last converted satellite u of v can be located in O(1)

time (Lemma 4.2.10) and by modifying the arguments of Lemma 4.2.1 slightly, one can prove that

w′ is c · 2`−2 close to s. Once locating an `-center (w or w′) that is c · 2`−2 close to s, all `-sites

of s can be located in O(1) time by checking its `-neighbors.

We describe theO(1) time implementations of BallEmpty, Convert, and TryToPromote

using `-sites. BallEmpty first finds all `-sites of s, then computes the `-neighbors of s in O(1)

time by checking the `-neighbors of the cousins of an `-site of s (Lemma 4.2.2). It then computes

the `′-neighbors of s for ranks `′ = ` − 1 down to `′ = ` − 6 by checking the `′-neighbors of the

children of the (`′ + 1)-neighbors of s. It determines whether the certificate ball of s is empty or

not by checking whether there is a neighbor of s within 2`−2 distance of s or not (Lemma 4.2.4).
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If there are no neighbors, the algorithm converts s by calling Convert; otherwise, it discards s.

Convert inserts s into the spanner at its minimum rank λs and promotes it up to rank `. At the

end of each rank, TryToPromote promotes certain Steiner vertices to the next rank. For a given

`-center s, it uses an (`+ 1)-site u of s, the parent of an `-site of s to be precise, to determine if an

(`+ 1)-center is close enough to be the parent of s. It checks all (`+ 1)-neighbors of u; if there is

an (` + 1)-center within 2`+1 distance of s, it assigns that vertex to be the parent of s. If no such

(`+1)-center exists, it includes s into S`+1 as an (`+1)-center. Also, it locates all (`+1)-neighbors

of s by checking (`+ 1)-neighbors of cousins of u.

Lemma 4.2.1 For any given `′ ≥ `, the rank `′ ancestor of the nucleus of an `-satellite s is an

`′-site of s.

Proof: Let v be the nucleus of s and w be the rank `′ ancestor of v. Since |sv| = 2` and

|vw| ≤ 2`
′+1, by the triangle inequality, we have |sw| < 2`

′+2 < c · 2`′−2.

Lemma 4.2.2 Given an `-satellite s, for some rank `′ ≥ `, let u be an `′-site and w be an

`′-neighbor of s. Then, w is either a cousin of u (u’s parent’s neighbors’ child) or an `′-neighbor

of one of the cousins of u.

Proof: Let v be the nucleus of s, u′ be the parent of u and therefore an (`′ + 1)-site of s. If w is

an input vertex, let w′ be its parent, otherwise, let w′ be one of its (`′ + 1)-sites. In both cases,

|ww′| ≤ c · 2`′−1. Our claim is proven if we can show that u′ and w′ are (`′ + 1)-neighbors. Since

w is an `′-neighbor of s, |sw| ≤ c · 2`′ , and since u′ is an (`′+ 1)-site of s, |su′| ≤ c · 2`′−1. Using

the triangle inequality, we have |u′w′| ≤ c · 2`′+1, that is, u′ and w′ are (`′ + 1)-neighbors.

The correctness proof of the construction algorithm relies on some technical lemmas. In our

main lemma, we prove that our algorithm progresses towards a well-spaced superset incrementally

(Lemma 4.2.3). In order to prove this lemma, we show that the bottom-up processing order over

the ranks ensure that querying only certain neighbors of a satellite is enough to determine whether

the certificate ball of that satellite is empty or not (Lemma 4.2.4). Furthermore, converting, again
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in a bottom-up order, only the satellites with empty certificate balls guarantees that their certificate

balls remain empty—we never convert a satellite that lies in the certificate ball of a converted

satellite (Lemma 4.2.6). After proving well-spacedness, we prove that the output is size-optimal

as well (Lemma 4.2.8).

Lemma 4.2.3 At the end of rank `, all input vertices with activation ranks ≤ ` and all satellites

converted at ranks < ` are 9
2 -well-spaced.

For the base case, at the beginning of rank λ, there are no active input vertices and no converted

satellites, therefore the claim is trivially true. For the inductive hypothesis, we assume that at the

end of rank `−1, all input vertices with activation ranks `−1 and below and all satellites converted

at ranks `− 2 and below are 9
2 -well-spaced. We break down the inductive proof into several steps

and conclude it later.

Lemma 4.2.4 The certificate ball of an `-satellite s is empty of input vertices and earlier converted

satellites iff it does not contain an `′-neighbor of s at ranks `′ ∈ {`− 6, . . . , `− 3}.

Proof: The only if part of the proof is trivial; if the certificate ball of s contains a neighbor, clearly,

it is not empty. For the if part, for any rank `′ ≥ ` − 2 and any `′-neighbor u of s, |su| > 2`−2

because u and s are both `′-centers. Therefore u cannot be inside the certificate ball of s. For the

case that s has an `′-neighbor u for some rank `′ ≤ `− 7, we have |su| ≤ c · 2`′ . Using the triangle

inequality, the rank `− 6 ancestor, say u′, of u satisfies |su′| ≤ c · 2`′ + |uu′| < c · 2`−7 + 2`−5 <

2`−2 < c · 2`−6. Therefore u′ being an (` − 6)-neighbor of s would be inside the certificate

ball of s. Now, given the premise of the lemma, assume towards a contradiction that a vertex not

neighboring s lies inside the certificate ball and let v be the nearest one.

Since the spanner has a 2-approximation guarantee, s has a neighbor within distance 2|sv| ≤

2`−1 < c · 2`−5, thus, s has an (`− 5)-neighbor. Since v is not a neighbor of s, v cannot be among

the children of (` − 5)-neighbors of s. More specifically, v is not an (` − 6)-center; if it were, its

parent would have been an (`−5)-neighbor of s. Therefore, since v is not an (`−6)-center, we have
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NN(v) < 2`−6. Hence, for some `′ < `, v is either an `′-satellite or an input vertex with activation

rank `′. By the inductive hypothesis, v is 9
2 -well-spaced. Since v is the exact nearest neighbor

of s, s lies in the Voronoi cell of v. Therefore, we have |sv| ≤ 9
2 NN(v) < 9

2 · 2
`−6 < 2`−3.

Let w be the rank ` − 5 ancestor of v, then |vw| < 2`−4, and using the triangle inequality, we

get |sw| < 2`−2 < c · 2`−5. Being that close, w must be an (` − 5)-neighbor of s. This is a

contradiction to our premise because w is in the certificate ball of s.

In order to better explain our construction algorithm, we relate the problem of determining

which satellites to be converted to the maximal independent subset problem. At a given rank `,

before converting any satellites, consider the set of `-satellites whose certificate balls are empty.

Let the proximity graph at rank ` be the undirected graph on this set with edges connecting two

`-satellites if and only if they are within distance 2`−2 from each other. Then we prove:

Lemma 4.2.5 At each rank `, the algorithm converts a maximal independent subset of the prox-

imity graph.

Proof: First, we prove independence. Pick any satellite s that is converted at rank `. By

Lemma 4.2.4, since we never convert a satellite before ensuring that its certificate ball is empty, s

cannot be 2`−2 close to any existing vertex prior to its conversion. Similarly, the algorithm cannot

convert an `-satellite that is 2`−2 close to s. Thus, in the proximity graph, none of the satellites

adjacent to s are converted. For maximality, consider an `-satellite s, none of whose neighbors

in the proximity graph is converted. This implies that s has an empty certificate ball, therefore s

would be converted when the algorithm tries to insert s.

Using the above lemma, we state a corollary that is useful in our analysis: the certificate ball

of each `-satellite s of each active input vertex contains a vertex, either the converted vertex s or a

vertex that prohibits the conversion of s.

Lemma 4.2.6 For any rank `′ ≤ `, there is an empty ball of radius 2`
′−2 around any converted

`′-satellite and around any input vertex with activation rank `′.

78



v

w

p

c

Figure 4.3: The points v and w
are `-satellites of an input ver-
tex p. Each of the hyperbolic
thick curves depicts the locus of
the points whose distance to an `-
satellite is 2`−2 less than its dis-
tance to p. The Voronoi cell of p
is a subset of the weighted Voronoi
cell of p defined by these hyper-
bolic curves.

Proof: First, consider a converted `′-satellite s. Using Lemma 4.2.4, we know that at rank `′, the

certificate ball of s (of radius 2`
′−2) is empty. Subsequent conversions require empty certificate

balls of radius at least 2`
′−2, thus, the certificate ball of s remains empty. Now, consider an input

vertex v with activation rank `′. We know that all other input vertices are at least 2`
′

far away.

Therefore, by the triangle inequality, for k < `′, all k-satellites of other input vertices are at least

2`
′−2k ≥ 2`

′−1 far away from v. Moreover, for k ≥ `′, all converted k-satellites have empty balls

of radius 2k−2 ≥ 2`
′−2, hence, our result follows.

We prove the inductive step of Lemma 4.2.3, that all input vertices with activation rank ` and

Steiner vertices converted at rank ` − 1 are 9
2 -well-spaced. Figure 4.3 displays an input vertex p

with activation rank `. By the corollary to Lemma 4.2.5, there is a vertex inside the certificate ball

of every `-satellite of p. We know that the vertex q inside the certificate ball of a given `-satellite,

say v, is within 2`−2 distance of v. Considering the locus of the points whose distance to v is

2`−2 less than its distance to p, the collection of these hyperbolas defines a weighted Voronoi cell

of p. Observe that none of the points that lies in the half that contains v can be in the Voronoi cell

of p. Consequently, the weighted Voronoi cell bounds the Voronoi cell of p. The extreme points

of this region are the intersections of two hyperbolas, which correspond to the circumcenters of

the circles that are tangent to p and to two certificate balls on the outside. One can show that
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Figure 4.4: Illustration of the
9
2 -well-spacedness of a converted
(`− 1)-satellite v of an input vertex
p. The weighted Voronoi cell de-
fined by the thick hyperbolic curves
bound the Voronoi cell of v.

these circumcenters (e.g., c in Figure 4.3) lie within 9 · 2`−3 distance of p. Then, the proof of

9
2 -well-spacedness follows from Lemma 4.2.6, that the nearest neighbor of p is at least at 2`−2

distance.

In order to prove the 9
2 -well-spacedness of the Steiner vertices, we illustrate an example in

Figure 4.4 displaying an input vertex p, its (` − 1)-satellites u, v, w, its `-satellites y and z, and

their certificate balls. Assuming that v is converted to a Steiner vertex, we prove that its Voronoi

cell lies within the big ball B(v, 9 · 2`−4) displayed in the figure. Intuitively the proof considers

the output vertices in each of the certificate balls of u, w, y, and z. We prove that p and these four

vertices bound the Voronoi cell of v as desired. Once again, we consider the weighted Voronoi cell

of v, which upper bounds the actual Voronoi cell of v, where each of the satellites u, w, y, and z

has weight equal to the radius of its certificate ball. Then, we prove that the corners of the weighted

Voronoi cell, or the circumcenters, e.g., a, b, c, lie within 9·2`−4 distance of v. Again Lemma 4.2.6

states that the nearest neighbor of v is at least at 2`−3 distance; this implies the 9
2 -well-spacedness

of v.

Lemma 4.2.7 All Steiner vertices converted at the final rank are 9
2 -well-spaced.

Proof: Given an (Λ + 4)-satellite s of an input vertex v, we know |sv| = 2Λ+4. Since diameter D

is less than 2Λ+2, only one of the satellites on the same ray as that of s can be inserted. We prove
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that for each of the 12 rays, the (Λ + 4)-satellite of exactly one of the active vertices is converted

to a Steiner vertex: any satellite s′ that is converted to a Steiner vertex at rank Λ + 3 is at distance

2Λ+3 away from its nucleus v′ and by the triangle inequality, |ss′| ≥ |sv| − (|s′v′| + |v′v|) ≥

2Λ+4 − (2Λ+3 +D) > 2Λ+2; the certificate ball of s is empty of output vertices. Then arguments

similar to those in Lemma 4.2.3 proves well-spacedness.

Lemma 4.2.8 M is size-conforming with respect to N.

Proof: For any v ∈ M, we show NNM(v) ∈ Ω(lfs(v)). First, we analyze the vertices by ranks

and upper bound their local feature sizes. If v is an input vertex with activation rank `, we have

lfs(v) = NNN(v) ∈ O(2`). If v is an `-satellite with nucleus u, by the Lipschitz condition, we have

lfs(v) ≤ lfs(u) + |uv|. Since the activation rank of u is at most `, we have lfs(u) ∈ O(2`), and

since |uv| = 2`, we deduce that lfs(v) ∈ O(2`). In both cases, by Lemma 4.2.6, we know that

NNM(v) ≥ 2`−2, therefore, our result follows.

After the algorithm constructs a 9
2 -well-spaced size-optimal superset M of the input N, it con-

structs the Delaunay triangulation of M. Let s ∈ M be either an input vertex with activation rank `

or a Steiner vertex converted at rank `. Using Lemma 4.2.9 below, the algorithm generates a can-

didate set by iterating through each neighbor of s at ranks {` − 6, . . . , ` − 3} and checking if it

lies within 9 · 2`−2 distance of s. With this candidate set (of constant size), the algorithm applies

halfspace tests to determine exactly which of these candidates are indeed Voronoi neighbors of s.

Lemma 4.2.9 Let s be a converted `-satellite or an input vertex with activation rank `. If v is a

Voronoi neighbor of s in M, v and s are `′-neighbors at a rank `′ ∈ {`− 6, . . . , `− 3}.

Proof: By Lemma 4.2.6, we know that there is an empty ball of radius 2`−2 around s. Since s is

9
2 -well-spaced, the Voronoi cell of s must be confined in a ball of radius 9

2 · 2
`−2, which implies

|vs| ≤ 9 · 2`−2. Because of the 2-approximation guarantee, both v and s have neighbors in the

spanner within 18 ·2`−2 distance. Thus, the minimum ranks of v and s are less than `−1. Because

of the empty ball, s is an (` − 2)-center and a discrete center at a lower rank `′ as long as s has
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an `′-neighbor. Since 9 · 2`−2 ≥ |vs| > 2`−2, there is some k ∈ {` − 6, . . . , ` − 3} such that

c · 2k ≥ |vs| > c · 2k−1. Then the Voronoi cell of v includes a point at least c · 2k−2 far from

v. Since v is 9
2 -well-spaced, there is an empty ball of radius at least 2

9 · c · 2
k−2 > 2k around v.

Therefore, v is a k-center and consequently a k-neighbor of s.

Lemma 4.2.10 Consider a converted `-satellite s. The minimum rank of s, λs, satisfies the condi-

tion `− 6 ≤ λs ≤ `− 3.

Proof: By definition of λs, s has a λs-neighbor u within distance c · 2λs . Since s is converted to a

Steiner vertex, its certificate ball must be empty. Thus, 2`−2 < |su| < c · 2λs , that is, 2`/4c < 2λs .

This implies ` − 7 < λs. For the upper bound, observe that the nucleus of s is 2` away from s.

Again, by definition of λs, we know that any λs-neighbor of s is at least c · 2λs−1 away from s.

Gao et al. proves that the nearest of those λs-neighbors provides a 2-approximation for the exact

nearest neighbor of s [33]. Since the nucleus of s is at 2` distance, we have c · 2λs−1 ≤ 2 · 2`, that

is, 2λs ≤ 4
c · 2

`. We conclude, λs < `− 2.

Lemma 4.2.11 For any rank `, the number of `-centers in the spanner is bounded by O(n), i.e.,

|S`| ∈ O(n).

Proof: By Lemma 4.2.10, if an `′-satellite s of an input vertex v is converted to a Steiner vertex,

its minimum rank in the spanner is at least `′ −O(1). In particular, for s to be an `-center, `′ must

be bounded by ` + O(1), in other words, |sv| must be bounded by O(2`). Since two `-centers are

at least 2` far apart, a packing argument shows that there can be at most O(1) satellites of v that

are `-centers. The proof follows from the fact that there are n input vertices.

Theorem 4.2.12 Our algorithm constructs a 9
2 -well-spaced, size-optimal superset M of the in-

put N, and computes the Delaunay triangulation of M in O(n log ∆) time.

Proof: The quality proof follows from the Lemmas 4.2.3 and 4.2.7. Lemma 4.2.8 shows that the

output is size-conforming, which is sufficient to prove size optimality [60]. Finally, Lemma 4.2.9
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proves that the algorithm correctly computes the Voronoi diagram, i.e., the Delaunay triangulation

of the superset M. Runtime proof follows from previous discussions based on Lemmas 4.2.10

and 4.2.11.

4.3 Dynamic and Kinetic Maintenance

We present an update algorithm that, given a dynamic modification or a kinetic event, updates the

set of Steiner vertices and the corresponding Delaunay triangulation so that the output remains to

be a quality, size-optimal triangulation. The update algorithm is a change-propagation algorithm:

it maintains a set of affected satellites for each rank and repairs each rank consecutively. The

algorithm therefore is trivially O(log ∆)-stable at the level of abstraction of the ranks, i.e., it has to

repair only O(log ∆) ranks to update the output. To bound the total update runtime, we show that

there are O(1) affected satellites at each rank (Lemma 4.3.5) and that repairing each rank requires

amortized O(1) time, yielding our final bound on responsiveness (Theorem 4.3.7).

As required by the KDS framework, we certify both the spanner structure and our extension of

it. For the spanner, we use the same set of certificates (parent-child, edge, separation, and potential

neighbor) used by Gao et al. [33]. For the extension, we generate our own certificates. We certify

the conversion decisions for each `-satellite s considered.

• If the certificate ball of s is not empty, we generate a ball-not-empty certificate to certify that

a vertex v ∈ M lies inside B(s, 2`−2).

• Otherwise, we generate a ball-empty certificate to certify that v /∈ B(s, 2`−2) for each

`′-neighbor v of s for `′ < `.

For certifying the Delaunay triangulation, we observe by Lemma 4.2.9 that, for each converted

`-satellite s, neighbors of s at ranks {` − 6, . . . , ` − 3} constitute its potential Voronoi neighbors.

We certify the halfspace tests performed for determining the Voronoi cell of s considering this

candidate set. These discussions allow us to state:
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Update the spanner S restricted to N

for each rank `,F` = P` = ∅
for each affected input vertex v

ρ′v ← ρv, ρv ← λv (in S restricted to N)
if ρv 6= ρ′v then

for each rank ` between ρv and ρ′v (inclusive)
F` ← F` ∪ {`-satellites of v}

for each violated ball-empty/ball-not-empty certificate
F` ← F` ∪ {s}, where s is the `-satellite involved

for each affected Steiner vertex s

P` ← P` ∪ {s}, where ` is the rank of affection

for each rank ` with F` ∪ P` 6= ∅
for each s ∈ F` ∩ S Remove(S, s)

for each s ∈ F`
v ← nucleus of s

if (ρv = ` or ∃ a converted (`− 1)-satellite of v)
and BallEmpty(S, s, 2`−2) then Convert(S, s, `)

for each nucleus v of each satellite s ∈ F`
if an `- or (`+ 1)-satellite of v is converted then
F`+1 ← F`+1 ∪ {(`+ 1)-satellites of v}

S`+1 ← UpdatePromotion(F` ∪ P`)

for each rank ` and each affected s ∈ N with ρs = `

or each `-satellite s ∈ M ∩ (F` ∪ P`)
V ← ∪`′∈{`−6,...,`−3}`′-neighbors of s

IdentifyVoronoiNeighbors(s, V )

Figure 4.5: Psuedo-code for the update algorithm.

Lemma 4.3.1 The certificates generated by our construction algorithm certifies that the output is

the Delaunay triangulation of a size-optimal and well-spaced superset of the given input set.

Upon a certificate failure or a dynamic modification, the update algorithm whose pseudo-code

is shown in Figure 4.5 updates the output and the set of certificates. Following the structure of

the construction algorithm, in three stages, it repairs the proximity graph and updates the maximal

independent subset of satellites chosen at each rank. It keeps two sets of vertices at each rank

for affected satellites. The first set, F , tracks the satellites that may be required to be removed or

converted to Steiner vertices, we call them fully affected. The second set, P , tracks the satellites

which are previously converted and whose ball-empty certificates remain unaffected. These satel-
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lites, which we call partially affected, are not required to be removed; however, we may need to

promote or demote these vertices in the spanner.

In the first stage, the update algorithm updates the spanner data structure restricted to the input

vertices using the update procedure described in Section 4.1.2. It updates the diameter and the acti-

vation ranks of the input vertices if needed. Each of these updates may partially/fully affect certain

satellites. The algorithm then initializes F` and P` lists. For each input vertex whose activation

rank has changed, it marks all satellites at ranks between the previous and current activation ranks

as fully affected as these satellites may need to be removed or considered for conversion. Also,

for Steiner vertices, if any of the ball-empty or ball-not-empty certificates has failed, it marks the

corresponding satellite fully affected. It marks all other satellites related to failed certificates as

partially affected at the rank at which the certificate is defined.

In the second stage, the update algorithm iterates through each rank, updating the structure

in three phases: remove, convert, and repair. In the remove phase, it removes the fully affected

satellites from the spanner by calling Remove, which removes a satellite s in a bottom-up pass

starting from its minimum rank λs until its maximum rank Λs by removing it from the neighbors,

parent, and child lists. This function runs in O(Λs − λs) time. In the convert phase, similar to the

construction algorithm, the update algorithm tries to convert all fully affected satellites (including

the ones that are removed earlier) to Steiner vertices, provided that their nuclei are active and

their certificate balls are empty. Finally, in the repair phase, the update algorithm repairs the

discretization at the next rank by updating the promotion decisions for the affected Steiner vertices

using UpdatePromotion, which performs the discretization step only on the affected Steiner

vertices. This function takes linear time in the number of affected Steiner vertices, which we prove

to be of constant size. After the update algorithm is done with the second stage, it updates the

Delaunay triangulation in the third stage by computing the up-to-date Voronoi neighbors of the

affected vertices.

If an update affects a ball-empty/ball-not-empty certificate of an `-satellite s, it enqueues s into
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the F` list. The only exception to this rule is that the update algorithm never enqueues a satellite

into F lists if its ball-empty certificate is affected during a call to Remove. If an update affects an

edge/potential-neighbor certificate of an Steiner vertex s at rank `, the algorithm enqueues s into

the P` list. Similarly, if an update affects a parent-child/separation certificate of two vertices at

consecutive/same ranks, it enqueues these vertices in P` (P`+1) list. Finally, if an update affects a

Voronoi certificate, it enqueues the `-satellite for which the Voronoi cell is being computed to P`

list. Based on our update algorithm, we state following lemma without a proof.

Lemma 4.3.2 After the iteration at rank `, the spanner contains a maximal independent subset of

the satellites in the up-to-date proximity graph at rank `.

Lemma 4.3.3 At rank `, the number of active vertices in a ball of radius O(2`) is bounded by a

constant.

Proof: A vertex v inside the given ball may be active for two reasons. Either its activation rank

is ` or one of its satellites at rank `−1 is converted. In the first case, we bound the nearest neighbor

distance of v by Ω(2`). Thus, a packing argument bounds the number of vertices that fall into the

first case by O(1). In the second case, let s be a converted (` − 1)-satellite of v. Then, there is an

empty ball around s with radius Ω(2`). At a fixed rank and ray, all satellites are shifted versions

of input vertices. Therefore, if the (` − 1)-satellite on the same ray (same polar angle) of another

vertex u is converted, we have |uv| ∈ Ω(2`). Similar packing arguments bound the number of such

vertices by O(1) for each ray r. Since there is a constant number of rays, the result follows.

4.3.1 Responsiveness Analysis

In order to bound the runtime of our updates, we define the focus of the dynamic update or the

kinetic event as one of the input vertices and prove that all modifications take place around the

focus. For a dynamic modification the focus is the vertex being inserted or deleted. For a kinetic

event, consider the vertices/satellites involved in the certificate failure. Representing the satellites
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with their nuclei and input vertices by themselves, the focus is any of the two representations of

the points involved in the certificate.

Lemma 4.3.4 Consider a kinetic event or a dynamic modification and let p be the focus. For any

rank `, any satellite in F` or P` lists is O(2`) away from p.

Proof: We use induction over the order in which the algorithm inserts satellites into these lists.

For the base case, consider the affected lists at the end of the first stage. Fix rank ` and consider

a satellite s satisfying the premises. Construction and the update algorithms of Gao et al. perform

local operations at each rank. More specifically, given the focus p, if the update removes or inserts

an edge in the spanner at rank `, the vertices incident to the edge are within O(2`) distance of p.

Therefore, if s is enqueued into these lists while repairing the initial spanner structure then we have

|sp| < O(2`). Similar to the base case, we prove that if applying an update on a satellite s1 affects

another satellite s2 and s2 is either fully affected at or partially affected at rank `′, then we have

|s1s2| < O(2`
′
). Geometrically relating the affected satellites defines a dependence path from

each affected satellite to the focus p. Except for a constant overhead, all the effects grow in ranks,

therefore, using the triangle inequality on any of the paths from p to s, we can bound the distance

between p and s by a geometric series with constantly many repetitions of the terms. Using the

fact that a geometric series is dominated by its last term, and the fact that the last term is O(2`),

we conclude our result.

Lemma 4.3.5 For any rank `, there are O(1) satellites in F` and P` lists.

Proof: Let s be an affected satellite, by Lemma 4.3.4, s lies inside a ball of radius O(2`) around

the focus p. We analyze the two cases, s ∈ F` and s ∈ P` and prove that in each case there is a

constant number of such satellites. For the first case, assume that s ∈ F`, i.e., s is an `-satellite of an

active vertex. The nucleus lies inside a slightly larger ball around p of radius O(2`). Lemma 4.3.3

proves that there are only O(1) many vertices; since a vertex has O(1) satellites at a given rank, we

conclude the first case. For the second case, assume that s ∈ P`, i.e., s is an `-center. Therefore,
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s is at least 2` far from another `-center. Since s is O(2`) close to p, a packing argument bounds

the number of such vertices by O(1) as well.

Lemma 4.3.6 The total runtime of Remove calls made by the update algorithm is O(log ∆).

Proof: By Lemma 4.3.4, for each rank `, all of the fully affected satellites are within O(2`)

distance of the focus p. The runtime required to remove these affected satellites is

T <

Λ∑
`=λ

∑
s∈F`

α · (Λs − λs)

where λ and Λ are the minimum and the maximum rank of the spanner and α is the constant in the

big-Oh notation hidden in the runtime of the Remove function. Using Lemma 4.2.10 to bound λs,

we rewrite T < O(log ∆) + α ·
∑Λ
`=λ

∑
s∈F`(Λs − `). Rearranging, we get

T < O(log ∆) + α ·
Λ∑
`=λ

Λ∑
`′=`

∣∣{s | s ∈ F`,Λs > `′}
∣∣

T < O(log ∆) + α ·
Λ∑

`′=λ

`′∑
`=λ

∣∣{s | s ∈ F`,Λs > `′}
∣∣

For any given `′, we claim that
∑`′
`=λ

∣∣{s | s ∈ F`,Λs > `′}
∣∣ is bounded by O(1): for any ` ≤ `′,

the Steiner vertices in F` are within O(2`
′
) distance of the focus p and any vertex with Λs > `′ is

an `′-center; each of them has an empty ball of radius 2`
′

. Then, a packing argument proves our

claim and we get T = O(log ∆).

Theorem 4.3.7 Given a kinetic event or a dynamic modification, the update algorithm repairs the

spanner structure and the well-spaced, size-optimal superset in O(log ∆) time.

Proof: At each rank, ensuring that the output contains a maximal independent subset proves well-

spacedness (Lemmas 4.2.3, 4.2.7, and 4.3.2). Since we update the minimum ranks of affected
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input vertices, we can apply Lemma 4.2.8 to ensure size-optimality as well. Lemma 4.3.5 bounds

the total number of affected satellites by O(log ∆). Processing each of the affected satellites takes

O(1) time except for removal. Lemma 4.3.6 bounds the total runtime of the removal of the satellites

by O(log ∆). Thus, our result follows.

4.4 Quality of the KDS

In order to prove the efficiency of our kinetic data structure we show that our KDS is responsive,

local, compact, and efficient. We proved responsiveness in the previous section, that when a cer-

tificate fails, the KDS can be updated quickly, in O(log ∆) time. In this section, we prove that our

KDS is compact and local, i.e., it has near linear total number of certificates, and each input ver-

tex participates in a logarithmic number of certificates. Then, we prove that our KDS is efficient,

i.e., there are not too many certificate failures compared to the number of combinatorial changes

required in the worst case.

Lemma 4.4.1 Every input vertex participates in O(log ∆) certificates. In total, our kinetic data

structure maintains O(m) certificates, where m is |M|.

Proof: Consider an input vertex v and fix a rank `. In Lemma 4.2.11, we prove that v has O(1)

converted satellites that are `-centers in the final spanner. Since there are O(log ∆) ranks and since

each of the `-centers is associated with a constant number of certificates, each input vertex, through

its satellites, participates in O(log ∆) certificates. For the total number of certificates, we already

know that the resulting spanner has O(m) neighbor edges and that there are O(m) ball-empty

certificates. We are left to prove that there are O(m) ball-not-empty certificates. For each satellite

that is not converted, we charge its ball-not-empty certificate to an inserted satellite at the previous

rank or if no such satellite exists to its nucleus. Using this approach, every Steiner vertex or input

vertex is charged at most O(1) ball-not-empty certificates. There are O(m) vertices in the output,

therefore, the result follows.
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t = 1 ⇒

t = 3/2 ⇒

Figure 4.6: Consider a horizontal line
of 2k evenly-spaced vertices: (0, 0),
(1, 0), . . . (2k, 0), and a second line
ε above the first line: (0, ε), (1, ε),
. . . (2k, ε). Assign a fixed velocity vec-
tor (1, 0) to the vertices of the lower
line. The upper line does not move.

We know that each input vertex may introduce O(log ∆) many satellites, a total of O(n log ∆).

Most of our certificates are distances between pairs of vertices and there are O(log ∆) differ-

ent distances we consider, therefore, our algorithm processes a total of at most O(n2 log3 ∆)

events through these types of certificate failures. For certifying the Delaunay triangulation, by

the above analysis, we know that the candidate Voronoi neighbor set of a given Steiner vertex

changes O(n log2 ∆) many times. There are O(1) halfspace tests performed to determine the ex-

act Voronoi cell, hence, our algorithm processes a total of at most O(n2 log3 ∆) events altogether.

We show that there exist examples for which maintaining a size-optimal well-spaced point set re-

quires Ω(n2 log ∆) combinatorial changes. Specifically, consider the example shown in Figure 4.6

with n = 4k points and ε = 1/k and let time evolve from t = 0 to k. The diameter is Θ(n) and

the minimum pairwise distance oscillates between Θ(1) at half-integer times and Θ(ε) at integer

times. The spread is therefore ∆ ∈ Θ(n/ε), which implies log ∆ ∈ Θ(log ε−1).

Lemma 4.4.2 At integer times, a well-spaced superset requires Ω(n log ∆) Steiner vertices to be

inserted.

Proof: Ruppert proves [60] that even the smallest well-spaced superset of a given input has∫
Ω lfs−d(x)dx vertices, where Ω denotes the domain. To bound the integral, for each pair (ui, vi)

of ε-close vertices, take their midpoint pi. We define a set of non-overlapping balls B(pi, 1/2) for

each of the at least k pairs of ε-close vertices. The integral over all of Ω is lower-bounded by the
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sums of the integrals over each ball:

∫
Ω

lfs−d(x)dx ≥
k∑
i=1

∫
B(pi,1/2)

lfs−d(x)dx

At the midpoint, lfs(pi) = ε/2. Because lfs is 1-Lipschitz, lfs(x) ≤ |pix| + ε/2. Then the integral

over each ball is at least Ω(log ε−1). Since k = n/4, the sum is Ω(n log ε−1).

Lemma 4.4.3 At half-integer times, inserting O(n) Steiner vertices is sufficient for the lower

bound example of Figure 4.6.

Proof: This proof requires some results from the field of curve reconstruction. We refer to the

book by Dey [29] for an introduction. The key result we establish is that the input vertices form a

good sample of a smooth curve: it is sufficiently dense so that no point of the curve is too far from

a vertex, but sufficiently sparse so that no two vertices are too close to each other. Density and

sparsity are both relative to the distance from the curve to its medial axis. We can fit a sinusoidal

curve through the vertices as they are arranged at half-integer times; the curve has amplitude ε/2.

Any point on the curve is at distance less than 1/2 from an input vertex. Meanwhile, the medial

axis of the curve is at distance 1
8ε + ε

2 = Θ(1/ε) from the curve. Thus the vertices form an O(ε)-

dense sample of the curve. Vertices are at distance
√
ε2 + 1/4 ≈ 1/2 from each other, thus they

form an Ω(ε)-sparse sample. Hudson, Miller, Phillips and Sheehy [45] show that such a vertex set

has a well-spaced superset of size O(n).

Lemma 4.4.4 The lower bound example of Figure 4.6 requires Ω(n2 log ∆) Steiner vertex inser-

tions and deletions.

Proof: At integer times, the input requires Ω(n log ∆) Steiner vertices to be made well-spaced.

At half-integer times, the input requires that there be no more than O(n) Steiner vertices to be

size-optimal. Thus, any algorithm that maintains a size-optimal well-spaced superset must add

and subsequently remove Θ(n log ∆) vertices for every unit of time, a total of Ω(n2 log ∆) such

changes.
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CHAPTER 5

CONCLUDING REMARKS

By applying the stable design approach in developing dynamic and kinetic algorithms, we solve

several open problems in computational geometry. The stable design approach requires design-

ing a construction algorithm that performs a computation in such a way that when the algorithm

is executed on similar inputs, the executions themselves are similar, i.e., remain stable. Stable

construction algorithms make it possible for a generic change-propagation algorithm to update the

execution and the output when the input data changes dynamically due to insertions and deletions

or kinetically due to continuous motion. Since the change-propagation algorithm is fully generic,

it can adapt the output under any changes to the input data, making it possible to process simulta-

neous events that arise during motion simulation.

The stability approach to designing dynamic and kinetic algorithms is motivated by recent

advances on self-adjusting computation, which make it possible to translate a given construction

algorithm into a dynamic or a kinetic update algorithm. By using this approach, we gain a broader

view of the given problem; instead of considering the details of the update algorithm itself, we

focus on the construction algorithm and its stability analysis. Since we focus on the stability of

the construction algorithm for dynamic and kinetic update algorithms, we pay closer attention to

the maintenance problem while organizing the construction rather than delaying it (partially) only

after the construction is completed. In the remaining of this chapter, we provide further details of

our approach by summarizing our conclusions for each problem we consider in this thesis.

Chapter 2 presents a technique for robust motion simulation based on a hybrid of kinetic-event

scheduling and fixed-time sampling. The idea behind this technique is to partition the time line into

a lattice of intervals, perform motion simulation at the resolution of an interval, and process events

in the same interval together, regardless of their relative order. To separate roots to the resolution

of intervals, we use Sturm sequences in a way similar to their use for exact separation of roots in

previous work; the fixed resolution, however, allows us to stop the process early.
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The approach critically relies on self-adjusting computation, which enables processing multiple

events simultaneously. Although robustness issues motivate the hybrid technique using kinetic-

event scheduling and fixed-time sampling, this technique may also help in situations where explicit

motion prediction is difficult [15].

We apply the approach to kinetic convex hulls in 3D by kinetizing a version of the incremental

convex-hull algorithm via self-adjusting computation. We implement the motion simulator and the

algorithm and perform an experimental evaluation. Our experiments show that our algorithm is

effective in practice: we are able to run efficient robust simulations involving thousands of points.

Our experiments also indicate that the data structure can respond to a kinetic event, as well as to an

integrated dynamic change (an insertion/deletion during motion simulation), in logarithmic time

in the size of the input. To the best of our knowledge, this is the first implementation of kinetic 3D

convex hulls that can guarantee robustness for reasonably large input sizes.

Chapter 3 presents a dynamic algorithm for computing a well-spaced point set of a dynamically

changing set of input points. Our algorithm is efficient, finds an optimal-size output, consumes lin-

ear space, and responds to dynamic modifications in worst-case optimal time. The underlying

technique behind these results is a stable algorithm for computing well-spaced point sets whose

executions can be represented with computation graphs that remain similar when the input sets

themselves are similar. Our dynamic update algorithm takes advantage of stability and efficiently

updates the output by propagating the input modification through the computation graph. To the

best of our knowledge, this is the first time- and size-optimal algorithm for dynamically maintain-

ing well-spaced point sets.

To assess the practicality of our approach we refer to a prototype implementation [11]. Our

experiments show that the algorithm can be implemented efficiently such that it delivers perfor-

mance consistent with our theoretical bounds. We expect a well-polished implementation will

provide static performance comparable to the state of the art, and dynamic performance orders of

magnitude faster.
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Chapter 4 presents a kinetic data structure for mesh refinement that computes the Delaunay

triangulation of a size-optimal well-spaced superset of a set of moving points in the plane. Our

KDS is compact, responsive, local, and efficient: it requires linear space in the size of the output;

it repairs itself in logarithmic time; every point is involved in a logarithmic number of certificates;

and the number of events is within a polylogarithmic factor of optimal. Also, our KDS is dynamic,

responding to point insertions and deletions in logarithmic time. To the best of our knowledge, this

is the first KDS for mesh refinement.

Our approach, inspired by self-adjusting computation techniques, critically relies on deformable

spanners [33]. In fact, one can decribe our KDS as a balanced (deformable) spanner. Similar to

the balanced quadtrees, it extends the deformable spanner with such additional points that in the

resulting superset, all neighbors of a point in the spanner have empty balls of similar sizes. Also,

because we take a self-adjusting approach, our KDS can handle simultaneous certificate failures,

making it effective in practice.

Our result applies only to the planar case, though it is very promising for arbitrary-dimension

extension. The two missing pieces are these: (1) definition of satellites in higher dimensions, which

will let us kinetically maintain well-spacing; (2) kinetization of a method to convert a well-spaced

point cloud into a quality mesh (e.g. [22]), since the direct correspondence between well-spacing

and Delaunay mesh quality applies only in two dimensions.

Our bounds in Chapters 3 and 4 depend on the spread ∆, which a priori has no relationship

to the input size n. However, if the points form an ε-net of a manifold, then the spread is at worst

linear in n. This is because in an ε-net, no point of the manifold is farther than ε from an input

point, which bounds the diameter by O(nε), and no two input points are at distance o(ε) from

each other, which bounds the closest pair by Ω(ε). Furthermore, in an ε-net, the output size is in

O(n) [45]. In other words, if points are a sample taken from a moving manifold, then our meshes

have linear size, our update algorithms take O(log n) time, and our KDS is efficient in the usual

sense of being within a polylog(n) factor of optimal.
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[46] B. Hudson and D. Türkoğlu. An efficient query structure for mesh refinement. In Canadian
Conference on Computational Geometry, 2008.

[47] R. Jampani and A. Üngör. Construction of sparse well-spaced point sets for quality tetrahe-
dralizations. In 16th International Meshing Roundtable, pages 63–80, 2007.

[48] H. Kaplan, N. Rubin, and M. Sharir. A kinetic triangulation scheme for moving points in the
plane. In SCG ’10: Proceedings of the 26th Annual Symposium on Computational Geometry,
2010.

[49] B. M. Klingner, B. E. Feldman, N. Chentanez, and J. F. O’Brien. Fluid animation with
dynamic meshes. ACM Trans. Graph., 25:820–825, July 2006.

[50] R. Ley-Wild. Programmable Self-Adjusting Computation. PhD thesis, Computer Science
Department, Carnegie Mellon University, Oct. 2010.

[51] R. Ley-Wild, U. A. Acar, and M. Fluet. A cost semantics for self-adjusting computation. In
Proceedings of the 26th Annual ACM Symposium on Principles of Programming Languages,
2009.

[52] R. Ley-Wild, M. Fluet, and U. A. Acar. Compiling self-adjusting programs with continua-
tions. In Int’l Conference on Functional Programming, 2008.

[53] X.-Y. Li and S.-H. Teng. Generating well-shaped Delaunay meshes in 3D. In Proceedings of
the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 28–37, 2001.

[54] X.-Y. Li, S.-H. Teng, and A. Üngör. Simultaneous refinement and coarsening for adaptive
meshing. Engineering with Computers, 15(3):280–291, 1999.

[55] G. L. Miller, D. Talmor, S.-H. Teng, N. Walkington, and H. Wang. Control Volume Meshes
Using Sphere Packing: Generation, Refinement and Coarsening. In 15th International Mesh-
ing Roundtable, pages 47–61, 1996.

[56] N. Molino, Z. Bao, and R. Fedkiw. A virtual node algorithm for changing mesh topology
during simulation. ACM Trans. Graph., 23:385–392, Aug. 2004.

[57] D. Moore. The cost of balancing generalized quadtrees. In SMA ’95: Proceedings of the
third ACM symposium on Solid modeling and applications, pages 305–312, New York, NY,
USA, 1995. ACM.

98



[58] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[59] H.-W. Nienhuys and A. F. van der Stappen. A Delaunay approach to interactive cutting
in triangulated surfaces. In Fifth International Workshop on Algorithmic Foundations of
Robotics, 2004.

[60] J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation.
Journal of Algorithms, 18(3):548–585, 1995.

[61] D. Russel. Kinetic Data Structures in Practice. PhD thesis, Department of Computer Science,
Stanford University, Mar. 2007.

[62] D. Russel, M. I. Karavelas, and L. J. Guibas. A package for exact kinetic data structures and
sweepline algorithms. Computational Geometry Theory and Applications, 38(1-2):111–127,
2007.

[63] J. R. Shewchuk. Tetrahedral mesh generation by Delaunay refinement. pages 86–95, 1998.

[64] D. Spielman, S.-h. Teng, and A. Üngör. Parallel delaunay refinement with off-centers. In
Euro-Par 2004 Parallel Processing, volume 3149, pages 812–819. Springer Berlin / Heidel-
berg, 2004.

[65] D. Spielman, S.-H. Teng, and A. Üngör. Parallel Delaunay refinement: Algorithms and
analyses. IJCGA, 17:1–30, 2007.

[66] D. Talmor. Well-Spaced Points for Numerical Methods. PhD thesis, Carnegie Mellon Uni-
versity, August 1997. Available as Technical Report CMU-CS-97-164.

99



APPENDIX A

IMPLEMENTATION

A.1 Math Library

We provide the implementations of the constituents of the math library, called number, polynomial,

and geometry. Our librares are written in ∆ML.

A.1.1 Numbers

In the numbers library, we implement the basic algebraic structure ring, and extend this structure

for supporting exact arithmetic. We design a binary number representation with a variable radix

point and implement the following two versions of binary numbers: one using IntInf structure so

that the computations are exact, and one using floating point numbers (Real structure) so that we

can compare the speed difference. Also, we provide an interval structure that will be helpful in

implementing Sturm sequences.

signature RING =
sig

type t

(*** Zero element for addition and multiplication ***)
val zero : t
val one : t

(*** Arithmetic ***)
val + : t * t -> t
val - : t * t -> t
val ~ : t -> t
val * : t * t -> t

(*** Equality ***)
val == : t * t -> bool
val != : t * t -> bool

(*** String ***)
val toString : t -> string
val fmtString : t -> string

(*** Self adjusting stuff ***)
val eq : t Eq.t
val hash : t Hash.t
val key : t Key.t

end (* RING *)
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signature BINARY_NUMBER =
sig

include RING

(*** Comparison ***)
val compare : t * t -> order
val < : t * t -> bool
val <= : t * t -> bool
val > : t * t -> bool
val >= : t * t -> bool

(*** Min/Max using comparisons ***)
val min : t * t -> t
val max : t * t -> t

(*** Extended arithmetic ***)
val sign : t -> int
val abs : t -> t
(*** Generalized multiplication by 2 (division for negative values) ***)
val shift : t * int -> t
(*** Division where the result is truncated to an integer. ***)
val div : t * t -> t
(*** Modulus ***)
val mod : t * t -> t
(*** Greatest common divisor where each quotient is an integer. ***)
val gcd : t * t -> t

(*** Conversion ***)
val fromReal : real -> t
val toReal : t -> real (* by truncation *)
val fromInt : int -> t
val toInt : t -> int (* by truncation *)

(*** Restriction ***)
(*** Second arguments specify the number of bits to keep after the

*** radix point. Formally, truncate(n, r) = trunc(n * 2^r) / 2^r,

*** where trunc is the function that truncates to an integer.

*** Other functions are defined similarly. ***)
(*** Let n = 1.01, r = 1.***)

val truncate : t * word -> t (*** truncate (n, r) = 1.0
truncate (~n, r) = ~1.0 ***)

val floor : t * word -> t (*** floor (n, r) = 1.0
floor (~n, r) = ~1.1 ***)

val ceiling : t * word -> t (*** ceiling (n, r) = 1.1
ceiling (~n, r) = ~1.0 ***)

end (* BINARY_NUMBER *)

signature INTERVAL =
sig

structure Number : BINARY_NUMBER

(*** Boundary type used in representing intervals ***)
datatype b = POS_INFTY | NEG_INFTY | OPEN of Number.t | CLOSED of Number.t

(*** t is a tuple of boundaries ***)
type t = b * b

(*** Conversion ***)
val fromReal : real * word * bool * bool -> t
val toNumber : t -> Number.t * Number.t

(*** Equality ***)
val == : t * t -> bool
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val != : t * t -> bool

(*** Comparison ***)
val compare : t * t -> order
val < : t * t -> bool
val <= : t * t -> bool
val > : t * t -> bool
val >= : t * t -> bool

(*** Operation ***)
val length : t -> Number.t
val intersect : t * t -> t option

(*** String ***)
val toString : t -> string

end

structure ExactFloatingPoint : BINARY_NUMBER =
struct

structure Base = IntInf

(*** Representation of y / (2^r) is (y, r): IntInf.int * word (r >= 0) ***)
type t = Base.int * word

(*** Zeroes of addition and multiplication ***)
val baseZero = Base.fromInt 0
val baseOne = Base.fromInt 1
val powerZero = Word.fromInt 0

val zero = (baseZero, powerZero)
val one = (baseOne, powerZero)

(*** Representation of a tuple using the same floating point location ***)
fun tuple ((x, p), (y, q)) =

if Word.>(p, q) then ((x, Base.<<(y, Word.-(p, q))), p)
else ((Base.<<(x, Word.-(q, p)), y), q)

fun baseTuple (n, m) = #1 (tuple (n, m))

(*** Arithmetic ***)
fun op + (n, m) = let val (xy, p) = tuple(n, m) in (Base.+ xy, p) end
fun op - (n, m) = let val (xy, p) = tuple(n, m) in (Base.- xy, p) end
fun op ~ (x, p) = (Base.~ x, p)
fun op * ((x, p), (y, q)) = (Base.*(x, y), Word.+(p, q))

fun shift ((x, p), q) =
let

val r = Int.-((Word.toInt p), q)
in

if Int.>=(r, 0) then (x, Word.fromInt r)
else (Base.<<(x, Word.fromInt(Int.~ r)), powerZero)

end

(*** Equality ***)
val op == = (op =) o baseTuple
val op != = (op <>) o baseTuple

(*** Extended arithmetic ***)
fun sign (x, p) = Base.sign x
fun abs (x, p) = (Base.abs x, p)

fun op div (m, n) =
let val (xy, p) = tuple(m, n) in (Base.div xy, powerZero) end
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fun op mod (m, n) = let val (xy, p) = tuple(m, n) in (Base.mod xy, p) end
fun gcd (m, n) = if ==(n, zero) then abs(m) else gcd(n, m mod n)

(*** Comparison ***)
val compare = Base.compare o baseTuple
val op < = Base.< o baseTuple
val op <= = Base.<= o baseTuple
val op > = Base.> o baseTuple
val op >= = Base.>= o baseTuple

(*** Min/Max ***)
fun min (n, m) = if (n <= m) then n else m
fun max (n, m) = if (n >= m) then n else m

(*** Restriction ***)
fun truncate (n as (x, p), q) =

if Word.<=(p, q) then n else (Base.~>>(x, Word.-(p, q)), q)

fun allZeroes (x, p) =
(Base.andb(Base.-(Base.<<(baseOne, p), baseOne), x) = baseZero)

fun floor (n as (x, p), q) =
if Word.<=(p, q) then n else

let
val diff = Word.-(p, q)
val y = Base.~>>(x, diff)

in
if Base.>=(x, baseZero) orelse allZeroes(x, diff) then (y, q)
else (Base.-(y, baseOne), q)

end

fun ceiling (n as (x, p), q) =
if Word.<=(p, q) then n else

let
val diff = Word.-(p, q)
val y = Base.~>>(x, diff)

in
if Base.<=(x, baseZero) orelse allZeroes(x, diff) then (y, q)
else (Base.+(y, baseOne), q)

end

(*** Conversion ***)
fun fromReal r =

if Real.==(r, 0.0) then zero else (* ML has a weird problem *)
let

val {exp = p, man = m} = Real.toManExp r
val x = Real.toLargeInt IEEEReal.TO_ZERO

(Real.fromManExp {exp = (Real.precision), man = m})

fun search (s0, s2) =
if Int.-(s2, s0) = 1 then s0 else

let
val s1 = Int.div(Int.+(s0, s2), 2)

in
if not (allZeroes(x, Word.fromInt s1)) then search(s0, s1)
else search(s1, s2)

end

val p = Int.-(Real.precision, p)
val s = search(0, Real.precision)
val q = Int.-(p, s)

in
if Int.>=(q, 0) then (Base.~>>(x, Word.fromInt s), Word.fromInt q)
else if Int.>=(p, 0) then (Base.~>>(x, Word.fromInt p), powerZero)
else (Base.<<(x, Word.fromInt(Int.~ p)), powerZero)

end
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fun toReal (x, p) =
if (x = baseZero) then 0.0 else (* ML has a weird problem *)
Real.fromManExp {exp = Int.~(Word.toInt p), man = Real.fromLargeInt x}

fun fromInt i = (Base.fromInt i, powerZero)

fun toInt n = Base.toInt(#1 (truncate(n, powerZero)))

(*** String ***)
fun toString (i,p) = Real.toString(toReal(i,p))
fun fmtString (i,p) =

let val str = Real.fmt (StringCvt.FIX NONE) (toReal(i,p))
in String.map (fn #"~" => #"-" | c => c) str end

(*** Self adjusting stuff ***)
val eq = Eq.default
val hash = Hash.default
val key = Key.default

end (* ExactFloatingPoint *)

structure ApproximateReal : BINARY_NUMBER =
struct

open Real

type t = real

(*** Zeroes of addition and multiplication ***)
val zero = 0.0
val one = 1.0

(*** Conversion ***)
fun fromReal r = r
fun toReal r = r
val toInt = (toInt IEEEReal.TO_ZERO)

(*** Extended arithmetic ***)
fun shift (x, s) = if Real.==(x, zero) then zero else

let
val {exp, man} = toManExp x

in
fromManExp {exp = Int.+(exp, s), man = man}

end

val op div = realTrunc o (op /)
fun op mod (x, y) = x - (x div y) * y
fun gcd (x, y) = if ==(y, zero) then abs(x) else gcd(y, x mod y)

(*** Restriction ***)
fun restrictionAt (f : t -> t) (x : t, p : word) =

let
val s = Word.toInt p

in
shift(f (shift(x, s)), Int.~ s)

end

val truncate = restrictionAt realTrunc

val floor = restrictionAt realFloor

val ceiling = restrictionAt realCeil
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(*** String ***)
fun fmtString x =

let val str = fmt (StringCvt.FIX NONE) x
in String.map (fn #"~" => #"-" | c => c) str end

(*** Self adjusting stuff ***)
val eq = Eq.real
val hash = Hash.real
val key = Key.real

end (* ApproximateReal *)

functor Interval (structure Number : BINARY_NUMBER) : INTERVAL =
struct

structure Number = Number
structure N = Number

(*** Boundary type used in representing intervals ***)
datatype b = POS_INFTY | NEG_INFTY | OPEN of N.t | CLOSED of N.t

(*** Interval type consists of a tuple of boundaries ***)
type t = b * b

(*** Conversion ***)
fun fromReal (x, n, leftOpen, rightOpen) =

let
val delta = N.shift(N.one, ~(Word.toInt n))
val x = N.fromReal x
val y = N.truncate(x, n)

in
(if leftOpen then OPEN (if N.<(y, x) then y else N.-(y, delta))
else CLOSED (if N.<=(y, x) then y else N.-(y, delta)),
if rightOpen then OPEN (if N.>(y, x) then y else N.+(y, delta))
else CLOSED (if N.>=(y, x) then y else N.+(y, delta)))

end

fun toNumber (OPEN x, OPEN y) = (x, y)
| toNumber (OPEN x, CLOSED y) = (x, y)
| toNumber (CLOSED x, OPEN y) = (x, y)
| toNumber (CLOSED x, CLOSED y) = (x, y)
| toNumber _ = raise Fail "Unbounded interval!"

(*** Boundary equality and comparisons ***)
fun equal (OPEN x, OPEN y) = N.==(x, y)

| equal (CLOSED x, CLOSED y) = N.==(x, y)
| equal (NEG_INFTY, NEG_INFTY) = true
| equal (POS_INFTY, POS_INFTY) = true
| equal _ = false

fun inequal (x, y) = not (equal (x, y))

(*** [(..., x)] ?< [(y, ...)] ***)
fun less (OPEN x, OPEN y) = N.<=(x, y)

| less (OPEN x, CLOSED y) = N.<=(x, y)
| less (CLOSED x, OPEN y) = N.<=(x, y)
| less (CLOSED x, CLOSED y) = N.<(x, y)
| less _ = false

(*** [(x, ...)] ?<= [(y, ...)] ***)
fun lessEq (OPEN x, OPEN y) = N.<=(x, y)

| lessEq (OPEN x, CLOSED y) = N.<(x, y)
| lessEq (CLOSED x, OPEN y) = N.<=(x, y)
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| lessEq (CLOSED x, CLOSED y) = N.<=(x, y)
| lessEq (NEG_INFTY, _) = true
| lessEq _ = false

(*** [(..., x)] ?<= [(..., y)] ***)
fun greaterEq (OPEN x, OPEN y) = N.>=(x, y)

| greaterEq (OPEN x, CLOSED y) = N.>(x, y)
| greaterEq (CLOSED x, OPEN y) = N.>=(x, y)
| greaterEq (CLOSED x, CLOSED y) = N.>=(x, y)
| greaterEq (POS_INFTY, _) = true
| greaterEq _ = false

(*** Equality ***)
fun op == ((x0, x1) : t, (y0, y1) : t) = equal(x0, y0) andalso equal(x1, y1)

fun op != (x : t, y : t) = not (==(x, y))

(*** Comparison ***)
fun op < ((_, r) : t, (l, _) : t) = less(r, l)

fun op <= ((r0, _) : t, (r1, _) : t) = lessEq(r0, r1)

fun op > ((l, _) : t, (_, r) : t) = less(r, l)

fun op >= ((_, l0) : t, (_, l1) : t) = greaterEq(l0, l1)

fun compare (interval : t, interval’ : t) =
if interval < interval’ then LESS
else if interval > interval’ then GREATER
else EQUAL

(*** Operations ***)
fun length (interval : t) =

let
val (l, r) = toNumber interval

in
N.-(r, l)

end

fun intersect (interval as (l, r) : t, interval’ as (l’, r’) : t) =
let

val left = if interval <= interval’ then l’ else l
val right = if interval >= interval’ then r’ else r

in
if less(right, left) then NONE else SOME(left, right)

end

(*** String ***)
fun toString ((l, r) : t) =

(case l of
OPEN x => "(" ^ (N.toString x)

| CLOSED x => "[" ^ (N.toString x)
| NEG_INFTY => "(-infty"
| POS_INFTY => raise Fail "Left boundary is positive infinity")
^ ", " ^
(case r of

OPEN x => (N.toString x) ^ ")"
| CLOSED x => (N.toString x) ^ "]"
| POS_INFTY => "+infty)"
| NEG_INFTY => raise Fail "Right boundary is negative infinity")

end (* Interval *)
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A.1.2 Polynomials

In the polynomials library, we implement the polynomial ring structure and an extended certificate

polynomial structure for generating certificates as described in the kinetic data structures frame-

work. We use Sturm sequences to identify the roots of a polynomial at a given resolution.

signature POLYNOMIAL_RING =
sig

include RING

structure Coefficient : BINARY_NUMBER

type c = Coefficient.t

(*** Operations ***)
val scale : t * c -> t

(*** Extended arithmetic ***)
(*** Given two polynomials p(x) and q(x), this function computes ***
*** (c, qt(x), rm(x)) such that c * p(x) = qt(x) * q(x) + rm(x) ***)
val divMod : t * t -> c * t * t

(*** Information ***)
val degree : t -> int
val evaluate : t -> c -> c

(*** Construction/Conversion ***)
val fromList : c list -> t
val toList : t -> c list

end (* POLYNOMIAL_RING *)

signature CERTIFICATE_POLYNOMIAL =
sig

include POLYNOMIAL_RING

(*** A polynomial should not be constant zero! ***)
exception ZeroPolynomial

(*** Operations ***)
val derivative : t -> t

(*** Evaluation ***)
val evaluateSignRight : t -> Coefficient.t -> bool
val evaluateSignLeft : t -> Coefficient.t -> bool

end (* CERTIFICATE_POLYNOMIAL *)

(** Structure for a polynomial (ring) whose coefficients are from a given

** Coefficient set. The polynomial a_n x^n + ... + a_1 x + a_0 is stored

** as the list of Coefficients [a_0, a_1, ..., a_n]. **)

functor PolynomialRing (structure Coefficient : BINARY_NUMBER)
: POLYNOMIAL_RING =
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struct
structure Coefficient = Coefficient
structure C = Coefficient

type c = C.t
type t = c list

(*** Zeroes of addition and multiplication ***)
val zero = [C.zero]
val one = [C.one]

(*** IMPORTANT: Input must be in reverse order. ***)
fun normalize nil = zero

| normalize p = if (C.==(hd p, C.zero)) then normalize (tl p) else p

(*** (Arithmetic) Operations ***)
fun op + (p : t, q : t) =

let
fun plus (p, q, revSum) =

case (p, q) of
(a::tailP, b::tailQ) => plus(tailP, tailQ, (C.+(a, b))::revSum)

| (nil, nil) => normalize revSum
| (_, nil) => List.revAppend(p, revSum)
| (nil, _) => List.revAppend(q, revSum)

in
List.rev (plus (p, q, nil))

end

fun op - (p : t, q : t) =
let

fun minus (p, q, revSub) =
case (p, q) of

(a::tailP, b::tailQ) => minus(tailP, tailQ, (C.-(a, b))::revSub)
| (nil, nil) => normalize revSub
| (_, nil) => List.revAppend(p, revSub)
| (nil, _) => List.foldl (fn (a, sub) => (C.~(a))::sub) revSub q

in
List.rev (minus (p, q, nil))

end

fun op ~ (p : t) = List.map (C.~) p

fun op * (p : t, q : t) =
let

fun termMult (a, p) = List.map (fn b => C.*(a, b)) p
fun termAdd (p, q) =

case (p, q) of
(a::tailP, b::tailQ) => (C.+(a, b))::termAdd(tailP, tailQ)

| (_, nil) => p
| (nil, _) => q

fun mult (p, q, sum) =
case p of

a::tail =>
let

val newSum = termAdd(sum, termMult(a, q))
in

(hd newSum)::(mult (tail, q, tl newSum))
end

| nil => sum
in

mult (p, q, nil)
end
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fun scale (p : t, c : C.t) = List.map (fn a => C.*(a, c)) p

(*** Equality ***)
fun op == (a::tailP, b::tailQ) = (C.==(a, b)) andalso (==(tailP, tailQ))

| op == (nil, b::tailQ) = (C.==(b, C.zero)) andalso (==(nil, tailQ))
| op == (a::tailP, nil) = (C.==(a, C.zero)) andalso (==(tailP, nil))
| op == (nil, nil) = true

fun op != (p : t, q : t) = not (==(p, q))

(*** Information ***)
fun degree p = Int.-(List.length p, 1)
fun evaluate p x = List.foldr (fn (a, s) => C.+(a, C.*(x, s))) (C.zero) p

(*** Extended arithmetic ***)
(*** Given two polynomials p(x) and q(x), this function computes ***
*** (c, qt(x), rm(x)) such that c * p(x) = qt(x) * q(x) + rm(x) ***)
fun divMod (p : t, q : t) =

let
fun weightedSub (nil, _, _, _) = nil

| weightedSub (p, nil, wP, _) = List.map (fn a => C.*(a, wP)) p
| weightedSub (a::p, b::q, wP, wQ) =
(C.-(C.*(a, wP), C.*(b, wQ)))::(weightedSub(p, q, wP, wQ))

val diff = Int.-(degree p, degree q)
val (p, q) = (List.rev p, List.rev q)

fun divMod (p, diff) =
if diff < 0 then (C.one, nil, p) else

let
val (a, b) = (hd p, hd q)
val d = C.gcd(a, b)
val (multP, multQ) = (C.div(b, d), C.div(a, d))
val sub = tl (weightedSub(p, q, multP, multQ))
val (c, quotient, remainder) = divMod(sub, Int.-(diff, 1))

in
(C.*(c, multP), (C.*(c, multQ))::quotient, remainder)

end

val (c, qt, rm) = divMod(p, diff)
in

(c, List.rev qt, List.rev rm)
end

(*** Conversions ***)

(*** The polynomial a_n x^n + ... + a_1 x + a_0 is given as

*** [a_n, ..., a_1, a_0] and stored as [a_0, a_1, ..., a_n] ***)
fun fromList c = List.rev (normalize c)

fun toList c = List.rev c

(*** Input to toString has the internal order, but output is reverse ***)
fun toString p =

let
fun polyToString (nil, _, str) = str

| polyToString (a::tail, degree, str) =
let

val term = C.toString a
val str = if degree > 1 then

(term ^ " x^" ^ (Int.toString degree) ^ " + " ^ str)
else if degree = 1 then (term ^ " x + " ^ str)
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else term
in

polyToString (tail, Int.+(degree, 1), str)
end

in
polyToString (p, 0, "")

end

fun fmtString p =
let

fun polyFmtString (nil, _, str) = str
| polyFmtString (a::tail, degree, str) =
let

val term = C.fmtString a
val str = if degree > 1 then

(term ^ " * x ** " ^ (Int.toString degree) ^ " + " ^ str)
else if degree = 1 then (term ^ " * x + " ^ str)
else term

in
polyFmtString (tail, Int.+(degree, 1), str)

end
in

polyFmtString (p, 0, "")
end

(*** Self adjusting stuff ***)
val eq = Eq.list C.eq
val hash = Hash.list C.hash
val key = Key.list C.key

end (* PolynomialRing *)

functor CertificatePolynomial (structure Coefficient : BINARY_NUMBER)
: CERTIFICATE_POLYNOMIAL =

struct
structure P = PolynomialRing (structure Coefficient = Coefficient)
open P

structure C = Coefficient

exception ZeroPolynomial

(*** Operations ***)
fun derivative p =

let
fun prime (nil, _) = nil

| prime (a::tail, degree) =
let

val primeTail = prime(tail, C.+(degree, C.one))
in

if C.==(degree, C.zero) then primeTail
else (C.*(degree, a))::primeTail

end
in

case (prime (p, C.zero)) of nil => zero | p’ => p’
end

(** If evaluation is zero at x, find the sign of the gradient **)
fun gradientSign (p, x) =

let
fun gradientSign p =

case C.sign(evaluate p x) of
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~1 => false
| 1 => true
| _ => gradientSign(derivative p)

in
gradientSign p

end

(*** Information ***)
fun evaluateSignRight p x =

if P.==(p, zero) then raise ZeroPolynomial else (gradientSign(p, x))

fun evaluateSignLeft p x =
let

fun pMinusX (nil, _) = nil
| pMinusX (a::tail, degree) =
(if (Int.rem(degree, 2) = 1) then (C.~ a) else a)::
(pMinusX (tail, Int.+(degree, 1)))

in
if P.==(p, zero) then raise ZeroPolynomial else

case C.sign(evaluate p x) of
~1 => false

| 1 => true
| _ => gradientSign(pMinusX(derivative p, 1), C.~ x)

end

end (* CertificatePolynomial *)

signature STURM_SEQUENCE =
sig

structure Polynomial : CERTIFICATE_POLYNOMIAL

(*** Sturm sequence ***)
type s

(*** Sturm sequence with sigma values at minus and plus infinity ***)
type t = {sequence : s, left : int, right : int}

(*** Information ***)
val squareFreePolynomial : s -> Polynomial.t
val sigma : s * Polynomial.c -> int

(*** Construction ***)
val makeSequence : Polynomial.t -> t

end (* STURM_SEQUENCE *)

signature ROOTS =
sig

structure Polynomial : CERTIFICATE_POLYNOMIAL
structure Interval : INTERVAL where type Number.t = Polynomial.c

(*** t is an interval with necessary information for further refinement ***)
type t

(*** Conversion ***)
val boundaries : t -> Interval.t
val signs : t -> bool * bool
(*val numberOfRoots : t -> int*)

(*** Construction/Modification ***)
(*** Given a polynomial p and a maximum value m, createInterval returns ***
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*** three optional intervals (-infty, -m], (-m, +m], and (+m, +infty). ***
*** NONE implies that there is no root in the corresponding interval. ***)
val createInterval : Polynomial.t * Polynomial.c ->

t option * t option * t option

(*** Given an interval and a point x (guaranteed to be) inside the ***
*** interval, splitInterval computes the necessary information to be ***
*** stored in the left and right intervals and returns these intervals. ***)
val splitInterval : t * Polynomial.c -> t option * t option

(*** Similarly, triSplitInterval trisects the given interval at l and r. ***)
val triSplitInterval : t * Polynomial.c * Polynomial.c ->

t option * t option * t option

(*** Given an interval, a guess for a root and a precision, verifyRoot ***
*** checks whether the lattice interval containing the guess indeed ***
*** has a root. Left of the root, the root interval and right of the ***
*** root are returned. ***)
val verifyRoot : t * real * word -> t option * t option * t option

(*** Given an interval and a precision, iterate refines the interval ***
*** using the root finding algorithm for one iteration. ***)
val iterate : t * word -> t option * t option

end (* ROOTS *)

signature ROOT_SOLVER =
sig

structure Roots : ROOTS

(*** Given a polynomial p, a maximum value m, and the significant number ***
*** of bits n after the radix point, this function enumerates all real ***
*** roots x of p satisfying |x| < m. Approximation error is <= 2^-n. ***)
val allRealRoots : Roots.Polynomial.t * Roots.Polynomial.c * word ->

Roots.t list

end (* ROOT_SOLVER *)

functor SturmSequence (structure Polynomial : CERTIFICATE_POLYNOMIAL)
: STURM_SEQUENCE =

struct
structure Polynomial = Polynomial
structure P = Polynomial
structure C = P.Coefficient

(*** Sequence type is a list of polynomials ***)
type s = P.t list

(*** Main type is a Sturm sequence accompanied with computed values of ***
*** sigma at left and right boundaries. (default = (-infty, +infty)) ***)
type t = {sequence : s, left : int, right : int}

(*** Information ***)

(*** Given a sequence of polynomials, {p_i}, this function counts ***
*** the number of sign changes in f(p_1), f(p_2), ... ***)
fun signChanges (sequence : s, f : P.t -> int) =

let
fun countChanges (p, (count, sign)) =

case f(p) of
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~1 => (if sign = 1 then count + 1 else count, ~1)
| 1 => (if sign = ~1 then count + 1 else count, 1)
| _ => (count, sign)

in
#1 (List.foldl countChanges (0, 0) sequence)

end

(*** Sigma function of a Sturm sequence ***)
fun sigma (sequence : s, x : P.c) =

signChanges(sequence, fn p => C.sign(P.evaluate p x))

(*** Returns the square-free polynomial of the original polynomial. ***)
fun squareFreePolynomial (sequence : s) = hd sequence

(*** Construction ***)

(*** Given a polynomial p(x) this function computes gcd(p(x), p’(x)) ***
*** and the chain of polynomials p(x), p’(x), -rem(p(x)/p’(x)), ... ***)
fun makeChain (p : P.t) =

let
fun chain (p, q) =

if P.==(q, P.zero) then [p] else
let

val (c, _, r) = P.divMod(p, q)
in

p::(chain(q, if C.sign(c) = 1 then P.~ r else r))
end

in
chain(p, P.derivative p)

end

(*** Optimized Sturm sequence computation for quadratic polynomials ***)
fun quadraticSequence (p : P.t) =

let
fun coefficients [a, b, c] = (a, b, c)

| coefficients _ = raise Fail "Not quadratic"
val (a, b, c) = coefficients(P.toList p)
(*** Computing the sign of the discriminant ***)
val delta = C.sign(C.-(C.*(b, b), C.*(C.fromInt(4), C.*(a, c))))

in
(*** delta < 0 => There are no real roots of p(x) ***)
if delta < 0 then {sequence = nil, left = 0, right = 0} else

let
val pA = P.fromList [a]
val p’ = P.derivative p

in
(*** delta = 0 => Double root, it is the root of p’(x) ***)
if delta = 0 then {sequence = [p’, pA], left = 1, right = 0}
(*** delta > 0 => Two distinct real roots ***)
else {sequence = [p, p’, pA], left = 2, right = 0}

end
end

(*** Optimized Sturm sequence computation for cubic polynomials ***)
fun cubicSequence (p : P.t) =

let
fun coefficients [a, b, c, d] = (a, b, c, d)

| coefficients _ = raise Fail "Not cubic"
val (a, b, c, d) = coefficients(P.toList p)

val pA = P.fromList [C.fromInt(C.sign(a))]
val p’ = P.derivative p
val two = C.fromInt(2)
val three = C.fromInt(3)
val nine = C.fromInt(9)
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(*** Remainder of division of (9a p(x)) by p’(x) is -(mx + n) ***)
val m = C.*(two, C.-(C.*(b, b), C.*(three, C.*(a, c))))
val n = C.-(C.*(b, c), C.*(nine, C.*(a, d)))
val q = P.*(pA, P.fromList[m, n])

in
case C.sign(m) of

0 => (case C.sign(n) of
~1 => {sequence = [p, p’, P.~ pA], left = 2, right = 1}
| 1 => {sequence = [p, p’, pA], left = 1, right = 0}
| _ => {sequence = [P.fromList[C.*(three, a), b], pA], left = 1,

right = 0})
| 1 =>
let

val temp = C.*(two, C.-(C.*(c, c), C.*(three, C.*(b, d))))
val delta = C.sign(C.-(C.*(m, temp), C.*(n, n)))

in
case delta of
~1 => {sequence = [p, p’, q, P.~ pA], left = 2, right = 1}
| 1 => {sequence = [p, p’, q, pA], left = 3, right = 0}

(*** TODO: compute this directly! ***)
| _ => quadraticSequence(#2 (P.divMod(p, q)))

end
(*** sgn(delta) = ~1 ***)
| _ => {sequence = [p, p’, q, P.~ pA], left = 2, right = 1}

end

(*** Assuming p(x) = r_1(x) * r_2^2(x) * r_3^3(x) * ..., for square-free ***
*** polynomials r_1(x), r_2(x), r_3(x), ..., this function computes the ***
*** Sturm sequence of the square-free polynomial p(x) / gcd(p(x),p’(x)) ***
*** which is equal to r_1(x) * r_2(x) * r_3(x) * ... ***)
fun makeSequence (p : P.t) =

case P.degree p of
0 => {sequence = nil, left = 0, right = 0}

| 1 => {sequence = [p, P.derivative p], left = 1, right = 0}
| 2 => quadraticSequence p
| 3 => cubicSequence p
| _ =>

let
(*** chain is the sequence of polynomials consisting of the ***
*** remainders in the computation of d(x) = gcd(p(x), p’(x)) ***)
val chain = makeChain p
val d = List.last chain
(*** If gcd is a (non-zero) constant, chain is a valid sequence ***)
val sequence = if (P.degree d) = 0 then chain
(*** Otherwise, use the sequence generated by p(x)/d(x) ***)

else makeChain(#2 (P.divMod(p, d)))

fun signAtPlusInfty p = C.sign(hd (P.toList p))

fun signAtMinusInfty p = (signAtPlusInfty p) *
(if (P.degree p) mod 2 = 1 then ~1 else 1)

in
{sequence = sequence,
left = signChanges(sequence, signAtMinusInfty),
right = signChanges(sequence, signAtPlusInfty)}

end

end (* SturmSequence *)

functor RootsBisection (structure Polynomial : CERTIFICATE_POLYNOMIAL
val IgnoreDoubleRoots : bool) : ROOTS =
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struct
structure Polynomial = Polynomial
structure P = Polynomial
structure S = SturmSequence(structure Polynomial = P)

structure C = P.Coefficient
structure Interval = Interval(structure Number = C)
structure I = Interval

(*** The polynomial with sign values at each end (boundary + epsilon) ***)
type poly = {polynomial : P.t, left : bool, right : bool}

(*** Root type contains a basic interval and an optional Sturm sequence ***)
type t = I.t * poly * S.t option

(*** Conversion ***)
fun boundaries (interval : t) = #1 interval

fun signs ((_, {left, right, ...}, _) : t) = (left, right)

fun numberOfRoots ((_, _, NONE) : t) = 1
| numberOfRoots ((_, _, SOME{left, right, ...}) : t) = left - right

(*** Construction ***)
(*** This function decides whether to store the Sturm sequence, ***
*** as well as whether to store the interval at all or not. ***)
fun intervalSingleRoot (interval : I.t, info : poly, seq : S.t) =

if (#left info) = (#right info) then
if IgnoreDoubleRoots then NONE else SOME(interval, info, SOME(seq))

else SOME(interval, info, NONE)

(*** This function computes sigma values and signs at -infty and +infty ***
*** and returns the interval (-infty, +infty), if there exists a root. ***)
fun infiniteInterval (p : P.t) =

let
val sequence = S.makeSequence p
val numberOfRoots = (#left sequence) - (#right sequence)

in
if numberOfRoots = 0 then NONE else

let
val interval = (I.NEG_INFTY, I.POS_INFTY)
val signRight = C.>(hd(P.toList p), C.zero)
val signLeft = signRight <> ((P.degree p) mod 2 = 1)
val info = {polynomial = p, left = signLeft, right = signRight}

in
if numberOfRoots = 1 then

intervalSingleRoot(interval, info, sequence)
else SOME(interval, info, SOME(sequence))

end
end

(*** This function splits a given interval into two at x. ***)
fun splitInterval ((interval, info, sequence) : t, x : P.c) =

let
val leftInt = (#1 interval, I.CLOSED x)
val rightInt = (I.OPEN x, #2 interval)

val {polynomial = p, left, right} = info
val middle = P.evaluateSignRight p x

val leftInfo = {polynomial = p, left = left, right = middle}
val rightInfo = {polynomial = p, left = middle, right = right}

in
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case sequence of
NONE => if middle=left then (NONE, SOME(rightInt, rightInfo, NONE))

else (SOME(leftInt, leftInfo, NONE), NONE)
| SOME {sequence = seq, left, right} =>

let
val middle = S.sigma(seq, x)
val leftSeq = {sequence = seq, left = left, right = middle}
val rightSeq = {sequence = seq, left = middle, right = right}
val leftRoots = left - middle
val rightRoots = middle - right

in
if leftRoots = 0 then

(NONE, SOME(rightInt, rightInfo, SOME rightSeq))
else if rightRoots = 0 then

(SOME(leftInt, leftInfo, SOME leftSeq), NONE)
else

(if leftRoots > 1 then SOME(leftInt, leftInfo, SOME leftSeq)
else intervalSingleRoot(leftInt, leftInfo, leftSeq)
,if rightRoots > 1 then SOME(rightInt,rightInfo,SOME rightSeq)
else intervalSingleRoot(rightInt, rightInfo, rightSeq))

end
end

fun triSplitInterval (interval : t, l : P.c, r : P.c) =
case splitInterval(interval, r) of

(NONE, right) => (NONE, NONE, right)
| (SOME midLeft, right) =>

(case splitInterval(midLeft, l) of
(NONE, mid) => (NONE, mid, right)

| (left, mid) => (left, mid, right))

fun createInterval (p : P.t, m : P.c) =
case infiniteInterval p of

NONE => (NONE, NONE, NONE)
| SOME interval => triSplitInterval(interval, C.~ m, m)

fun verifyRoot (interval : t, root : real, precision : word) =
let

val rootInt = I.fromReal(root, precision, true, false)
in

case I.intersect(boundaries interval, rootInt) of
NONE => (NONE, NONE, SOME interval)

| SOME(I.OPEN l, I.CLOSED r) => triSplitInterval(interval, l, r)
| _ => raise Fail "Expecting half open boundary (x, y]."

end

fun iterate (roots : t, precision : word) =
case boundaries roots of

(I.OPEN l, I.CLOSED r) =>
splitInterval(roots, C.truncate(C.shift(C.+(l, r), ~1), precision))

| _ => raise Fail "Expecting half open boundary (x, y]."

end (* RootsBisection *)

functor RootSolver (structure Roots : ROOTS) : ROOT_SOLVER =
struct

structure Roots = Roots
structure R = Roots
structure P = R.Polynomial
structure C = P.Coefficient

structure AC = ApproximateReal
structure AP = CertificatePolynomial(structure Coefficient = AC)
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(*** Optimized root solvers for polynomials of degree < 4. ***)
fun linearSolver [a, b] = [~b / a]

| linearSolver _ = raise Fail "Not linear"

fun quadraticSolver [a, b, c] =
let

val determinant = b * b - 4.0 * a * c
in

case Real.compare(determinant, 0.0) of
LESS => []

| EQUAL => [~0.5 * b / a]
| GREATER =>

let
val temp = ~0.5 * (b + (Real.Math.sqrt determinant))
val root = temp / a
val root’ = c / temp

in
if root > root’ then [root’, root] else [root, root’]

end
end
| quadraticSolver _ = raise Fail "Not quadratic"

fun cubicSolver [a, b, c, d] =
let

(*** a x^3 + b x^2 + c x + d ==> x^3 + a x^2 + b x + c ***)
val (a, b, c) = (b / a, c / a, d / a)

(*** x = t - a/3 ==> x^3 + a x^2 + b x + c = t^3 + p t + q ***)
val lambda = a / 3.0
val P = a * a - 3.0 * b (*** P = -3p ***)
val Q = (2.0 * a * a - 9.0 * b) * a + 27.0 * c (*** Q = 27q ***)

val roots =
if Real.==(P, 0.0) then (*** One real root ***)

if Q > 0.0 then [~1.0 * Real.Math.pow(Q / 27.0, 1.0 / 3.0)]
else [Real.Math.pow(~Q / 27.0, 1.0 / 3.0)]

else let (*** Delta = (Q2 - FourP3)/2916 ***)
val FourP3 = 4.0 * P * P * P (*** -108 p^3 ***)
val Q2 = Q * Q (*** 729 q^2 ***)

in case Real.compare(Q2, FourP3) of
LESS => (*** Delta < 0, three real roots ***)
let

val theta = Real.Math.acos(Q / Real.Math.sqrt(FourP3))
val m = Real.Math.sqrt(P) / ~1.5
val r0 = m * Real.Math.cos(theta / 3.0)
val r1 = m * Real.Math.cos((theta - 2.0 * Real.Math.pi) / 3.0)
val r2 = m * Real.Math.cos((theta + 2.0 * Real.Math.pi) / 3.0)

in
[r0, r1, r2]

end
| EQUAL => (*** Delta = 0, two real roots ***)
let

val sqrt = Real.Math.sqrt(P / 9.0)
in

if Q > 0.0 then [~2.0 * sqrt, sqrt] else [~sqrt, 2.0 * sqrt]
end

| GREATER => (*** Delta > 0, one real root ***)
let

val temp = Real.abs(Q) + Real.Math.sqrt(Q2 - FourP3)
val A = Real.Math.pow(temp / 54.0, 1.0 / 3.0)
val root = A + P / 9.0 / A

in
if Q > 0.0 then [~root] else [root]

end
end

in
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List.map (fn r => r - lambda) roots
end
| cubicSolver _ = raise Fail "Not cubic"

fun approximateRoots (p : P.t) =
let

val coefficients = List.map C.toReal (P.toList p)
in

case P.degree p of
1 => (linearSolver coefficients)

| 2 => (quadraticSolver coefficients)
| 3 => (cubicSolver coefficients)
| _ => nil

(*let
val p = AP.fromList(List.map AC.fromReal coefficients)

in end*)
end

fun allRealRoots (p : P.t, m : P.c, precision : word) =
let

val delta = C.shift(C.one, ~(Word.toInt precision))

fun findRoots NONE = []
| findRoots (SOME interval) =
if C.>(R.Interval.length(R.boundaries interval), delta) then

let
val (left, right) = R.iterate(interval, precision)

in
(findRoots left) @ (findRoots right)

end
else [interval]

fun verify (NONE, _) = []
| verify (interval, []) = findRoots interval
| verify (SOME interval, root::roots) =
let

val (left, mid, right) = R.verifyRoot(interval, root, precision)
in

(findRoots left) @ (findRoots mid) @ (verify(right, roots))
end

val (left, interval, right) = R.createInterval(p, m)
in

verify(interval, approximateRoots p)
end

end (* RootSolver *)

A.1.3 Geometry

In the geometry library, we assume every coordinate to be a polynomial, either a constant polyno-

mial or any single variable polynomial of degree ≥ 1. Using this coordinate structure we design

the basics such as points and simplices, and construct the setup for applications in two or three

dimensions.
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signature COORDINATE =
sig

(*** Coordinates can be any function that implements RING ***)
include RING

(*** Coordinate functions’ domain (also range) is Domain ***)
structure Domain : BINARY_NUMBER

(*** Roots of a certificate fail inside an interval ***)
structure Interval : INTERVAL where type Number.t = Domain.t

(*** Result type for evaluating coordinates ***)
type d = Domain.t

(*** Certificates should not be derived from constant zero functions ***)
exception ZeroFunction

(*** The origin for evalCertificate, useful in Kinetic testing ***)
val origin : d ref

(*** Constant Function ***)
val constant : d -> t

(*** Evaluation ***)
val evaluate : t -> d -> d

(*** Dynamic Predicates ***)

(*** Sign evaluation without creating a certificate (no roots computed) ***
*** First parameter is the default result for zero evaluation ***)
val evalCertificate : bool option -> t -> bool

(*** Comparison functions (no roots computed) ***)
val compare : t * t -> order
val < : t * t -> bool
val <= : t * t -> bool
val > : t * t -> bool
val >= : t * t -> bool

(*** Kinetic Certificate Creation ***)

(*** Creating a certificate: word * word are the precision parameters ***
bool option is the default result for zero ***)

val makeCertificate : word * word -> bool option -> t ->
(*** The certificate is represented as a discrete ***
*** boolean function (undefined in the intervals) ***)
bool * (Interval.t * bool) list

end (* COORDINATE *)

functor FixedCoordinate (structure Domain : BINARY_NUMBER) :
COORDINATE where type t = Domain.t =

struct
structure Domain = Domain
structure Interval = Interval(structure Number = Domain)
open Domain

type d = Domain.t

exception ZeroFunction

(*** Defining origin, just to comply with the signature ***)
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val origin = ref Domain.zero

(*** Constant Function ***)
fun constant n = n

(*** Evaluation ***)
fun evaluate n = fn _ => n

(*** Certificate evaluation ***)
fun evalCertificate zeroEval n =

case Domain.compare(n, Domain.zero) of
EQUAL => (case zeroEval of

NONE => raise ZeroFunction
| SOME sign => sign)

| GREATER => true
| LESS => false

(*** Certificate creation ***)
fun makeCertificate _ zeroEval n = (evalCertificate zeroEval n, [])

end (* FixedCoordinate *)

functor PolynomialCoordinate (structure RootSolver : ROOT_SOLVER
val UseLeftGradient : bool) :

COORDINATE where type t = RootSolver.Roots.Polynomial.t =
struct

structure Roots = RootSolver.Roots
structure Domain = Roots.Polynomial.Coefficient
structure Interval = Roots.Interval

open Roots.Polynomial

type d = Domain.t

exception ZeroFunction

(*** Defining origin to be used in evalCertificate ***)
val origin = ref Domain.zero

fun constant n = fromList [n]

(*** Certificate evaluation ***)
fun evalInclude x p = Domain.>=(evaluate p x, Domain.zero)
fun evalExclude x p = Domain.>(evaluate p x, Domain.zero)
fun evalLeft x p = evaluateSignLeft p x
fun evalRight x p = evaluateSignRight p x

fun evalCertificate zeroEval =
(case zeroEval of

SOME true => evalInclude
| SOME false => evalExclude
| NONE => if UseLeftGradient then evalLeft else evalRight) (!origin)

(*** Comparison Functions ***)
fun compare (p, q) =

let
val diff = evaluate (p - q) (!origin)

in
if Domain.==(diff, Domain.zero) then EQUAL
else if Domain.>(diff, Domain.zero) then GREATER else LESS

end

fun op > (p, q) = evalCertificate (SOME false) (p - q)
fun op >= (p, q) = evalCertificate (SOME true) (p - q)
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fun op < (p, q) = evalCertificate (SOME false) (q - p)
fun op <= (p, q) = evalCertificate (SOME true) (q - p)

(*** Certificate creation ***)
(*** Left: p(x) actually means p(x - epsilon) for infinitesimally

small epsilon. In other words, the sign of the polynomial
does not change in the interval (x - epsilon, x).
Therefore, roots lie in the intervals of the form [x0, x1) ***)

fun leftCertificate (_ : word * word) (_ : bool option) p =
(evaluateSignLeft p Domain.zero, [] : (Interval.t * bool) list)

(*** Right: Similarly, p(x) actually means p(x + epsilon).
Therefore, roots lie in the intervals of the form (x0, x1] ***)

fun rightCertificate (whole, fraction) zeroEval p =
let

val maximum = Domain.shift(Domain.one, Word.toInt whole)
val roots = RootSolver.allRealRoots(p, maximum, fraction)
val sign = if List.null roots then (evalCertificate zeroEval p)

else #1(Roots.signs(hd roots))
fun format r = (Roots.boundaries r, #2 (Roots.signs r))

in
(sign, List.map format roots)

end

val makeCertificate = if UseLeftGradient then leftCertificate
else rightCertificate

fun toString p = Domain.toString(evaluate p (!origin))

end (* PolynomialCoordinate *)

After implementing coordinates, now we define the tuple, simplex, point, and geometry signa-

tures and structures.

signature TUPLE =
sig

(*** Any d-dimensional tuple (d-tuple) type ***)
type ’a tuple

val dimension : int

val unitTuple : unit tuple

val map : (’a -> ’b) -> ’a tuple -> ’b tuple
val fold : (’a * ’a -> ’a) -> ’a tuple -> ’a
val all : (’a -> bool) -> ’a tuple -> bool
val exists : (’a -> bool) -> ’a tuple -> bool

val mapPair : (’a * ’b -> ’c) -> ’a tuple * ’b tuple -> ’c tuple
val allPair : (’a * ’b -> bool) -> ’a tuple * ’b tuple -> bool
val existsPair : (’a * ’b -> bool) -> ’a tuple * ’b tuple -> bool

(*** String ***)
val fmt : string * string * string -> (’a -> string) -> ’a tuple -> string
val mapToString : (’a -> string) -> ’a tuple -> string

(*** Self adjusting stuff ***)
val eqTuple : ’a Eq.t -> ’a tuple Eq.t
val hashTuple : ’a Hash.t -> ’a tuple Hash.t
val keyTuple : ’a Key.t -> ’a tuple Key.t

end (* TUPLE *)
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signature SIMPLEX =
sig

include TUPLE

(*** Base type is a coordinate (for points) or a point ***)
type base

(*** Main type is a d-tuple of the base type ***)
type t = base tuple

(*** Coordinate type ***)
type c

(*** Arithmetic ***)
val + : t * t -> t
val - : t * t -> t
val ~ : t -> t
val scale : t * c -> t

(*** Equality ***)
val == : t * t -> bool
val != : t * t -> bool

(*** String ***)
val toString : t -> string
val fmtString : t -> string

(*** Self adjusting stuff ***)
val eq : t Eq.t
val hash : t Hash.t
val key : t Key.t

end (* SIMPLEX *)

signature POINT =
sig

(*** Main type is a d-tuple of coordinates ***)
include SIMPLEX sharing type base = c

(*** Arithmetic ***)
val dot : t * t -> c
val squareDistance : t * t -> c

end (* POINT *)

signature GEOMETRY =
sig

include TUPLE

structure Coordinate : COORDINATE

structure Vertex : POINT where type c = Coordinate.t
where type ’a tuple = ’a tuple

type input = real tuple

type pair = Coordinate.t * Coordinate.t
type ball = Vertex.t * Coordinate.t
type circle = Vertex.t * Vertex.t tuple

val origin : Vertex.t
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val NotImplemented : exn

(*** Input generators ***)
val randomInSquarePoint : real * real * Random.rand -> input
val randomInCirclePoint : real * real * Random.rand -> input

(*** Geometric functions ***)
val normal : Vertex.t tuple -> Vertex.t
val centerWithOrigin : Vertex.t tuple -> Vertex.t * Coordinate.t
val center : circle -> Vertex.t * Coordinate.t

(*** Certificates ***)
val halfSpaceTest : Vertex.t tuple * Vertex.t -> Coordinate.t

(*** Dynamic predicates and functions ***)
val squareDistanceVertexRectangle : Vertex.t * pair tuple -> Coordinate.t

end (* GEOMETRY *)

structure Pair : TUPLE =
struct

type ’a tuple = ’a * ’a

val dimension = 2

val unitTuple = ((), ())

fun map f (x, y) = (f x, f y)
fun fold f (x, y) = f (x, y)
fun all f (x, y) = (f x andalso f y)
fun exists f (x, y) = (f x orelse f y)

fun mapPair f ((px, py), (qx, qy)) = (f (px, qx), f (py, qy))
fun allPair f ((px, py), (qx, qy)) = (f (px, qx) andalso f (py, qy))
fun existsPair f ((px, py), (qx, qy)) = (f (px, qx) orelse f (py, qy))

(*** String ***)
fun fmt (left, mid, right) str (x, y) = left ^ str x ^ mid ^ str y ^ right
fun mapToString str = fmt ("(", ", ", ")") str

(*** Self adjusting stuff ***)
fun eqTuple eq = Eq.tuple2 (eq, eq)
fun hashTuple hash = Hash.tuple2 (hash, hash)
fun keyTuple key = Key.tuple2 (key, key)

end (* Pair *)

structure Triple : TUPLE =
struct

type ’a tuple = ’a * ’a * ’a

val dimension = 3

val unitTuple = ((), (), ())

fun map f (x, y, z) = (f x, f y, f z)
fun fold f (x, y, z) = f(x, f(y, z))
fun all f (x, y, z) = (f x andalso f y andalso f z)
fun exists f (x, y, z) = (f x orelse f y orelse f z)
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fun mapPair f ((px, py, pz), (qx, qy, qz)) = (f(px,qx), f(py,qy), f(pz,qz))
fun allPair f ((px, py, pz), (qx, qy, qz)) = (f(px,qx) andalso f(py,qy)

andalso f(pz,qz))
fun existsPair f ((px, py, pz), (qx, qy, qz)) = (f(px,qx) orelse f(py,qy)

orelse f(pz,qz))

(*** String ***)
fun fmt (left, mid, right) str tpl =

left ^ fold (fn (s, s’) => s ^ mid ^ s’) (map str tpl) ^ right
fun mapToString str = fmt ("(", ", ", ")") str

(*** Self adjusting stuff ***)
fun eqTuple eq = Eq.tuple3 (eq, eq, eq)
fun hashTuple hash = Hash.tuple3 (hash, hash, hash)
fun keyTuple key = Key.tuple3 (key, key, key)

end (* Triple *)

functor Simplex (structure Point : POINT
structure Tuple : TUPLE) : SIMPLEX =

struct
structure P = Point

open Tuple

type c = P.c
type base = P.t
type t = base tuple

(*** Arithmetic ***)
val op + = mapPair P.+
val op - = mapPair P.-
val op ~ = map P.~
fun scale (s, c) = map (fn p => P.scale(p, c)) s

(*** Equality ***)
val op == = allPair P.==
val op != = existsPair P.!=

(*** String ***)
val toString =

fmt (Int.toString(Int.-(dimension,1)) ^ "Simplex[", ", ", "]") P.toString
fun fmtString s = fold (op ^) (map P.fmtString s) ^ "\n"

(*** Self adjusting stuff ***)
val eq = eqTuple P.eq
val hash = hashTuple P.hash
val key = keyTuple P.key

end (* Simplex *)

functor Point (structure Coordinate : COORDINATE
structure Tuple : TUPLE) : POINT =

struct
structure Coordinate = Coordinate
structure C = Coordinate

open Tuple

type c = Coordinate.t
type base = c
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type t = base tuple

(*** Arithmetic ***)
val op + = mapPair C.+
val op - = mapPair C.-
val op ~ = map C.~
fun scale (p, c) = map (fn x => C.*(x, c)) p
val dot = (fold C.+) o (mapPair C.*)
fun squareDistance (p, q) = let val d = p - q in dot (d, d) end

(*** Equality ***)
val op == = allPair C.==
val op != = existsPair C.!=

(*** String ***)
val toString = mapToString C.toString
val fmtString = fmt ("", " ", "\n") C.fmtString

(*** Self adjusting stuff ***)
val eq = eqTuple C.eq
val hash = hashTuple C.hash
val key = keyTuple C.key

end (* Point *)

functor Geometry (structure Coordinate : COORDINATE
structure Tuple : TUPLE) : GEOMETRY =

struct
structure Coordinate = Coordinate
structure Vertex = Point (structure Coordinate = Coordinate

structure Tuple = Tuple)

structure C = Coordinate
structure V = Vertex

open Tuple

type input = real tuple

type pair = C.t * C.t
type ball = V.t * C.t
type circle = V.t * V.t tuple

val origin = map (fn () => C.zero) unitTuple

val NotImplemented = Fail ("This function is not implemented for " ^
Int.toString dimension ^ "D!")

(*** Input generation ***)
(*** Generates a random point in Square(O; max) / Square(O; max*alpha) ***)
fun randomInSquarePoint (max, alpha, state) =

let
(*** Random Cartesian coordinates ***)
fun randomCoordinate () = max * (alpha + (1.0 - alpha) *

(Random.randReal state))
in

map randomCoordinate unitTuple
end

(*** Generates a random point in Ball(O; r) / B(O; r * alpha) ***)
fun randomInCirclePoint (r, alpha, state) = raise NotImplemented

(*** Geometric functions ***)
fun normal vertices = raise NotImplemented
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fun centerWithOrigin vertices = raise NotImplemented

(*** WARNING : This function must be implemented in the extended ***
*** structure since centerWithOrigin is dimension specific ***)
fun center (v, vertices) =

let
val verticesShifted = map (fn u => V.-(u, v)) vertices
val (origin, scale) = centerWithOrigin verticesShifted

in
(V.+(origin, V.scale(v, scale)), scale)

end

(*** Return value > 0 <==> p is on the positive half of the space ***)
fun halfSpaceTest (vertices, p) = raise NotImplemented

(*** Dynamic predicates and functions ***)
(*** Distance from vertex to rectangle ***)
fun squareDistanceVertexRectangle (vertex, pairs) =

let
fun distanceToInterval (x, (a, b)) =

if C.>(a, x) then
let val dist = C.-(a, x)
in C.*(dist, dist) end

else if C.>(x, b) then
let val dist = C.-(x, b)
in C.*(dist, dist) end

else C.zero
in

fold C.+ (mapPair distanceToInterval (vertex, pairs))
end

end (* Geometry *)

Finally, we implement the two and three dimensional geometry structures.

signature GEOMETRY_2D =
sig

include GEOMETRY

structure Edge : SIMPLEX where type c = Coordinate.t
where type base = Vertex.t
where type ’a tuple = ’a Pair.tuple

(*** Certificates ***)
val atLeftOf : Vertex.t * Vertex.t -> Coordinate.t
val atRightOf : Vertex.t * Vertex.t -> Coordinate.t
val largerProjection : Vertex.t -> Vertex.t * Vertex.t -> Coordinate.t

end (* GEOMETRY_2D *)

functor Geometry2D (structure Coordinate : COORDINATE) : GEOMETRY_2D =
struct

structure Geometry = Geometry (structure Coordinate = Coordinate
structure Tuple = Pair)

open Geometry

structure Edge = Simplex (structure Point = Vertex
structure Tuple = Pair)
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structure C = Coordinate
structure V = Vertex
structure E = Edge

(*** Input generation ***)
(*** Generates a random point in Ball(O; r) / B(O; r * alpha) ***)
fun randomInCirclePoint (r, alpha, state) =

let
(*** Random cylindirical coordinates ***)
val theta = 2.0 * Real.Math.pi * (Random.randReal state)
val r = r * (alpha + (1.0 - alpha) * (Random.randReal state))

(*** Convert to Cartesian coordinates ***)
val x = r * (Real.Math.cos theta)
val y = r * (Real.Math.sin theta)

in
(x, y)

end

(*** Geometric functions ***)
fun normal (((x1, y1), (x2, y2)) : E.t) : V.t = (C.-(y1, y2), C.-(x2, x1))

fun centerWithOrigin (v1 as (x1, y1), v2 as (x2, y2)) =
let

val norm1 = V.dot(v1, v1)
val norm2 = V.dot(v2, v2)
val x = C.-(C.*(y2, norm1), C.*(y1, norm2))
val y = C.-(C.*(x1, norm2), C.*(x2, norm1))
val two = C.constant(C.Domain.fromInt 2)
val scale = C.*(two, C.-(C.*(x1, y2), C.*(y1, x2)))

in
((x, y), scale)

end

fun center (v, vertices) =
let

val verticesShifted = map (fn u => V.-(u, v)) vertices
val (origin, scale) = centerWithOrigin verticesShifted

in
(V.+(origin, V.scale(v, scale)), scale)

end

(*** Certificates ***)
(*** Return value > 0 <==> u is at the left of v ***)
fun atLeftOf ((xu, _) : V.t, (xv, _) : V.t) : C.t = C.-(xv, xu)

(*** Return value > 0 <==> u is at the right of v ***)
fun atRightOf ((xu, _) : V.t, (xv, _) : V.t) : C.t = C.-(xu, xv)

(*** Return value > 0 <==> p is on the positive half of the line uv ***)
fun halfSpaceTest ((u, v) : E.t, p : V.t) : C.t =

let
val (x1, y1) = V.-(u, p)
val (x2, y2) = V.-(v, p)

in
C.-(C.*(x1, y2), C.*(x2, y1))

end

(*** Return value > 0 <==> u.vector > v.vector ***)
fun largerProjection vector (u : V.t, v : V.t) : C.t =

C.-(V.dot(u, vector), V.dot(v, vector))

end (* Geometry2D *)
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signature GEOMETRY_3D =
sig

include GEOMETRY

structure Edge : SIMPLEX where type c = Coordinate.t
where type base = Vertex.t
where type ’a tuple = ’a Pair.tuple

structure Face : SIMPLEX where type c = Coordinate.t
where type base = Vertex.t
where type ’a tuple = ’a Triple.tuple

end (* GEOMETRY_3D *)

functor Geometry3D (structure Coordinate : COORDINATE) : GEOMETRY_3D =
struct

structure Geometry = Geometry (structure Coordinate = Coordinate
structure Tuple = Triple)

open Geometry

structure Edge = Simplex (structure Point = Vertex
structure Tuple = Pair)

structure Face = Simplex (structure Point = Vertex
structure Tuple = Triple)

structure C = Coordinate
structure V = Vertex
structure E = Edge
structure F = Face

(*** Return value > 0 <==> p is on the positive half of the plane uvw ***)
fun halfSpaceTest ((u, v, w) : F.t, p : V.t) : C.t =

let
val (x1, y1, z1) = V.-(u, p)
val (x2, y2, z2) = V.-(v, p)
val (x3, y3, z3) = V.-(w, p)

val mz = C.*(z3, C.-(C.*(x1, y2), C.*(x2, y1)))
val my = C.*(y3, C.-(C.*(z1, x2), C.*(z2, x1)))
val mx = C.*(x3, C.-(C.*(y1, z2), C.*(y2, z1)))

in
C.+(C.+(mx, my), mz)

end

end (* Geometry3D *)

A.2 3D Convex Hulls

We provide the ∆ML code for the self-adjusting application signature and the application set-

tings signatures. We then implement two functors for generating dynamic or kinetic versions of a

given self-adjusting application. Using these settings, we implement our self-adjusting convex hull

algorithm in ∆ML. In the code, we use the term adaptive as a synonym for the term self adjusting.

128



Our implementation yields a dynamic algorithm when compiled with the dynamic settings, and

a kinetic algorithm when compiled with the kinetic settings. Furthermore, we use an added feature

of the ∆ML library that allows any self-adjusting program to be compiled into a static algorithm.

Therefore, our self-adjusting convex hull program can be compiled into three different versions:

static, dynamic, and kinetic. In our experiments, we use the static version to check the correctness

of the dynamic and kinetic versions.

A.2.1 Self-Adjusting Applications

We provide the generic adaptive application code and the generic adaptive dynamic and kinetic

settings code. Since the nonadaptive version is generated automatically, we do not include the

code for the nonadaptive version. However, one can think of the automatically generated nonadap-

tive code to be the same adaptive code where all ∆ML specific annotations are dropped, hence,

disallowing any tracing to be done during the execution.

signature APPLICATION_ADAPTIVE =
sig

(*** Structure for application settings ***)
structure Settings : APPLICATION_SETTINGS_ADAPTIVE

(*** Input type ***)
type it

(*** Output type ***)
type ot

(*** Application main function ***)
val run : it -$> ot

val propagate : unit -> unit

end (* APPLICATION_ADAPTIVE *)

signature APPLICATION_SETTINGS_ADAPTIVE =
sig

(*** Hash structure ***)
structure Hash : HASH_ADAPTIVE

(*** Key structure ***)
structure Key : KEY_ADAPTIVE

(*** Base structure for representing moving/fixed points or numbers. ***)
structure Coordinate : COORDINATE
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(*** Evaluation function for geometric primitives (certificates) ***)
val evaluate : bool option -> Coordinate.t -$> bool

(*** Time for kinetic simulation ***)
val nextFailure : unit -> Coordinate.d option
val prevFailure : unit -> Coordinate.d option

val getTime : unit -$> Coordinate.d
val setTime : Coordinate.d -> unit

val incTime : int -> unit
val decTime : int -> unit

val resetStats : unit -> unit
val statsToString: unit -> string
val printStats: unit -> unit

val propagate : unit -> unit
val changed : bool Adaptive.Box.t

val printOutput : bool ref

end (* APPLICATION_SETTINGS_ADAPTIVE *)

functor MkDynamicSettingsAdaptive (structure Hash : HASH_ADAPTIVE
structure Key : KEY_ADAPTIVE
structure Coordinate : COORDINATE) :

APPLICATION_SETTINGS_ADAPTIVE =
struct

structure Hash = Hash
structure Key = Key
structure Coordinate = Coordinate

fun evaluate zeroEval = afn c => Coordinate.evalCertificate zeroEval c

fun nextFailure () = NONE
fun prevFailure () = NONE

afun getTime () = !Coordinate.origin
fun setTime t = Coordinate.origin := t

fun incTime c = ()
fun decTime c = ()

fun resetStats () = ()
fun statsToString () = "No Application Specific Statistics"
fun printStats () = print (statsToString ())

val changed = Adaptive.Box.Meta.new true
fun propagate () = (Adaptive.Box.Meta.change(changed, false);

Adaptive.Box.Meta.change(changed, true);
Adaptive.Meta.propagate(); ())

val printOutput = ref false

end (* MkDynamicSettingsAdaptive *)

functor MkKineticSettings (structure Hash : HASH_ADAPTIVE
structure Key : KEY_ADAPTIVE
structure Coordinate : COORDINATE
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val bits : word * word) :
APPLICATION_SETTINGS_ADAPTIVE =

struct
structure Hash = Hash
structure Key = Key
structure Coordinate = Coordinate

structure Time = Coordinate.Domain

structure MBox =
struct

structure IBox = Adaptive.IBox
structure MBox = Adaptive.RetroModular

datatype (’a,’b) t = T of {ibox: ’a IBox.t, mbox: (’a,’b) MBox.t}

val eq = fn (T{mbox=x1,...}, T{mbox=x2,...}) => MBox.eq (x1,x2)
val hash = fn T{mbox=x,...} => MBox.hash x
val key = {eq=eq, hash=hash}

structure Meta =
struct

val toString = fn f => fn T{mbox,...} => MBox.Meta.toString f mbox
val new = fn (cmp,v) => T {ibox=IBox.Meta.new v, mbox=MBox.Meta.new (cmp,v)}
val next = fn T{mbox,...} => MBox.Meta.next mbox
val prev = fn T{mbox,...} => MBox.Meta.prev mbox
val change = fn (T{ibox,mbox},v) =>

(IBox.Meta.change (ibox,v)
; MBox.Meta.change (mbox,v))

val deref = fn T{mbox,...} => MBox.Meta.deref mbox
structure Stats =
struct

val reset = fn T{mbox,...} => MBox.Meta.Stats.reset mbox
val get = fn T{mbox,...} => MBox.Meta.Stats.get mbox

end
end

val get = afn T{ibox,...} => IBox.get $ ibox
val map = afn (T{mbox,...},bounds) => MBox.map $ (mbox, bounds)

end

val epsilon = Time.shift(Time.one, ~(Word.toInt(#2 bits)))
val time = MBox.Meta.new (Time.compare, Time.zero)
val () = MBox.Meta.Stats.reset time

fun evaluate zeroEval = afn c =>
let

val (signLeft, roots) =
Coordinate.makeCertificate bits zeroEval c

fun signRight (i, b) = (#2 (Coordinate.Interval.toNumber i), b)
in

MBox.map $ (time, Boundary.Discrete.Bounds
{first = signLeft, above = List.map signRight roots})

end

afun getTime () = MBox.get $ time

fun nextFailure () = MBox.Meta.next time
fun prevFailure () =

case MBox.Meta.prev time of
NONE => NONE

| SOME t => SOME(Time.-(t, epsilon))

val printOutput = ref false
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fun setTimePerPropagateStats t =
if !printOutput then

(MBox.Meta.Stats.reset time;
Coordinate.origin := t;
MBox.Meta.change(time, t))

else
let

val {mapReadersInsert = i, mapReadersRemove = r, ...} =
MBox.Meta.Stats.get time

val () = print ("Certificates Deleted = " ^ Int.toString r ^ "\n")
val () = print ("Certificates Inserted = " ^ Int.toString i ^"\n")
val () = print ("Time = " ^ (Time.toString t) ^ "\n")

val () = MBox.Meta.Stats.reset time
val () = Coordinate.origin := t
val () = MBox.Meta.change(time, t)

val {mapReadersWakeUp = w, ...} = MBox.Meta.Stats.get time
val () = print ("Certificates Changed = " ^ Int.toString w ^ "\n")

in
()

end

fun setTimeGlobalStats t =
if !printOutput then

(Coordinate.origin := t;
MBox.Meta.change(time, t))

else
let

(*val () = print ("Time = " ^ (Time.toString t) ^ "\n")*)
val () = Coordinate.origin := t
val () = MBox.Meta.change(time, t)

in
()

end

val setTime = setTimeGlobalStats

fun incTime c = setTime(Time.+(MBox.Meta.deref time,
Time.*(Time.fromInt c, epsilon)))

fun decTime c = incTime(~c)

fun resetStats () = MBox.Meta.Stats.reset time

fun statsToString () =
let

val {mapReadersInsert = i,
mapReadersRemove = r,
mapReadersWakeUp = w, ...} = MBox.Meta.Stats.get time

val () = resetStats()
in

("Certificates Deleted: " ^ Int.toString r ^ "\n" ^
"Certificates Inserted: " ^ Int.toString i ^ "\n" ^
"Certificates Woken up: " ^ Int.toString w)

end
fun printStats () =

print ("Application-Specific Statistics: " ^ statsToString () ^ "\n")

val changed = Adaptive.Box.Meta.new true
fun propagate () = (Adaptive.Box.Meta.change(changed, false);

Adaptive.Box.Meta.change(changed, true);
Adaptive.Meta.propagate(); ())

end (* MkKineticSettings *)
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A.2.2 Incremental 3D Convex Hull Algorithm

First, we provide the code of the extended geometry which includes the geometric data structures

for the convex hull algorithm. Then, we include the adaptive incremental convex hull algorithm in

three dimensions. The code follows the pseudo-code described in Chapter 2.

signature EXTENDED_GEOMETRY_3D_ADAPTIVE =
sig

structure Primitives : GEOMETRY_3D

type vertex
type edge = vertex * vertex
type face

val vertexID : vertex -> int
val edgeID : edge -> int * int
val faceID : face -> int * int * int

(*** Constructors ***)
val mkNewVertex : unit -$> int * Primitives.Vertex.t -$> vertex
val mkNewFace : unit -$> vertex * edge -$> face

(*** Conversions ***)
val vertexData : vertex -> Primitives.Vertex.t
val edgeData : edge -> Primitives.Edge.t
val faceData : face -> Primitives.Face.t
val facePyramidSides : face * Primitives.Vertex.t ->

Primitives.Face.t * Primitives.Face.t

(*** Modifiable fields ***)
val getVertexFaces : vertex -$> face ListEqAdaptive.t
val getVertexLastFace : vertex -$> (int * face) option
val getFaceNeighbors : face -$> (face * edge) * (face * edge) * (face * edge)
val getFaceKiller : face -$> vertex option

val setVertexFaces : vertex * face ListEqAdaptive.t -$> unit
val setVertexLastFace : vertex * (int * face) -$> unit
val setFaceNeighbor : face * edge * face -$> unit
val setFaceKiller : face * vertex -$> unit

(*** String ***)
val vertexToIDString : vertex -> string
val edgeToIDString : edge -> string
val faceToIDString : face -> string

val vertexToString : vertex -> string
val edgeToString : edge -> string
val faceToString : face -> string

end (* EXTENDED_GEOMETRY_3D_ADAPTIVE *)

signature IHULL3D_ADAPTIVE =
sig

include APPLICATION_ADAPTIVE

structure Geometry : EXTENDED_GEOMETRY_3D_ADAPTIVE
where type Primitives.Coordinate.t = Settings.Coordinate.t

end
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(**********************************************************************
** Description: 3 dimensional geometric structures

**
** Edges and faces are oriented; the representation is canonical

** for the faces: (0, 1, 2) represents (1, 2, 0) and (2, 0, 1). The

** vertex with the smallest ID is the first one. Faces (0, 1, 2)

** and (0, 2, 1) are the same face with opposite orientations. The

** edges of the face (0, 1, 2) are (0, 1), (1, 2), and (2, 0).

**********************************************************************)
functor MkExtendedGeometry3DAdaptive (structure Primitives : GEOMETRY_3D) :

EXTENDED_GEOMETRY_3D_ADAPTIVE =
struct

structure Primitives = Primitives
structure Box = Adaptive.Box
structure IBox = Adaptive.IBox
structure List = ListEqAdaptive
structure Key = KeyDfltAdaptive

datatype vertex = Vertex of {id : int,
data : Primitives.Vertex.t,
faces : face List.t IBox.t,
lastFace : (int * face) option IBox.t}

and face = Face of {vertices : (vertex * vertex * vertex),
neighbors : (face option IBox.t *

face option IBox.t * face option IBox.t),
killer : vertex option IBox.t}

type edge = vertex * vertex

fun vertexID (Vertex {id, ...}) = id

fun edgeID (u, v) = (vertexID u, vertexID v)

fun faceID (Face {vertices = (u, v, w), ...}) =
(vertexID u, vertexID v, vertexID w)

(*** Constructors ***)
afun mkNewVertex () =

let
val putMFaces = #putM (IBox.PutMemoTable.mkPut $ ())
val putMLast = #putM (IBox.PutMemoTable.mkPut $ ())

afun newVertex (id, p) =
(Vertex {id = id,

data = p,
faces = putMFaces $ (id, Box.put $ (List.NIL)),
lastFace = putMLast $ (id, NONE)})

in
newVertex

end

afun mkNewFace () =
let

val putMuv = #putM (IBox.PutMemoTable.mkPut $ ())
val putMvw = #putM (IBox.PutMemoTable.mkPut $ ())
val putMwu = #putM (IBox.PutMemoTable.mkPut $ ())
val putMkiller = #putM (IBox.PutMemoTable.mkPut $ ())

fun sortVertices (u, (v, w)) =
if (vertexID u) > (vertexID v) then

(if (vertexID u) > (vertexID w) then (u, v, w) else (w, u, v))
else

(if (vertexID v) > (vertexID w) then (v, w, u) else (w, u, v))

afun newFace (vtx, edg) =
let

val (u, v, w) = sortVertices (vtx, edg)
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val key = (vertexID u, vertexID v, vertexID w)
val neighborUV = putMuv $ (key, NONE)
val neighborVW = putMvw $ (key, NONE)
val neighborWU = putMwu $ (key, NONE)
val killer = putMkiller $ (key, NONE)

in
Face {vertices = (u, v, w),

neighbors = (neighborUV, neighborVW, neighborWU),
killer = killer}

end
in

newFace
end

(*** Conversions ***)
fun vertexData (Vertex {data, ...}) = data

fun edgeData (u, v) = (vertexData u, vertexData v)

fun faceData (Face {vertices = (u, v, w), ...}) =
(vertexData u, vertexData v, vertexData w)

fun facePyramidSides (Face {vertices = (u, v, w), ...}, c) =
((vertexData w, vertexData u, c), (vertexData u, vertexData v, c))

(*** Modifiable Fields ***)
afun getVertexFaces (Vertex {faces, ...}) = IBox.get $ faces

afun getVertexLastFace (Vertex {lastFace, ...}) = IBox.get $ lastFace

afun getFaceNeighbors (Face f) =
let

val {vertices = (u, v, w), neighbors = (nuv, nvw, nwu), ...} = f
val nbrUV = Option.valOf(IBox.get $ nuv)
val nbrVW = Option.valOf(IBox.get $ nvw)
val nbrWU = Option.valOf(IBox.get $ nwu)

in
((nbrUV, (u, v)), (nbrVW, (v, w)), (nbrWU, (w, u)))

end

afun getFaceKiller (Face {killer, ...}) = IBox.get $ killer

afun setVertexFaces (Vertex {faces, ...}, fList) = IBox.set $ (faces, fList)

afun setVertexLastFace (Vertex {lastFace, ...}, (id, f)) =
IBox.set $ (lastFace, SOME(id, f))

afun setFaceNeighbor (f, e, nbr) =
let

val (idA, idB) = edgeID e
val except = Fail "Face does not have the specified edge!"

afun setNeighbor (Face f, nbr) =
let

val {vertices = (u, v, w), neighbors = (nuv, nvw, nwu), ...} = f
val (idU, idV, idW) = (vertexID u, vertexID v, vertexID w)

in
if idA = idU then

if idB = idV then IBox.set $ (nuv, SOME nbr)
else if idB = idW then IBox.set $ (nwu, SOME nbr)
else raise except

else if idA = idV then
if idB = idU then IBox.set $ (nuv, SOME nbr)
else if idB = idW then IBox.set $ (nvw, SOME nbr)
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else raise except
else if idA = idW then

if idB = idU then IBox.set $ (nwu, SOME nbr)
else if idB = idV then IBox.set $ (nvw, SOME nbr)
else raise except

else raise except
end

in
(setNeighbor $ (f, nbr) ; setNeighbor $ (nbr, f))

end

afun setFaceKiller (Face {killer, ...}, k) = IBox.set $ (killer, SOME k)

(*** String ***)
fun vertexToIDString v = Int.toString (vertexID v)

fun edgeToIDString (u, v) =
"(" ^ (vertexToIDString u) ^ ", " ^ (vertexToIDString v) ^ ")"

fun faceToIDString (Face {vertices = (u, v, w), ...}) =
"(" ^ (vertexToIDString u) ^ ", " ^ (vertexToIDString v) ^ ", " ^

(vertexToIDString w) ^ ")"

fun vertexToString v = Primitives.Vertex.toString (vertexData v)

fun edgeToString e = Primitives.Edge.toString (edgeData e)

fun faceToString f = Primitives.Face.toString (faceData f)

end (* MkExtendedGeometry3DAdaptive *)

We present the code for the incremental hull algorithm below. As described in Chapter 2,

this algorithm is a randomized algorithm where each point is inserted into the current hull in a

predetermined random order. Each point p is traversed through the previously constructed convex

hulls (findAssociatedFace) to figure out if it lies outside the current convex hull or not. If

so, a new hull is created by removing the faces (rip) that are visible to the current point p, and by

creating new faces (tent) to replace the removed faces. If not, the point p is simply discarded.

When all the points are processed, the algorithm outputs the final convex hull of all input points.

functor MkIHull3DAdaptive (structure Settings : APPLICATION_SETTINGS_ADAPTIVE) :
IHULL3D_ADAPTIVE =

struct
structure Settings = Settings
open Settings

structure C = Coordinate
structure Primitives = Geometry3D (structure Coordinate = C)
structure Geometry = MkExtendedGeometry3DAdaptive

(structure Primitives = Primitives)

structure List = ListEqAdaptive
open Adaptive

type it = (int * Primitives.Vertex.t) List.t
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type ot = it
val origin = (C.zero, C.zero, C.zero)
val evaluate = evaluate NONE

fun app f = afn l =>
let

mfun apply x = f $ x
and loop l =

case Box.get $ l of
List.NIL => ()

| List.CONS(x, tail) => let val () = apply $ x
in loop $ tail end

in
loop $ l

end

fun map key f = afn l =>
let

val {putM = putMap, ...} = Box.PutMemoTable.mkPut $ ()

mfun convert x = f $ x
and loop (k, l) =

case Box.get $ l of
List.NIL => putMap $ (k, List.NIL)

| List.CONS(x, tail) =>
let val x’ = convert $ x

val tail’ = loop $ (SOME(key x), tail)
in putMap $ (k, List.CONS(x’, tail’)) end

in
loop $ (NONE, l)

end

fun keyBorder (_, e) = Geometry.edgeID e

val run = afn vertices =>
let

val newFace = Geometry.mkNewFace $ ()
val newVertex = Geometry.mkNewVertex $ ()

afun tent (p, boundary) =
let

val idP = Geometry.vertexID p

afun processEdgeVertex (q, f) =
case Geometry.getVertexLastFace $ q of

NONE => Geometry.setVertexLastFace $ (q, (idP, f))
| SOME (id, nbr) =>
if id = idP then Geometry.setFaceNeighbor $ (f, (p, q), nbr)
else Geometry.setVertexLastFace $ (q, (idP, f))

afun createFace (nbr, e) =
let

val f = newFace $ (p, e)
val () = Geometry.setFaceNeighbor $ (f, e, nbr)
val () = processEdgeVertex $ (#1 e, f)
val () = processEdgeVertex $ (#2 e, f)

in
f

end

val faces = map keyBorder createFace $ boundary
val () = Geometry.setVertexFaces $ (p, faces)

in
()

end
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mfun rip (p, f) =
let

val dataP = Geometry.vertexData p

afun ripFace (f, boundary) =
let

val () = Geometry.setFaceKiller $ (f, p)

val (nbr1, nbr2, nbr3) = Geometry.getFaceNeighbors $ f
val boundary = ripLoop $ (nbr1, boundary)
val boundary = ripLoop $ (nbr2, boundary)
val boundary = ripLoop $ (nbr3, boundary)

in
boundary

end

and ripLoop ((f, e), boundary) =
case Geometry.getFaceKiller $ f of

SOME _ => boundary
| NONE =>
let

val dataFace = Geometry.faceData f
val conflict = Primitives.halfSpaceTest(dataFace, dataP)

in
if evaluate $ conflict then

ripFace $ (f, boundary)
else

Box.put $ (List.CONS((f, e), boundary))
end

val {putM = putML, ...} = Box.PutMemoTable.mkPut $ ()

afun sort boundary =
let

(*** returns true iff border b2 < border b1 ***)
fun lessThan b1 = afn b2 =>

let val ((u1, v1), (u2, v2)) = (keyBorder b1, keyBorder b2)
in u2 < u1 orelse (u2 = u1 andalso v2 < v1) end

fun borderEq (b1, b2) = (keyBorder b1) = (keyBorder b2)
fun borderHash b = Hash.tuple2 (Hash.int, Hash.int) (keyBorder b)
val borderKey = {eq = borderEq, hash = borderHash}

afun quicksort (key, boundary, acc) =
case Box.get $ boundary of

List.NIL => putML $ (key, acc)
| List.CONS(border, tail) =>
let

val split = List.partition borderKey (lessThan border)
val (less, greater) = split $ tail
val keyGrAcc = SOME (keyBorder border)
val grAcc = quicksort $ (keyGrAcc, greater, acc)

in
quicksort $ (key, less, List.CONS(border, grAcc))

end
in

quicksort $ (NONE, boundary, List.NIL)
end

val f = Box.get $ f
val dataFace = Geometry.faceData f
val conflict = Primitives.halfSpaceTest(dataFace, dataP)

in
if evaluate $ conflict then
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sort $ (ripFace $ (f, Box.put $ List.NIL))
else

putML $ (NONE, List.NIL)
end

mfun findAssociatedFace (p, q) =
let

val {putM = putReturn, ...} = Box.PutMemoTable.mkPut $ ()
val idP = Geometry.vertexID p
val dataP = Geometry.vertexData p

mfun search faces =
case Box.get $ faces of

List.NIL => raise Fail "No faces"
| List.CONS (f, tail) =>

let
val (side1, side2) = Geometry.facePyramidSides(f, origin)
val conflict1 = Primitives.halfSpaceTest(side1, dataP)
val conflict2 = Primitives.halfSpaceTest(side2, dataP)

in
if (evaluate $ conflict1) andalso

(evaluate $ conflict2) then
f

else
search $ tail

end

mfun findFace q =
let

val assocFace = search $ (Geometry.getVertexFaces $ q)
val dataFace = Geometry.faceData assocFace
val conflict = Primitives.halfSpaceTest(dataFace, dataP)

in
if evaluate $ conflict then

case Geometry.getFaceKiller $ assocFace of
NONE => putReturn $ (idP, assocFace)

| SOME k => findFace $ k
else

putReturn $ (idP, assocFace)
end

in
findFace $ q

end

afun incrementalHull ((u, v), q, vlist) =
let

val f1 = newFace $ (q, (u, v))
val f2 = newFace $ (q, (v, u))
val () = Geometry.setFaceNeighbor $ (f1, (u, v), f2)
val () = Geometry.setFaceNeighbor $ (f1, (q, u), f2)
val () = Geometry.setFaceNeighbor $ (f1, (q, v), f2)
val faces = Box.put $ (List.CONS(f2, Box.put $ List.NIL))
val faces = Box.put $ (List.CONS(f1, faces))
val () = Geometry.setVertexFaces $ (q, faces)

afun insertVertex p =
let

val associatedFace = findAssociatedFace $ (p, q)
val boundary = rip $ (p, associatedFace)
val () = tent $ (p, boundary)

in
()

end
in
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app insertVertex $ vlist
end

afun writeOutput ((u, v), q, vlist, hull) =
let

val t = getTime $ ()

fun fixTime p =
Primitives.Vertex.map (fn c => C.constant(C.evaluate c t)) p

val fmtString = Primitives.Vertex.fmtString

afun writeVertex p = print(fmtString(fixTime(Geometry.vertexData p)))
afun writeOutVertex (_, p) = print(fmtString(fixTime p))

afun writeHull p =
let

afun writeFace face =
if Option.isSome(Geometry.getFaceKiller $ face) then () else
let val (u, v, w) = Primitives.map fixTime

(Geometry.faceData face)
in

print(fmtString u ^ fmtString v ^ "\n" ^
fmtString w ^ fmtString w ^ "\n\n")

end

val faces = Geometry.getVertexFaces $ p
in

app writeFace $ faces
end

val tStr = "t = " ^ C.Domain.fmtString t
val () = print("# BEGIN INPUT @ " ^ tStr ^ "\n")
val () = app writeVertex $ vlist
val () = writeVertex $ q
val () = writeVertex $ v
val () = writeVertex $ u
val () = print("# END INPUT @ " ^ tStr ^ "\n")

val () = print("# BEGIN OUTPUT @ " ^ tStr ^ "\n")
val () = app writeOutVertex $ hull
val () = print("# END OUTPUT @ " ^ tStr ^ "\n")

val () = print("# BEGIN HULL @ " ^ tStr ^ "\n")
val () = app writeHull $ vlist
val () = writeHull $ q
val () = print("# END HULL @ " ^ tStr ^ "\n")

in
()

end

afun output ((u, v), q, vlist) =
let

afun insideVertex (p, default) =
case Geometry.getVertexLastFace $ p of

NONE => default
| SOME (id, f) => Option.isSome(Geometry.getFaceKiller $ f)

afun checkVertex p =
case Box.get $ (Geometry.getVertexFaces $ p) of

List.NIL => true
| List.CONS(f, _) =>
insideVertex $ (p, Option.isSome(Geometry.getFaceKiller $ f))
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val {putM = putML, ...} = Box.PutMemoTable.mkPut $ ()

afun write (p, out) =
let

val vtx = (Geometry.vertexID p, Geometry.vertexData p)
in

putML $ (SOME (#1 vtx), List.CONS(vtx, out))
end

mfun filter vertices =
case Box.get $ vertices of

List.NIL => putML $ (NONE, List.NIL)
| List.CONS(p, tail) =>
let

val tail = filter $ tail
in

if checkVertex $ p then tail else write $ (p, tail)
end

val hull = filter $ vlist
val hull = if checkVertex $ q then hull else write $ (q, hull)
val hull = if insideVertex $ (v,false) then hull else write $ (v, hull)
val hull = if insideVertex $ (u,false) then hull else write $ (u, hull)

in
hull

end

val notEnough = Fail "Not enough vertices!"

afun run vertices =
let

val {putM = putInput, ...} = Box.PutMemoTable.mkPut $ ()

mfun initialVertices () =
case Box.get $ vertices of

List.NIL => raise notEnough
| List.CONS (u as (idU, _), tail) =>
case Box.get $ tail of

List.NIL => raise notEnough
| List.CONS (v as (idV, _), tail) =>
case Box.get $ tail of

List.NIL => raise notEnough
| List.CONS (q as (idQ, _), vlist) =>
((u, v), q, putInput $ ((idU, idV, idQ), Box.get $ vlist))

val (((idU, u), (idV, v)), (idQ, q), vlist) = initialVertices $ ()
val sum = Primitives.Vertex.+(Primitives.Vertex.+(u, v), q)
fun transform v = Primitives.Vertex.+(Primitives.Vertex.+(v, v),

Primitives.Vertex.-(v, sum))
afun convert (id, v) = newVertex $ (id, transform v)

val e = (convert $ (idU, u), convert $ (idV, v))
val q = convert $ (idQ, q)
val vlist = map (fn (id, _) => id) convert $ vlist

val () = incrementalHull $ (e, q, vlist)
val hull = output $ (e, q, vlist)
val () = if !printOutput then writeOutput $ (e, q, vlist, hull)

else ()
in

hull
end

in run $ vertices end

end (* MkIHull3DAdaptive *)
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