
CALOREE: Learning Control for Predictable Latency
and Low Energy

Nikita Mishra
Connor Imes

University of Chicago
nmishra,ckimes@cs.uchicago.edu

John D. Laferty
Yale University

john.laferty@yale.edu

Henry Hofmann
University of Chicago

hankhofmann@cs.uchicago.edu

Abstract

Many modern computing systems must provide reliable la-
tency with minimal energy. Two central challenges arise
when allocating system resources to meet these conlict-
ing goals: (1) complexityÐmodern hardware exposes diverse
resources with complicated interactionsÐand (2) dynamicsÐ
latency must be maintained despite unpredictable changes
in operating environment or input. Machine learning accu-
rately models the latency of complex, interacting resources,
but does not address system dynamics; control theory adjusts
to dynamic changes, but struggles with complex resource
interaction. We therefore propose CALOREE, a resource
manager that learns key control parameters to meet latency
requirements with minimal energy in complex, dynamic en-
vironments. CALOREE breaks resource allocation into two
sub-tasks: learning how interacting resources afect speedup,
and controlling speedup to meet latency requirements with
minimal energy. CALOREE deines a general control systemÐ
whose parameters are customized by a learning frameworkÐ
while maintaining control-theoretic formal guarantees that
the latency goal will be met. We test CALOREE’s ability to
deliver reliable latency on heterogeneous ARM big.LITTLE
architectures in both single and multi-application scenarios.
Compared to the best prior learning and control solutions,
CALOREE reduces deadline misses by 60% and energy con-
sumption by 13%.

CCS Concepts · Computing methodologies→ Computational

control theory; Machine learning; · Computer systems or-

ganization → Heterogeneous (hybrid) systems; Embedded

systems;Real-time systemarchitecture; ·Hardware→Chip-

level power issues;

Keywords machine learning; control theory; real-time systems; en-

ergy; heterogeneous architectures; resource allocation

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for proit or commercial advantage and that copies bear

this notice and the full citation on the irst page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior speciic permission and/or a fee. Request

permissions from permissions@acm.org.

ASPLOS ’18, March 24ś28, 2018, Williamsburg, VA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00

htps://doi.org/10.1145/3173162.3173184

ACM Reference Format:

Nikita Mishra , Connor Imes, John D. Laferty, and Henry Hofmann.

2018. CALOREE: Learning Control for Predictable Latency and Low

Energy. In ASPLOS ’18: 2018 Architectural Support for Programming

Languages and Operating Systems, March 24ś28, 2018, Williamsburg,

VA, USA. ACM, New York, NY, USA, 15 pages. htps://doi.org/10.
1145/3173162.3173184

1 Introduction

Large classes of computing systemsÐfrom embedded to serversÐ
must deliver reliable latency while minimizing energy to
prolong battery life or lower operating costs. To address
these conlicting requirements, hardware architects expose
diverse, heterogeneous resources with a wide array of la-
tency and energy tradeofs. Software must allocate these
resources to guarantee latency requirements are met with
minimal energy.

There are two primary diiculties in eiciently allocating
heterogeneous resources. The irst is complexity: resources
interact in intricate ways, leading to non-convex optimiza-
tion spaces. The second is dynamics: performance require-
ments must be met despite unpredictable disturbances; e.g.,
changes in application workload or operating environment.
Prior work addresses each of these diiculties individually.
Machine learning handles complex modern processors,

modeling an application’s latency and power as a function
of resource conigurations [5, 12, 15, 31, 52, 57, 58, 66, 85].
These predictions, however, are not useful if the environ-
ment changes dynamically; e.g., a second application enters
the system. Control theoretic approaches dynamically adjust
resource usage based on models of the diference between
measured and expected behavior [8, 24, 25, 30, 42, 64, 69, 74,
80, 82]. Control provides formal guarantees that it will meet
the latency goal in dynamic environments, but these guar-
antees are based on ground-truth models relating resources
and latency. If these models are not known or there is error
between the modeled and actual behavior, the controller will
fail to deliver the required latency.
Intuitively, combining learned models of complex hard-

ware resources with control-theoretic resource management
should produce predictable latency in complex, dynamic
systems. To derive the beneit of both, however, requires
addressing two major challenges:

https://doi.org/10.1145/3173162.3173184
https://doi.org/10.1145/3173162.3173184
https://doi.org/10.1145/3173162.3173184


• Dividing resource allocation into sub-problems that suit
learning and control’s diferent strengths.
• Deining abstractions that eiciently combine sub-problem
solutions, while maintaining control’s formal guarantees.

Control

Learning + Control
Performance

P
o
w
e
r

Figure 1. Learn-
ing smoothes the
controller’s domain.

We address the irst challenge
by splitting resource allocation
into two sub-tasks. The irst is
learning speedupÐinstead of ab-
solute performanceÐso that all
unpredictable external interfer-
ence is viewed as a change to a
baseline latency and the relative
speedup is independent of these
changes. Learning is well-suited to modeling speedups as a
function of resource usage and inding Pareto-optimal trade-
ofs in speedup and energy. The second sub-task is control-
ling speedup dynamically based on the diference between
measured and desired latency. Once the learner has found
Pareto-optimal tradeofs the problem is convex and well-
suited to adaptive control solutions which guarantee the
required speedup even in dynamic environments. Figure 1
illustrates the intuition: processor complexity creates local
optima, where control solutions can get stuck; but learning
inds true optimal tradeofsÐłconvexifyingžÐthe problem,
allowing control techniques to handle dynamics while pro-
viding globally optimal energy.

We address the second challenge by deining an interface
between learning and control that maintains control’s formal
guarantees. This interface consists of two parts. The irst is a
performance hash table (PHT) that stores the learned model
between conigurations and speedup. The PHT allows the
controller to ind the resource allocation that meets a desired
speedup with minimal energy and requires only constant
timeÐO (1)Ðto access. The second part of the interface is
the learned variance. Knowing this value, the controller can
adjust itself to maintain formal guarantees even though the
speedup is modeled by a noisy learning mechanism at run-
time, rather than directly measured olineÐas it would be
in traditional control design.

Thus, we propose a general methodology where an abstract

control system is customized at runtime by a learning mecha-

nism to meet latency requirements with minimal energy.We
refer to this approach as CALOREE1. Unlike previous work
on control systems that required numerous user-speciied
models and parameters [8, 30, 42, 64, 82], CALOREE’s learner
tunes the control parameters automatically; i.e., it requires no
user-level inputs other than latency requirements. We evaluate
CALOREE by implementing the learners on an x86 server
and the controller on a heterogeneous ARM big.LITTLE de-
vice. We compare to state-of-the-art learning (including poly-
nomial regression [15, 66], collaborative ilteringÐi.e., the
Netlix algorithm[3, 12]Ðand a hierarchical Bayesian model

1Control And Learning for Optimal Resource Energy Eiciency

(a)

0 5 10 15 20
0.8

1.0

1.2

Iteration

L
at
en
cy

(N
o
rm

al
iz
ed
)

LatencyRequirement
Learning

AdaptiveControl

(b)

Figure 2. (a) STREAM performance vs. coniguration. Darker
color means higher performance. (b) Managing STREAM la-
tency: Learning handles the complexity, but control oscillates.

[52]) and control (including proportional-integral-derivative
[24] and adaptive, or self-tuning [41]) controllers. We set
latency goals for benchmark applications and measure both
the percentage of time the requirements are violated and the
energy. We test both single-appÐwhere an application runs
aloneÐand multi-app environmentsÐwhere background ap-
plications enter the system and compete for resources.
Our results show that CALOREE achieves the most reli-

able latency and best energy savings. In the single-app case,
the best prior technique misses 10% of deadlines on average,
while CALOREE misses only 6%. All other approaches miss
100% of deadlines for at least one application, but CALO-
REE misses, at most, 11% of deadlines. In the multi-app case,
the best prior approach averages 40% deadline misses, but
CALOREEmisses just 20%.We evaluate energy by comparing
to optimal energy assuming a perfect model of application,
system, and future. In the single-app case, the best prior
approach averages 18% more energy consumption than opti-
mal, but CALOREE consumes only 4% more. In themulti-app

case, the best prior approach averages 28% more energy than
optimal, while CALOREE consumes just 6% more.
In summary, CALOREE is the irst work to use learning to

customize control systems at runtime, ensuring application

latencyÐboth formally and empiricallyÐwith no prior knowl-

edge of the controlled application. Its contributions are:

• Separation of resource management into (1) learning com-
plicated resource interactions and (2) controlling speedup.
• A generalized control design usable with multiple learners.
• A method for guaranteeing latency using learnedÐrather
than measuredÐmodels.

2 Background and Motivation

This section illustrates how learning handles complexity,
how control handles dynamics, and then describes a key
challenge that must be overcome to combine learning and
control.



2.1 Learning Complexity

We demonstrate howwell learning handles complex resource
interaction for STREAM on an ARM big.LITTLE processor
with four big, high-performance cores and four LITTLE,
energy eicient cores. The big cores support 19 clock speeds,
while the LITTLE cores support 14.

Figure 2a shows STREAM’s performance for diferent re-
source conigurations. STREAM has complicated behavior:
the LITTLE cores’ memory hierarchy cannot deliver per-
formance. The big cores’ more powerful memory system
delivers greater performance, with a peak at 3 big cores. At
low clockspeeds, 3 big cores cannot saturate the memory
bandwidth, while at high clockspeeds thermal throttling cre-
ates performance loss. Thus, the peak speed occurs with 3
big cores at 1.2 GHz, and it is ineicient to use the LITTLE
cores. STREAM, however, does not have distinct phases, so
system dynamics are not an issue in this case.
Figure 2b shows 20 iterations of existing learning [52]

and adaptive control [30] approaches allocating resources to
STREAM. The x-axis shows iteration and the y-axis shows la-
tency normalized to the requirement. The learning approach
estimates STREAM’s performance and power for all conigura-
tions and uses the lowest energy coniguration that delivers
the required latency. The adaptive controller begins with
a generic notion of power/performance tradeofs. As the
controller runs, it measures latency and adjusts both the
allocated resources and its own parameters. The adaptive
controller dynamically adjusts to non-linearities with a se-
ries of linear approximations; however, inaccuracies in the
relationship between resources and latency cause oscilla-
tions that lead to latency violations. This behavior occurs
because the controller’s adaptive mechanisms cannot han-
dle STREAM’s complexity, a known limitation of adaptive
control systems [16, 30, 82]. Hence, the learner’s ability to
model complex behavior is crucial.

2.2 Controlling Dynamics

We now consider a dynamic environment. We begin with
x264 running alone on the system. Figure 3a shows x264’s
behavior. It achieves the best performance on 4 big cores at
the highest clockspeed; the 4 LITTLE cores are more energy-
eicient but slower. For x264, the challenge is determining
how to use both the LITTLE and big cores to conserve en-
ergy while still meeting the latency requirements. During
execution, we launch a second applicationÐSTREAMÐon a
single big core, dynamically changing available resources.
Figure 3b shows the results. The vertical dashed line at

frame 99 shows when the second application begins. At that
point, the adaptive controller detects x264’s latency spikeÐ
rather than detecting the new application speciicallyÐand
it increases clockspeed and moves x264 from 4 to 3 big cores.
The learner, however, does not have a mechanism to adapt to
the altered environment. While we could theoretically add

(a)

90 95 100 105 110
0.0

0.4

0.8

1.2

1.6

frame

L
at
en
cy

(N
o
rm

al
iz
ed
)

LatencyRequirement
Learning

AdaptiveControl

(b)

Figure 3. (a) x264 performance vs. coniguration. Darker
color means higher performance. (b) Managing x264’s la-
tency with another application: control adapts to the change
(the vertical dashes), but learning does not.

feedback to the learner and periodically re-estimate the con-
iguration space, doing so is impractical due to high overhead
for learners capable of handling this complexity [12, 13, 52].
Simpler reinforcement learners can adapt, but cannot guar-
antee reconvergence after the dynamic change [46, 71].

2.3 Challenges Combining Learning and Control

Sections 2.1 and 2.2 motivate splitting the resource allocation
problem into modelingÐhandled by learningÐand dynamic
managementÐhandled by control. This subsection demon-
strates the importance of deining principled techniques for
controlling systems using learned models.

The controller’s pole is a particularly important parameter
[41]. Control engineers tune the pole to trade response time
for noise sensitivity. Traditionally, the data used to set the
pole comes from many observations of the controlled system
and is considered ground truth [24, 44]. CALOREE, however,
must tune the pole based the learner’s models, which may
have noise and/or errors.

90 95 100 105 110
0.0

1.0

2.0

frame

L
at
en
cy

(N
o
rm

al
iz
ed
)

LatencyRequirement
TunedPole
DefaultPole

Figure 4. Comparison of care-
fully tuned and default poles.

To demonstrate the
pole’s importance when
using learned data, we
again control x264, us-
ing the adaptive con-
troller from the previ-
ous subsection. Instead
of using a ground truth
modelmapping resource
usage to performance,
we model it using the
learner from the irst
subsection. We compare
the results with a carefully hand-tuned pole to those using
the default pole provided by the controller developers [30].

As shown in Figure 4, the carefully tuned pole converges.
The default pole, however, oscillates around the latency tar-
get, resulting in a number of missed deadlines. Additionally,



Control

System

big cores big speeds

LITTLE  

cores

LITTLE 

speeds

Resources

-
Performance Feedback

Performance

Requirement
App-

specific

Optimizer

Embedded/Mobile Device: Running 

Generalized Control System

Machine learning model as 

Performance Hash Table

+

Tuning parameter (pole) for 

controller

Server: Running 

transfer learning 

algorithms

i

j

k

1

2

3

4

o

p

Figure 5. CALOREE overview.

the frames below the desired latency waste energy because
they spend more time on the big, ineicient cores. The pole
captures the system’s inertiaÐdictating how fast it should
react to environmental changes. If the learner is noisy or in-
accurate, the controller should trust it less and move slowly.
Rather than require users with both computing and con-
trol knowledge to tune the pole, CALOREE incorporates the

learner’s estimated variance to compute a pole that provides

probabilistic convergence guarantees.

3 CALOREE: Learning Control

Figure 5 shows CALOREE’s approach of splitting resource
management into learning and control tasks and then com-
posing their individual solutions. When a new application
enters the system, an adaptive control system allocates re-
sources using a generic model, recording latency and power.
The records are sent to a learner, which predicts the applica-
tion’s latency and power in all other resource conigurations.
The learner extracts those that are predicted to be Pareto-
optimal and packages them in a data structure: the perfor-
mance hash table (PHT). The PHT and the estimated variance
are sent to the controller, which sets its pole and selects an
energy minimal resource coniguration with formal guaran-
tees of convergence to the desired latency. CALOREE’s only
user-speciied parameter is the latency requirement.

Figure 6 illustrates the asynchronous interaction between
CALOREE’s learner and controller. The controller startsÐ
using a conservative, generic speedup modelÐwhen a new
application launches. The controller sends the learner the
application’s name and device type (message 1, Figure 6).
The learner determines howmany samples are needed for an
accurate prediction and sends this number to the controller
(message 2). The controller takes these samples and sends
the latency and power of each measured coniguration to the
learner (message 3). The learner may require time to make
predictions (i.e., train the model); so, the controller does not
wait, but continues with the conservative model. Once the
learner predicts the optimal conigurations, it sends that

Timeline

1 2 3 4

1

2

3

4

Generic control model Learned Control Model

Learner sleeps or supports other apps
Model

Estimation
Collecting
Samples

C
o

n
tr

o
l 

  
 L

ea
rn

in
g

An application starts and the controller begins with a generic model and queries the learner for
the number of samples to take.

The learner responds with the number of samples needed, the controller continues.

The controller sends its samples back to the learner which asynchronously assembles a model.

The learner responds with a model customized for the application.

Figure 6. Temporal relationship of learning and control.

data and the variance estimate to the controller (message 4),
which uses the learned model from then on.

Figure 6 shows several key points about the relationship
between learning and control. First, the controller never
waits for the learner: it uses a conservative, less-eicient
control speciication until the learner produces application-
speciic predictions. Second, the controller does not continu-
ously communicate with the learnerÐthis interaction hap-
pens once at application launch. Third, if the learner crashed,
the controller defaults to the generic adaptive control sys-
tem. If the learner crashed after sending its predictions, the
controller does not need to know. Finally, the learner and
controller have a clearly deined interface, so they can be
run in separate processes or physically separate devices.

We irst describe adaptive control. We then generalize this
approach, separating out parameters to be learned. Next,
we discuss the class of learners that work with CALOREE.
Finally, we formally analyze CALOREE’s guarantees.

3.1 Traditional Control for Computing

A multiple-input, multiple-output (MIMO) controller man-
ages multiple resources to meet multiple goals. The inputs
are measurements, e.g., latency. The outputs are the resource
settings to be used at a particular time, e.g., an allocation of
big and LITTLE cores and a clockspeed for each.

These diference equations describe a generic MIMO con-
troller managing n resources to meetm goals at time t :2

x(t + 1) =A · x(t ) +B · u(t )
y(t ) =C · x(t ) ,

(1)

where x ∈ Rq is the controller’s state, capturing the relation-
ship between resources and goals; q is the controller’s degree,
or complexity of its internal state. u(t ) ∈ Rn represents the
current resource coniguration; i.e., the ith vector element
is the amount of resource i allocated at time t . y(t ) ∈ Rm
represents the value of the goal dimensions at time t . The
matrices A ∈ Rq×q and B ∈ Rq×n relate the resource conig-
uration to the controller state. The matrix C ∈ Rm×q relates
the controller state to the expected behavior. This control
deinition does not assume the states or the resources are
independent, but it does assume a linear relationship.

2We assume discrete time, and thus, use diference equations rather than

diferential equations that would be used for continuous systems.



For example, in our ARM big.LITTLE system there are four
resources: the number of big cores, the number of LITTLE
cores, and the speeds for each of the big and LITTLE cores.
There is also a single goal: latency. Thus, in this example,
n = 4 andm = 1. The vector u(t ) has four elements repre-
senting the resource allocation at time t . q is the number of
variables in the controller’s state which can vary between
1 to n. The matrices A, B, and C capture the linear relation-
ship between the control state x, the resource usage u, and
the measured behavior. In this example, we know there is a
non-linear relationship between the resources. We overcome
this diiculty by tuning the matrices at each time stepÐ
approximating the non-linear system through a series of
changing linear formulations. This approximation is a form
of adaptive or self-tuning control [41]. Such adaptive con-
trollers provide formal guarantees that they will converge
to the desired latency even in the face of non-linearities, but
they still assume convexity.

This controller has two major drawbacks. First, it requires
matrix computation, so its overhead scales poorly in the
number of resources and in the number of goals [24, 64].
Second, the adaptive mechanisms require users to specify
both (1) starting values of the matrices A, B, and C and (2)
the method for updating these matrices to account for any
non-convexity in the relationship between resources and
latency [30, 41, 64, 82]. Therefore, typically 100s to 1000s of
samples are taken at design time to ensure that the starting
matrices are suicient to ensure convergence [17, 44, 59].

3.2 CALOREE Control System

To overcome the above issues, CALOREE abstracts the con-
troller of Eqn. 1 and factors out those parameters to be
learned. Speciically, CALOREE takes three steps to trans-
form a standard control system into one that works without
prior knowledge of the application to be controlled:

1. controlling speedup (which is an abstraction of latency)
rather than resources;

2. turning speedup into a minimal energy resource schedule;
3. and exploiting the problem structure to solve this schedul-

ing problem in constant time.

These steps assume a separate learner has produced predic-
tions of how resource usage afects latency and power. The
result is that CALOREE’s controller runs in constant time
without requiring any user-speciied parameters.

3.2.1 Controlling Speedup

CALOREE converts Eqn. 1 into a single-input (latency), single-
output (speedup) controlling using A = 0, B = b (t ), C =
1,u = speedup, and y = per f ; where b (t ) is a time-varying
parameter representing the application’s base speedÐthe
speed when all resources are availableÐand per f is the mea-
sured latency. Using these substitutions, we eliminate x from

Eqn. 1 to relate speedup to latency:

lat (t ) = 1/(b (t ) · speedup (t − 1)) (2)

While b (t ) is application-speciic. CALOREE assumes base
speed is time-variant as applications will transition through
phases and it estimates this value online using the standard
technique of Kalman ilter estimation [75].
CALOREE must eliminate the error between the target

latency and the goal: error (t ) = дoal−1/lat (t ). Given Eqn. 2,
CALOREE uses the integral control law [24]:

speedup (t ) = speedup (t − 1) −
1 − ρ (t )

b (t )
.error (t ) (3)

which states that the speedup at time t is a function of the
previous speedup, the error at time t , the base speedb (t ), and
the controller’s pole, ρ (t ). Standard control techniques stati-
cally determine the pole and the base speed, but CALOREE
dynamically sets the pole and base speed to account for error

in the learner’s predictionsÐan essential modiication for pro-

viding formal guarantees of the combined control and learning

systems. For stable control, CALOREE ensures 0 ≤ ρ (t ) < 1.
Small values of ρ (t ) eliminate error quickly, but make the
controller more sensitive to the learner’s inaccuracies. Larger
ρ (t ) makes the system more robust at the cost of increased
convergence time. Section 3.5 describes how CALOREE sets
the pole, but we irst address converting speedup into a re-
source allocation.

3.2.2 Converting Speedup to Resource Schedules

CALOREE must map Eqn. 3’s speedup into a resource alloca-
tion. On our example big.LITTLE architecture an allocation
includes big and LITTLE cores as well as a speed for both.
The primary challenge is that speedups in real systems are
discrete non-linear functions of resource usage, while Eqn. 3
is a continuous linear function. We bridge this divide by as-
signing time to resource allocations such that the average
speedup over a control interval is that produced by Eqn. 3.
The assignment of time to resource conigurations is a

schedule; e.g., spending 10 ms on the LITTLE cores at 0.6 GHz
and then 15 ms on the big cores at 1 GHz. Typically many
schedules can deliver a particular speedup and CALOREE
must ind one with minimal energy. Given a time interval T ,
the speedup (t ) from Eqn. 3, and C diferent resource conig-
urations, CALOREE solves:

minimize
τ ∈RC

C−1
∑

c=0

τc · pc (4)

s .t .

C−1
∑

c=0

τc · sc = speedup (t )T (5)

C−1
∑

c=0

τc = T (6)

0 ≤ τc ≤ T , ∀c ∈ {0, . . . ,C − 1} (7)



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
o
rm

a
li

z
e
d
 P

o
w

e
r

Normalized Speedup

Lower Convex Hull Non-optimal configurations

c = 0

sc = 0

pc = .01

c = 1

sc = .2

pc = .08

c = 2

sc = .8

pc = .6

c = 3

sc = 1

pc = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Speedup Index

Configuration 

Array

P
e
rf

o
rm

a
n
c
e
 H

a
sh

 

T
a
b
le

Figure 7. Data structure to eiciently convert required
speedup into a resource coniguration.

where pc and sc are coniguration c’s estimated powerupÐ
analogous to speedupÐand speedup; τc is the time to spend
in coniguration c . Eqn. 4 is the objective: minimizing energy
(power times time). Eqn. 5 states that the average speedup
must be maintained, while Eqn. 6 requires the time to be
fully utilized. Eqn. 7 simply avoids negative time.

3.3 Exploiting Problem Structure for Fast Solutions

By encoding the learner’s predictions in the performance
hash table, CALOREE solves Eqns. 4ś7 in constant time.

Kim et al. analyze the problem of minimizing energy while
meeting a latency constraint and observe that there must be
an optimal solution with the following properties [34]:

• At most two of τc are non-zero, meaning that at most two
conigurations will be used in any time interval.
• If you chart the conigurations in the power and speedup
tradeof space (e.g., the top half of Figure 7) the two con-
igurations with non-zero τc lie on the lower convex hull
of the points in that space.
• The two conigurations with non-zero τc are adjacent on
the convex hull: one above the constraint and one below.

The PHT (shown in Figure 7) provides constant time ac-
cess to the lower convex hull. It consists of two arrays. The
irst is pointers into the second, which stores resource con-
igurations the learner estimates to be on the lower convex
hull sorted by speedup. Recall speedups are computed rela-
tive to the base speed, which uses all resources. The largest
estimated speedup is therefore 1. The irst array of pointers
has a resolution indicating how many decimal points of pre-
cision it captures and it is indexed by speedup. The example
in Figure 7 has a resolution of 0.1. Each pointer in the irst
array points to the coniguration in the second array that
has the largest speedup less than or equal to the index.

CALOREE computes speedup (t ) and uses the PHT to con-
vert speedup into two conigurations: hi and lo. To ind the

hi coniguration, CALOREE clamps the desired speedup to
the largest index lower than speedup (t ), indexes into the
coniguration array, and then walks forward until it inds the
irst coniguration with speedup higher than speedup (t ). To
ind lo, it clamps the desired speedup to the smallest index
higher than speedup (t ), indexes into the coniguration array,
and then walks backwards until it inds the coniguration
with the largest speedup less than speedup (t ).

For example, consider the PHT in Figure 7 and a speedup (t ) =
.65. To ind hi , CALOREE indexes at .6 and walks up to ind
c = 2 with sc = .8, setting hi = 2. To ind lo, CALOREE
indexes the table at .7 and walks backward to ind c = 1 with
sc = .2, setting lo = 1.

CALOREE sets τhi and τlo by solving:

T = τhi + τlo (8)

speedup (t ) =
shi · τhi + slo · τlo

T
(9)

where the controller provides speedup (t ) and the learner
predicts sc . By solving Eqns. 8 and 9, CALOREE has turned
the controller’s speedup into a resource schedule using pre-
dictions stored in the PHT.

3.4 CALOREE Learning Algorithms

The previous subsection describes a general,abstract control
system, which can be customized with a number of diferent
learning methods. The requirements on the learner are that it
must produce 1) predictions of each resource coniguration’s
speedup and powerup and 2) estimate of its own variance
σ 2. This section describes the general class of learning mech-
anisms that meet these requirements.
We refer to application-speciic predictors as online be-

cause they work for the current application, ignoring knowl-
edge of other applications. We refer to general predictors as
oline as they use prior observations of other applications
to predict the behavior of a new application. A third class of
transfer learning combines information from the previously
seen applications and current application to model the future
behavior of the current application [56]. Transfer learning
produces highly accurate models since it augments online
data with oline information from other applications. CALO-
REE uses transfer learners because CALOREE’s separation
of learning and control makes it easy to incorporate data
from other applicationsÐthe learner in Figure 6 can simply
aggregate data from multiple controllers. We describe two
examples of appropriate transfer learning algorithms.

Netlix Algorithm: The Netlix problem is a famous chal-
lenge to predict users’ movie preferences. The challenge was
won by realizing that if 2 users both like some movies, they
might have similar taste in other movies [3]. This approach
allows learners to borrow large amounts of data from other
applications to answer questions about a new application.
One formulation of this problem is to assume the matrix
of resource-vs-speedup is low-rank and solve the problem



while True do

Measure application latency
Compute required speedup (Equation (2))
Lookup shi and slo with PHT
Compute τhi and τlo (Equations 8 & 9)
Conigure to system to hi & sleep τhi .
Conigure to lo & sleep τlo .

end while
Algorithm 1: CALOREE’s runtime control algorithm.

using mathematical optimization techniques. The Netlix
approach has been used to predict application response to
heterogeneous resources in data centers [12, 13].

BayesianPredictors:Ahierarchical Bayesianmodel (HBM)
provides a statistically sound framework for learning across
applications and devices [21, 54]. In the HBM, each applica-
tion has its ownmodel, allowing speciicity, but these models
are conditionally dependent on some underlying probability
distribution with a hidden mean and co-variance. In practice,
an HBMpredicts behavior for a new application using a small
number of observations and combining those with the large
number of observations of other applications. Rather than
over-generalizing, the HBM uses only similar applications
to predict new application behavior. The HBM’s accuracy
increases as more applications are observed because increas-
ingly diverse behaviors are represented in the pool of prior
knowledge [52]. Of course, the computational complexity of
learning also increases with increasing applications.

3.5 Formal Analysis

Control System Complexity CALOREE’s control system
(see Algorithm 1) runs on the local device along with the
application under control, so its overhead must be minimal.
In fact, each controller invocation is O (1) . The only parts
that are not obviously constant time are the PHT lookups.
Provided the PHT resolution is suiciently high to avoid
collisions, then each PHT lookup requires constant time.

Control Theoretic Formal Guarantees The controller’s
pole ρ (t ) is critical to providing control theoretic guarantees
in the presence of learnedÐrather than directly measuredÐ
data. CALOREE requires any learner estimate not only speedup
and powerup, but also the variance σ . CALOREE uses this
information to derive a lower bound for the pole which
guarantees probabilistic convergence to the desired latency.
Speciically, we prove that with probability 99.7% CALOREE
converges to the desired latency if the pole is

⌊1 − ⌊max (ŝ )/(min(ŝ ) − 3σ )⌋0⌋0 ≤ ρ (t ) < 1,

where ⌊x⌋0 = max(x ,0) and ŝ is the estimated speedup. See
appendix A for the proof. Users who need higher conidence
can set the scalar multiplier onσ higher; e.g., using 6 provides
a 99.99966% probability of convergence.

Thus we provide a lower-bound on the value of ρ (t ) re-
quired for conidence that CALOREE converges to the de-
sired latency. This pole value only considers latency, and not
energy eiciency. In practice, we ind it better to use a higher
pole based on the uncertainty between the controller’s ob-
served energy eiciency and that predicted by the learner.
We follow prior work [72] in quantifying uncertainty as β (t ),
and setting the pole based on this uncertainty:

β (t ) = exp
(

−

(

�
�
�
�

s̄ (t )
p̄ (t )
−

ŝ (t )

p̂(t )

�
�
�
�

)

/5
)

ρ (t ) =
1−β (t )
1+β (t )

(10)

where s̄ and p̄ are the measured values of speedup and
powerup and ŝ and p̂ are the estimated values from the
learner. This measure of uncertainty captures both power
and latency. We ind that it is generally higher than the pole
value given by our lower bound, so in practice CALOREE
sets the pole dynamically to be the higher of the two values
and CALOREE makes spot updates to the estimated speedup
and power based on its observations.

4 Experimental Setup

4.1 Platform and Benchmarks

We run applications on an ODROID-XU3 with a Samsung
Exynos 5 Octa processor (an ARM big.LITTLE architecture),
running Ubuntu 14.04. The 4 big cores support 19 clock-
speeds, the 4 LITTLE ones have 13. An on-board power me-
ter updated at 0.25s intervals captures core, GPU, network,
and memory. We allocate cores using thread ainity and set
speeds using cpufrequtils. The ODROID has no screen,
but recent trends in mobile/embedded processor design and
workloads have seen processor power become the dominant
factor in energy consumption [23]. We note that the under-
lying system automatically performs thermal throttling at
high clockspeeds, reducing clockspeed when temperature be-
comes too high. We cannot disable this feature and it actually
creates a challenge for the learners, as they must accurately
estimate when high clockspeeds will actually reduce per-
formance due to this thermal throttling behavior. We run
the learners on an Intel server with E5-2690 processors. The
ODROID and the server are connected with Gigabit Ethernet.
We use 12 benchmarks representing embedded and mo-

bile sensor processing. These include video encoding (x264)),
video analysis (bodytrack), image similarity search (ferret),
and animation (facesim) from PARSEC [4]; medical imaging
(heartwall, leukocyte), image processing (srad), and ma-
chine learning (kmeans) fromRodinia [7]; security (sha) from
ParMiBench [32]; memory intensive processing (stream)
[49]; and synthetic aperture radar (radar) [26]. These bench-
marks are representative of either existing embedded/mobile
workloads (video encoding, radar processing) or examples of
the emerging class of learning and analysis applications that
are being increasingly pushed to edge devices (clustering,
video analysis).



bodytr
ack

fac
esimfer

ret

hear
twall

km
ean

s

leu
koc

yte lud
rad

ar sha
sra

d
stre

am

x26
4 −

ducks

x26
4 −

nativ
e

0.1

0.3

0.5

la
ck
-o
f-
i
t

(1
−
a
d
ju
s
te
d
R
2
)

Figure 8. Lack-of-it for performance vs clock-speed. Lower

lack-of-it indicates a more compute-bound application,

higher values indicate a memory-bound one.

Figure 8 shows the variety of workloads indicated by the

lack-of-itÐthe absence of correlation between frequency and
performance. Applications with high lack-of-it do not speed
up with increasing frequencyÐtypical of memory bound
applications. Applications with low lack-of-it increase per-
formance with increasing clock speed. Applications with in-
termediate lack-of-it tend to improve with increasing clock
speed up to a point and then stop. Each application has an
outer loopwhich processes one input (e.g., a point for kmeans
or a frame for x264). The application signals the completion
of an input using a standard API [27]. Performance require-
ments are speciied as latencies for these inputs.

4.2 Evaluation Metrics

For each application, we measure its worst-case execution
time (wcet) running without management; i.e., the highest
latency for any input. We set a latency goalÐor deadlineÐ
for each input equal to its wcet; the standard approach for
ensuring real-time latency guarantees or maximum respon-
siveness [6]. We quantify performance reliability by mea-
suring the missed deadlines. If the application processes n
total inputs andm exceeded the target latency the deadline
misses are:

deadlinemisses = 100% ·
m

n
. (11)

We evaluate energy savings by running every application
in every resource coniguration and recording performance
and power for every input. By post-processing this data
we determine the minimal energy resource coniguration
that meets the latency for each input. To compare across
applications, we normalize energy:

normalized enerдy = 100%.

(

emeasured

eoptimal
− 1

)

(12)

where emeasured is measured energy and eoptimal is the op-
timal energy. We subtract 1, so that this metric shows the
percentage of energy over optimal.

4.3 Points of Comparison

We compare to existing learning and control approaches:

1. Race-to-idle: This well-known heuristic allocates all re-
sources to the application to complete each input as fast
as possible, then idles until the next input is available

[34, 36, 53]. This heuristic is a standard way to meet hard
deadlines, but it requires conservative resource allocation
[6].

2. PID-Control: a standard single-input (performance), multiple-
output (big/LITTLE core counts and speeds) proportional-
integral-controller representative of several that have been
proposed for computer resource management [24, 64].
This controller is tuned to provide the best average case
behavior across all applications and targets.

3. Online: measures a few sample conigurations then per-
forms polynomial multivariate regression to estimate un-
observed conigurations’ behavior [43, 52, 58].

4. Oline: does not observe the current applicationÐinstead
using previously observed applications to estimate power
and performance as a linear regression [37, 39, 81, 85].

5. Netlix: a matrix completion algorithm for the Netlix chal-
lenge. Variations of this approach allocate heterogeneous
resources in data centers [12, 13].

6. HBM : a hierarchical Bayesian learner previously used to al-
locate resources to meet performance goals with minimal
energy in server systems [52].

7. Adaptive-Control: a state-of-the-art, adaptive controller
that meets application performance with minimal energy
[30]. This approach requires a user-speciied model relat-
ing resource coniguration to performance and power. For
this paper, we use the Oline learner’s model.

We compare the above baselines to:

1. CALOREE-NoPole: uses the HBM learner, but sets the pole
to 0, which shows the importance of incorporating the
learned variance into control. All other versions of CALO-
REE set the pole according to Section 3.5.

2. CALOREE-online: uses the online learner.
3. CALOREE-Netlix: uses the Netlix learner.
4. CALOREE-HBM: uses the HBM learner.

We use leave-one-out cross validation: to test application x ,
we train on all other applications, then test on x .

5 Experimental Evaluation

5.1 Performance and Energy for Single App

Figure 9a summarizes the average error across all targets for
the single application scenario. The igure shows deadline
misses in the top chart and energy over optimal in the bottom.
The dots show the average, while the error bars show the
minimum and maximum values.
Race-to-idle meets all deadlines, but its conservative re-

source allocation has the highest average energy consump-
tion. Among the prior approaches HBM has the lowest aver-
age deadline misses (9%) and lowest energy (20% more than
optimal). CALOREE with no pole misses 15% of all deadlines,
which is worse than prior approaches. Note that all prior
approachesÐother than racingÐhave at least one application
that misses all deadlines. In many cases these approaches



0
20
40
60
80
100

D
ea
d
li
n
e

M
is
se
s
(%
)

lo
w
er

is
b
et
te
r)

Race
−

to −
idle

PID
−

Contro
l
Online

Ofline
Netf

lix
HBM

Adaptive
−

Contro
l

CALOREE −
NoPole

CALOREE −
Online

CALOREE −
Netf

lix

CALOREE −
HBM

Optim
al

0
20
40
60
80

E
n
er
g
y

O
v
er

O
p
ti
m
al
(%
)

(l
o
w
er

is
b
et
te
r)

(a) Single-App

0
20
40
60
80
100

D
ea
d
li
n
e

M
is
se
s
(%
)

lo
w
er

is
b
et
te
r)

Race
−

to −
idle

PID
−

Contro
l
Online

Ofline
Netf

lix
HBM

Adaptive
−

Contro
l

CALOREE −
NoPole

CALOREE −
Online

CALOREE −
Netf

lix

CALOREE −
HBM

Optim
al

0

100

200

E
n
er
g
y

O
v
er

O
p
ti
m
al
(%
)

(l
o
w
er

is
b
et
te
r)

(b) Mulit-App
Figure 9. Summary data for (a) single- and (b) multi-app scenarios. The top row shows deadline misses, the bottom energy consumption.

5.0

10.0

15.0

D
ea
d
li
n
e

M
is
se
s
(%
)

(l
o
w
er

is
b
et
te
r)

Race − to − idle Netflix HBM Adaptive − Control CALOREE − HBM

bodytr
ack

fac
esim fer

ret

hear
twall

km
ean

s

leu
koc

yte lud
rad

ar sha
sra

d
stre

am

x26
4 −

ducks

x26
4 −

nativ
e

Aver
age

30.0

60.0

90.0

E
n
er
g
y
A
b
o
v
e

O
p
ti
m
al
(%
)

(l
o
w
er

is
b
et
te
r)

Figure 10. Comparison of application performance error and energy for single application scenario.

30.0

60.0

90.0

D
ea
d
li
n
e

M
is
se
s
(%
)

(l
o
w
er

is
b
et
te
r)

Race − to − idle Netflix HBM Adaptive − Control CALOREE − HBM Optimal

bodytr
ack

fac
esim fer

ret

hear
twall

km
ean

s

leu
koc

yte lud
rad

ar sha
sra

d
stre

am

x26
4 −

ducks

x26
4 −

nativ
e

Aver
age

30.0

60.0

90.0

E
n
er
g
y
A
b
o
v
e
O
p
ti
m
al

(l
o
w
er

is
b
et
te
r)

Figure 11. Comparison of application performance error and energy for multiple application scenario.

are close to the latency (within 10%), but not close enough

to deliver reliable performance.

WhenCALOREE adaptively tune its pole, the results greatly

improve. The best combination is CALOREE-HBM, which

averages 6.0% missed deadlines, while consuming just 4.3%

more energy than optimal. Thus, CALOREE-HBM reduces

average deadline misses by 65% and energy consumption by

13% compared to the best prior approach. The error bars on

the CALOREE-HBM approach demonstrate that it is the only

approachÐbesides racingÐthat handles every test applica-
tion; all others see at least 100% deadline misses for one test
case. Yet, CALOREE-HBM reduces energy consumption by



27% compared to race-to-idle. The energy savings comes be-

cause most inputs are not worst case, leaving slack for smart

resource allocators to save energy. Among many smart ap-

proaches CALOREE-HBM provides highly reliable performance

with very low energy.

Figure 10 presents a detailed, per-application compari-

son between CALOREE-HBM and selected prior approaches

which have performed well in other scenarios: race-to-idle,

Netlix, HBM, and adaptive control. Other data has been

omitted for space. The benchmarks are shown on the x-axis;

the y-axis shows the number of deadline misses and the

normalized energy, respectively.

We thoroughly evaluate sensitivity to the latency goal

in Appendix B. In brief, we ind that these general trends

are true across a wide range of latency goals. Furthermore,

while it is beyond the scope of this paper, we have ported

CALOREE to an Intel server with many more states and,

despite the larger search space, we ind that CALOREE still

produces better results than learning or control alone [50].

5.2 Performance and Energy for Multiple Apps

We again launch each benchmark with a goal of meeting

its worst case latency. One quarter of the way through exe-

cution, we start another application randomly drawn from

our benchmark setÐbound to one big coreÐwhich interferes
with the original application. Delivering the required latency
tests the ability to react to environmental changes.
Figure 9b shows the average number of deadline misses

and energy over optimal for all approaches. Some targets are
unachievable for some applications; speciically, bodytrack,
heartwall, and sha. Due to these unachievable targets, both
optimal and race-to-idle show some deadline misses. Race-
to-idle misses more deadlines than optimal because it cannot
make use of LITTLE cores to do some work, it simply con-
tinues using all big cores despite the degraded performance
due to the second application. Most approaches do badly in
this scenarioÐeven adaptive control has 40% deadline misses.
CALOREE-HBM produces the lowest deadline misses with
an average of 20%, which is only 2 points more than optimal.
It also produces the lowest energy, just 6%more than optimal.
Figure 11 shows the detailed results.

The multi-application scenario demonstrates that CALO-
REE can adapt to large, unpredictable changes. Neither CALO-
REE’s learner nor controller are ever explicitly aware that a
new application has entered the system. CALOREE, however,
immediately detects the disturbance as a change in the ob-
served latency and then adjusts resource allocation to bring
the application back to its target performance.

These results assume that single application is the highest
priority in the system. CALOREE łprotectsž that single ap-
plication from interference by other applications. In future
work, we will investigate applying CALOREE to competing
applications by extending prior control work that addresses

competing application needs while assuming fully accurate
models of all applications that might run together [48].

5.3 Adapting to Workload Changes

0.5

1.0

1.5

L
at
en
cy

(N
o
rm

al
iz
ed
)

HBM CALOREE − HBM

0 200 400 600 800 1,000

1.0

2.0

3.0

t ime [frame]

P
o
w
er

(W
at
ts
)

Figure 12. Controlling x264 through scene changes.

We compare CALOREE and HBM reacting to input vari-
ations. Figure 12 shows the x264 video encoder with 2 dif-
ferent phases caused by a scene at the 500th frame. The irst
scene is diicult, the second much easier. In the irst, both the
HBM and CALOREE ind a coniguration that achieves the
latency target (1 in the igure) with minimal energy. When
the input changes, CALOREE initially misses the latency,
then adjusts to an optimal coniguration. In contrast, the
HBM does not ind a new coniguration, but idles more. Dur-
ing the second scene, CALOREE operates at 1.7W, while the
HBM is at 2W. Here, CALOREE’s use of learning and control
reduces energy by 14% compared to learning alone.

5.4 The Pole’s Importance

0.5

1.0

1.5

2.0

L
at
en
cy

(N
o
rm

al
iz
ed
)

CALOREE − NO − POLE
CALOREE − HBM

0 50 100 150 200

2.0

4.0

6.0

t ime [iteration]

P
o
w
er

(W
at
ts
)

Figure 13. Comparison of
learned and default poles.

Section 3.5 argues that
tuning the controller to
learned variance pre-
vents oscillation and pro-
vides probabilistic guar-
antees despite using noisy,
learned data to control
unseen applications. We
demonstrate this empir-
ically by showing srad

using both CALOREE-
NoPole and CALOREE-
HBM. Figure 13 shows
time on the x-axis and
normalized latency and power on the y-axes. CALOREE-
NoPole oscillates and causes wide power luctuations. In
contrast, CALOREE provides reliable performance and saves
tremendous energy because it avoids oscillation, using a
mixture of big and LITTLE cores to minimize energy.



0.3

0.6

0.9

A
cc
u
ra
cy

(P
er
fo
rm

an
ce
)

ONLINE NETFLIX HBM

0 20 40 60 80 100

0.3

0.6

0.9

% of samples for training (Out of 128 resource conigs).

A
cc
u
ra
cy

(P
o
w
er
)

Figure 14. Estimation accuracy versus sample size.

5.5 Sensitivity to the Measured Samples

We show how the number of samples afects model accuracy

for the Online, Netlix, and HBM learners. We quantify ac-

curacy as how close the learner is to ground truth (found

through exhaustive exploration), with 1 meaning the learner

perfectly models the real performance or power. Accuracy

matters because the fewer the samples, the faster the con-

troller switches to the learner’s application-speciic model.

Figure 14 shows the accuracy vs sample count for both

performance (top) and power (bottom). The HBM incorpo-

rates prior knowledge and its accuracy uniformly improves

with more samplesÐexceeding 0.9 after 20 samples. The On-
line approach needs at least 7 samples to even generate a
prediction. As Online receives more samples, its accuracy
improves but never exceeds HBM’s for the same sample
count. Netlix is very noisy for small sample sizes, but after
about 50, it is competitive with HBM. These results not only
demonstrate the sensitivity to sample size, they show why
CALOREE-HBM achieves the best results.

5.6 Overhead

CALOREE’s main overhead is sampling, where the controller
tests a few conigurations before CALOREE can reliably
estimate the entire power and performance frontier. The
sampling cost can be distributed across devices by asking
each of them to contribute samples for estimation. Once the
sampling phase is over, the HBM generates an estimate in
at most 500 ms, which is signiicantly smaller than the time
required to run any of our applications. In the worst case
(facesim), the controller sends 320B of sample data to the
learner, which sends back 1KB. In this case, the sampling
overhead and communication cost is less than 2% of total
execution time. CALOREE’s asynchronous communication
means that the controller never waits for the learner. For all
other benchmarks it is lower, and for most it is negligible.
The controller requires only a few loating point oper-

ations to execute, plus the table lookups in the PHT. To
evaluate its overhead, we time 1000 iterations. We ind that
it is under 2 microseconds, which is signiicantly faster than
we can change any resource allocation on our system; the

controller has negligible impact on performance and energy
consumption of the controlled device.

6 Related Work

Energy has long been an important resource for mobile and
embedded computing. Several OSs make energy an allocat-
able resource [62, 65, 66]. Others have specialized OS con-
structs to monitor [20] and reduce [18, 25, 40, 74, 80] energy
for mobile and embedded applications. We examine related
work applying learning and control to energy management.
Ofline Learning approaches build predictors before de-
ployment and then use those ixed predictors to allocate re-
sources [2, 9, 14, 37, 39, 79]. The training requires both many
samples and substantial computation. Applying the predictor
online, however, is low overhead. The main drawback is that
the predictions are not updated as the system runs: a prob-
lem for adapting workloads. Carat is an oline learner that
aggregates data across multiple devices to generate a report
for human users about how to reconigure their device for
energy savings [55]. While both Carat and CALOREE learn
across devices, they have very diferent goals. Carat returns
very high-level information to human users; e.g., update a
driver to extend battery life. CALOREE automatically builds
and applies low-level predictions to save energy.
Online Learning techniques observe the current applica-
tion to tune system resource usage for that application [1, 38,
43, 57, 58, 68]. For example, Flicker is a conigurable architec-
ture and optimization framework that uses online prediction
to maximize performance under a power limitation [57]. An-
other example, ParallelismDial, uses online adaptation to
tailor parallelism to application workload [68].
Hybrid Approaches combine oline predictions with on-
line adaptation [10, 15, 62, 66, 76, 78, 83]. For example, Dubach
et al. use a hybrid scheme to optimize the microarchitec-
ture of a single core [15]. Such predictors have also been
employed at the operating system level to manage system
energy consumption [62, 66, 78]. Other approaches combine
oline prediction with online updates [5, 25, 31]. For exam-
ple, Bitirgen et al use an artiicial neural network to allocate
resources to multiple applications in a multicore [5]. The
neural network is trained oline and then adapted online to
maximizes performance but without considering energy.
Control solutions can be thought of as a combination of
oline prediction with online adaptation. Their formal prop-
erties make them attractive for managing resources in op-
erating systems [24, 33, 69]. The oline phase involves sub-
stantial empirical measurement that is used to synthesize
a control system [8, 30, 42, 60, 61, 67, 77, 80, 82]. Control
solutions work well over a narrow range of applications,
as the rigorous oline measurement captures the general
behavior of a class of application and require negligible on-
line overhead. This focused approach is extremely efective



for multimedia applications [18, 19, 35, 47, 74, 80] and web-

servers [29, 45, 70] because the workloads can be character-

ized ahead of time to produce sound control.

The need for good predictions is the central tension in de-

veloping control for computing systems. It is always possible

to build a controller for a speciic application and system by

specializing for that pair. Prior work addresses the need for

accurate predictions in various ways. Some provides control

libraries that require user-speciied models [22, 30, 61, 67, 82].

Others automatically synthesize both a predictor and a con-

troller for either hardware [59] or software [16, 17]. Joule-

Guard combines learning for energy eiciency with control

for managing application parameters [25]. In JouleGuard, a

learner adapts the controller’s coeicients to uncertainty, but

JouleGuard does not produce a new set of predictions. Joule-

Guard’s computationally eicient learner runs on the same

device as the controlled application, but it cannot identify

correlations across applications or even diferent resource

conigurations. CALOREE is unique in that a separate learner

generates an application-speciic predictions automatically.

By oloading the learning task, CALOREE (1) combines data

frommany applications and systems and (2) applies computa-

tionally expensive, but highly accurate learning techniques.

Combining Learning and Control Two recent projects

explore such a combination. Recht et al have proposed sev-

eral approaches for combining statistical learning models

with optimal control theory [11, 73]. Simultaneously, Hof-

mann et al have developed OS- [25] and hardware-level re-

source management systems [63, 84] that combine learning

and control to provide both energy and latency guarantees

in dynamic environments. This prior work, however, still

requires expertise in both learning and control methods to ef-

fectively deploy the proposed solution. CALOREE, however,

deines abstractions that allow a number of AI and learn-

ing techniques to be combined with an adaptive controller,

maintaining control-theoretic formal guarantees. CALOREE

requires no user speciied parameters, other than the goal,

allowing it to be used by non-experts.

7 Conclusion

Much recent work builds systems to support learning, CALO-

REE uses learning to build better systems. CALOREE is a re-

source manager that meets application latency requirements

with minimal energy, even without prior knowledge of the

application. CALOREE is the irst work that provides formal

guarantees that it will converge to the required latency de-

spite not having prior knowledge. CALOREE achieves this

breakthrough by using learning to model complex resource

interaction and control theory to manage system dynam-

ics. CALOREE proposes foundational techniques that allow

control to be applied using noisy learned modelsÐinstead of
ground truth modelsÐwhile maintaining formal guarantees.
We demonstrate CALOREE’s efectiveness with a case study

using embedded applications on a heterogeneous processor.
Compared to prior learning and control approaches, CALO-
REE is the only approach that provides reliable latency for
all applications with near minimal energy. This ability to
meet goals for applications without prior knowledge is a
key-enabler for self-aware computing systems [28].

Acknowledgments

We thank the anonymous reviewers for their insightful feed-
back. We thank Shan Lu and Fred Chong for improving early
drafts of the manuscript. This research is supported by NSF
(CCF-1439156, CNS-1526304), and generous support from
the CERES Center for Unstoppable Computing. Additional
support comes from the Proteus project under the DARPA
BRASS program and a DOE Early Career award.

A Probabilistic Convergence Guarantees

Theorem A.1. Let sc and ŝc denote the true and estimated

speedups of various conigurations in set C as c ∈ R |C | . Let
σ denote the estimation error for speedups such that, ŝi ∼

N (si ,σ
2) ∀ i . We show that with probability greater than

99.7%, the pole ρ (t ) can be chosen to lie in the range, ⌊1 −

⌊max (ŝ )/(min(ŝ ) − 3σ )⌋0⌋0,1), where ⌊x⌋0 = max(x ,0).

Proof. Let ∆ denote the multiplicative error over speedups,
such that ŝc∆ = sc . To guarantee convergence the value of
pole, ρ (t ) can vary in the range ⌊1− 2

∆
)⌋0,1) [16]. The lower

ρ (t ), the faster the convergence. Equations 8 & 9 show that
any s (t ) is a linear combination of two speedups:

s (t ) = ŝhi · τhi + ŝlo · (T − τhi ) (13)

ŝ (t ) = shi · τhi + slo · (T − τhi ) (14)

We can upper bound and lower bound each of these terms,

s (t ) ≤ Tŝhi and ŝ (t ) ≥ Tslo (15)

The speedup estimates are close to the actual speedups
since ŝ ∼ N (s,σ 2), therefore with probability greater than
99.7% and the speedups can be given by, slo ≥ ŝlo − 3σ .
Hence, ŝ (t ) ≥ T (ŝlo − 3σ ). Since, over all conigurations,
∆ ≤ ⌊max (ŝ )/(min(ŝ ) − 3σ )⌋0, we can choose the pole from
the range, (⌊1 − ⌊max (ŝ )/(min(ŝ ) − 3σ )⌋0⌋0,1).

□

B Sensitivity to Latency Target

The results in the main body of the paper set a latency target
that is equivalent to the worst observed latency for any
input. In this section we explore the sensitivity of our results
to the latency target itself. In general, we want to answer
the question of whether the results are still good when less
aggressive latency targets are used. Therefore, we set a range
of performance targets from 1.1ś3.0× the worst case latency.
(Note that the earlier results set the latency target equal to
the worst case). As before, we measure deadline misses and
energy over optimal for all points of comparison. Figure 15



0

20

40

60

80

D
e
a
d
li
n
e
M
is
se
s
(%
)

(l
o
w
er

is
b
et
te
r)

Optim
al

Race
−

to −
idle

PID
−

Contro
l
Online

Ofline
Netf

lix
HBM

Adaptive
−

Contro
l

CALOREE −
NoPole

CALOREE −
Online

CALOREE −
Netf

lix

CALOREE −
HBM

0

20

40

60

E
n
e
rg
y
O
v
e
r
O
p
ti
m
a
l
(%
)

(l
o
w
er

is
b
et
te
r)

Figure 15. Summary data for single-app scenario averaging

across many diferent latency targets from 1.1 to 3.0× the

worst case latency.

represents the summary results as an average error across all

targets for the single application scenario. This igure shows

two charts with the percentage of deadline misses in the top

chart and the energy over optimal in the bottom. The dots

show the average for each technique, while the error bars

show the minimum and maximum values.

Not surprisingly, race-to-idle meets all deadlines, but its

conservative resource allocation has the highest average

energy consumption. Among the prior learning approaches

Netlix has the lowest average deadline misses (11%), but

with high energy (40% more than optimal), while the HBM

has higher deadline misses (17%) but with signiicantly lower

energy consumption (16%). Adaptive control achieves similar

deadline misses (14%) with lower average energy than any of

the prior learning approaches (12%). CALOREE with no pole

misses 45% of all deadlines, which is clearly unacceptable.

When we allow CALOREE to adaptively tune its pole,

however, we see greatly improved results. The best com-

bination is CALOREE with the HBM, which misses only

5.5% of deadlines on average, while consuming just 4.4%

more energy than optimal. These numbers represent large

improvements in both performance reliability and energy

eiciency compared to prior approaches. The other learners

paired with CALOREE achieve similar results to the prior

adaptive control approach.

This data conirms that the trends reported in the body

of the paper hold across a range of deadlines. The major

diference between this data and that in the main body of the

paper is that even relaxing deadlines slightly makes it much

less likely that an approach will completely fail to meet the

deadlines. Detailed results for individual applications are

available in an extended version of this paper [50, 51].



References
[1] Jason Ansel, Maciej Pacula, Yee LokWong, Cy Chan, Marek Olszewski,

Una-May O’Reilly, and Saman Amarasinghe. 2012. Siblingrivalry:

online autotuning through local competitions. In CASES.

[2] Jason Ansel, Yee LokWong, Cy Chan, Marek Olszewski, Alan Edelman,

and Saman Amarasinghe. 2011. Language and compiler support for

auto-tuning variable-accuracy algorithms. In CGO.

[3] R. M. Bell, Y. Koren, and C. Volinsky. 2008. The BellKor 2008 solution to

the Netlix Prize. Technical Report. ATandT Labs.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. 2008. The PARSECBenchmark

Suite: Characterization and Architectural Implications. In PACT.

[5] Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez. 2008. Coordinated

management of multiple interacting resources in chip multiprocessors:

A machine learning approach. In MICRO.

[6] Giorgio C Buttazzo, Giuseppe Lipari, Luca Abeni, and Marco Caccamo.

2006. Soft Real-Time Systems: Predictability vs. Eiciency: Predictability

vs. Eiciency. Springer.

[7] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.

Sheafer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark

Suite for Heterogeneous Computing. In IISWC.

[8] Jian Chen and Lizy Kurian John. 2011. Predictive coordination of

multiple on-chip resources for chip multiprocessors. In ICS.

[9] Jian Chen, Lizy Kurian John, and Dimitris Kaseridis. 2011. Modeling

Program Resource Demand Using Inherent Program Characteristics.

SIGMETRICS Perform. Eval. Rev. 39, 1 (June 2011), 1ś12.

[10] Ryan Cochran, Can Hankendi, Ayse K. Coskun, and Sherief Reda. 2011.

Pack & Cap: adaptive DVFS and thread packing under power caps. In

MICRO.

[11] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen

Tu. 2017. On the Sample Complexity of the Linear Quadratic Regulator.

Technical Report 1710.01688v1. arXiv.

[12] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-

aware Scheduling for Heterogeneous Datacenters. In ASPLOS.

[13] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-

eicient and QoS-aware Cluster Management. In ASPLOS.

[14] Zhaoxia Deng, Lunkai Zhang, Nikita Mishra, Henry Hofmann, and

Fred Chong. 2017. Memory Cocktail Therapy: A General Learning-

Based Framework to Optimize Dynamic Tradeofs in NVM. InMICRO.

[15] Christophe Dubach, Timothy M. Jones, Edwin V. Bonilla, and Michael

F. P. O’Boyle. 2010. A PredictiveModel for DynamicMicroarchitectural

Adaptivity Control. In MICRO.

[16] Antonio Filieri, Henry Hofmann, and Martina Maggio. 2014. Auto-

mated design of self-adaptive software with control-theoretical formal

guarantees. In ICSE.

[17] Antonio Filieri, Henry Hofmann, and Martina Maggio. 2015. Auto-

mated multi-objective control for self-adaptive software design. In

FSE.

[18] J. Flinn and M. Satyanarayanan. 1999. Energy-aware adaptation for

mobile applications. In SOSP.

[19] Jason Flinn and M. Satyanarayanan. 2004. Managing battery lifetime

with energy-aware adaptation. ACM Trans. Comp. Syst. 22, 2 (May

2004).

[20] Rodrigo Fonseca, Prabal Dutta, Philip Levis, and Ion Stoica. 2008.

Quanto: Tracking Energy in Networked Embedded Systems. In OSDI.

[21] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki

Vehtari, and Donald B Rubin. 2013. Bayesian data analysis. CRC press.

[22] Ashvin Goel, David Steere, Calton Pu, and Jonathan Walpole. 1998.

SWiFT: A Feedback Control and Dynamic Reconiguration Toolkit. In

2nd USENIX Windows NT Symposium.

[23] Matthew Halpern, Yuhao Zhu, and Vijay Janapa Reddi. [n. d.]. Mobile

CPU’s rise to power: Quantifying the impact of generational mobile

CPU design trends on performance, energy, and user satisfaction. In

HPCA.

[24] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury.

2004. Feedback Control of Computing Systems. John Wiley & Sons.

[25] Henry Hofmann. 2015. JouleGuard: energy guarantees for approxi-

mate applications. In SOSP.

[26] Henry Hofmann, Anant Agarwal, and Srinivas Devadas. 2012. Select-

ing Spatiotemporal Patterns for Development of Parallel Applications.

IEEE Trans. Parallel Distrib. Syst. 23, 10 (2012).

[27] Henry Hofmann, Jonathan Eastep, Marco D. Santambrogio, Jason E.

Miller, and Anant Agarwal. 2010. Application Heartbeats: a generic

interface for specifying program performance and goals in autonomous

computing environments. In ICAC.

[28] Henry Hofmann, Jim Holt, George Kurian, Eric Lau, Martina Maggio,

Jason E. Miller, Sabrina M. Neuman, Mahmut Sinangil, Yildiz Sinangil,

Anant Agarwal, Anantha P. Chandrakasan, and Srinivas Devadas. 2012.

Self-aware computing in the Angstrom processor. In DAC.

[29] T. Horvath, T. Abdelzaher, K. Skadron, and Xue Liu. 2007. Dynamic

Voltage Scaling in Multitier Web Servers with End-to-End Delay Con-

trol. Computers, IEEE Transactions on 56, 4 (2007).

[30] Connor Imes, David H. K. Kim, Martina Maggio, and Henry Hofmann.

2015. POET: A Portable Approach to Minimizing Energy Under Soft

Real-time Constraints. In RTAS.

[31] Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana. 2008. Self-

OptimizingMemory Controllers: A Reinforcement Learning Approach.

In ISCA.

[32] Syed Muhammad Zeeshan Iqbal, Yuchen Liang, and Hakan Grahn.

2010. ParMiBench - An Open-Source Benchmark for Embedded Multi-

processor Systems. IEEE Comput. Archit. Lett. 9, 2 (July 2010).

[33] C. Karamanolis, M. Karlsson, and X. Zhu. 2005. Designing controllable

computer systems. In HotOS. Berkeley, CA, USA.

[34] David H. K. Kim, Connor Imes, and Henry Hofmann. 2015. Racing

and Pacing to Idle: Theoretical and Empirical Analysis of Energy

Optimization Heuristics. In CPSNA.

[35] Minyoung Kim, Mark-Oliver Stehr, Carolyn Talcott, Nikil Dutt, and

Nalini Venkatasubramanian. 2013. xTune: A Formal Methodology for

Cross-layer Tuning of Mobile Embedded Systems. ACM Trans. Embed.

Comput. Syst. 11, 4 (Jan. 2013).

[36] Etienne Le Sueur and Gernot Heiser. 2011. Slow Down or Sleep, That

is the Question. In Proceedings of the 2011 USENIX Annual Technical

Conference. Portland, OR, USA.

[37] B.C. Lee, J. Collins, HongWang, and D. Brooks. 2008. CPR: Composable

performance regression for scalable multiprocessor models. InMICRO.

[38] Benjamin C. Lee and David Brooks. 2008. Eiciency Trends and Limits

from Comprehensive Microarchitectural Adaptivity. In ASPLOS.

[39] Benjamin C. Lee and David M. Brooks. 2006. Accurate and Eicient

Regression Modeling for Microarchitectural Performance and Power

Prediction. In ASPLOS.

[40] Matthew Lentz, James Litton, and Bobby Bhattacharjee. 2015. Drowsy

Power Management. In SOSP.

[41] W.S. Levine. 2005. The control handbook. CRC Press.

[42] Baochun Li and K. Nahrstedt. 1999. A control-based middleware

framework for quality-of-service adaptations. IEEE Journal on Selected

Areas in Communications 17, 9 (1999).

[43] J. Li and J.F. Martinez. 2006. Dynamic power-performance adaptation

of parallel computation on chip multiprocessors. In HPCA.

[44] Lennart Ljung. 1999. System Identiication: Theory for the User. Prentice

Hall PTR, Upper Saddle River, NJ, USA.

[45] C. Lu, Y. Lu, T.F. Abdelzaher, J.A. Stankovic, and S.H. Son. 2006. Feed-

back Control Architecture and Design Methodology for Service Delay

Guarantees in Web Servers. IEEE TPDS 17, 9 (September 2006), 1014ś

1027.

[46] Martina Maggio, Henry Hofmann, Alessandro V. Papadopoulos, Ja-

copo Panerati, Marco D. Santambrogio, Anant Agarwal, and Al-

berto Leva. 2012. Comparison of Decision-Making Strategies for

Self-Optimization in Autonomic Computing Systems. ACM Trans.

Auton. Adapt. Syst. 7, 4, Article 36 (Dec. 2012), 32 pages. htps:

https://doi.org/10.1145/2382570.2382572
https://doi.org/10.1145/2382570.2382572


//doi.org/10.1145/2382570.2382572
[47] M. Maggio, H. Hofmann, M. D. Santambrogio, A. Agarwal, and A.

Leva. 2013. Power Optimization in Embedded Systems via Feedback

Control of Resource Allocation. IEEE Transactions on Control Systems

Technology 21, 1 (Jan 2013).

[48] Martina Maggio, Alessandro Vittorio Papadopoulos, Antonio Filieri,

and Henry Hofmann. 2017. Automated Control of Multiple Software

Goals Using Multiple Actuators. In ESEC/FSE.

[49] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in

Current High Performance Computers. IEEE TCCA Newsletter (Dec.

1995), 19ś25.

[50] Nikita Mishra. 2017. Statistical Methods for Improving Dynamic Sched-

uling and Resource Usage in Computing Systems. Ph.D. Dissertation.

htps://search.proquest.com/docview/1928485902?accountid=14657
[51] Nikita Mishra, Connor Imes, Huazhe Zhang, John D Laferty, and

Henry Hofmann. 2016. Big Data for LITTLE Cores: Combining Learning

and Control for Mobile Energy Eiciency. Technical Report TR-2016-10.

University of Chicago, Dept. of Comp. Sci.

[52] Nikita Mishra, Huazhe Zhang, John D. Laferty, and Henry Hofmann.

2015. A Probabilistic Graphical Model-based Approach for Minimizing

Energy Under Performance Constraints. In ASPLOS.

[53] Akihiko Miyoshi, Charles Lefurgy, Eric Van Hensbergen, Ram Raja-

mony, and Raj Rajkumar. 2002. Critical Power Slope: Understanding

the Runtime Efects of Frequency Scaling. In ICS.

[54] Carl N Morris. 1983. Parametric empirical Bayes inference: theory and

applications. J. Amer. Statist. Assoc. 78, 381 (1983), 47ś55.

[55] Adam J. Oliner, Anand P. Iyer, Ion Stoica, Eemil Lagerspetz, and Sasu

Tarkoma. 2013. Carat: Collaborative Energy Diagnosis for Mobile

Devices. In Proceedings of the 11th ACM Conference on Embedded Net-

worked Sensor Systems (SenSys ’13). ACM, New York, NY, USA, Article

10, 14 pages. htps://doi.org/10.1145/2517351.2517354
[56] Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning.

IEEE Trans. on Knowl. and Data Eng. 22, 10 (Oct. 2010), 1345ś1359.

htps://doi.org/10.1109/TKDE.2009.191
[57] Paula Petrica, AdamM. Izraelevitz, David H. Albonesi, and Christine A.

Shoemaker. 2013. Flicker: A Dynamically Adaptive Architecture for

Power Limited Multicore Systems. In ISCA.

[58] Dmitry Ponomarev, Gurhan Kucuk, and Kanad Ghose. 2001. Reducing

Power Requirements of Instruction Scheduling Through Dynamic

Allocation of Multiple Datapath Resources. In MICRO.

[59] Raghavendra Pothukuchi, Amin Ansari, Petros Voulgaris, and Josep

Torrellas. 2016. Using Multiple Input, Multiple Output Formal Control

to Maximize Resource Eiciency in Architectures. In ISCA.

[60] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar,

Zhikui Wang, and Xiaoyun Zhu. 2008. No "power" struggles: coordi-

nated multi-level power management for the data center. In ASPLOS.

[61] R. Rajkumar, C. Lee, J. Lehoczky, and Dan Siewiorek. 1997. A resource

allocation model for QoS management. In RTSS.

[62] Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip Levis, David

Mazières, and Nickolai Zeldovich. 2011. EnergyManagement inMobile

Devices with the Cinder Operating System. In EuroSys.

[63] Muhammad Husni Santriaji and Henry Hofmann. 2016. GRAPE: Min-

imizing energy for GPU applications with performance requirements.

In MICRO.

[64] Akbar Sharii, Shekhar Srikantaiah, Asit K. Mishra, Mahmut Kandemir,

and Chita R. Das. 2011. METE: meeting end-to-end QoS in multicores

through system-wide resource management. In SIGMETRICS.

[65] Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao Zhang, and

Zhuan Chen. 2013. Power Containers: An OS Facility for Fine-grained

Power and Energy Management on Multicore Servers. SIGPLAN Not.

48, 4 (March 2013), 65ś76. htps://doi.org/10.1145/2499368.2451124

[66] David C. Snowdon, Etienne Le Sueur, Stefan M. Petters, and Gernot

Heiser. 2009. Koala: A Platform for OS-level Power Management. In

EuroSys.
[67] Michal Sojka, Pavel Písa, Dario Faggioli, Tommaso Cucinotta, Fabio

Checconi, Zdenek Hanzálek, and Giuseppe Lipari. 2011. Modular

software architecture for lexible reservation mechanisms on hetero-

geneous resources. Journal of Systems Architecture 57, 4 (2011).

[68] Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi. 2013. Holistic

Run-time Parallelism Management for Time and Energy Eiciency. In

ICS.

[69] David C. Steere, Ashvin Goel, Joshua Gruenberg, Dylan McNamee,

Calton Pu, and Jonathan Walpole. 1999. A Feedback-driven Pro-

portion Allocator for Real-rate Scheduling. In Proceedings of the

Third Symposium on Operating Systems Design and Implementation

(OSDI ’99). USENIX Association, Berkeley, CA, USA, 145ś158. htp:
//dl.acm.org/citation.cfm?id=296806.296820

[70] Q. Sun, G. Dai, and W. Pan. 2008. LPV Model and Its Application in

Web Server Performance Control. In ICCSSE.

[71] G. Tesauro. 2007. Reinforcement Learning in Autonomic Computing:

A Manifesto and Case Studies. IEEE Internet Computing 11 (2007).

Issue 1.

[72] Michel Tokic. 2010. Adaptive ϵ -Greedy Exploration in Reinforcement

Learning Based on Value Diferences. In KI.

[73] Stephen Tu and Benjamin Recht. 2017. Least-Squares Temporal Dif-

ference Learning for the Linear Quadratic Regulator. Technical Report

1712.08642v1. arXiv.

[74] Vibhore Vardhan, Wanghong Yuan, Albert F. Harris III, Sarita V. Adve,

Robin Kravets, Klara Nahrstedt, Daniel Grobe Sachs, and Douglas L.

Jones. 2009. GRACE-2: integrating ine-grained application adaptation

with global adaptation for saving energy. IJES 4, 2 (2009).

[75] Greg Welch and Gary Bishop. [n. d.]. An Introduction to the Kalman

Filter. Technical Report TR 95-041. UNC Chapel Hill, Department of

Computer Science.

[76] Jonathan A. Winter, David H. Albonesi, and Christine A. Shoemaker.

2010. Scalable thread scheduling and global power management for

heterogeneous many-core architectures. In PACT.

[77] Qiang Wu, Philo Juang, Margaret Martonosi, and Douglas W. Clark.

2004. Formal online methods for voltage/frequency control in multiple

clock domain microprocessors. In ASPLOS.

[78] Weidan Wu and Benjamin C Lee. 2012. Inferred models for dynamic

and sparse hardware-software spaces. In Microarchitecture (MICRO),

2012 45th Annual IEEE/ACM International Symposium on. IEEE, 413ś

424.

[79] Joshua J. Yi, David J. Lilja, and Douglas M. Hawkins. 2003. A Statisti-

cally Rigorous Approach for Improving Simulation Methodology. In

HPCA.

[80] Wanghong Yuan and Klara Nahrstedt. 2003. Energy-eicient soft

real-time CPU scheduling for mobile multimedia systems. In SOSP.

[81] Huazhe Zhang and Henry Hofmann. 2016. Maximizing Performance

Under a Power Cap: A Comparison of Hardware, Software, and Hybrid

Techniques. In ASPLOS.

[82] R. Zhang, C. Lu, T.F. Abdelzaher, and J.A. Stankovic. 2002. Control-

Ware: A middleware architecture for Feedback Control of Software

Performance. In ICDCS.

[83] Xiao Zhang, Rongrong Zhong, Sandhya Dwarkadas, and Kai Shen.

2012. A Flexible Framework for Throttling-Enabled Multicore Man-

agement (TEMM). In ICPP.

[84] Yanqi Zhou, Henry Hofmann, and David Wentzlaf. 2016. CASH:

Supporting IaaS Customers with a Sub-core Conigurable Architecture.

In ISCA.

[85] Yuhao Zhu and Vijay Janapa Reddi. 2013. High-performance and

energy-eicient mobile web browsing on big/little systems. In HPCA.

https://doi.org/10.1145/2382570.2382572
https://search.proquest.com/docview/1928485902?accountid=14657
https://doi.org/10.1145/2517351.2517354
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1145/2499368.2451124
http://dl.acm.org/citation.cfm?id=296806.296820
http://dl.acm.org/citation.cfm?id=296806.296820

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Learning Complexity
	2.2 Controlling Dynamics
	2.3 Challenges Combining Learning and Control

	3 CALOREE: Learning Control
	3.1 Traditional Control for Computing
	3.2 CALOREE Control System
	3.3 Exploiting Problem Structure for Fast Solutions
	3.4 CALOREE Learning Algorithms
	3.5 Formal Analysis

	4 Experimental Setup
	4.1 Platform and Benchmarks
	4.2 Evaluation Metrics
	4.3 Points of Comparison

	5 Experimental Evaluation
	5.1 Performance and Energy for Single App
	5.2 Performance and Energy for Multiple Apps
	5.3 Adapting to Workload Changes
	5.4 The Pole's Importance
	5.5 Sensitivity to the Measured Samples
	5.6 Overhead

	6 Related Work
	7 Conclusion
	Acknowledgments
	A Probabilistic Convergence Guarantees
	B Sensitivity to Latency Target

