Quantum Computing in the Cloud:
Analyzing job and machine characteristics

Kaitlin N. Smith
University of Chicago
kns@uchicago.edu

Pranav Gokhale
Super.tech
pranav@super.tech

Gokul Subramanian Ravi
University of Chicago
gravi@uchicago.edu

Frederic T. Chong
University of Chicago
chong@cs.uchicago.edu

Abstract—As the popularity of quantum computing continues to
grow, quantum machine access over the cloud is critical to both
academic and industry researchers across the globe. And as cloud
quantum computing demands increase exponentially, the analysis
of resource consumption and execution characteristics are key to
efficient management of jobs and resources at both the vendor-
end as well as the client-end. While the analysis of resource
consumption and management are popular in the classical HPC
domain, it is severely lacking for more nascent technology like
quantum computing.

This paper is a first-of-its-kind academic study, analyzing various
trends in job execution and resources consumption / utilization on
quantum cloud systems. We focus on IBM Quantum systems and
analyze characteristics over a two year period, encompassing over
6000 jobs which contain over 600,000 quantum circuit executions and
correspond to almost 10 billion “shots” or trials over 20+ quantum
machines. Specifically, we analyze trends focused on, but not limited
to, execution times on quantum machines, queuing/waiting times in
the cloud, circuit compilation times, machine utilization, as well
as the impact of job and machine characteristics on all of these
trends. Our analysis identifies several similarities and differences
with classical HPC cloud systems. Based on our insights, we make
recommendations and contributions to improve the management of
resources and jobs on future quantum cloud systems.

I. INTRODUCTION

Quantum computing is a revolutionary computational
model that leverages quantum mechanical phenomena for
solving intractable problems. Quantum computers (QCs) eval-
uate quantum circuits or programs in a manner similar to a
classical computer, but quantum information’s ability to lever-
age superposition, interference, and entanglement gives QCs
significant advantages in cryptography [38], chemistry [27],
optimization [30], and machine learning [17].

With development of today’s Noisy Intermediate-Scale
Quantum (NISQ) devices, cloud-based Quantum Information
Processing platforms with nearly 100 qubits are currently
accessible to the public. Further, recent quantum hardware
roadmaps, such as IBMs [7], have announced that devices with
as many as 1000 qubits will be available by 2023. It also has
been recently demonstrated by the Quantum Supremacy exper-
iment on the Sycamore quantum processor, a 54-qubit quantum
computing device manufactured by Google, that quantum
computers can outperform current classical supercomputers in
certain computational tasks [15]. These developments suggest
that the future of quantum computing is promising.

While the future looks promising, quantum computing is
still at a nascent stage and quantum computers are a rare
and expensive resource. Thus, quantum machines and corre-
sponding software stacks are primarily accessed by researchers
in academia and industry world wide via the cloud. Current
cloud vendors with their own quantum hardware include
industry giants like IBM, Google, Microsoft and Honeywell,

Execute

A——
Quantum
Machine

Classical
Machine
Classical
Machine

Compile

Classical
Machine

Fig. 1: Quantum in the cloud. Clients launch quantum pro-
grams from their classical computers onto the vendor’s quan-
tum cloud wherein the jobs are queued until execution.

as well as startups such as Xanadu, Rigetti, lonQ and D-Wave
(Note: D-Wave’s quantum annealer is different from a tradi-
tional quantum computer). Further, Amazon Braket (AWS) and
Microsoft Azure Quantum provide quantum computing as a
service via multiple other quantum hardware vendors. It is
expected that quantum computing as a cloud service will grow
considerably over the next decade and will continue to be the
main access to quantum machines for research across the globe.
Fig.1 provides an overview of how clients interact with cloud
quantum machines - more details are discussed in Section II.

In the current quantum era, there is growing scarcity of
quantum resources even in the cloud, as the demand consis-
tently increases. Quantum machines available in the cloud are
very limited in number [1], [5], [9], and the number of users
and the number of “jobs” submitted to these machines are
drastically growing every day [2] across multiple vendors. With
the increasing popularity of quantum computing in both indus-
try and academic research, it is expected that these contention
trends will continue to worsen over the next decade or more
- at the very least until the cost of building large and reliable
quantum computers becomes more easily surmountable. As an
example, a first-order impact of quantum machine scarcity are
the long queuing times [20], [28] experienced while accessing
cloud machines. As discussed in later sections, we observe that
there can be 10s-1000s of quantum jobs queued up on quantum
machines at any given time. This results in queuing times
of many hours and sometimes even days. Such accessibility
constraints in using these machines can severely handicap
several research endeavors in terms of: a) the scope of the
quantum problems that can be effectively targeted on these
machines, and b) timely access to the machines irrespective of
the quantum problem.

Thus, as quantum demand continuous to grow, it is im-
perative to efficiently manage quantum resources. Similar to
classical HPC, vendors should try to allocate machine resources
as efficiently as possible so as to improve system throughput,
while clients should try to make efficient use of job deployment
strategies to maximize their allocated time and resources. Un-
like classical HPC though, on the one hand, quantum machines
are significantly impacted by machine fidelity constraints (such
as static qubit connectivity within the machines and dynamic
qubit error rates) meaning that machine utilization cannot
be naively maximized, and on the other hand, in the near
future quantum jobs / circuits are expected to be on the lower
end of the complexity spectrum, meaning that their execution
characteristics can be more easily predictable.

To obtain and understand such insights, it is critical to
understand the characteristics of the executing quantum jobs as
well as those of the machines in the cloud. In the HPC world,
large scale system characterization are important in building
and investing in the next generation of computing systems.
We expect that quantum cloud systems will follow suit.

In this study, we analyze quantum executions on more than
20 IBM Quantum Computers [5], over a 2 year period up to
April 2021. Our study includes over 6000 jobs run on these
quantum machines, which encompass over 600,000 quantum
circuits. With each circuit being run for multiple trials / shots
on the quantum machines (for higher confidence), our study
includes results from as many as 10 billion machine executions
over this period. Note that our data corresponds to quantum
experiments run in an academic research setting. But our
insights and recommendations are widely applicable to general
quantum cloud systems.

Novel insights and recommendations in this paper include:

(D As quantum machines improve in size and fidelity, the com-
plexity of circuits executed on these machines will expand. The
potential for mistakes and incorrect executions will increase, resulting
in wastage of critical machine time and resources - we observe over
5% wasted executions in our study. Thus, debugging and verification
strategies are a must to maximize useful system utilization.

() Compilation times are on the increase as we move to larger
applications and machines - we observe more than a 1000x increase
as we go from current day circuits to 1000q circuits. There is a need
to build more scalable compilation strategies, identify compilation
techniques which are optimally beneficial to the target circuit, as well
as potentially overlap some compilation tasks with the already long
queuing times.

(3 Machine characteristics can vary widely across machines and
time, and their impact on applications are often not well-understood
- we observe over a 3x fidelity variation across machines. 2-qubit gate
based metrics are a reasonable indicator of an application’s fidelity on
a machine and can be evaluated at compile time. These metrics can
then be used to aid in machine selection and users can be allowed to
trade-o fidelity for low queuing time and vice-versa.

(@ To maximize the overall system utilization / throughput and to
improve application fidelity across users, opportunities for vendor-
employed machine-aware system wide management of resources (with
user-constraints) should be explored. But automated mechanisms will
require more stability and homogeneity among available machines, a
likely expectation for the future.

(B Lack of discipline in load distribution leads to very widely vary-
ing queuing times - we observe queuing times from under a minute
to even over days. Queuing time will become more challenging to

predict as demand, supply and prioritization techniques continue to
grow. Research on predicting queuing times are worth pursuing.

(& Long queuing times can not only reduce system throughput,
but also reduce application fidelity - for example, by making device-
aware compilations stale. Dynamic circuit re-compilation based on
machine monitoring is promising and would be particularly useful
for the pulse-based compilation approach.

(@ Execution times are considerably lower than queuing times
(around 0.1x on average), even though there is variation across
jobs and circuits. These variations are mostly influenced by machine
characteristics rather than circuit characteristics. This is because the
current complexity of NISQ-era quantum circuits are low enough
that machine executions overheads are greater than the actual execu-
tion time of the circuit.

For the foreseeable future, execution times are likely to be
highly predictable and mostly dependent on a few characteristics -
we are able to predict executions times on most machines with over
95% correlation. Predicting execution time accurately amplifies the
possibility of e ciently implementing the recommendations related to
scheduling, predicting queuing times, and leveraging queuing times
in useful ways.

II. BACKGROUND AND TERMINOLOGY
A. Quantum Information

Quantum information science redefines the computational
model through the use of quantum bits, or qubits, that have

two basis states represented as j0i =|1 0 ! and jli = [\.(l) 1]T.
Qubits, unlike classical bits that hold a static value of either 0 or
1, demonstrate states of superposition in the form of a j0i+Bjli
with probability amplitudes «, f 2 C and hold values such that
jaj? +iBi? = 1. Superposition enables n qubits to represent up to
2" states simultaneously, and this phenomenon, along with the
ability for quantum states to interfere and become entangled,
allow certain problems to be solved with significant reductions
in complexity. Qubits hold large quantities of information for
processing while in superposition, but upon measurement,
quantum state collapses and only classical values of either 0
or 1 are observed.

Some common single-qubit transformations include the
Rx(1) = X, Ry(m) = Z, Ry(m) = Y rotation operations that cause a
bit flip, a phase flip, and a combination bit flip and phase flip,
respectively. Additionally, the H gate puts a qubit originally
in a basis state into perfect superposition where it has equal
likelihood of being measured as 0 or 1. Multi-qubit operation
are critical for entanglement and examples include the logical
SWAP operation that causes the exchange of quantum state
along with controlled gates, such as CX or CZ that execute an
operation on a target qubit depending on the state of one (or
more) control qubit(s).

Current quantum devices are extremely fragile, and as a
result, some of the biggest challenges that limit scalability
include limited coherence times, gate errors, readout errors
and crosstalk. In addition, most NISQ suffer from limited
connectivity as configuration only permits nearest neighbor
two-qubit execution. The coherence times for superconducting
quantum computers have improved from 1 nanosecond to 100
microseconds in the last decade and have recently targeted
1000 microseconds [39]. Performing gate operations on qubits
can also affect their state incorrectly due to errors. From public
IBM information, single-qubit instruction error-rates are of the

order of 10 ® , whereas for two-qubit instructions, such as
CNOT, it is 10 2 (in terms of probability of occurrence) [39].
Also, crosstalk arises from unwanted interactions between the
qubits and from leakage of the control signals onto qubits
which are not part of the intended gate operation [31].

In this paper, we focus on IBM’s superconducting circuits
based quantum devices. Our analysis has been performed on
quantum jobs designed and submitted to the IBM quantum
machines via IBM Qiskit [11].

B. Key Terminologies

Below we provide terminology definitions, some of which
are based specifically on the IBM Quantum Cloud but are
generally applicable even otherwise.

(D Algorithm: Describes quantum computation at the highest
abstraction level.

@ Circuit: A single quantum circuit with a list of instructions
bound to some registers. It has a number of gates and is spread
out over a number of qubits. Gates are often 1-qubit and 2-
qubit gates if the circuit is specified in low-level assembly code.
The width of the circuit is the number of qubits it requires and
the depth of the circuit is the critical path, often counted as the
number of 2-qubit gates in the critical path.

(@ Compilation: Involves a sequence of steps to enable
the quantum circuit to be executed on a specified quantum
machine in a valid and efficient manner.

@ Job: Encapsulates a single circuit or a batch of circuits
that execute on an quantum machine or simulator. The circuits
within a batched job are treated as a single task such that
all quantum circuits are executed successively. Further, each
circuit in the job will be rapidly re-executed for a specified
number of shots (eg. most IBM Q machines generally allow a
batch size of 900 circuits with each circuit allowing up to 8192
shots).

® Queue: When a job is submitted to a quantum machine
on the cloud, it enters a queue (for that particular machine)
with jobs from other users before eventual execution. The order
which these jobs are executed is, by default, determined by
some fair sharing based queuing algorithm. In practice, this
means that jobs from various providers are inter-weaved in a
non-trivial manner, and the order in which jobs complete is
not necessarily the order in which they were submitted [5].

(® Results: Once a job is complete, the classical measurement
results from the job are returned to the client (as a count of bit-
strings). These results are unique to each circuit in the job. For
each circuit, the number of classical bit-strings returned equals
the number of shots the circuit was executed for, and the width
of the bit-string equals the number of data qubits in the circuit.

III. OvErRALL SysTEM TRENDS

In this section, we discuss overall system trends in terms
of machine usage, time spent on compilation, queuing in the
cloud and actual machine execution.

A. Machine Executions

Fig.2a shows a cumulative count of almost 10 billion ex-
ecutions / trials run on the quantum machines over a two
year study period. Shown on a log scale, it is evident that
the number of jobs being run on the machines are consistently
increasing at growing pace as the popularity of quantum com-
puting continues to grow. This is coupled with an increase in
the number of quantum machines supporting a larger number

Machine trials

=
2
Executions

w
g
=

18%

NNNNNNNNNNNNNNNNNNNNNNNNNNNN

0DﬁONE

(b) Status

ERROR CANCELLED
(a) Machine Trials over 2 years
Fig. 2: Cumulative quantum executions in our study and their

validity. Executions have grown considerably over the past 12
months. Further, over 10% did not execute cleanly.

Queuing Time (Minutes)

300000 400000 500000 600000

Circuit Instance

0 100000 200000
Fig. 3: Queuing time experienced by circuits run on the IBM
Quantum machines (sorted) over two years. Green lines cor-
respond to times of 1 minute and 2 hours respectively. Jobs
shown are a mix of public and privileged jobs. A considerable
fraction of jobs experience large queuing times.

of qubits and with better fidelity, meaning that the scope of the
experiments run / problems targeted on the quantum cloud
continue to steadily grow. We also note that the growth in
quantum usage is considerably greater than classical super-
computing usage. Recent work analyzing supercomputing us-
age trends [33] has shown that the number of jobs halved over
a 10 year period, while the size of jobs grew by 7x.

This effective 3.5x growth in supercomputer usage over a
decade is expected to be small in comparison to the envisioned
growth in quantum computing usage over the coming decade -
this is also indicated by trends seen in our sample study space.

This is an expected trend with new technologies - there
will be an exponential growth in resource requirements in the
coming decade.

In Fig.3.b, we show a breakdown of the status of execution
of the quantum jobs on the machines. While around 95% of
the jobs were successfully executed, around 5% errored out
or were cancelled. Note that successful execution here means
that the jobs were executed to completion on the machine -
it is not indicative of the quality of the result of the quantum
execution. Considering that the cost of executing quantum jobs
(both in terms of time and money) is expensive in the NISQ-
era, it is important to maximize job success rates. This will
be more challenging as quantum algorithms steadily grow in
complexity.

B. Queuing Time

The fast paced growth in quantum computing requirements
have resulted in the contention trends for these already scarce
resources to continually worsen. And a first-order impact of

Queuing:Running Ratio

0 1000

2000 3000
Job Instance

4000 5000

Fig. 4: Ratio of queuing times to execution times (sorted).Green
lines correspond to ratios of 1x and 100x respectively. The
median ratio is around 10x.

quantum machine scarcity are the long queuing times experi-
enced while accessing cloud machines.

Fig.3 plots the cloud queuing time experienced by the exe-
cuted circuits in our study, in a sorted order. Note that these
executed circuits are through a mix of public and privileged
(i.e. paid) access to these quantum machines. Also, fair-share
queuing executes jobs on a quantum system in a dynamic order
so that no user can monopolize the system [6] - more details can
be found at the source. Only around 20% of the total circuits
experience ideal queuing times of, say, less than a minute.
The median queuing time is around 60 minutes which is not
insignificant. Further, more than 30% of the jobs experienced
queuing times of greater than 2 hours, and around 10% of
the jobs were queued up for as long as a day or even longer!
The classical HPC systems analyzed in [33] estimated that the
average queuing times on their supercomputers increase from
0.1 hours to 1.2 hours over a decade. The current queuing times
for quantum clouds, even at this stage of relative infancy, are
already comparable to the higher side of the classical queuing
times. A similar 10x increase in quantum waiting times over
the next decade would be detrimental to quantum research
and development. The higher queuing times are especially
concerning, considering that the actual quantum execution
runtime on the quantum machines is only in the order of
seconds or minutes - this is discussed next.

C. Execution vs Queuing Time

In comparison to the earlier analysis of queuing time, the
execution times are far lower, with over 99% of the circuits
executing in less than 0.1 minutes. Note that these numbers are
per-circuit. As described earlier, a quantum job can be made
up of a batch of a number of circuits. This means that the
execution time for a job is usually at or under an hour, even
with full batch utilization. In comparison, [33] shows that the
median HPC runtime in 2018 was just over an hour, with a 60%
increase over a decade. Thus, it is intuitive that less than 100%
batch utilization would make the relative waiting time much
worse in the quantum scenario compared to the classical HPC
setting. In the future, as application circuits become larger it
is still unclear how the execution time will grow - in Section
VI-C, the relation between execution time and different job /
machine characteristics are discussed. However, it is very likely
that queuing times grow faster than execution times. Queuing
to execution ratio is discussed next.

Fig.4 shows per-job queuing to execution time ratios in a
sorted order. In around 30% of the total quantum jobs, the

4 |
1071 _@- 980-q

102 -@- 64-q

100 4

Time per pass (seconds)

Fig. 5: Time per pass across different passes employed by
Qiskit at its highest compiler optimization level. The layout
and routing passes are especially expensive.

experienced queuing time is at par or lower than the execution
time, which is the ideal scenario. These are usually jobs which
are a) maximizing batch utilization by batching close to 100%
of the possible circuits into a single job, and b) running on
machines with lower number of jobs lined up. On the other
hand, the median ratio is around 10x and around 25% of the
total jobs experience ratios which are 100x or more. Meticulous
management of jobs and resources is required as contention
continues to drastically increase (at least until the supply can
sufficiently cater to the demand).

D. Compile Time

Next, we analyze compilation times for quantum circuits.
While compilation is traditionally independent of the cloud,
we believe it is critical to consider all of these times/overheads
in unison, so as to propose effective solutions for maximizing
user application fidelity and system throughput.

Fig.5 shows quantum compilation for a 64q Quantum
Fourier Transform (QFT) circuit targeting a 65-qubit quantum
machine (IBM Manhattan) and an illustrative 980q QFT com-
piled for a fake 1000-qubit quantum machine. In the 64-qubit
case, which is somewhat an upper limit for current quantum
computers, compilation times are in the order of roughly one
second or less for all compiler passes meaning that the entire
compilation process can be completed in minutes. On the other
hand, compilation times drastically scale up by 100-1000x as
we compile for 1000 qubits, a potential target in the near
future. The layout and routing passes are especially expensive,
potentially consuming more than 10k seconds (3 hours). These
numbers will continue to grow drastically with the current
state-of-the-art compilation techniques.

Further, unlike the classical world, optimal quantum compi-
lations are dependent on dynamic (or at least, current) machine
characteristics. Thus, for compilations to be close to optimal,
they should be performed on the most recent state of the
machine prior to actual execution - this makes the impact of
long compile times even worse. Increasing compilation times
can especially impact throughput at the user end in the context

of iterative applications where a circuit can be built (and thus
compiled) only after processing data /feedback received from
prior job executions on the quantum machine.

Orthogonal to the results presented above, prior work [37]
discusses that compilation to the pulse level (a critical direction
fore cient quantum computing) can also be very cumbersome
and can consume several hours of compilation time. Similarly,
search algorithms for approximate quantum circuit synthesis
can take minutes to hours - prior work [41] has shown that 6-
qubit circuits can take as much as 3-4 hours for synthesis and
these numbers would scale up with larger circuits.

E. Summary and Recommendations

@ The complexity of circuits executed on quantum machines
will increase as machines get larger and error rates improve. This
means that the potential for mistakes and incorrect executions will
increase, resulting in wastage of critical machine time and resources.
Thus debugging and veri cation strategies [25], [34] in quantum
computing are a must for maximization of useful system utilization.
Checks can be employed at both the user-end as well as by the vendor.
(2) Compilation times are also on the increase. As we target circuits
with 1000 qubits or more, compilation times can run into many hour&ig. 6: Qubits vs Bisection Bandwidth. In contrast to common
- becoming unsuitable for dynamic machine compilation. There iscissical computing systems, the bisection bandwidth is very
need to build more scalable compilation strategies, identify compilaw across these quantum machines.
tion techniques and appropriate optimization thresholds which are
optimally bene cial to the circuit at hand, as well as potentially
overlap some of the time consuming compilation tasks with tlecommon metric in classical computer networking - if the net-
already long queuing times. Compilation passes can be separated imbok is bisected into two partitions, the bisection bandwidth
those that are minimal requirements and those which are nice-to-hajea network topology is the bandwidth available between the
optimizations. Passes can be implemented, if possible, as progredgioepartitions. Bisection bandwidth is an accurate metric to
optimization algorithms. measure the connectivity of a topology.
® With the increasing popularity of quantum computing, the In contrast to common classical computing systems, it is
number of jobs executed on quantum machines will continue &vident from the gure that the bisection bandwidth is very
grow drastically and thus optimizing the available resources at bolbw across these quantum machines, especially so in the larger
the vendor-end and the client-end is critical for maximizing systemmachines. For example, the 65 qubit IBM Manhattan has a
e ectiveness and throughput. bisection bandwidth of 3. In comparison, a 64-node classical
(@ Increase contention for cloud resources means increase waitiygtem employing a standard mesh topology would have a bi-
time for their access. From observing HPC analyses, it is plausilsiection bandwidth of 8. The low connectivity in these machines
that quantum queuing times increase by 10x or more if current trendan be attributed to the high noise levels in these machines
are maintained. This could mean average waiting times of halfespecially when there is increased proximity /coupling among
day or more. Thus, it is critical to a) reduce wait times by bettegategqubits (eg. crosstalk e ects [32]). This restricts the ability
management of resources and b) potentially recycle waiting time t9ye ciently run larger applications even on larger quantum
performing suitable tasks while the jobs are queued, that can imprawachines, apart from other dynamically varying noise char-
execution e cient for the user as well as for the system as a whol@cteristics and so forth. This also makes user choices harder,
(® While execution times might also be expected to increaé®,decide which machine is most suited to run their target
the queuing to execution ratios are drastically high and are likeBpplication. It will be interesting to see how these trends shape
to keep increasing in the quantum world. User-employedient up in the near future: on the one hand, qubits are becoming
batching of circuits into jobs via better knowledgenderstanding of more robust, but on the other hand, as machines with more

the applications at hand, can alleviate this to some extent. qubits are built, any resultant increasing qubit / gate density

.) can worsen some speci ¢ noise characteristics.
IV. Trends in Quantum Machines

In this section, we analyze some variations across the dif- B. Varying Application Fidelity

ferent quantum machines accessed on the cloud and their po-
tential impacts. Our study encompasses 25 di erent quantum
machines with qubits ranging from 1 to 65.

Characteristics like the above result in potentially di erent
circuit delity (or "Probability of Success”) across di erent
machines and these characteristics can also change over time.
NISQ-era quantum machines are a ected by non-deterministic

A. Variable Machine Characteristics spatial and temporal variations in their characteristics, for

Di erent machines experience di erent characteristics stem-
ming from their topology, qubit strength, quality of calibration
and drift. Fig.6 shows the qubits and bisection bandwidth
across the di erent quantum machines. Bisection bandwidth is

instance, in terms of their one- and two-qubit error rates. Prior
work [39] studied a 20-qubit IBM machine for 52 days and
observed the prevalence of a wide distribution of machine
characteristics with considerable spatial and temporal varia-

Fig. 7: Fidelity of 49 QFT vs CX metrics (CX-Depth, CX-Total,
CX-D * CX-Err and CX-T * CX-Err) over multiple machines.
Fidelity correlates with CX characteristics.

tion. From the spatial perspective, they observe the coe cient
of variation (i.e. ratio of the standard deviation to the mean) to
be in the range of 30-40% for T,1/T, coherence times, as well as
nearly 75% for 2-qubit error rates - clearly indicative of wide
variation across the machine. From a temporal perspective,
they observe more than 2x variation in error rates in terms
of day-to-day averages - these variations are impacted by
both day-to-day calibration of these machines, as well as drift
between calibrations.

Users often select an optimal machine to run on based
on its known characteristics and suitability to a particular
application at hand - but this task can be complicated. This is
shown through Fig.7, which presents results from evaluating a
benchmark application (4-qubit Quantum Fourier Transform)
across a set of IBM Quantum machines - Casablanca (7q),
Toronto (27q), Guadalupe (16q), Rome (5g) and Manhattan
(65q). Observe that the Probability of Success (POS), in orange,
can vary widely across these machines - varying from 62%
success to 19%.

First, note that the POS is not directly correlated with the
size of the machine. The highest POS is observed on a 7q
machine while the lowest is on the 65g machine. Naively, it
would be expected that any application would likely be more
suited to larger quantum machines because a larger machines
has a greater number of qubits to choose from (i.e. to map the
application to the best possible qubits). This highlights that
a better uni ed understanding of machine /technology gener-
ation, topological constraints as well as dynamically variable
noise characteristics is required.

Second, the gure shows that the POS is well correlated
with two-qubit gate (CX) characteristics. In gure, we show
4 metrics related to the CX-gate on the target machine - a)
CX-Depth: the depth of the circuit's critical path in terms of
CX gates, b) CX-Total: the total number of CX gates in the
circuit, ¢) CX-D * CX-Err: the depth of the circuit multiplied by
average error of the circuit's CX gates and d) CX-T * CX-Err:
same as (c) but with total CX gates. It is evident that the POS
of success decreases as the CX-metrics tend to increase. The
CX gate is critical to application delity because it surpasses
1-qubit operations in terms of both gate error and execution
time on superconducting hardware [26]. Greater the number

Fig. 8: Machine Utilization by circuits vs Machine, where
utilization is de ned as the fraction of machine qubits that were
used by the circuit.

of in uential CX gates potentially implies lower circuit delity.
Thus, analyzing the CX-metrics from an application after its
compilation for a machine is a potential indicator of the delity
on that machine.

Fidelity is also a concern in the classical computing / HPC
cloud for speci c classes of applications like machine learning.
Fidelity is dependent on machine related characteristics - which
ML models are employed, what bit precision is used, how large
is the data set, how long is the training pursued and so on. But
these dependencies are deterministic in comparison to those in
the quantum computing world wherein characteristics change
more rapidly /signi cantly and in ways that are yet to be well
understood.

C. Machine Utilization Distribution

Fig.8 shows a violin plot of the machine utilization of the
circuits run on each quantum machine, where utilization is
de ned as the fraction of machine qubits that were used by
the circuit.

First, it is evident that while the utilization is higher on the
smaller machines, it is lower on the larger ones. It is intuitive
that utilization is lower on the larger machines for reasons
such as connectivity and bisection bandwidth discussed prior.
Larger applications (i.e. requiring more qubits) are challenging
to run due to connectivity constraints. These constraints in-
crease the circuit depth (by inserting SWAP operations) which
can then lower delity due to limited coherence times.

Second, utilization is not uniform even among machines of
same size. It is not uncommon that some of these machine
characteristics are unknown or minimally understood by the
end user, and choices are often made after experimental evalu-
ations which could waste both resources (machine usage) and
time (compilation + queuing + execution). Choice of machine
is often based on characteristics of the machine at the point of
use, such as gate error rates, coherence times etc, which can
vary across calibration (i.e. when machine is retuned) cycles -
note that it is often the case that such user decisions are driven
by heuristics and not thorough hypotheses.

Third, choice of machine is also critically based on how busy
particular machines are at the point of use - some machines are

Fig. 9: Average pending jobs across di erent quantum ma-
chines, averaged over a week’s period in March 2021. Jobs are

unequally distributed across similar machines. . o o . .
Fig. 10: Queuing time distribution of jobs vs Machine, over the

two year period. On public access machines, the mean queuing
signi cantly more queued up than others (more in Section V), times are of the order of multiple hours.
meaning that a sub-optimal machine can be chosen for quicker
turnaround.

Improving utilization is actively explored in HPC. Methods
have been employed in parallel supercomputers when the
job is moldable and resources are allocated based on system
optimality [19].

D. Summary and Recommendations

lines) based on the number of qubits in the machine. The rst

block is a 1-qubit machine, the next block is 5-qubit machines,
the next is 7-16 qubits and the nal is 27-65 qubits. Further,
publicly accessible machines are highlighted in green. In each
block, it is observed that the average pending jobs are highest

) o)) on a public machine - this is expected since public machines
(D Machine characteristics can vary widely across machines apdve considerably more demand. For instance, IBMQ Athens

over time on each machine. Moreover, many characteristics S‘i'§kfl.0-100x more in demand than other 5-qubit machines. It
as those related to topology,eets of noise, gate interactions eiCig giso observable that jobs are not distributed equally across
and their impact on a particular application might not be known,5chines (public or otherwise). This can be associated with
to or likely not be understood well by users. To alleviate this {@e characteristics of the machine and user-de ned heuristics
some degree, our analysis shows that CX-gate based metrics afgd on these characteristics (as discussed in Section IV). Note
reasonable indicator of an application's delity on a machine and c@fat while speci cs of machine usage and machine popularity

be evaluated at _compile time.. T_hese metrics are in uenced by _bﬂﬂbht change over time, the trends that jobs are unequally
topology and noise characteristics and can thus be used to aidyjBiriputed across machines and that public machines are

machine selection. o considerably in higher demand are expected to be consistent.
@1n order to maximize the overall system utilization and throughasq note that all other data presented in this analysis are all
put and to improve application delity across users, opportunitieg|iected across a two year period.

for vendor-employed machine-aware system wide management of _) o _
resources should be explored, inspired by HPC. Vendor-manadedQueuing Time Distribution vs. Machine
allocation could be possible from within a set of machines chosen by, Fig.10 we show a violin plot distribution of queuing times

a user (or all machines). But note that automated mechanisms %@r job across these quantum machines from over the two year
r_equire more s;_tability and homogeneity among available machine%éﬁod. Queuing times can vary widely across machines - more
likely expectation for the future. , _ than half the machines have queuing times varying from a
(® While running larger applications might be restricted on eVeR\y minutes to longer than a day. On public access machines,
larger machines due to topology constrains, there is opportunity {Ra mean queuing times are of the order of multiple hours.

improve machine utilization by multi-programming on the quantuMpjyijeged access machines, especially those with more qubits,

machines [20] i.e. running multiple applications in conjunction on., 410 often have high demand resulting in queuing times

the machines. Choice of applications to run in conjunction could Qgerages around a couple of hours, while they are usually one
in uenced by system load, application delity requirements, dynamig, or less on other machines

machine characteristics etc. Queuing times also vary drastically in the classical compute

space. In fact, predicting queuing times is a hard to solve
problem and has been the focus of extensive research [18],
[22]. The interaction between workload and queuing discipline
makes the amount of time a given job will wait highly variable
and di cult to predict [18]. The quantum cloud is still at the
nascent stage and strategies for queuing and job scheduling are

V. Trends in Queuing

In this section, we analyze the queuing trends across di er-
ent machines, batch sizes and also examine quantum speci c
detrimental e ects of long queuing times.

A. Number of Queued Jobs vs Machine

Fig.9 shows the number of pending jobs across di erent
quantum machines, averaged over a week's period in March
2021. The machines are broken down into blocks (blue dashed

simplistic at the present. Moreover, execution times of quantum
circuits are relatively homogeneous and easier to predict -
discussed further in Section VI-C. This makes queuing time

Fig. 11: Queuing time distribution of jobs vs batch size. As
batch sizes increase, the eective queuing time per circuit
almost always decreases.

prediction in quantum clouds less challenging for the time
being. But as the quantum supply and demand grow, it is
fair to expect that queuing time prediction challenges from the
classical world will be felt in the quantum cloud.

C. Queuing Time Distribution vs Batch Size

In Fig.11 we show a comparison of queuing times and batch
size of the job submitted. Note that a job is made up of a batch
of circuits - the limiting size in our experience is 900 circuits
per job.

First, the gure shows that there is a wide distribution of
batch sizes varying from 1-900. It can be inferred from the
above that it is often the case that a user's target application
does not require the entire batch size and/or that users are not
always adept at combining their executed circuits into a highly
batched job.

Second, as batch sizes increase, the queuing timeper job
increases. Some increase is expected because this particular job
would take a longer time to execute, and thus increase the
waiting time of future jobs. This would especially be re ected
if there are fewer jobs on a machine i.e. each jobs execution time
has a larger in uence on the queuing time on the machine.

Third, as batch sizes increase, the e ective queuing time per
circuit almost always decreases. This is because the entire batch
of circuits is executed back to back in sequence and only su er
the queuing time once, as a whole.

Batching is an important area of research in Machine Learn-
ing and Distributed Computing. Larger batches increase re-
sponse time, but make better use of available network / mem-
ory bandwidth. Similar trade-o s will exist in the quantum
space, especially in the context of iterative quantum applica-
tions.

D. Calibration Crossovers

(a) Jobs crossing calibrations (b) Varying Compiled Circuits

Fig. 12: E ects of calibration crossovers. QCs can become sub-
optimal over time.

and these calibrations are non-uniform i.e. one day's qubit
delity can be very di erent from the next day's qubit delity.
Further, these characteristics also drift over time - meaning that
they can di er even within a single calibrated epoch.

Thus it is often the case that in scenarios of long queuing
times, the dynamic characteristics which are accounted for at
the time of compilation are very di erent from the dynamic
characteristics of the quantum machines at the time when the
quantum circuit is actually executed on the machine. This re-
sults in the quantum circuit being sub-optimal to the quantum
machine at the time of actual execution.

IBM Quantum machines are usually calibrated once a day,
likely around 12:00am - 2:00am. Fig.12a shows that we estimate
that over 20% of our studied quantum jobs were compiled with
device information from an older calibration cycle but were
executed on the machine after a new calibration. This results in
the compilation being potentially sub-optimal. Note that these
are only coarse estimates based on queuing and execution time
stamps.

Fig.12b shows a snippet of a circuit compiled with noise-
aware mapping, wherein the noise information of physical
qubits is incorporated into the optimal mapping from the
circuit's logical qubits to the machine's physical qubits. Two
compilations of the same circuit snippet are shown, from two
consecutive calibration cycles. It is evident that the optimal
mapping and circuit structure are di erent. Thus, using an
older mapping can be detrimental to the delity of executed
applications.

Note that in the above gate-based compilation approach,
the quantum gates are converted to pulses at the time of
execution. Thus the system will presumably use the most-
recently-calibrated pulses to execute the gates on the quantum
machine i.e. after the job reaches the head of the queue and is
ready for actual quantum execution. On the other hand, in the
pulse based approach (eg. OpenPulse [12], [21], [29]), pulses
are generated at the time of compilation. Thus, these pulses
are generated based on machine characteristics at the time of
compilation. A calibration cross-over would mean that even
the pulses are sub-optimal at the time of quantum execution.

E. Summary and Recommendations

@ Lack of discipline in load distribution leads to very widely
varying queuing times. Queuing time will grow more challenging to
predict, as demand, supply and prioritization techniques continue
to grow. Research on predicting queuing times with quantitative
con dence levels, as pursued in HPC [18], are worth pursuing.

(@ Long queuing times can not only reduce system throughput,
but also reduce application delity - for example by making device-

When quantum circuits are compiled, they are done so in a
device aware manner. While this involves static characteristics
such as device topology and device basis gates, it also involves
incorporating dynamic characteristics such as gate / qubit
delity. As discussed earlier, the latter are dynamic because
they evolve over time - these characteristics of qubits and gates
are re-calibrated at some coarser granularity (say once a day)

	I Introduction
	II Background and Terminology
	II-A Quantum Information
	II-B Key Terminologies

	III Overall System Trends
	III-A Machine Executions
	III-B Queuing Time
	III-C Execution vs Queuing Time
	III-D Compile Time
	III-E Summary and Recommendations

	IV Trends in Quantum Machines
	IV-A Variable Machine Characteristics
	IV-B Varying Application Fidelity
	IV-C Machine Utilization Distribution
	IV-D Summary and Recommendations

	V Trends in Queuing
	V-A Number of Queued Jobs vs Machine
	V-B Queuing Time Distribution vs. Machine
	V-C Queuing Time Distribution vs Batch Size
	V-D Calibration Crossovers
	V-E Summary and Recommendations

	VI Trends in Execution
	VI-A Execution Time Distribution vs. Machine
	VI-B Execution Time Distribution vs Batch Size
	VI-C Assimilating / Predicting Execution Times
	VI-D Summary and Recommendations

	VII Discussion
	VIII Conclusion
	References

