Deploying Safe User-Level Network Services with icTCP

Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and Remzi idagirDusseau

Computer Sciences Department
University of Wisconsin, Madison
{haryadi, dusseau, rema@cs.wisc.edu

Abstract the exact needs of their applications. Finally, these ex-

We present icTCP, an “information and control” TCP implemeff€NSions ar€omposablelibrary services can be used to
tation that exposes key pieces of internal TCP state andslid?Uild more powerful functionality in a lego-like fashion.
certain TCP variables to be set in a safe fashion. The primafygeneral, icTCP facilitates the development of many ser-
benefit of icTCP is that it enables a variety of TCP extensioN&Ces that otherwise would have to reside within the OS.
to be implemented at user-level while ensuring that exteissi One key advantage of icTCP compared to other ap-
are TCP-friendly. We demonstrate the utility of icTCP thghu Proaches for upgrading network protocols [41, 44] is the
a collection of case studies. We show that by exposing infdmplicity of implementing the icTCP framework on a
mation and safe control of the TCP congestion window, we cB8W platform. Simplicity is a virtue for two reasons. First,
readily implement user-level versions of TCP Vegas, TCReNidiven that icTCP leverages the entire existing TCP stack,
and the Congestion Manager; we show how user-level lisaribis relatively simple to convert a traditional TCP imple-
can safely control the duplicate acknowledgment threshmld mentation to icTCP; our Linux-based implementation re-
make TCP more robust to packet reordering or more approgiHires approximately 300 new lines of code. Second, the
ate for wireless LANs; we also show how the retransmissi&inall amount of code change reduces the chances of in-
timeout value can be adjusted dynamically. Finally, we fimatt troducing new bugs into the protocol; previous TCP mod-
converting a stock TCP implementation into icTCP is rekdgiv ifications often do not have this property [43, 45].
straightforward; our prototype requires approximatel9 88es ~ Another advantage of icTCP is th&afe manner in
of new kernel code. which it provides new user-level control. Safety is an is-
sue any time users are allowed to modify the behavior of
. the OS [48]. With icTCP, users are allowed to control
1 Introduction only a set oflimited virtual TCP variables €.g, cwnd,
Years of networking research have suggested a vast n@iwpthresh, and RTO). Since users cannot download arbi-
ber of modifications to the standard TCP/IP protoctiary code, OS safety is nota concern. The remaining con-
stack [3, 8, 11, 13, 14, 23, 27, 31, 40, 47, 50, 52, 57]. Ugern isnetwork safety can applications implement TCP
fortunately, while some proposals are eventually adopt&4tensions that are not friendly to competing flows [38]?
many suggested modifications to the TCP stack do not [&y-building on top of the extant TCP Reno stack and by
come widely deployed [44]. restricting virtual variables to a safe range of values, ic-

In this paper, we address the problem of deploymeHEP ensures that extensions are no more aggressive than
by proposing a small but enabling change to the netwofkP Reno and thus are friendly.
stack found in modern operating systems. Specifically,In addition to providing simplicity and safeness, a
we introducécTCP (pronounced “I See TCP”), a slightlyframework such as icTCP must address three additional
modified in-kernel TCP stack that exports key pieces gfiestions. First, are the overheads of implementing vari-
state information and provides safe control to user-levaits of TCP with icTCP reasonable? Our measurements
libraries. By exposing state and safe control over TGHow that services built on icTCP scale well and incur
connections, icTCP enables a broad range of interestingimal CPU overhead when they use appropriate icTCP
and important network services to be built at user-levelwaiting mechanisms.

User-level services built on icTCP are madeploy- Second, can a wide range of new functionality be im-
able than the same services implemented within the @& mented using this conservative approach? We demon-
TCP stack: new services can be packaged as libraries sindte the utility of icTCP by implementing six exten-
easily downloaded by interested parties. This approaibns of TCP. In the first set of case studies, we focus on
is also inherentlyflexible developers can tailor them tomodifications that alter the behavior of the transport with

Appears in the Sixth Symposium on Operating Systems Dasibimgplementation (OSDI '04)

regard to congestion: TCP Vegas [14], TCP Nice [5Xy setting TCP parameters [18]. The key difference from
and Congestion Manager (CM) [8]. In our second setTCP is that Net100 does not propose allowing a com-
we focus on TCP modifications that behave differently plete set of variables to be controlled and does not en-
the presence of duplicate acknowledgments: we buildsare network safety. Furthermore, Netl00 appears suit-
reodering-robust (RR) extension that does not misintable only for tuning parameters that do not need to be
pret packet reordering as packet loss [11, 57] and an sgt frequently; icTCP can frequently adjust in-kernelvari
tension with efficient fast retransmit (EFR) [50]. In ouables because it provides per-message statistics as well as
third set, we explore TCP Eifel [36] which adjusts théhe ability to block until various in-kernel events occur.
retransmit timeout value. STP [44] also addresses the problem of TCP deploy-

Finally, can these services be developed easily withiment. STP enables communicating end hosts to remotely
the framework? We show that the amount of code repgrade the other’s protocol stack. With STP, the au-
quired to build these extensions as user-level servicestbars show that a broad range of TCP extensions can
icTCP is similar to the original, native implementations.be deployed. We emphasize two major differences be-

The rest of this paper is structured as follows. In Setwveen STP and icTCP. First, STP requires more inva-
tion 2 we compare icTCP to related work on extensibsive changes to the kernel to support safe downloading
network services. In Section 3 we present the designaffextension-specific code; support for in-kernel extensi-
icTCP and in Section 4 we describe our methodology. hility is fraught with difficulty [48]. In contrast, icTCP
Section 5 we evaluate five important aspects of icTCRakes minimal changes to the kernel. Second, STP re-
the simplicity of implementing icTCP for a new platformgquires additional machinery to ensure TCP friendliness;
the network safety ensured of new user-level extensioit§,CP guarantees friendliness by its very design. Thus,
the computational overheads, the range of TCP extensi&T$ is a more powerful framework for TCP extensions,
that can be supported, and the complexity of developihgt icTCP can be provided more easily and safely.

those extensions. We conclude in Section 6. Finally, the information component of icTCP is derived
from INFOTCP, proposed as part of the infokernel [7];
2 Related Work this previous work showed thatiFOTCP enables user-
In this section, we compare icTCP to other approacheyel services to indirectly control the TCP congestion
that provide networking extensibility. window,cwnd We believe that icTCP improves orRFo-

Upgrading TCP: Four recent projects have proposedCP in three main ways. First, icTCP exposes informa-
frameworks for providing limited extensions for transpotton from a more complete set of TCP variables. Second,
protocols; that is, they allow protocols such as TCP T CP allows services to directly setvndinside of TCP;
evolve and improve, while still ensuring safety and TCWus, applications do not need to perform extra buffer-
friendliness. We compare icTCP to these proposals. ing nor incur as many sleep/wake events. Finally, icTCP

Mogul et al. [41] propose that applications can “get@llows TCP variables other thaawndto be controlled.
and more radically “set” TCP state. In terms of gettinghus, icTCP not only allows more TCP extensions to be
TCP state, icTCP is similar to this proposal. The great&iplemented, but is also more efficient and accurate.
philosophical difference arises in how internal TCP stateUser-Level TCP: Researchers have found it useful to
is set. Mogukt al.wish to allow arbitrary state setting andnove portions of the conventional network stack to user-
suggest that safety can be provided either with a cryptevel [19, 20, 46]. User-level TCP can simplify protocol
graphic signature of previously exported state or by rdevelopmentin the same way as icTCP. However, a user-
stricting this ability to the super-user. However, icTCP ievel TCP implementation typically struggles with per-
more conservative, allowing applications to alter pararigrmance, due to extra buffering or context switching or
eters only in a restricted fashion. The trade-off is thioth; further, there is no assurance of network safety.
icTCP can guarantee that new network services are welApplication-Specific Networking: A large body of re-
behaved, but Moguet al’s approach is likely to enable asearch has investigated how to provide extensibility of
broader range of services.{, session migration). network services [22, 28, 37, 51, 53, 54]. These projects

The Web100 and Net100 projects [39] are developinglow network protocols to be more specialized to ap-
management interface for TCP. Similar to the informatigiications than does icTCP, and thus may improve per-
component of icTCP, Web100 instruments TCP to expdormance more dramatically. However, these approaches
a variety of per-connection statistics; however, Web10@nd to require more radical restructuring of the OS or net-
does not propose exporting as detailed information as Werking stack and do not guarantee TCP friendliness.
TCP (.9, Web100 does not export timestamps for every Protocol Languages and Architectures: Network
message and acknowledgment). The TCP-tuning daenmmguages [1, 35] and structured TCP implementa-
within Net100 is similar to the control component of ictions [10] simplify the development of network protocols.
TCP; this daemon observes TCP statistics and respofigen the ability to replace or specialize modules, it is

Appears in the Sixth Symposium on Operating Systems Dasibimgplementation (OSDI '04)

[TCP Clients To minimize this overhead, icTCP provides both a

polling and an interrupt-based interface. Given that most
,EI‘P%‘USM'—LIID I

TCP variables are updated only when an acknowledgment

D
: : : P S arrives or at the end of a roundg, when one round-
T l | iecp-nice | || ieTcp-cm_| trip time has elapsed), applications can receive an inter-
| CTCP-RR ' IicTCP—EFR ' IicTCP—EifeI ' rupt for either condition. In our case studies, the icTCP

user-level libraries are structured to use two threads; one
N N Tl \ thread injects packets into the kernel while the other per-
forms sleep/wait and get/set operations.

Information Control

3.2 Information

The first goal of icTCP is to expose information that is tra-
ditionally internal to TCP. The challenge is to determine
which information should be exposed: if too little infor-
mation is exposed, it may not be possible to build interest-
|CTCP ing extensions; if too much information is exposed, then
future kernelimplementations of TCP may be constrained
by an undesirable, expanded interface.
Figure 1: icTCP Architecture. The diagram shows the icTCP ~ Given that TCP implementations are constrained to ad-
architecture. At the base of the stack is icTCP, a slightlyified TCP here to the TCP Specification [29], many internal variables

stack that exports information and limited control. On tObIGICP, - 4¢6 giready specified and required. Therefore, icTCP ex-
we have built a number of user-level libraries that impletmearious

pieces of functionality suggested by the literature. Theaties can be P."Citl_y exports all variables that are part of the TCP spec-
composed (where applicable), thus enabling the constmatif more ification, such as the next sequence number to be sent

powerful services in a plug-and-play fashion. Applicaticsit at the (snd.nx}, the oldest unacknowledged sequence number
top of the stack and can choose the libraries that match the@ds or (snd una‘ the congestion windowc(/vnc) and the slow
directly use the kernel transport.) . L .
start thresholdgsthresh Exposing this information from
generally easier to extend existing TCP implementatiorfdly TCP implementation should be straightforward.
) . However, we have found that for more interesting ser-
3 IcTCP Design vices, access to more information is needed. For example,

The icTCP framework exposes information and providégraries such as icTCP-Nice and icTCP-RR must exam-
control over key parameters in the TCP protocol implé1€ information about a pgmcular message. Therefore,
mentation. In this section, we give a high-level overvielgTCP exposes “standard” information about each packet.
of how user-level network services are deployed with i@ Message lisprovides a history of recent packets, re-

TCP. We then describe the classes of information and cQ!ting for each packet its sequence number, round-trip

States : snd.nxt, snd.una
cwnd, ssthresh,
etc

MsglList : timeout, fr
seq.no, rtt

AckList: ack.no, dsack

cwnd, cwnd.cnt, ssthresh
rcv.wnd, rev.nxt
snd.una, snd.nxt

dupthresh, RTO, retransmits

trol exported by icTCP. time, and whether it is being sent for a time-out or a fast
retransmit. Anack list provides a history of recent ac-
3.1 System Architecture knowledgments, recording for each packet its acknowl-

Figure 1 presents a schematic of the icTCP framewogdgment number and type.g, normal ACK, duplicate

As illustrated, user-level libraries implementing vatanACK, SACK, or DSACK).

of TCP are built on top of icTCP. The user-level libraries Exposing per-packet and per-ack information may not

can be transparently used by applications with standdwel trivial for those TCP implementations where it does

interfaces. Different TCP connections can use differemot already exist. Given that TCP Reno does not track the

icTCP libraries. The design of icTCP is such that only theund-trip time of each packet, we add a high resolution

sending side needs to have icTCP deployed; receivers tiarer to icTCP to record this information. An additional

be running icTCP or an unmodified kernel stack. complexity is that recording new per-message informa-
To simplify the implementation, icTCP uses the BSDon requires additional memory; therefore, icTCP creates

socket interface, exporting information and providingese lists only when enabled by user-level services.

control with a few new socket options. Although this ap-

proach minimized our implementation work, it imposes.3 Control

unnecessary run-time overhead: obtaining state requird$a second goal of icTCP is to allow variables that are in-

copy from the kernel to user space. Our evaluation shotesnal to TCP to be externally set in a safe manner. A new

that user-level network services that naively poll icTC&hallenge is to determine not only which variables can be

frequently for state information can incur a significant irmodified, but also to what values, while still ensuring that

crease in CPU overhead. the resulting behavior is TCP-friendly. Our philosophy is

Appears in the Sixth Symposium on Operating Systems Dasibimgplementation (OSDI '04)

Variable Description Safe Range Example usage
cwnd Congestion window 0<v<zx Limit number of sent packets
cwnd.cnt Linear cwnd increase 0<v< Increase cwnd less aggressively
ssthresh Slow start threshold 1<ov<z Move to SS from CA
rcv.wnd Receive window size 0<v<e Reject packet; limit sender
rcv.nxt Next expected seq num z <v <z +vrevwnd Reject packet; limit sender
snd.nxt Next seq num to send vsnd.uwha < x Reject ack; enter SS
snd.una Oldest unacked seq num x < v < vsnd.nxt Reject ack; enter FRFR
dupthresh Duplicate threshold 1 < v < vewnd Enter FRFR

RTO Retransmission timeout exp.backeffsrtt+ rttvar) < v Enter SS

retransmits Number of consecutive timeouts 0 < v < threshold Postpone killing connection

Table 1:Safe Setting of TCP Variables.The table lists the 10 TCP variables which can be set in icTW@@specify the range each variable
can be safely set while ensuring that the result is less agiwe than the baseline TCP implementation. We also give@ampe usage or some
intuition on why it is useful to control this variable. Nata: x refers to TCP’s original copy of the variable andrefers to the new virtual copy
being set; SS is used for slow start, CA for congestion avmelaand FRFR for fast retransmit/fast recovery; finallyif,sttvar, and exp.backoff
represent smoothed round-trip time, round-trip time vade, and the RTO exponential backoff, respectively.

that icTCP must be conservative: control is only allowdte original variable can already be set through other in-
when it is known to not cause aggressive transmission terfaces €.g, sysctl of tcpretries1 or usemss) or when
The basic idea is that for each variable of interest, ithey can be approximated in other wagsy, we set RTO
TCP adds a nelimited virtual variable Our terminology instead of srtt, mdev, rttvar, or mrtt). We do not claim
is as follows: for a TCP variable with the original namghat these ten variables represent the complete collection
foo, we introduce a limited virtual variable with the namef settable values, but that they do form a useful set. These
vfoo. However, when the meaning is clear, we simply u¢en variables and their safe ranges are summarized in Ta-
the original name. We restrict the range of values thale 1. We briefly discuss why the specified range of values
the virtual variable is allowed to cover so that the resuis safe for each icTCP variable.
ing TCP behavior is friendly; that is, we ensure that the)))
new TCP actions are no more aggressive than those of N€ first three variablesi.¢., cwnd, cwnd.cnt, and
the original TCP implementation. Given that the acceptSthresh) have the property that it is safe to strictly lower
able range for a variable is a function of other fluctugil®r value. In each case, the sender directly transmits
ing TCP variables, it is not possible to check at call tiMSSS data, because either its congestlon window is smaller
that the user has specified a valid value and reject invali@- cWnd and cwnd.cnt) or slow-start is entered instead
settings. Instead, icTCP accepts all settings and coergbgongestion avoidanceg, ssthresh).

the virtual variable into a valid range. For example, the 1o eyt set of variables determine which packets or
saf<e rangedfcir the \(/jlrtuarll corf\gestl%n ww:jd_cmwng IS acknowledgments are accepted; the constraints on these
0 —dVﬁW” o C‘;:V” .d'T eredc_)re, : gwn MSes above \ariables are more complex. On the receiver, a packet is
cwnd the value obwndis used instead. . _accepted if its sequence number falls inside the receive
Converting a variable to a virtual variable within the icindow (.e, between rcv.nxt and rev.nxt + rev.wnd):
TCP stack is not as trivial as it may appear; one canil,s increasing rcv.nxt or decreasing rcv.wnd has the ef-
simply replace all instances of the original variable witf,+ of rejecting incoming packets and forces the sender
the new virtual one. One must ensure that the virtual vallye e quce its sending rate. On the sender, an acknowl-
is never used to change the original variable. The simplggfyment is processed if its sequence number is between
case is the statement cwadcwnd+ 1, which clearly can- gng yna and snd.nxt; therefore, increasing snd.una or de-
not be replaced with cwnek vewnd-+ 1. More complex creasing snd.nxt causes the sender to discard acks and
cases of control flow currently require careful manual "&'gain reduce its sending rate. In each case, modifying

spection. Therefore, we limit the extent to which the origrege values has the effect of dropping additional packets:
inal variable is replaced with the virtual variable. thus, TCP backs-off appropriately.

Given that our foremost goal with icTCP is to ensure
that icTCP cannot be used to create aggressive flows, wahe final set of variables.¢é., dupthresh, RTO, and re-
are conservative in the virtual variables we introduce. Alkansmits) control thresholds and timeouts; these vagbl
though it would be interesting to allow all TCP variablesan be set independently of the original values. For exam-
to be set, the current implementation of icTCP only gble, both increasing and decreasing dupthresh is believed
lows control of ten variables that we are convinced cam be safe [57]. Changing these values can increase the
be safely set from our analysis of the Linux TCP implemount of traffic, but does not allow the sender to trans-
mentation. We do not introduce virtual variables whamit new packets or to increase its congestion window.

Appears in the Sixth Symposium on Operating Systems Dasibimgplementation (OSDI '04)

Information LOC | Control LOC I set internal TCP variables
States 25| cwnd 15 tcp_setsockopt (option, val)X
Message List 33 dupthresh 28 switch (option){
Ack List 41 | RTO 13 case TCRUSEVCWND:
High-resolution RTT 12| ssthresh 19 usevcwnd = val;
Wakeup events 50 cwnd.cnt 14 case TCESET.VCWND:
retransmits 6 vewnd = val;
rcv_nxt 20 }
rcv.wnd 14 }
snd.una 12
snd.nxt 14 /I check if data should be put on the wire
Info Total 161 | Control Total 155 tcp_snd_test () {
icTCP Total 316 if (use.vewnd)
min_cwnd = min (vewnd, cwnd);
else
Table 2:Simplicity of Environment. The table reports the num- min_cwnd = cwnd:
ber of C statements (counted with the number of semicoleejed to Il if okay to transmit

implement the current prototype of icTCP within Linux 2.4.

4 Methodology

if ((tcp_packetsin_flight < min_cwnd) &&
/* ... other rules */)

return 1;
Our prototype of icTCP is implemented in the else
Linux 2.4.18 kernel. Our experiments are performed return O;

exclusively within the Netbed network emulation en- }

vironment [56]. A single Netbed machine contains grigure 2: In-kernel Modification. Adding vewnd into the TCP
850 MHz Pentium 3 CPU with 512 MB of main memorytack requires few lines of code. icTCP applications sevttteal vari-
and five Intel EtherExpress Pro 100Mb/s Ethernet porgg!es through the BSD setsockopt() interface. Based ondhgestion

. . . . ow, tcpsndtest checks if data should be put on the wire. We show
The sending endpoints run icTCP, whereas the recelvgggadding a virtual cwnd into the decision-making procisssimple

run stock Linux 2.4.18. and straightforward: instead of using cwnd, icTCP uses theémum of

For almost all experiments, a dumbbell topology i&wnd and cwnd.
used, with one or more senders, two routers intercgn- . . .
: _ 3 ®B1 Simplicity of Environment
nected by a (potential) bottleneck link, and one or moyée . . . e
}éY? begin by addressing the question of how difficult

receivers. In some experiments, we use a modified Ni i ta TCP imol tation to iIcTCP. O
Net [16] on the router nodes to emulate more complex HE_—“_; o convert a implementation 1o ic - our
tial version of icTCP has been implemented within

haviors such as packet reordering. In most experimerL'E'é . .) C
we vary some combination of the bottleneck bandwidt Inux 2.4.18. Our experience is that implementing icTCP

delay, or maximum queue size through the intermedié?’ airly straightforward and requires adding few new lines
router nodes. Experiments are run multiple times (usuaﬂ code. Table 2 shows that we added 316 C statements

30) and averages are reported; variance is low in th (?TCP_ to create 'CTCP' Wh”e the number_ of statem_ents
cases where it is not shown. added is not a perfect indicator of complexity, we believe

that it does indicate how non-intrusive these modifications
5 Evaluation are. Figure 2 gives a partial example of how tresvnd

) _ variable can be added to the icTCP stack.
To evaluate whether or not icTCP is a reasonable frame-

work for deploying TCP extensions at user-level, we ah-2 Network Safety

swer five questions. First, how easily can an existing TG next investigate whether icTCP flows are TCP

implementation be converted to provide the informatidriendly. To perform this evaluation, we measure the
and safe control of icTCP? Second, does icTCP enstheoughput available to default TCP flows that are com-
that the resulting network flows are TCP friendly? Thirgheting with icTCP flows. Our measurements show that
what are the computation overheads of deploying T@TCP is TCP friendly; as desired, the default TCP flows
extensions as user-level processes and how does icTHBRiin at least as much bandwidth when competing with
scale? Fourth, what types of TCP extensions can be bigliCP as when competing with other default TCP flows.

and deployed with icTCP? Finally, how difficult is it towe also show the need for constraining the values into
develop TCP extensions in this way? Note that we spead/alid range within icTCP. To illustrate this need, we

the bulk of the paper addressing the fourth question cdrave created an unconstrained icTCP that allows virtual
cerning the range of extensions that can be implementegiables to be set to any value. When default TCP flows
and discussing the limitations of our approach. compete with unconstrained icTCP flows, the throughput

Appears in the Sixth Symposium on Operating Systems Dasibimgplementation (OSDI '04)

cwnd cwnd.cnt ssthresh
15 15 15
cwnd + 4 (D) @ cwnd.cnt * 4 (D) @ ssthresh * 2 (D) @~
° cwnd + 4 (U) B cwnd.cnt * 4 (U) M- ssthresh * 2 (U) -
= L L i
b [n [|
=R @D 1 O - e
< W §0) ©
3 —
<4 ol e] -
= -1 e B .
T T ,,,,,, op—
0.5 T T T T T T 0.5 T T T T T T 0.5 T T T
1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64
snd.una dupthresh RTO
15 : : : ‘ 15 : : : : : 15 : : :
snd.una - 8*mss (D) &~ 3 < dupthresh < 43 (U) &= srtt + var (D) &~
2 snd.una - 8*mss (U) &~ dupthresh < 3 (U) srtt + var (U) -l
5 L i
% 16 A - D 5 & ~ o N
g ! | oo i, n
= om e L - { |
£ T ,,,,,,,,,,,,,,, - o -
L
0.5 : : ; ; ; ; 0.5 : ; ; ; i 0.5 . . . ! !
1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64
of flows / set # of flows / set # of flows / set

Figure 3:Network Safety of icTCP. Each graph shows two lines: the first line ((D)=Default) uigsdefault icTCP that enforces parameters
to values within their safe range; the second line ((U)=Unswained) uses icTCP that allows parameters to be set tovatwe. Thedupthresh
graph uses the unconstrained icTCP for both lines. The métrihe ratio of throughput achieved by the default TCP flolwerwcompeting with
the icTCP flows versus when competing with other default T&#sfl Across the graphs, we vary which icTCP parameters arénseach case, we
set the variable to an unsafe valuewndto four packets largegwnd.cntto four times largerssthresho two times largersnd.ungo eight packets
lower, dupthreshto random values below and above three (the default), RIR@ remaining at an initialsrtt + rttvar as packets are dropped. The
topology used is a dumbbell with four senders and four reeeivior all experiments, except the RTO experiments, ttilebeck bandwidth is 100
Mbps with no delay; the RTO experiments use a bottleneckwidtidof 2 Mbps with 15 percents drop rate.

of the default TCP flows is reduced. When the virtuabnd.unas set below its safe range of the

Our measurements are shown in Figure 3. Acrodstual value, then unconstrained icTCP over-estimates the
graphs, we evaluate differenticTCP parameters, expliciiumber of bytes acknowledged and increases the conges-
setting each parameter to a value outside of its safe rarfif@ window too aggressively. However, when icTCP cor-
Along the x-axis of each graph, we increase the numiegtly constrainsnd.unathe flow remains friendly. The
of competing icTCP and TCP flows. Each graph showasults for the other three variablese(rcv.wnd rcv.nxt
two lines: one line has icTCP flows matching our pr@ndsnd.nx} are not shown. In these cases, the icTCP
posal, in which virtual variables are limited to their saféows remain friendly, as desired, but the unconstrained
range; the other line has unconstrained icTCP flows. O&F CP flows can fail completely. For example, increasing
metric is the ratio of throughput achieved by the defadfte rcv.wndvariable beyond its safe range can cause the
TCP flows when competing with the icTCP flows versu§ceive buffer to overflow.
when competing with other default TCP flows. Thus, if The final two graphs explore thdupthreshand RTO
the throughput ratio is around or above one, then the thresholds. We do not experiment with thetransmits
TCP flows are friendly; if it is below one, then the icTCRariable since it is only used to decide when a connection
flows are unfriendly. should be terminated. As expected dupthreshboth de-

The cwnd cwnd.cnt and ssthreshexperiments show creasing and increasing its value from the default of three
that these variables must be set within their safe ranged@es not cause unfriendliness; thdsipthreshdoes not
ensure friendliness. As expected, icTCP flows that are meted to be constrained. In the caseR¥Q the graph
allowed to increase their congestion window beyond trgfiows that iRTOis set belowexp.backoff (srtt + rttvar)
of the default TCP remain TCP friendly. Unconstraingéien the resulting flow is too aggressive.

icTCP flows that allow Iarger Congestion windows are These graphs representon|yasma" subset of the exper-
overly aggressive; as a result, the competing TCP floysents we have conducted to investigate TCP friendliness.
obtain less than their fair share of the bandwidth. We have experimented with setting the icTCP variables to
We next evaluate the variables that control which aandom values outside of the safe range and have con-
knowledgments or packets are accepted. The behaviofled each of the icTCP parameters in isolation as well
for snd.unais shown in the fourth graph. Thend.una as sets of the parameters simultaneously. In all cases, the
variable represents the highest unacknolwedged pacRe&P Reno flows competing with icTCP obtain at least as

Appears in the Sixth Symposium on Operating Systems Dasibimgplementation (OSDI '04)

5.3.1 Scaling icTCP

Scaling - CPU
We evaluate how icTCP scales as the number of connec-
tions is increased on a host. Different user-level exten-
< 100 pttefp G- 8-5-84 sions built on icTCP are expected to get and set differ-
< g0 / ent pieces of TCP information at different rates. The two
2 factors that may determine the amount of overhead are
S 60 whether the user process requires per-ack or per-round in-
g 40 1 i o terrupts and whether or not the user process needs the ic-
S 2 | per-round intr + get mstList & TCP message list and ack list data structures. .
= per-rourg{delr?gr o _ To show the scaling properties of user Ilt_)ranes bun_t on
0 - - - , ‘ ‘ icTCP, we construct three synthetic libraries that mimic
1 2 4 8 6 32 64 the behavior of our later case studies. The first synthetic
Number of Connections library uses per-ack interrupts (representing icTCP-EFR
Scaling - Throughput and icTCP-Eifel); the second library uses per-round inter-
50 . . . ‘ ‘ ‘ rupts (icCM); the final library uses per-round interrupts
and also gets the message or ack list data structures (ic-
& 40 | TCP-Vegas, icTCP-Nice, and icTCP-RR).
g The two graphs in Figure 4 show how icTCP and TCP
= 30 1 Reno scale as the number of flows is increased on a host;
c; 20 4 the first figure reports CPU utilization and the second fig-
3 ure reports throughput. The first figure shows that icTCP
F o10® per-round intr -+ with per-ack and per-round interrupts reaches 100% CPU
per-round intr + %‘Z‘rrggghﬁ e utilization when there are three and four connections, re-
- - - , ‘ ‘ spectively; the additional CPU overhead of also getting
1 2 4 8 6 32 64

the icTCP message list is negligible. In comparison, TCP
Reno reaches roughly 80% utilization with four connec-
Figure 4:CPU Overhead and Throughputin Scaling icTCP. tions, ar_'d then slowly increases to 100% at roughly 16
We connect one sender host to four receiver hosts throutgratit net- CONNections.
work interfaces. All links are 100 Mbps with no delay linksug in The second figure shows that throughput for icTCP
aggregrate the sender host can send data outward at 400 MBIBS.g gtqt5 1o degrade when there are four or eight connections,
the x-axis, we increase the number of connections on theesérudt. . .
These connections are spread evenly across the four reseiVie first dependlng upon whether they use per-ack or per-round n-
figure compares the overall CPU utilization of Reno, icTCEwper-ack terrupts, respectively. With 96 flows, the icTCP through-
and per-round interrupt. The second figure shows the icT@ughput put with per-ack and per-round interrupts is lower than
degradation when the sender load is high. TCP Reno by about 30% and 12%, respectively. Thus,
icTCP CPU overhead is noticeable but not prohibitive.
much bandwidth as they do when competing with otherTo measure the extent to which a user-level library can
TCP Reno flows, as desired. In summary, our results eatcurately implement TCP functionality, we measure the
pirically demonstrate that icTCP flows require safe vaiinterrupt miss rate defined as how frequently the user
able settings to be TCP friendly. Although these expenisses the interrupt for an ack or the end of a round. In
iments do not prove that icTCP ensures network safetye scaling experiments above with 96 connections, we
these measurements combined with our analysis giveolserved a worst-case miss rate of 1.3% for per-ack inter-
confidence that icTCP can be safely deployed. rupts and 0.4% for per-round interrupts. These low miss
rates imply that functionality can be placed at the user-
level that is responsive to current network conditions.

5.3 CPU Overhead 5.3.2 icTCP-Vegas

We evaluate the overhead imposed by the icTCP franT@-further evaluate icTCP, we implement TCP Vegas con-
work in two ways. First, we explore the scalability ofestion avoidance as a user-level library. TCP Vegas re-
icTCP using synthetic user-level libraries; these expeduces latency and increases overall throughput, relative t
ments explore ways in which a user-level library can r&CP Reno, by carefully matching the sending rate to the
duce CPU overhead by minimizing its interactions withate at which packets are being drained by the network,
the kernel. Second, we implement TCP Vegas [14] tius avoiding packet loss. Specifically, if the sender sees
user-level on top of icTCP; these experiments also allahat the measured throughput differs from the expected
us to directly compare icTCP i6FOTCP. throughput by more than a fixed threshold, it increases or

Number of Connections

Appears in the Sixth Symposium on Operating Systems Dasibimgplementation (OSDI '04)

icTCP-Vegas CPU Overhead Link Capacity Vs Latency
20 1 1 1 1 1 1 1
infovegas —A— Reno —O—
icTCP-Vegas, per-ack intr ---<>-- @ TCP Nice 14
S icTCP-Vegas, polling -3 £ icTCP-Nice -
s 15 icTCP-Vegas, per-round intr - i . 100 1
5 Reno -1k 2
= 1 Q
8 10 S 10 A
5 g
3 5 4 3 1 i iL
[a) R B
- R— .
0 T T \ \ 0.1 ‘ T T : -
0 20 40 60 80 100 0.6 0.8 14 25 4.8 9.2
Bandwidth (Mb/s) - no delay Bottleneck Link Bandwidth (Mbps)

Figure 5:icTCP-Vegas CPU OverheadThe figure compares the Figure 6: icTCP-Nice: Link Capacity vs. Latency. A fore-

overall CPU utilization of RenaNFOV EGAS, and the three versions of ground flow competes with many background flows. Each lineecor

icTCP-Vegas. We vary bottleneck-link bandwidth along thsis. sponds to a different run of the experiment with a protocollfack-
ground flows (i.e., icTCP, TCP Nice, Reno, or Vegas). Thag/shows

decreases its congestion control windownd by one. the average document transfer latency for the foregrouaffitt The
foreground traffic consists of a 3-minute section of a Squikytrace

Implementation: Our implementation of the Vegas COnl'ogged at U.C. Berkeley. The background traffic consistsragdrunning
gestion control algorithm, icTCP-Vegas, is structured a&ws. The topology used is a dumbbell with 6 sending node$ aed
follows. The operation of Vegas is placed in a user-levediving nodes. The foreground flow is alone on one of the séadeiver
ary. This brary imply passes all messagesdiecly = e 1o barkgons i e e scoss hoamve o
icTCP, i.e., no buffering is done at this layer. We imples s
ment three different versions that vary the point at which
we poll icTCP for new information: every time we send &till noticeable. Since getting icTCP information through
new packet, every time an acknowledgmentis received {be getsockopinterface incurs significant overhead, ic-
whenever a round ends. After the library gets the relevaif€P-Vegas can greatly reduce its overhead by getting in-
TCP state, it calculates its own target congestion windo@mation less frequently. Because Vegas adjestad
vewnd. When the value of vewnd changes, icTCP-Vegasly at the end of a round, icTCP-Vegas can behave accu-
sets this value explicitly inside icTCP. rately while still waking only every round. The optimiza-
We note that the implementation of icTCP-Vegas {#n results in CPU utilization that is higher by only about
similar to that ofINFOVEGAS, described as part of an0.5% for icTCP-Vegas than for in-kernel Reno.
infokernel [7]. The primary difference between the twg.4 TCP Extensions

is INFOTCP must manage its owrcwnd as it does not our fourth axis f luating icTCP h
provide control over TCP variables. WhexrOVEGAS ur fourth axis for evaluating 1c concerns the range

calculates a value ofcwndthat is less than the actuan TCP extensions that it allows. Given the importance

cwnd INFOV EGAS must buffer its packets and not trans(-)]c this issue, we spend most of the remaining paper on

fer them to the TCP layerNFOVEGAS then blocks until this topic. We address this question by first demonstrating

an acknowledgment arrives, at which point, it recalculat% w five more T(?P variants can be built on top of icTCP.
ese case studies are explicitlgt meant to be exhaus-

vcewndand may send more messages.-) .
y g tive, but to instead illustrate the flexibility and simptici

I_Evaluatllon: we h_ave verified fchat ICTCP-Vegas behav%§ icTCP. We then briefly discuss whether icTCP can be
like the in-kernel implementation of Vegas. Due to space

: R used to implement a wider set of TCP extensions.
constraints we do not show these results; we instead focus
our evaluation on CPU overhead. 5.4.1 icTCP-Nice

Figure 5 shows the total (user and system) CPU utilizi-our first case study, we show that TCP Nice [52] can be
tion as a function of network bandwidth for TCP Renomplemented at user-level with icTCP. This study demon-
the three versions of icTCP-Vegas, andOVEGAS. As strates that an algorithm that differs more radically from
the available network bandwidth increases, CPU utilizthire base icTCP Reno algorithm can still be implemented.
tion increases for each implementation. The CPU utit particular, icTCP-Nice requires access to more of the
lization (in particular, system utilization) increaseg-si internal state within icTCH,ethe complete message list.
nificantly for INFOVEGAS due to its frequent user-kerneDverview: TCP Nice provides a near zero-cost back-
crossings. This extra overhead is reduced somewhatdoound transfer; that is, a TCP Nice background flow
icTCP-Vegas when it polls icTCP on every message seintkrferes little with foreground flows and reaps a large
or wakes on the arrival of every acknowledgment, but fisaction of the spare network bandwidth. TCP Nice is

Appears in the Sixth Symposium on Operating Systems Dasibimgplementation (OSDI '04)

similar to TCP Vegas, with two additional components:

. i . . i . i Latency
multiplicative window reduction in response to increasing
round-trip times and the ability to reduce the congestion TCPRI\?'nO ?
window below one. We discuss these components in turng icTCP-Nice .-

TCP Nice halves its current congestion window Wheng 100 1

long round-trip times are measured, unlike Vegas whichg
reduces its window by one and halves its window onlyd-l‘dls
when packets are lost. To determine when the windowg
size should be halved, the TCP Nice algorithm monitors3
round-trip delays, estimates the total queue size at the botS
tleneck router, and signals congestion when the estimated

gueue size exceeds a fraction of the estimated maximum 1 10 100
gueue capacity. Specifically, TCP Nice counts the num- Number of Background
ber of packets for which the delay exceedsnRTT + Throughput
(maxzRTT — minRTT) x t (wheret = 0.1); if the frac- 10
tion of such delayed packets within a round excegds Reno —O—

. . : TCP Nice —3—
(wheref = 0.5), then TCP Nice signals congestion and & icTCP-Nice -l
decreases the window multiplicatively. < 50

>

9

TCP Nice also allows the window to be less than one; 2
to effect this, when the congestion window is below two, 3 W
TCP Nice adds a new timer and waits for the appropriateS 10 ¢ ===

number of RTTs before sending more packets. - 5 " L
Implementation: The implementation of icTCP-Nice is S toa b e

similar to that of icTCP-Vegas, but slightly more complex. 0 ¥ ;

First, icTCP-Nice requires information about every packet 1 10 100
instead of summary statistics; therefore, icTCP-Nice ob- Number of Background

tains the full message !ISt containing the sequence numEqure 7:icTCP-Nice: Impact of Background Flows. The two
(Seqn() and round trip tlmel(srtt) ofeach paCket- SeCOndgraphs correspond to the same experiment; the first graptvsttioe av-
the implementation of windows less than one is tricky betage document latency for the foreground traffic while theosid graph
can also use thecwndmechanism. In this case, for a winshows the number of bytes the background flows manage tderats-

; N ; ing the 3 minutes period. Each line corresponds to a diffepgatocol
dow Ofl/n, ICTCP-Nice setscwndto 1 for a Slngle RTT for background flows (i.e., TCP Reno, icTCP-Nice, or TCP Nidée

period, f'md to 0 fofn — 1) periods.) _number of background flows is varied along the x-axis. Théepck
Evaluation: To demonstrate the effectiveness of the idink bandwidth is set to 840 kbps with a 50 ms delay. The enyarial
TCP approach, we replicate several of the experimefg§!p is identical to Figure 6.

from the original TCP Nice papet.¢. Figures 2, 3, and 4throughput as the number of flows increases. As desired,

in [52]). o
Our results show that icTCP-Nice performs almogtom icTCP-Nice and TCP Nice achieve similar results.
identically to the in-kernel TCP Nice, as desired. 5.4.2 icCM

Figure 6 shows the latency of the foreground connésfe now show that some important components of the
tions when it competes against 16 background conn@wsngestion Manager (CM) [8] can be built on icTCP. The
tions and the spare capacity of the network is varied. Theain contribution of this study is to show that informa-
results indicate that when icTCP-Nice or TCP Nice atin can be shared across different icTCP flows and that
used for background connections, the latency of the foraultiple icTCP flows on the same sender can cooperate.
ground connections is often an order of magnitude fas@verview: The Congestion Manager (CM) architec-
than when TCP Reno is used for background connectionse [8] is motivated by two types of problematic behav-
As desired, icTCP-Nice and TCP Nice perform similarlyor exhibited by emerging applications. First, applicatio

The two graphs in Figure 7 show the latency of forghat employ multiple concurrent flows between sender and
ground connections and the throughput of backgrourateiver have flows that compete with each other for re-
connections as the number of background connectionssnurces, prove overly aggressive, and do not share net-
creases. The graph on the top shows that as more baetirk information with each other. Second, applications
ground flows are added, document latency remains essghich use UDP-based flows without sound congestion
tially constant when either icTCP-Nice or TCP Nice isontrol do not adapt well to changing network conditions.
used for the background flows. The graph on the bot-CM addresses these problems by inserting a module
tom shows that icTCP-Nice and TCP Nice obtain moebove IP at both the sender and the receiver; this layer

Appears in the Sixth Symposium on Operating Systems Dasibimgplementation (OSDI '04)

maintains network statistics across flows, orchestrates

data transmissions with a new hybrid congestion control Reno

algorithm, and obtains feedback from the receiver. 1200 :
Implementation: The primary difference between icCM g 1000 -

and CM is in their location; icCM is built on top of the E g00 -
icTCP layer rather than on top of IP. Because icCM lever- =

ages the congestion control algorithm and statistics al- & 600 1
ready present in TCP, icCM is considerably simpler to § 400 -
implement than CM. Furthermore, icCM guarantees that $ 200 -

) 3

its congestion control algorithm is stable and friendly to

existing TCP traffic. However, the icCM approach does 0

have the drawback that non-cooperative applications can

bypass icCM and use TCP directly; thus, icCM can only Time (seconds)

guarantee fairness across the flows for which it is aware.
The icCM architecture running on each sending end-
point has two components: icCM clients associated with 1200 1st

icCM

each individual flow and an icCM server; there is no com- 1000 1 2nd -------
ponent on the receiving endpoint. The icCM server has 800 | 3rd - - - -
two roles: to identify macroflowsi.g., flows from this 500 4th

endpoint to the same destination), and to track the aggre-

Sequence Number

gate statistics associated with each macroflow. To help 400 H
identify macroflows, each new client flow registers its pro- 200 |
cess ID and the destination address with the icCM server. 0

To track statistics, each client flow periodically obtains
its own network state from icTCR(g, its number of out-
standing bytessnd.nxt- snd.una and shares this state

with the icCM server. The icCM server periodically UpFigure 8: icCM Fairness. The two graphs compare the perfor-

dates its Stati_StiCS for each macrOﬂ(BVQ(s sums together mance of four concurrent transfers from one sender to oneive with
the outstanding bytes for each flow in the macroflowthe bottleneck link set to 1 Mb/s and a 120 ms delay. In thegiesh,

Each client flow can then obtain aggregate statistics f§9ck Reno is used; in the second graph, icCM manages theTfoBr
the macroflow for different time intervals. flows.

To implement bandwidth sharing across clients in thg roughly 30 KB/s with a standard deviation of 0.6 KB/s.
same macroflow, each client calculates its own window to
limit its number of outstanding bytes. Specifically, each4.3 icTCP-RR
icCM client obtains from the server the number of flows iIRCP’s fast retransmit optimization is fairly sensitive to
this macroflow and the total number of outstanding bytese presence of duplicate acknowledgments. Specifically,
in this flow. From these statistics, the client calculates tiwhen TCP detects that three duplicate acks have arrived,
number of bytes it can send to obtain its fair share of titeassumes that a loss has occurred, and triggers a retrans-
bandwidth. If the client is using TCP for transport, themission [5, 30]. However, recent research indicates that
it simply setsvewndin icTCP to this number. Thus, ic-packet reordering may be more common in the Internet
CM clients within a macroflow do not compete with on¢han earlier designers suspected [3, 9, 11, 57]. When fre-
another and instead share the available bandwidth eveglyent reordering occurs, the TCP sender receives a rash
Evaluation: We demonstrate the effectiveness of usimyf duplicate acks and wrongly concludes that a loss has
icTCP to build a congestion manager by replicating olecurred. As a result, segments are unnecessarily retrans-
of the experiments performed for CM€,, Figure 14 in mitted (wasting bandwidth) and the congestion window is
[8]). In the experiments shown in Figure 8, we placeeedlessly reduced (lowering client performance).
four flows within a macroflow. As shown in the firstOverview: A number of solutions for handling dupli-
graph, when four TCP Reno flows are in a macroflowate acknowledgments have been suggested in the liter-
they do not share the available bandwidth fairly; the peature [11, 57]. At a high level, the algorithms detect the
formance of the four connections varies between 39 KBisesence of reordering.g, by using DSACK) and then
and 24 KB/s with standard deviation of 5.5 KB/s. In corincrease the duplicate threshold valdafthreshto avoid
trast, as shown in the second graph, when four icCM flowgggering fast retransmit. We base our implementation
are in a macroflow, the connections progress at similar asrdthat of Blanton and Allman’s work [11], which limits
consistent rates; all four icCM flows achieve throughputse maximum value oflupthreshto 90% of the window

0 5 10 15 20 25 30
Time (seconds)

10

Appears in the Sixth Symposium on Operating Systems Dasibimgplementation (OSDI '04)

False Fast Retransmits Retransmissions
I 1 1 1 - L L 160 1 - 1 1 I
LinUX 2.4 se— ICTCP-EFR (FR) —
» 1000 4 Linux 2.4 (with DSACK) s r " Reno (FR)
e iCTCP-RR == E Reno (TO)
& 5 120 4 icTCP-EFR (TO) r
g &
5 e
T 100 1 - £ 80 4 r
@ =
[& <
3 L Seliuman® g 407 I
s 14
S R I s
T T T T T T 0 T T T T T T
0 5 10 15 20 25 30 1.0 11 1.2 1.3 14 15
Packet Delay Rate (%) Loss Rate (%)
Throughput Throughput
1000 I 1 - 1 - 1 L L 400 1 l- 1 I
Linux 2.4 (with DSACK) se— iICTCP-EFR i
) icTCP-RR : Reno
800 - Li 24 r —
g inux @ 300 - L
Q S iy,
0 X
@ 600 7 m— r =
< 2 200 | L
‘5‘ =
2 400 - r 2
< <
o £ 100
3 J L
£ 2007, 3 -
= R
0 : : : : : : 0 : : : : : :
0 5 10 15 20 25 30 1.0 11 1.2 1.3 14 15
Packet Delay Rate (%) Loss Rate (%)

Figure 9: Avoiding False Retransmissions with icTCP-RR. Figure 10: Aggressive Fast Retransmits with icTCP-EFR.
On the top is the number of false retransmissions and on thi®rho On the top is the number of retransmitted packets for botroRexdl ic-
is throughput, as we vary the fraction of packets that areagledl (and TCP-EFR — due to both retransmission timeouts (TO) and ftsams-
hence reordered) in our modified NistNet router. We compameetdif- mits (FR) — and on the bottom is the achieved bandwidth. Atoeg
ferent implementations, as described in the text. The @rpetal setup x-axis, we vary the loss rate so as to mimic a wireless LANn§lesi
includes a single sender and receiver; the bottleneck §rdei to 5 Mb/s sender and single receiver are used, and the bottleneckdisét to 600
and a 50 ms delay. The NistNet router runs on the first routérpi Kb/s and a 6 ms delay.

ducing a normally distributed packet delay with mean of 25 arsl

standard deviation of 8 ms. sions that occur, where a false retransmission is one that
is caused by reordering. One can see that the stock ker-

size and, when a timeout occurs, sdtgthreshback to ne| issues many more false retransmits, as it (incorrectly)

its original value of 3. believes the reordering is actual packet loss. In the sec-

Implementation: The user-level library implementationpond graph, we observe the resulting bandwidth. Here, the

iCTCP-RR, is straight-forward. The library keeps a hi®SACK in-kernel and icTCP-RR versions perform much

tory of acks received; this list is larger than the kernpktter, essentially ignoring duplicate acks and thus aehie

exported ack list because the kernel may be aggressivéngnmuch higher bandwidth.

pruning its size, thus losing potentially valuable informa

tion. When a DSACK arrives, icTCP places the sequenget.4 icTCP-EFR

number of the falsely retransmitted packet into the ackur previous case study showed that increadingthresh

list. The library consults the ack history frequently, leokcan be useful. In contrast, in environments such as wire-

ing for these occurrences. If one is found, the libratgss LANS, loss is much more common and duplicate acks

searches through past history to measure the reordegnguld be used a strong signal of packet loss, particularly

length and setdupthreshaccordingly. when the window size is small [50]. In this case, the op-

Evaluation: Figure 9 shows the effects of packet reordeposite solution is desired; the value ddipthreshshould

ing. We compare three different implementations: stoble lowered, thus invoking fast retransmit aggressively so

Linux 2.4 without the DSACK enhancement, Linux 2.4s to avoid costly retransmission timeouts.

with DSACK and reordering avoidance built into the kei©verview: We next discuss icTCP-EFR, a user-level li-

nel, and our user-level icTCP-RR implementation. In theary of implementation of EFR (Efficient Fast Retrans-

first graph, we show the number of “false” fast retransmisiit) [50]. The observation underlying EFR is simple: the

11

Appears in the Sixth Symposium on Operating Systems Dasibimgplementation (OSDI '04)

5.4.5 icTCP-Eifel
The retransmission timeout value (RTO) determines how

Eifel RTO using icTCP

14 User-level Karn-Patridge (UL-KP) - much time must elapse after a packet has been sent until
12 4 UL-KP with 2 lines spike fixed L . . .
icTCP-Eifel -~ the sender considers it lost and retransmits it. Therefore,
101 4 Measured RET —— | the RTO is a prediction of the upper limit of the mea-
8 1 i sured round-trip time (MRTT). Correctly setting RTO can
§ 81 greatly influence performance: an overly aggressive RTO
x g may expire prematurely, forcing unnecessary spurious re-
transmission; an overly-conservative RTO may cause long
41 idle times before lost packets are retransmitted.
2 = : : : - , ‘ Overview: The Eifel RTO [36] corrects two problems
160 180 200 220 240 260 280 300 \jith the traditional Karn-Partridge RTO [33]. First, im-
Time (s) mediately after mRTT decreases, RTO is incorrectly in-
Self-trained Eifel RTO creased; only after some period of time does the value
600 ‘ ‘ of RTO decay to the correct value. Second, the “magic
Measured RT3 — numbers” in the RTO calculation assume a low mRTT
j ;§ sampling rate and sender load; if these assumptions are
o 450 - L incorrect, RTO incorrectly collapses into mRTT.
£ ‘ ! Implementation: We have implemented the Eifel
° 1 RTO algorithm as a user-level library, icTCP-Eifel. This
& 300 library needs access to three icTCP variables: mRTT,
ssthresh, and cwnd; from mRTT, it calculates its own val-
ues of srtt (smoothed round-trip) and rttvar (round-trip

150 —— : - - : ' ‘ variance). The icTCP-Eifel library operates as follows: it
50 60 70 _80 % 100 110 120 \yakes when an acknowledgment arrives and polls icTCP
Time (s) for the new mRTT; if mRTT has changed, it calculates
Figure 11: Adjusting RTO with icTCP-Eifel. The graph on the new RTO and sets it within icTCP. Thus, this library
the top shows three versions of icTCP-Eifel. For each erpent, the requires safe control over RTO.
measured round-trip time is identical; however, the cadted RTO dif- Evaluation: The first graph of Figure 11 shows a pro-
fers. The first line shows when the Karn-Partridge RTO alfoni[33] gression of three improvements in icTCP-Eifel; these ex-
is disabled in the kernel that it can be implemented at useell with . . . o
icTCP. In the second experiment, we remove two lines of TAP tt perlments_approxmately match tho_se II’_] the Eifel RT_O pa-
were added to fix the RTO spike; we show that this same fix caasbe @er (.e., Figure 6 in [36]). In the first implementation,
ily provided at user-level. In the third experiment, we ierpent the \we disable the Karn-Partridge RTO algorithm in the ker-
full Eifel RTO algorithm at user-level. In these experinsemte emulate el and instead implement it in icTCP-Eifel: as expected
a bandwidth of 50 kbps, 1 second delay, and a queue size of 120. T . . . ’ !
graph on the bottom shows the full adaptive Eifel RTO albamitvith a this version |ncorrect[y Increases .RTO when m_RTT de-
bandwidth of 1000 kbps, 100 ms delay, and a queue size of 12. creases. The second implementation corrects this problem
_ with two additional lines of code at user-level; however,
sender should adjudtipthrestso as to match the numbeRTO eventually collapses into mRTT. Finally, the third
of duplicate acks it could receive. version of icTCP-Eifel adjusts RTO so that it is more con-
Implementation: The icTCP-EFR implementation isservative and avoids spurious retransmissions. The sec-
also quite straightforward. For simplicity, we only modend graph of Figure 11 is similar to Figure 10 in the Eifel
ify dupthreshwhen the window is small; this is where thgaper and shows that we have implemented the full Eifel
EFR scheme is most relevant. When the window is sma@TO algorithm at user-level: this algorithm allows RTO to
the library frequently checks the message list for dupticdiecome increasingly aggressive until a spurious timeout
acks; when it sees one, it computes and sets a new vajueurs, at which point it backs off to a more conservative
for dupthresh value.
Evaluation: Figure 10 shows the behavior of icTCP-
EFR versus the in-kernel Reno as a function of loss raet.6 Summary
in an emulated wireless network. Because icTCP-EFRom our case studies, we have seen a number of strengths
interprets duplicate acknowledgments as likely signs of the icTCP approach. First, icTCP easily enables TCP
loss, the number of fast retransmits increases (as shaxariants that are less aggressive than Reno to be imple-
in the graph on top) and more importantly, the number ofented simply and efficiently at user-leved., TCP
costly retransmission timeouts is reduced. The graphdegas and TCP Nice); thus, there is no need to push
the bottom shows that bandwidth increases as a resultsuch changes into the kernel. Second, icTCP is ideally

12

Appears in the Sixth Symposium on Operating Systems Dasibimgplementation (OSDI '04)

suited for tuning parameters whose optimal values depeswen though over a long time period these flows are
upon the environment and the workloadd, the value of generally considered to be TCP friendly. Alternatively,
dupthresh). Third, icTCP is useful for correcting errors IBTP [44] uses a separate module to enforce TCP friend-
parameter value(g, the behavior of RTO). liness; this module monitors the sending rate and veri-
Our case studies have illustrated limitations of icTClfes that it is is below an upper-bound determined by the
as well. From icCM, we saw how to assemble a framstate of the connection, the mean packet size, the loss
work that shares information across flows; however, agyent rate, round-trip time, and retransmission timeout.
information that is shared across flows can only be doA#hough icTCP could use a similar modular approach,
voluntarily. Furthermore, congestion state learned frowe believe that the equation-based enforcer has an im-
previous flows cannot be directly inherited by later flowgortant drawback: non-conforming flows must be termi-
this limitation arises from icTCP’s reliance upon the indated, since packets cannot be buffered in a bounded size
kernel TCP stack, which cannot be forcibly set to a stagnd then sent at a TCP-friendly rate. Rather than termi-

ing congestion state. nate flows, icTCP naturally modulates agressive flows in
a manner that is efficient in both space and time.
5.4.7 Implementing New Extensions Packet Format: We classify six of the 14 extensions as

We evaluate the ability of icTCP to implement a widethanging the format or the contents of packets; for ex-
range of TCP extensions by considering the list discusssuple, extensions that put new bits into the TCP reserved
for STP [44]. Of the 27 extensions, 9 have alreadield, such as the Eifel algorithm [31] or robust congestion
been standardized in Linux 2.4.18.¢, SACK, DSACK, signaling [21]. These extensions cannot be implemented
FACK, TCP for high performance, ECN, New Reno, angasily with icTCP in its current form; therefore, we be-
SYN cookies) and 4 have been implemented with icTGieve that it is compelling to expand icTCP to allow vari-
(i.e, RR-TCP, Vegas, CM, and Nice). We discuss somealples in the packet header to be set. However, it may be
the challenges in implementing the remaining 14 extedifficult to ensure that this is done safely.
sions. We place these 14 extensions into three categorie¥Ve can currently approximate this behavior by encap-
those that introduce new algorithms on existing variablesjlating extra information in application data and requir-
those that modify the packet format, and those that modifig both the sender and receiver to use an icTCP-enabled
the TCP algorithm structure or mechanisms. kernel and an appropriate library; this technique allows
Existing Variables: We classify three of the 14 extenextra information to be passed between protocol stacks
sions as changing the behavior of existing variables: aghile remaining transparent to applications. With this
propriate byte counting (ABC) [2], TCP Westwood [55])}technique, we have implemented functionality similar to
and equation-based TCP (TFRC) [26]. Other recentlyat of DCCP [34]; in our implementation, a user-level
proposed TCP extensions that fall into this category ilibrary that transmits packets with UDP obtains network
clude Fast TCP [17], Limited Slow-Start [25], and Highinformation from an icTCP flow between the same sender
Speed TCP [24]. and receiver. We are currently investigating this approach
These extensions are the most natural match with ig-more detail.
TCP and can be implemented to the extent that they areStoucture and Mechanism: Approximately five of the
more aggressive than TCP Reno. For example, equatidA-extensions modify fundamental aspects of the TCP al-
based TCP specifies that the congestion window shoglerithm: some extensions do not follow the existing TCP
increase and decrease more gradually than Reno; icTGRtes€.g, T/TCP [13] and limited transmit [3]) and some
Egn allowscwndto increase more gradually, as desiredgfine new mechanisms.g, the SCTP checksum [49]).
but forcescwndto decrease at the usual Reno rate. \W&iven that these extensions deviate substantially from the
believe that conservative implementations of these extéase TCP Reno algorithm, we do not believe that icTCP
sions are still beneficial. For example, ABC implementesn implement such new behavior.
on icTCP cannot aggressively increasendwhen a re- An approach for addressing this limitation, as well as
ceiver delays an ack, but icTCP-ABC can still correct fdor modifying packet headers, may be for icTCP to pro-
ack division. In the case of HighSpeed TCP, the extevide control underneath the kernel stack with a packet fil-
sion cannot be supported in a useful manner because teis[42]. In this way, users could exert control over their
strictly more aggressive, specifying th@tndshould be packets, perhaps changing the timing, ordering, or alto-
decreased by a smaller amount than TCP Reno does. gether suppressing or duplicating some subset of packets
One issue that arises with these extensions is how &s-they pass through the filter. Again, such control must
TCP enforces TCP friendliness: icTCP constrains ealgé meted out with caution, since ensuring such changes
TCP virtual variable within a safe range, which may bremain TCP friendly is a central challenge.
overly conservative. For example, icTCP does not allowIn summary, icTCP is not as powerful as STP [44] and
small increases in TCP’s initial congestion window [4thus can implement a smaller range of TCP extensions.

13

Appears in the Sixth Symposium on Operating Systems Dasibimgplementation (OSDI '04)

Composing icTCP-RR and icTCP-Vegas

icTCP-RR + icTCP-Vegas —&—

2500 - r
icTCP-RR O~
- icTCP-Vegas {3~
2 2000 | w _
S3 &,
5 1500 1 I O ot
2 e
5 ",
3 1000 - BE} 3
£ B 5 o
500 1 B
0 - . . ‘ ‘
0 5 10 15 20

Packet Delay Rate (%)

Figure 12:Composing icTCP-Vegas and icTCP-RR The fig-
ure shows the strength of composing multiple icTCP libsaiiean en-
vironment where reordering occurs and the available spacthé bot-

Case Study icTCP Native
icTCP-Vegas 162 140
icTCP-Nice 191 267
icCM 438 1200*
icTCP-RR 48 26

Table 3: Ease of Development with icTCP The table reports
the number of C statements (counted with the number of skem#)o
needed to implement the case studies on icTCP compared tive ret-

erence implementation. For the native Vegas implememtati@ count
the entire patch for Linux 2.2/2.3 [15]. For TCP Nice, we coamly

statements changing the core transport layer algorithnr. Ebl, quan-

tifying the number of needed statements is complicated ebfattt that
the authors provide a complete Linux kernel, with CM modifice dis-

tributed throughout; we count only the transport layer. Epwever,

this comparison is still not fair given that CM contains mdwection-

ality than icCM. For RR, we count the number of lines in Linuk ®

calculate the amount of reordering. In-kernel RR uses SRSIACK,

whereas icTCP-RR traverses the ack list.

tleneck queue is low. When both libraries are used at the dameein
this particular environment, the throughput is higher cargal to when
only one of the libraries is used. The experimental setulndes a sin-
gle sender and receiver; the bottleneck queue size is setmal she link
is set to 2 Mb/s and a 50 ms delay. The NistNet router runs ofirste
router, introducing a normally distributed packet delaythvinean of 25
ms, and standard deviation of 8. On the x-axis we vary thegntage
of delayed packets.

C statements required for the four case studies with refer-
ence implementations: Vegas, Nice, CM, and RR. Com-
paring the icTCP user-level libraries to the native imple-
mentations, we see that the number of new statements
across the two is quite comparable. We conclude that de-
veloping services using icTCP is not much more complex
than building them natively and has the advantage that de-

C

However, we believe that the simplicity of providingani) .
piery orp J Cki)ngglng and analysis can be performed at user-level.

TCP layer on a real system may outweigh this drawba

5.5 Ease of Development 6 Conclusions
For our fifth and final question we address the compleWe have presented the design and implementation of ic-
ity of using the icTCP framework to develop TCP extenFCP, a slightly modified version of Linux TCP that ex-
sions. We answer this question first by showing the egseses information and control to applications and user-
with which user-level libraries on icTCP can be combinddvel libraries above. We have evaluated icTCP across five
to perform new functionality. We then directly comparaxes and our findings are as follows.
the complexity of building TCP extensions at user-level First, converting a TCP stack to icTCP requires only
to building them directly in the kernel. a small amount of additional code; however, determin-
The icTCP framework enables functional compositioing precisely where limited virtual parameters should be
given that each user-level library exports the same intessed in place of the original TCP parameters is a non-
face as icTCP, library services can be stacked to buitivial exercise. Second, icTCP allows ten internal TCP
more powerful functionality. In the simplest case, theariables to be safely set by user-level processes; regard-
stacked libraries control disjoint sets of icTCP variablelgss of the values chosen by the user, the resulting flow
For example, if the icTCP-Vegas and icTCP-RR libariés TCP friendly. Third, icTCP incurs minimal additional
are stacked, then the combination controls the valuesGPU overhead relative to in-kernel implementations as
bothcwndanddupthresh Figure 12 shows the advantagéng as icTCP is not polled excessively for new informa-
of stacking these two libraries: flows running in an enviion; to help reduce overhead, icTCP allows processes to
ronment with both packet reordering and small bottleneblock until an acknowledgment arrives or until the end of
gueues exhibit higher throughput with both libraries thanround. Fourth, icTCP enables a range of TCP exten-
with either libary alone. Alternatively, the stacked lileer sions to be implemented at user-level. We have found that
may control overlapping sets of icTCP variables. In thisTCP framework is particularly suited for extensions that
case, each layer further constrains the range of safe valingslement congestion control algorithms that are less ag-
for a virtual variable. gressive than Reno and for adjusting parameters to better
To quantify the complexity of building functionality ei-match workload or environment conditions. To support
ther on top of icTCP or within the kernel, we count thenore radical TCP extensions, icTCP will need to be devel-
number of C statements in the implementatioa.(the oped further, such as by allowing TCP headers to be safely
number of semicolons), removing those that are used osét or packets and acknowledgments to be reordered or
for printing or debugging. Table 3 shows the number delayed. Fifth, and finally, developing TCP extensions

14

Appears in the Sixth Symposium on Operating Systems Dasibimgplementation (OSDI '04)

on top of icTCP is not more complex than implementing7] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, N. C. Bur-
them directly in the kernel and are likely easier to debug.
We believe that exposing information and control over
other layers in the network stack will be useful as well[g]
For example, given the similarity between TCP and

SCTP [6], we believe that SCTP can be extended in
straight-forward manner to icSCTP. An icSCTP frame-

B3

work will allow user-level libraries to again deal with
problems such as spurious retransmission [12] as welll#@
implement new functionality for network failure detection

and recovery [32].

[11]

Our overall conclusion is that icTCP is not quite as

powerful as other proposals for extending TCP or oth@r2
networking protocols [41, 44]. However, the advantage

iCTCP is in its simplicity and pragmatism: it is relatively
easy to implement icTCP, flows built on icTCP remain
TCP friendly, and the computational overheads are résd!

sonable. Thus, we believe that systems with icTCP cajy

in practice and not just in theory, reap the benefits of user-
level TCP extensions.

v

Acknowledgments [15]

The experiments in this paper were performed exclil8]

sively in the Netbed network emulation environment fro
Utah [56]. We are greatly indebted to Robert Ticci, Ti

7]

Stack, Leigh Stoller, Kirk Webb, and Jay Lepreau for pro-
viding this superb environment for networking research(18]

We would like to thank Nitin Agrawal, Lakshmi

Bairavasundaram, Nathan Burnett, Vijayan Prabhakaran,
and Muthian Sivathanu for their helpful discussions and
comments on this paper. We would also like to thank Jé£0!
frey Mogul for his excellent shepherding, which has sub-
stantially improved the content and presentation of this

paper.
their many helpful suggestions. This work is sponsor

Finally, we thank the anonymous reviewers for

by NSF CCR-0092840, CCR-0133456, CCR-009827[QQ]
NGS-0103670, ITR-0086044, ITR-0325267, IBM, EMC,
and the Wisconsin Alumni Research Foundation.

References

(1]

(2]
(3]

(4]

(5]

(23]

M. B. Abbott and L. L. Peterson. A Language-based Ap-
proach to Protocol ImplementationEEE/ACM Transac- o4
tions on Networking1(1):4-19, Feb. 1993. [24]

M. Allman. TCP Congestion Control with Appropriate[25]
Byte Counting. RFC 3465, Feb. 2002.

M. Aliman, H. Balakrishnan, and S. Floyd. Enhancing
TCP'’s Loss Recovery Using Limited Transmit, Jan. 200§6]
RFC 3042.

M. Allman, S. Floyd, and C. Patridge. Increasing TCP’s
Initial Window. RFC 3390, Internet Engineering Task
Force, 2002. [27
M. Allman, V. Paxson, and W. R. Stevens. TCP Congestion
Control. RFC 2581, Internet Engineering Task Force, Apr.
1999.

[6] J. Armando L. Caro, J. R. lyengar, P. D. Amer, S. Ladh{28]

I. Gerard J. Heinz, and K. C. Shah. SCTP: A Proposed
Standard for Robust Internet Data Transport. IEEE Com-
puter, November 2003.

15

] E. Blanton and M. Allman.

9] A. Edwards and S. Muir.

nett, T. E. Denehy, T. J. Engle, H. S. Gunawi, J. Nugent,
and F. I. Popovici. Transforming Policies into Mechanisms
with Infokernel. INSOSP '032003.

H. Balakrishnan, H. S. Rahul, and S. Seshan. An Intedrate
Congestion Management Architecture for Internet Hosts.
In SIGCOMM ’99 pages 175-187, 1999.

J. Bellardo and S. Savage. Measuring Packet Reordering.
In Proceedings of the 2002 ACM/USENIX Internet Mea-
surement Workshop/arseille, France, Nov. 2002.

E. Biagioni. A Structured TCP in Standard ML. Rro-
ceedings of SIGCOMM '9%ages 36-45, London, United
Kingdom, Aug. 1994.

E. Blanton and M. Allman. On Making TCP More Robust
to Packet ReorderindACM Computer Communication Re-
view, 32(1), Jan. 2002.

Using TCP DSACKs and
SCTP Duplicate TSNs to Detect Spurious Retransmis-
sions. RFC 3708, Internet Engineering Task Force, Febru-
ary 2004.

R. Braden. T/TCP - TCP Extensions for Transactions. RFC
1644, Internet Engineering Task Force, 1994.

] L. S. Brakmo, S. W. O'Malley, and L. L. Peterson. TCP

Vegas: New Techniques for Congestion Detection and
Avoidance. InProceedings of SIGCOMM '94ages 24—
35, London, United Kingdom, Aug. 1994.

N. Cardwell and B. Bak. A TCP Vegas Implementation for
Linux. http://flophouse.com/ neal/uw/linux-vegas/.

M. Carson and D. Santay. NIST Network Emulation Tool.
snad.ncsl.nist.gov/nistnet, January 2001.

D. X. W. Cheng Jin and S. H. Low. FAST TCP: Moti-
vation, Architecture, Algorithms, Performance. INFO-
COM '04, 2004.

T. Dunigan, M. Mathis, and B. Tierney. A TCP Tuning
Daemon. INSC2002 Nov. 2002.

Experiences Implementing a
High-Performance TCP in User-space SIGCOMM '95
pages 196-205, Cambridge, Massachusetts, Aug. 1995.
D. Ely, S. Savage, and D. Wetherall. Alpine: A User-Lleve
Infrastructure for Network Protocol Development.Rro-
ceedings of the 3rd USENIX Symposium on Internet Tech-
nologies and Systems (USITS 'Oppges 171-184, San
Francisco, California, Mar. 2001.

] D. Ely, N. Spring, D. Wetherall, and S. Savage. Robust

Congestion Signaling. ICNP '01, Nov. 2001.

M. E. Fiuczynski and B. N. Bershad. An Extensible Proto-
col Architecture for Application-Specific Networking. In
Proceedings of the USENIX Annual Technical Conference
(USENIX '96) San Diego, California, Jan. 1996.

S. Floyd. The New Reno Modification to TCP’s Fast Re-
covery Algorithm. RFC 2582, Internet Engineering Task
Force, 1999.

S. Floyd. HighSpeed TCP for Large Congestion Windows.
RFC 3649, Internet Engineering Task Force, 2003.

S. Floyd. Limited Slow-Start for TCP with Large Con-
gestion Windows. RFC 3742, Internet Engineering Task
Force, 2004.

S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation
based Congestion Control for Unicast Applications. In
Proceedings of SIGCOMM 'Q@ages 43-56, Stockholm,
Sweden, Aug. 2000.

1 S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An

Extension to the Selective Acknowledgment (SACK) Op-
tion for TCP. RFC 2883, Internet Engineering Task Force,
2000.

G. R. Ganger, D. R. Engler, M. F. Kaashoek, H. M.
Briceno, R. Hunt, and T. Pinckney. Fast and Flexi-
ble Application-level Networking on Exokernel Systems.
ACM TOCS$20(1):49-83, Feb. 2002.

Appears in the Sixth Symposium on Operating Systems Dasibimgplementation (OSDI '04)

[29] ISI/USC. Transmission Control Protocol. RFC 793, Seld60] Y. Tamura, Y. Tobe, and H. Tokuda. EFR: A Retransmit

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

1981.

V. Jacobson. Congestion avoidance and controlPrio
ceedings of SIGCOMM '§®ages 314-329, Stanford, Cal{51]
ifornia, Aug. 1988.

V. Jacobson, R. Braden, and D. Borman. TCP Extensions
for High Performance. RFC 1323, Internet Engineering
Task Force, 1992. [5
A. L. C.Jr, J. R. lyengar, P. D. Amer, and G. J. Heinz.
A Two-level Threshold Recovery Mechanism for SCTP.
SCl, 2002.

P. Karn and C. Partridge. Improving Round-Trip Time Es[-
timates in Reliable Transport Protocols.Rmoceedings of
SIGCOMM '87 Aug. 1987.

E. Kohler, M. Handley, and S. Floyd. Design-
ing DCCP: Congestion Control Without Reliability.
www.icir.org/kohler/dcp/dccp-icnp03s.pdf, 2003. 54]
E. Kohler, M. F. Kaashoek, and D. R. Montgomery. A
Readable TCP in the Prolac Protocol Language Piior
ceedings of SIGCOMM "9Pages 3—13, Cambridge, Mas-
sachusetts, Aug. 1999. 55]
R. Ludwig and K. Sklower. The Eifel RetransmissiorL

Timer. ACM Computer Communications Revje30(3),
July 2000. [56]

C. Maeda and B. N. Bershad. Protocol Service Decompo-
sition for High-performance Networking. IRroceedings

of the 14th ACM Symposium on Operating Systems Prin-
ciples (SOSP '93)pages 244-255, Asheville, North Car-
olina, Dec. 1993.

J. Mahdavi and S. Floyd. TCP-friendly unicast ratg57]
based flow control. end2end-interest mailing list,
http://www.psc.edu/networking/papers/tiendly.html,

Jan. 1997.

M. Mathis, J. Heffner, and R. Reddy. Web100: Extended
tcp instrumentationACM Computer Communications Re-
view, 33(3), July 2003.

M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP
Selective Acknowledgment Options. RFC 2018, Internet
Engineering Task Force, 1996.

J. Mogul, L. Brakmo, D. E. Lowell, D. Subhraveti, and
J. Moore. Unveiling the Transport. HotNets I| 2003.

J. C. Mogul, R. F. Rashid, and M. J. Accetta. The Packet

Filter: an Efficient Mechanlsm for User-level Network
Code. InProceedings of the 11th ACM Symposium on

Operating Systems Principles (SOSP '8&ystin, Texas,
November 1987.

J. Padhye and S. Floyd. On Inferring TCP Behavior.
SIGCOMM 01, pages 287—-298, August 2001.

P. Patel, A. Whitaker, D. Wetherall, J. Lepreau, and
T. Stack. Upgrading Transport Protocols using Untrusted
Mobile Code. InNSOSP '032003.

V. Paxson, M. Allman, S. Dawson, W. Fenner, J. Griner,
I. Heavens, K. Lahey, J. Semke, and B. Volz. Known TCP
Implementation Problems. RFC 2525, Internet Engineer-
ing Task Force, Mar. 1999.

P. Pradhan, S. Kandula, W. Xu, A. Shaikh, and
E. Nahum. Daytona: A user-level tcp stack.

http://nms.lcs.mit.edu/ kandula/data/daytona.pdf,2200

K. Ramakrishnan, S. Floyd, and D. Black. The Addition of
Explicit Congestion Notification (ECN) to IP. RFC 3168,
Internet Engineering Task Force, 2001.

M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing
With Disaster: Surviving Misbehaved Kernel Extensions.
In Proceedings of the 2nd Symposium on Operating Sys-
tems Design and Implementation (OSDI '9pages 213—
228, Seattle, Washington, Oct. 1996.

J. Stone, R. Stewart, and D. Otis. Stream control trassm
sion protocol. RFC 3309, Sept. 2002.

In

16

Scheme for TCP in Wireless LANs. IEEE Conference
on Local Area Networkpages 2-11, 1998.

C. A. Thekkath, T. D. Nguyen, E. Moy, and E. D. La-
zowska. Implementing Network Protocols at User Level.
IEEE/ACM Transactions on Networking.(5):554-565,
1993.

2] A. Venkataramani, R. Kokku, and M. Dahlin. Tcp-nice:

A mechanism for background transfers. Pmoceedings

of the 5th Symposium on Operating Systems Design and
Implementation (OSDI '02pages 329-344, Boston, Mas-
sachusetts, Dec. 2002.

T.von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A

User-Level Network Interface for Parallel and Distributed
Computing. InProceedings of the 15th ACM Symposium

on Operating Systems Principles (SOSP ,9%ges 40—
53, Copper Mountain Resort, Colorado, Dec. 1995.

D. A. Wallach, D. R. Engler, and M. F. Kaashoek. ASHs:
Application-specific Handlers for High-performance Mes-
saging. IEEE/ACM Transactions on Networking
5(4):460-474, Aug. 1997.

R. Wang, M. Valla, M. Sanadidi, and M. Gerla. Adaptive
Bandwidth Share Estimation in TCP Westwood.|EEE
Globecom '022002.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gurupmsa
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
Integrated Experimental Environment for Distributed Sys-
tems and Networks. IRroceedings of the 5th Symposium
on Operating Systems Design and Implementation (OSDI
'02), pages 255—-270, Boston, Massachusetts, Dec. 2002.
M. Zhang, B. Karp, S. Floyd, and L. Peterson. RR-TCP:
A Reordering-Robust TCP with DSACK. [tilth Interna-
tional Conference on Network Protocols (ICNP '03une
2003.

