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Abstract
Unchecked errors are especially pernicious in operating system file
management code. Transient or permanent hardware failures are
inevitable, and error-management bugs at the file system layer can
cause silent, unrecoverable data corruption. We propose an interpro-
cedural static analysis that tracks errors as they propagate through
file system code. Our implementation detects overwritten, out-of-
scope, and unsaved unchecked errors. Analysis of four widely-used
Linux file system implementations (CIFS, ext3, IBM JFS and Rei-
serFS), a relatively new file system implementation (ext4), and
shared virtual file system (VFS) code uncovers 312 error propa-
gation bugs. Our flow- and context-sensitive approach produces
more precise results than related techniques while providing bet-
ter diagnostic information, including possible execution paths that
demonstrate each bug found.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—formal methods, reliability,
validation; D.2.5 [Software Engineering]: Testing and Debugging—
error handling and recovery; D.4.3 [Operating Systems]: File Sys-
tems Management

General Terms Algorithms, Languages, Reliability, Verification

Keywords static program analysis, interprocedural dataflow analy-
sis, weighted pushdown systems, copy constant propagation, binary
decision diagrams

1. Introduction
Run-time errors are unavoidable whenever software interacts with
the physical world. Incorrect error handling is a longstanding
problem in many application domains, but is especially troubling
when it affects operating systems’ file management code. File
systems occupy a delicate middle layer in operating systems. They
sit above generic block storage drivers, such as those that implement
SCSI, IDE, or software RAID; or above network drivers in the case
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of network file systems. These lower layers ultimately interact with
the physical world, and as such, may produce both transient and
persistent errors. At the same time, implementations of specific file
systems sit below generic file management layers of the operating
system, which in turn relay information through system calls into
user applications. No application can possibly manage errors that
the file system fails to report. The trustworthiness of the file
system in handling or propagating errors is an upper bound on
the trustworthiness of all storage-dependent user applications.

Furthermore, this problem cannot simply be fixed and forgotten.
Implementations abound, with more constantly appearing. Linux
alone includes dozens of different file systems. There is no reason to
believe that file system designers are running out of ideas or that the
technological changes that motivate new file system development
are slowing down.

Given the destructive potential of buggy file systems, it is critical
that error propagation patterns be carefully vetted. However, failures
in the physical layer, while inevitable, are rare enough in daily
use that traditional testing is unlikely to bear fruit. Therefore,
we propose a static analysis to identify certain common classes
of error mismanagement. Our approach is a flow- and context-
sensitive, interprocedural, forward dataflow analysis. The analysis
resembles an over-approximating counterpart to a typical (under-
approximating) copy constant propagation analysis [31], but with
certain additional specializations for our specific problem domain.
Our analysis is unsound in the presence of pointers, but has been
designed for a balance of precision and accuracy that is useful to
kernel developers in practice. Diagnostic reports include detailed
witness traces that illustrate the error-fumbling missteps a file system
could take.

The key contributions of this paper are as follows:

• We characterize the error propagation dataflow problem in its
various guises (Section 2) and encode these using weighted
pushdown systems (WPDSs) (Section 3).

• We show how to extract detailed diagnostic error reports from
the raw analysis results (Section 4).

• We describe a high-performance implementation capable of
analyzing real-world file systems (Section 5).

• We identify recurring safe and unsafe patterns and offer experi-
mental results for several Linux file systems (Section 5).

We consider related work in Section 6, and Section 7 concludes.

2. Linux Error Management
This paper focuses on file systems in the Linux 2.6.27 kernel.
Our approach combines generic program analysis techniques with
specializations for Linux coding idioms. Other operating systems
share the same general style, although some details may differ.
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2.1 Integer Error Codes
Different kinds of failure require different responses. For example,
an input/output (I/O) error produces an EIO error code, which might
be handled by aborting a failed transaction, scheduling it for later
retry, releasing allocated buffers to prevent memory leaks, and so on.
Memory shortages yield the ENOMEM error code, signaling that the
system must release some memory in order to continue. Disk quota
exhaustion propagates ENOSPC across many file system routines to
prevent new allocations.

Unfortunately, Linux (like many operating systems) is written
in C, which offers no exception handling mechanisms by which an
error code could be raised or thrown. Errors must propagate through
conventional mechanisms such as variable assignments and function
return values. Most Linux run-time errors are represented as simple
integer codes. Each integer value represents a different kind of error.
Macros give these mnemonic names: EIO is defined as 5, ENOMEM
is 12, and so on. Linux uses 34 basic named error macros, defined
as the constants 1 through 34.

Error codes are negated by convention, so -EIOmay be assigned
to a variable or returned from a function to signal an I/O error.
Return-value overloading is common. An int-returning function
might return the positive count of bytes written to disk if a write
succeeds, or a negative error code if the write fails. Callers must
check for negative return values and propagate or handle errors
that arise. Remember that error codes are merely integers given
special meaning by coding conventions. Any int variable could
potentially hold an error code, and the C type system offers little
help determining which variables actually carry errors.

2.2 Consequences of Not Handling Errors
Ideally, an error code arises in lower layers (such as block device
drivers) and propagates upward through the file system, passing
from variable to variable and from callee to caller, until it is properly
handled or escapes into user space as an error result from a system
call. Propagation chains can be long, crossing many functions,
modules, and software layers. If buggy code breaks this chain,
higher layers receive incorrect information about the outcomes of
file operations.

For example, if there is an I/O error deep down in the sync()
path, but the EIO error code is lost in the middle, then the application
will believe its attempt to synchronize with the storage system has
succeeded, when in fact it failed. Any recovery routine implemented
in upper layers will not be executed. “Silent” errors such as this are
difficult to debug, and by the time they become visible, data may
already be irreparably corrupted or destroyed.

In this paper, we are interested in how file systems propagate and
handle those error codes passed up from device drivers.

2.3 Checked Versus Unchecked Errors
Some action should be taken whenever an error occurs. Actions
range from simple notification to attempted recovery. We say that
an error has been checked if such an action has taken place. There
is no requirement to clear or reset an error-carrying variable after
that error has been checked and handled. Once recovery code has
dealt with the problem, a variable that contained -EIO to report
an I/O error can now be seen as merely containing the integer
value -5. Overwriting such a variable before it was checked is a
bug, but overwriting it after it has been checked is fine. For this
reason, it is useful to distinguish unchecked error codes from other
values that might either be already-checked errors or ordinary (non-
error-bearing) integers. This in turn requires recognizing correct
error handling when it does occur. Recognizing error-handling code
is nontrivial, given the complexity and variety of error recovery
policies in modern file systems. For purposes of this analysis, we

1 int status = write(...);
2 if (status < 0) {
3 printk("write failed: %d\n", status);
4 // perform recovery procedures
5 } else {
6 // write succeeded
7 }
8 // no unchecked error at this point

Figure 1. Typical error-checking code example

adopt a simple definition of “correct handling” that works well in
many cases, and that can be extended easily as necessary.

Figure 1 shows a typical fragment of Linux kernel code. Many
error-handling routines call printk, an error-logging function,
with the error code being handled passed as an argument. Because
this is an explicit action, it is reasonable to assume that the program-
mer is aware of the error and is handling it appropriately. Thus, if
status contained an unchecked error in line 2, we can assume
that it contains a checked error in line 3.

Because error codes are passed as negative integers (such as
-EIO for -5), sign-checking such as that in line 2 is common. If the
condition is false, then status must be non-negative and therefore
cannot contain an error code in line 6. When paths merge in line 8,
status cannot possibly contain an unchecked error. Therefore,
there is no error propagation bug in this code.

Passing error codes to printk is common, but not universal.
Code may check for and handle errors silently, or may use printk
to warn about a problem that has been detected but not yet remedied.
More accurate recognition of error-checking code may require
annotation. For example, we might require that programmers assign
a special ECHECKED value to variables with checked errors, or pass
such variables as arguments to a special checked function to mark
them as handled. Requiring explicit programmer action to mark
errors as checked would improve diagnosis by avoiding the silent
propagation failures that presently occur.

2.4 Error Propagation Bugs
Our goal is to find those error instances that vanish before proper
checking is performed. We find three general cases in which
unchecked errors are commonly lost. The variable holding the
unchecked error value (1) is overwritten with a new value, (2) goes
out of scope, or (3) is returned by a function but not saved by the
caller. Real-world code examples for each of these follow.

Figure 2(a) illustrates an overwritten error in ext2. Function
ext2_sync_inode, called in line 3, can return one of several
errors including ENOSPC. The code inside the if statement in line 4
handles all errors but ENOSPC. Thus, if ENOSPC is returned then it
is overwritten in line 8. This may lead to silent data loss.

Figure 2(b) depicts an out-of-scope error found in IBM JFS.
txCommit, starting in line 1, commits any changes that its caller
has made. This function returns EROFS if the file system is read-
only. txCommit also may propagate EIO from calling diWrite
in line 9. diFree calls txCommit in line 17, saving the return
value in variable rc. Unfortunately, diFree does not check rc
when the function exits. In fact, diFree always returns 0 in
line 19, thereby claiming that the commit operation always succeeds.
Interestingly, all other callers of txCommit save and propagate
the return value correctly. This strongly suggests that rc should be
returned, and that the code as it stands is incorrect.

Figure 2(c) shows an unsaved error found in ext3. Function
log_wait_commit returns EIO if a transaction commit has
failed (lines 5–7). In a synchronous operation, this EIO error code
is correctly propagated to the user application. In addition to syn-
chronous foreground I/O operations, there are also background I/O



1 int ext2_xattr_set2(...) {
2 ...
3 error = ext2_sync_inode(...);
4 if (error && error != -ENOSPC) {
5 ...
6 goto cleanup;
7 }
8 error = 0; //overwriting error
9 }

(a) An overwritten error in ext2

1 int txCommit(...) {
2 ...
3 if (isReadOnly(...)) {
4 rc = -EROFS;
5 ...
6 goto TheEnd;
7 } ...
8

9 if (rc = diWrite(...))
10 txAbort(...);
11

12 TheEnd: return rc;
13 }
14

15 int diFree(...) {
16 ...
17 rc = txCommit(...);
18 ...
19 return 0; //rc out of scope
20 }

(b) An out-of-scope error in IBM JFS

1 int log_wait_commit(...) {
2 ...
3 wake_up();
4 ...
5 if (is_journal_aborted(journal))) {
6 err = -EIO;
7 return err;
8 }
9 }

10

11 int __process_buffer(...) {
12 ...
13 log_start_commit(journal, tid);
14 log_wait_commit(journal, tid);
15 ...
16 }

(c) An unsaved error code in ext3

Figure 2. Three common scenarios in which unchecked errors are lost

operations that are flushed periodically to the disk. Since there is no
way to communicate any related errors of background I/O operations
to user applications, these errors are often dropped. One example is
when a periodic timer launches a background checkpoint operation
that will wrap all dirty buffers to a transaction, commit the trans-
action to the journal, and wait for it to finish. As shown in line 14,
the I/O failure propagated by the log_wait_commit function is
neglected by the __process_buffer function, which itself is
called during the background checkpoint. Hence, if there is a failure,
data is silently lost.

3. Analysis Formalization
The first task is to determine, at each program point, the set
of unchecked error codes each variable may contain. Given this
information, the bugs described in Section 2.4 can be detected using
a second pass over the code. For example, error overwriting occurs
when the left side of an assignment already contains an unchecked
error, while error dropping occurs when a variable containing
an unchecked error goes out of scope. Error propagation can be
formulated as a forward dataflow problem. Error constants such
as EIO generate unchecked error codes. Assignments propagate
unchecked errors forward from one variable to another. Propagation
ends when an error is overwritten, dropped, or checked by error-
handling code.

This problem resembles copy constant propagation [31]. How-
ever, copy constant propagation finds one constant value that a
variable must contain (if any), whereas we find the set of error
code constants that a variable may contain. Copy constant propaga-
tion drives semantics-preserving optimization, and therefore under-
approximates. We use error propagation analysis for bug reporting,
and over-approximate so that no possible bug is overlooked.

The following subsections describe WPDSs (our formalism of
choice) and how we use WPDSs to encode the error propagation
problem. Note that the error propagation problem can be described
as a standard context-sensitive interprocedural analysis problem.
We choose to cast the problem as a path problem over WPDSs
because WPDSs (1) provide an algebraic formulation for handling
local variables [19], and (2) support generating a witness trace as a
proof of the result of solving the path problem [25]. We use witness
tracing extensively to provide programmers with detailed diagnostic
traces for each potential program bug (see Section 4).

3.1 Weighted Pushdown Systems
We use WPDSs [25] to formulate and solve the error propagation
dataflow problem. A WPDS is a pushdown system that associates
a weight with each rule. Weights can serve as transfer functions
that describe the effect of each statement on the program state.
Such weights must be elements of a set that constitutes a bounded
idempotent semiring. We now formally define WPDSs and related
terms; Section 3.2 shows how WPDSs can be applied to solve the
error propagation dataflow problem.

DEFINITION 1. A pushdown system is a triple P = (P,Γ,∆)
where P and Γ are finite sets called the control locations and
stack alphabet, respectively. A configuration of P is a pair 〈p,w〉,
where p ∈ P and w ∈ Γ∗. ∆ contains a finite number of rules
〈p,γ〉 ↪→ 〈p′,w〉, where p, p′ ∈ P, γ ∈ Γ, and w ∈ Γ∗, which define
a transition relation ⇒ between configurations of P as follows:

If r = 〈p,γ〉 ↪→〈p′,w〉, then 〈p,γw′〉⇒ 〈p′,ww′〉 for all w′ ∈ Γ∗.

As shown by Lal et al. [19] and Reps et al. [25], a pushdown sys-
tem can be used to model the set of valid paths in an interprocedural
control-flow graph (CFG).

DEFINITION 2. A bounded idempotent semiring is a quintuple
(D, ⊕, ⊗, 0̄, 1̄), where D is a set, 0̄ and 1̄ are elements of D,
and ⊕ (the combine operator) and ⊗ (the extend operator) are
binary operators on D conforming to certain algebraic properties
as denoted in Reps et al. [25].

Each element of D is called a weight. The extend operator (⊗) is
used to calculate the weight of a path. The combine operator (⊕) is
used to summarize the weights of a set of paths that merge.

DEFINITION 3. A weighted pushdown system is a triple W =
(P,S , f ) such that P = (P,Γ,∆) is a pushdown system, S =
(D,⊕,⊗, 0̄, 1̄) is a bounded idempotent semiring, and f : ∆ → D is
a function that assigns a value from D to each rule P .

Let σ = [r1, . . . ,rk] be a sequence of rules (a path in the CFG)
from ∆∗. We associate a value with σ by using function f . This value
is defined as val(σ) = f (r1)⊗·· ·⊗ f (rk). For any configurations
c and c′ of P , path(c,c′) denotes the set of all rule sequences
[r1, . . . ,rk], i.e., the set of all paths transforming c into c′.

DEFINITION 4. Let W = (P,S , f ) be a weighted pushdown sys-
tem, where P = (P,Γ,∆), and let C ⊆ P×Γ∗ be a regular set of



Rule Control flow modeled

〈p,a〉 ↪→ 〈p,b〉 Intraprocedural flow from a to b

〈p,c〉 ↪→ 〈p, fenterr〉 Call from c to procedure entry fenter, even-
tually returning to r

〈p, fexit〉 ↪→ 〈p,ε〉 Return from procedure exit fexit

Table 1. Encoding of control flow as PDS rules

configurations. The generalized pushdown successor problem is
to find for each c ∈ P×Γ∗:

• δ (c)≡⊕{val(σ) |σ ∈ path(c′,c),c′ ∈C}
• a witness set of paths w(c) ⊆ ∪c′∈C path(c′,c) such that
⊕σ∈w(c)val(σ) = δ (c).

The generalized pushdown successor problem is a forward
reachability problem. It finds δ (c), the combine of values of all
paths between configuration pairs, i.e., the meet over all paths value
for each configuration pair. A corresponding witness set w(c) is a
subset of inspected paths such that their combine is δ (c). This set
can be used to justify the resulting δ (c).

The meet over all paths value is the best possible solution to a
static dataflow problem. Thus, a WPDS is a useful dataflow engine
for problems that can be encoded with suitable weight domains. In
Section 3.2 we show how the error propagation problem can be
encoded as a weight domain.

In order to handle local variables properly, we use an extension
to WPDSs proposed by Lal et al. [19]. This extension requires the
definition of a merge function, which can be seen as a special case
of the extend operator. This function is used when extending a
weight w1 at a call program point with a weight w2 at the end of
the corresponding callee. The resulting weight corresponds to the
weight after the call. The difference between the merge function and
a standard extend operation is that w2 contains information about
the callee’s locals; this information is irrelevant to the caller. Thus,
the merge function defines what information from w2 to keep or
discard before performing the extend.

3.2 Creating the Weighted Pushdown System
Per Definition 3, a WPDS consists of a pushdown system, a bounded
idempotent semiring, and a mapping from pushdown system rules to
associated weights. We now define these components for a WPDS
that encodes the error propagation dataflow problem.

3.2.1 Pushdown System
We model the control flow of the program with a pushdown system
using the approach of Lal et al. [21]. Let P contain a single state
{p}. Γ corresponds to program statements, and ∆ corresponds to
edges of the interprocedural CFG. Table 1 shows the PDS rule for
each type of CFG edge.

3.2.2 Bounded Idempotent Semiring
We classify integer constants into error constants and non-error con-
stants. Among the error constants we further distinguish tentative
from non-tentative errors for reasons we discuss further in Sec-
tion 4.1. Let TentativeErrors be the set of tentative error constants:
integer values used to represent error codes. For each tentative error
constant define a corresponding non-tentative error constant. Let
NonTentativeErrors be the set of all non-tentative error constants.
Define E = TentativeErrors∪NonTentativeErrors as the set of all
error constants. For purposes of this analysis, all non-error constants
can be treated as a single value, which we represent as OK. We
also introduce uninitialized to represent uninitialized values. Let

C = E ∪{OK,uninitialized} be the set of all constants. Finally, let
V be the set of all program variables.

Let S = (D, ⊕, ⊗, 0̄, 1̄) be a bounded idempotent semiring per
Definition 2. Elements of D are drawn from V → 2V ∪C , so each
weight in D is a mapping from variables to sets containing variables,
error values, OK and/or uninitialized. This gives the possible values
of v following execution of a given program statement in terms of
the values of constants and variables before that statement.

The combine operator is applied component-wise, with each
variable v mapping to any value it could have mapped to in either of
the weights being combined. For all w1,w2 ∈ D and v ∈ V :

(w1⊕w2)(v)≡ w1(v)∪w2(v)

The extend operator is also applied component-wise:

(w1⊗w2)(v)≡ (C ∩w2(v))∪
⋃

v′∈V ∩w2(v)

w1(v′)

where w1(v) 6= /0, otherwise (w1 ⊗w2)(v) ≡ /0. This definition is
essentially function composition generalized to the power set of
variables and constants rather than just single variables.

Define the neutral weight 1̄ as {(v,{v}) |v ∈ V }, which maps
each variable to the set containing itself. This is a power-set
generalization of the identity function. Define the annihilator weight
0̄ as {(v, /0) |v ∈ V }, mapping each variable to the empty set.

Finally, the merge function is defined as follows. Let w1 be the
weight of the caller just before the call, and let w2 be the weight at
the very end of the callee. Then for any variable v ∈ V ,

merge(w1(v),w2(v))≡

{
w1(v) if v is a local variable
w2(v) if v is a global variable

This propagates any changes that the callee made to globals while
discarding any changes that the callee made to locals.

3.2.3 Transfer Functions
Each control-flow edge in the source program corresponds to a
WPDS rule and therefore needs an associated weight drawn from
the set of transfer functions D defined in Section 3.2.2. In the
following discussion of specific source constructs, we describe most
transfer functions as being associated with specific statements. The
corresponding WPDS rule weight is associated with the edge from
a statement to its unique successor. Conditionals have multiple
outgoing edges and therefore require multiple transfer functions.

Assignments Here we consider only assignments without function
calls on the right side. We leave the discussion of assignments such
as v = f () for later in this section.

Copy mode versus transfer mode Our analysis has two chief
modes of operation: copy mode and transfer mode. Consider an
assignment t = s where t,s ∈ V are distinct and s might contain
an unchecked error code. In copy mode, assignment copies errors:
after the assignment t = s, both t and s contain unchecked errors.
In transfer mode, the assignment t = s leaves an unchecked error
in t but removes it from s, effectively transferring ownership of
unchecked error values across assignments. Discussion that follows
refers to both copy and transfer modes unless otherwise stated.

Simple assignments These are assignments of the form v = e,
where e ∈ V ∪C . Let Ident be the function that maps each variable
to the set containing itself. (Note that this is identical to 1̄ per
Section 3.2.2.) The transfer function for a simple assignment in
copy mode is then Ident[v 7→ {e}]. In other words, v must have
the value of e after this assignment, while all other variables
retain whatever values they had before the assignment. In transfer
mode, let Donor ≡ {e}∩V −{v} be the set containing the source
variable (if any) of the assignment. Then the transfer function for



a simple assignment in transfer mode is Ident[v 7→ {e}][s 7→ {OK}
for s ∈ Donor] to transfer any unchecked errors from Donor to v.

Complex assignments These are assignments in which the assigned
expression e is not a simple variable or constant. We assume that the
program has been converted into three-address form, with no more
than one operator on the right side of each assignment.

Consider an assignment of the form v = e1 ope2 where e1,e2 ∈
V ∪C and op is a binary arithmetic or bitwise operator (+, &,
<<, etc.). Define Donors ≡ {e1,e2}∩V as the set of variables on
the right side of the assignment. Error codes are represented as
integers but conceptually they are atomic values on which arithmetic
operations are meaningless. Thus, if op is an arithmetic or bitwise
operation, then we can safely assume that the variables in Donors
do not contain errors. Furthermore, the result of this operation must
be a non-error as well. Therefore, the transfer function for this
assignment is Ident[u 7→ {OK} for all u ∈ Donors∪{v}].

Consider instead an assignment of the form v = e1 ope2 where
e1,e2 ∈ V ∪C and op is a binary relational operator (>, ==, etc.).
Relational comparisons are meaningful for error codes, so we cannot
assume that e1 and e2 are non-errors. However, the Boolean result of
the comparison cannot be an error. Therefore, the transfer function
for this assignment is Ident[v 7→ {OK}].

Assignments with unary operators (v = ope1) are similar: arith-
metic and bitwise operators map both v and e1 (if a variable) to
{OK}. However, C programmers often use logical negation to test
for equality to 0. So when op is logical negation (!) or an indirection
operator (&, *), the transfer function maps v to {OK} but leaves e1
unchanged.

Conditionals Assume that conditional statements with short-
circuiting conditions are rewritten as nested conditional statements
with simple conditions. A transfer function is then associated with
each branch of a conditional statement. The transfer function to be
applied on each branch depends upon the condition.

Consider a conditional statement of the form if (v), where v ∈ V .
The true branch is selected when v is not equal to zero, which does
not reveal any additional information about v: it may or may not
contain an error value. In this case, variables should remain mapped
to whatever values they had before. On the other hand, the false
branch is selected when v is equal to zero. Because zero is never an
error code, v definitely does not contain an error. Thus the transfer
functions associated with the true and false branches are Ident and
Ident[v 7→ {OK}], respectively.

Conversely, consider conditionals of the forms if (v > 0), if (v ≥
0), if (0 < v), if (0 ≤ v), if (0 == v), if (v == 0), and if (!v). In all
of these cases, the transfer function associated with the true branch
is Ident[v 7→ {OK}]. The true branch is never selected when v is
negative, so v cannot contain an error on that branch. The transfer
function for the false branch is the identity function Ident.

Lastly, consider conditional statements such as if (v < 0), if (v≤
0), if (0 > v) and if (0 ≥ v). We associate the transfer function Ident
with the true branch and Ident[v 7→ {OK}] with the false branch.
In each of these cases, the false branch is only selected when v is
non-negative, which means that v cannot contain an error code.

For conditional statements that do match none of the above
patterns, we simply associate Ident with both true and false branches.
An example of such a pattern is if (v1 < v2), where v1,v2 ∈ V .

Function calls We adopt the convention used by Callahan [3], and
later by Reps et al. [25], in which the CFG for each function has
unique entry and exit nodes. The entry node is not the first statement
in the function, but rather appears just before the first statement.
Likewise, we assume that function-terminating statements (e.g.,
return or last-block fall-through statements) have a synthetic per-
function exit node as their unique successors. We use these dummy

entry and exit nodes to manage data transfer between callers and
callees.

CFGs for individual functions are combined together to form an
interprocedural CFG. Furthermore, each CFG node n that contains
a function call is split into two nodes: a call node n1 and a return-
site node n2. There is an interprocedural call-to-enter edge from
n1 to the callee’s entry node. Similarly, there is an interprocedural
exit-to-return-site edge from the callee’s exit node to n2.

Local variable initialization First consider a call to a void function
that takes no parameters. Let L ,G ⊆ V respectively be the sets
of all local and global variables. Recall that transfer functions are
associated with CFG edges. For the edge from the callee’s entry
node to the first actual statement in the callee, we use the transfer
function Ident[v 7→ {uninitialized} for v ∈ L ]. When a function
begins executing, local variables are uninitialized while global
variables retain their old values.

Parameter passing Now consider a call to a void function that
takes one or more parameters. We introduce new global variables,
called exchange variables, to convey actual arguments from the
caller into the formal parameters of the callee. One exchange vari-
able is introduced for each function parameter. Suppose function F
has formal parameters f1, f2, . . . , fn. Let F(a1,a2, . . .an) be a func-
tion call to F with actual parameters ai ∈ V ∪C . We introduce
global exchange variables F1,F2, . . . ,Fn. The interprocedural call-
to-enter edge is given the transfer function for a group of n simulta-
neous assignments Fi = ai, exporting each actual argument into the
corresponding global exchange variable. Rules for assignment trans-
fer functions discussed earlier apply, including the transfer-mode
variant which maps each ai to {OK} after the assignments.

A similar process imports values from global exchange variables
into callee formal parameters. For a callee F with formal parameters
f1, f2, . . . , fn, the edge from the callee’s entry node to the first actual
statement in the callee is given the transfer function for a group of n
simultaneous assignments fi = Fi, as though each formal argument
were initialized with a value from the corresponding exchange
variable. Other local variables are uninitialized as before.

Thus, argument passing is modeled a two-step process: first the
caller exports its arguments into global exchange variables, then the
callee imports these exchange variables into its formal parameters.

Return value passing Lastly, suppose that function F returns non-
void. Let r ∈ V ∪C be the value being returned by some return
r statement, and let Fret be a per-function global exchange variable.
Then the edge connecting this return statement node to the dummy
exit node is given the transfer function for an assignment Fret = r.

As defined in Section 3.2.2, there are two kinds of error constants:
tentative and non-tentative. Error codes are initially tentative and
become non-tentative as soon as returned from a function. Let
E ≡ w(Fret)∩ TentativeErrors, where w is the weight at the end
of function F . For all e ∈ E, we replace e with e′, the corresponding
non-tentative error. We discuss the need for two kinds of error
constants in Section 4.1.

Let v ∈ V be the variable receiving the return value in the caller.
Then the interprocedural exit-to-return-site edge from F’s exit node
is given the transfer function for an assignment v = Fret.

Other interprocedural issues We consider functions whose imple-
mentation is not available to not have any effect on the state of the
program. Thus the weight across any such call is simply Ident.

For functions with variable-length parameter lists, we apply the
above transfer functions but we only consider the formal parameters
explicitly declared.

Pointers Our treatment of pointers is both unsound and incom-
plete, but is designed for simplicity and to give useful results in
practice. We find that many functions take a pointer to a callee-local



variable where an error code, if any, should be written. Thus we only
consider pointer parameters and ignore other pointer operations. We
assume that inside a function, pointer variables have no aliases and
are never changed to point to some other variable.

Under these conditions, pointer parameters are equivalent to
call-by-copy-return parameters. On the interprocedural call-to-enter
edge, we copy pointed-to values from the caller to the callee, just
as for simple integer parameters. On the interprocedural exit-to-
return-site edge, we copy callee values back into the caller. This
extra copy-back on return is what distinguishes pointer arguments
from non-pointer arguments, because it allows changes made by the
callee to become visible to the caller.

Function pointers Most function pointers in Linux file systems
are used in a fairly restricted manner. Global structures define han-
dlers for generic operations (e.g., read, write, open, close), with one
function pointer field per operation. Fields are populated statically
or via assignments of the form “file_ops->write = ext3_-
file_write” where ext3_file_write identifies a function,
not another function pointer. It is straightforward to identify the
set of all possible implementations of a given operation. We then
rewrite calls across such function pointers as switch statements
that choose among possible implementations nondeterministically.
This technique, previously employed by Gunawi et al. [11], accounts
for approximately 80% of function pointer calls while avoiding the
overhead and complexity of a general field-sensitive points-to analy-
sis. The remaining 20% of calls are treated as Ident. Note that we
analyze each file system individually; this perfectly disambiguates
nearly all indirect calls in the code under study.

Error-handling functions As suggested in Section 2.3, we con-
sider any error values in a variable to have been checked when
the variable is passed as an argument to printk. printk is a
variadic function whose first parameter is always a format string.
The transfer function for such a call is Ident[v 7→ {OK} for v in
the actual int-typed arguments to printk]. This also applies to
error-handling functions specific to each file system under study:
ext3_error, jfs_error, etc.

4. Finding and Describing Bugs
Here we describe how we query the WPDS to find error propagation
bugs. We also describe how witness information is used to construct
paths and slices that better describe the bugs found.

4.1 Querying the Weighted Pushdown System
We perform a poststar query [25] on the WPDS, with the beginning
of the program as the starting configuration. For kernel analysis,
we synthesize a main function that nondeterministically calls all
exported entry points of the file system under analysis. The result
is a weighted automaton. We apply the path_summary algorithm
of Lal et al. [20] to read out weights from this automaton. This
algorithm calculates, for each state in the automaton, the combine
of all paths in the automaton from that state to the accepting state, if
any. We can then retrieve the weight representing execution from
the beginning of the program to any particular point of interest.

We turn the three cases in which error codes are commonly lost
into a single case: overwritten errors. For out-of-scope errors, we
insert assignment statements at the end of each function. These extra
statements assign OK to each local variable except for the variable
being returned (if any). Thus, if any local variable contains an
unchecked error when the function ends, then the error is overwritten
by the inserted assignment and our analysis detects the problem.
In the case of unsaved errors, for each function whose result is
not already being saved by the caller, we introduce a temporary
local variable to hold that result. These temporaries are overwritten

CIFS ext3 ext4 IBM JFS ReiserFS VFS

Full path 14.7 66.6 70.4 16.7 17.9 22.6
Path slice 6.0 8.1 8.3 4.7 3.8 5.8

Table 2. Average lengths of full paths and path slices

with OK at the end of the function, as described above. Thus,
unsaved return values are transformed into out-of-scope bugs. A
systematic naming convention for these newly-added temporary
variables lets us distinguish the two cases later so that they can be
described properly in diagnostic messages. Thus, both out-of-scope
and unsaved errors are ultimately turned into overwritten errors.

Our goal is to find whether each assignment may overwrite an
error value. At each assignment p we retrieve the associated weight
w. Let S,T ⊆ C respectively be the sets of possible constant values
held by the source and target of the assignment, as revealed by w.
Note that w does not include the effect of assignment p itself. Rather,
it reflects the state just before p. Then:

1. If T ∩ NonTentativeErrors = /0, then the assignment cannot
overwrite any non-tentative error code and is not examined.

2. If T ∩NonTentativeErrors = S = {e} for some single error code
e, then the assignment can only overwrite an error code with the
same error code and is not examined.1

3. Otherwise, it is possible that this assignment will overwrite an
unchecked error code with a different code. Such an assignment
is incorrect, and is presented to the programmer along with
suitable diagnostic information.

Observe that we only report overwrites of non-tentative errors.
We find that overwrites of tentative errors are rarely true bugs. This
is due to coding conventions such as storing potential error codes in
variables before failure conditions actually hold. This phenomenon
is usually contained within the function that generates the error
code: error codes returned to callers generally represent real run-
time errors. Our transformation of returned errors from tentative to
non-tentative models this coding practice; ignoring it would have
tripled our false-positive count. We list all error codes that could
be possibly overwritten at each bad assignment, then select one for
detailed path reporting as described next.

4.2 Witnesses, Paths, and Slices
WPDSs support witness tracing. As mentioned in Definition 4, a
witness set is a set of paths that justify the weight reported for a
given configuration. This information lets us report not just the
location of a bad assignment, but also detailed information about
how that program point was reached in a way that exhibits the bug.

For each program point p containing a bad, error-overwriting
assignment, we retrieve a corresponding set of witness paths. Each
witness path starts at the beginning of the program and ends at p. We
select one of these paths arbitrarily and traverse it backward, starting
at p and moving along reversed CFG edges toward the beginning
of the program. During this backward traversal, we track a single
special target location which is initially the variable overwritten
at p. The goal is to stop when the target is directly assigned the
error value under consideration, i.e., when we have found the error’s
point of origin. This allows us to present only a relevant suffix of
the complete witness path.

Let t be the currently-tracked target location. Each statement
along the backward traversal of the selected witness path has one of
the following forms:

1 We open this loophole because we find that this is a commonly-occurring
pattern judged to be acceptable by file-system developers.



1 int nextId() {
2 static int id;
3 return ++id;
4 }
5

6 int getError() {
7 return -EIO;
8 }
9

10 int load() {
11 int status, result = 0;
12

13 if (nextId())
14 status = getError();
15

16 result = status;
17

18 if (nextId())
19 result = -EPIPE;
20

21 return result;
22 }

(a) Example code

Error codes: *EIO

(b) List of overwritten/dropped errors

example.c:7: unchecked error "EIO" is returned
example.c:14: "status" receives unchecked error from function "getError"
example.c:16: "result" receives unchecked error from "status"
example.c:18: "result" has unchecked error
example.c:3: "result" has unchecked error
example.c:18: "result" has unchecked error
example.c:19: overwriting unchecked error in "result"

(c) Complete diagnostic path trace

example.c:7: unchecked error "EIO" is returned
example.c:14: "status" receives unchecked error from function "getError"
example.c:16: "result" receives unchecked error from "status"
example.c:19: overwriting unchecked error in "result"

(d) Diagnostic path slice

Figure 3. Example code fragment and corresponding diagnostic output

1. t = x for some other variable x ∈ V . Then the overwritten error
value in t must have come from x. We continue the backward
path traversal, but with x as the new tracked target location
instead of t. Additionally, we produce diagnostic output showing
the source file name, line number, and the message “t receives
unchecked error from x.” If x is a return exchange variable, then
we print an alternate message reflecting the fact that t receives an
error code from a function call (e.g., see the message for line 14
in Figure 3(a)).

2. t = e for some error constant e ∈ E . We have reached the
point of origin of the overwritten error. Our diagnostic trace
is now complete for the bad assignment at p. We produce a
final diagnostic message showing the source file name, line
number, and the message “t receives error value e.” If t is a
return exchange variable, then we print an alternate message
reflecting the fact that an error code is being returned from a
function (e.g., see the message for line 7 in Figure 3(a)).

3. Anything else. We continue the backward path traversal, retain-
ing t as the tracked target location. Additionally, we produce
diagnostic output showing the source file name, line number,
and the message “t has unchecked error.”

If all diagnostic output mentioned above is presented to the
programmer, then the result is a step-by-step trace of every program
statement from the origin of an error value to its overwriting at p.
If diagnostic output is omitted for case 3, then the trace shows only
key events of interest, where the error value was passed from one
variable to another. We term this a path slice, as it is analogous to a
program slice that retains only the statements relevant to a particular
operation. In practice, we find that the concise path slice provides a
useful overview while the complete witness path trace helps to fill
in details where gaps between relevant statements are large enough
to make intervening control flow non-obvious. Table 2 shows that
slicing significantly reduces path lengths. Across all five file systems
and the shared virtual file system, slicing shrinks paths by an average
ratio of 5.7 to 1.

Note that we only provide diagnostic output for one overwritten
error code per bad assignment. If the bad assignment may overwrite
more than one error code, then we choose one arbitrarily. The
instance chosen may not be a true bug, fooling the programmer
into believing that no real problem exists. A different error value
potentially overwritten by the same assignment may be a true bug.

However, providing diagnostic output for all error values might
overwhelm the programmer with seemingly-redundant output.

Figure 3(a) shows an example code fragment that has an error
propagation bug in transfer mode. Figure 3(b) lists the error codes
that may be overwritten/dropped at a particular program point. The
error code which the rest of the diagnostic information correspond
to is marked with an asterisk. EIO is the only error code that may
be overwritten in this example. Figure 3(c) shows the complete
diagnostic path trace. Observe that this trace begins in function
getError, which is called from load in line 14. Execution
eventually traverses into nextId (line 3) while traveling from the
error code generation point (line 7) to the overwriting assignment
(line 19). Figure 3(d) shows the diagnostic path slice which includes
only those lines directly relevant to the error. Here we see just
four events of interest: the generation of an error code, which is
returned by function getError in line 7; the transfer of that error
to status in line 14; the transfer of that error code from status
to result in line 16; and the assignment to result in line 19.

5. Experimental Evaluation
Our implementation uses the CIL C front end [24] to apply pre-
liminary source-to-source transformations on Linux kernel code.
This includes redefining error code macros as distinctive expres-
sions to avoid mistaking regular constants for error codes. We then
traverse the CFG and emit a textual representation of the WPDS.
Our separate analysis tool uses the WALi WPDS library [18] to
perform the interprocedural dataflow analysis on this WPDS. Within
our WALi-based analysis code, we encode weights using binary
decision diagrams (BDDs) [2] as implemented by the BuDDy BDD
library [22]. BDDs have been used before to encode weight domains
[27]. The BDD representation allows highly-efficient implementa-
tion of key semiring operations, such as extend and combine.

We present the results of our analysis on four local file systems
(ReiserFS, IBM JFS, ext3 and ext4), one network file system (CIFS),
and common virtual file system (VFS) code used by all others.2

Our analysis reports 501 bugs in total, of which 312 are judged
true bugs following manual inspection of the reports. IBM JFS
and ReiserFS reports were inspected by the file systems’ respective

2 We exclude shared memory-management code (mm), as it slows the
analysis significantly while containing very few error-propagation bugs.



1 if (err == -EIO) {
2 ...
3 err = ...; //safe
4 }

(a) Specific error code

1 reiserfs_warning(...);
2 err = -EIO; //safe

(b) Special function

1 if (retval && err)
2 retval = err; //safe

(c) Replacement

1 int err;
2 ...
3 retry:
4 ...
5 if (...)
6 return ...;
7 //err is safely out of scope
8

9 err = ...; //safe
10 ...
11 if (err == -ENOSPC && ...)
12 goto retry;

(d) Retries

Figure 4. Some recurring safe patterns recognized by the analysis

developers. CIFS and ext4 developers inspected a subset of their
corresponding reports. A local domain expert who is also coauthor
of this paper assessed the rest, including the reports for ext3.

Developer response has been positive:

I think this is an excellent way of detecting bugs that happen
rarely enough that there are no good reproduction cases, but
likely hit users on occasion and are otherwise impossible to
diagnose. [5]

Our local expert reports spending an average of five minutes
to accept or reject each path trace. We find that unsaved error
propagation bugs are the most common. In general we find that
transfer mode yields better results than copy mode in the sense that
it produces fewer false positives.

In the discussion that follows, we present results for each bug
category. All results reported are for transfer mode unless explicitly
stated otherwise. Table 3 summarizes our findings. We identify
and describe safe patterns that we use to refine our tool. We also
describe false positives in detail. Note that these are only “false”
positives in that developers and our local expert judge that errors
are safely overwritten, out of scope or unsaved. The fact that errors
are overwritten, out of scope or unsaved is real, and in this sense the
analysis is providing correct, precise information for the questions
it was designed to answer.

5.1 Overwritten Bug Reports
Developers and our local expert identify 25 overwritten true bugs.
We find that EIO and ENOMEM are the most commonly overwritten
error codes. EIO signals I/O errors, including write failures that
may lead to data loss. ENOMEM is used when there is insufficient
memory.

Our tool recognizes four recurring patterns that represent safe
overwrites. Figure 4(a) shows the most common recurring pattern
found across all five file systems. Here, line 1 compares err with a
specific error code. If they match, then line 3 clears err or assigns it
a different error code. Overwriting one error code with another does
not always represent a bug. For example, an error code generated in
one layer of the operating system may need to be translated into a
different code when passed to another layer. This clearly depends
on the context and the error codes involved. In this case, we can
see that the programmer acknowledges that err contains a specific
error code before performing the assignment. We choose to trust
the programmer in this particular scenario, thus we assume that
overwriting the error code contained in err is safe.

Figure 4(b) shows the second common pattern, found in both
ReiserFS and ext3. In this case the programmer acknowledges
that something might be wrong by calling a function such as

1 if (err)
2 retval = err; //unsafe

(a) Replacement

1 int ret, err;
2 ret = ...;
3

4 if (ret) goto out;
5

6 ret = ...;
7 err = ...;
8

9 if (!ret && err)
10 ret = err;
11

12 out: return ret;
13 // err out of scope

(b) Precedence/scope

1 ret = ...;
2 ret2 = ...;
3

4 if (ret == 0)
5 ret = ret2;
6 ...
7 ret2 = ...; //unsafe

(c) Precedence/overwrite

1 buffer_head *tbh = NULL;
2 ...
3 if (buffer_dirty(tbh))
4 sync_dirty_buffer(tbh);
5 // unsaved error
6

7 if (!buffer_uptodate(tbh)) {
8 reiserfs_warning(...);
9 retval = -EIO;

10 }

(d) Redundancy

Figure 5. Some recurring unsafe patterns

reiserfs_warning in the case of ReiserFS. The call is usually
followed by an assignment that may overwrite an error code. We
choose to allow overwrites that occur immediately after such calls.

The third pattern, shown in Figure 4(d), appears in both ext3 and
ext4. Here variable err may receive an error code from a function
call (the function could return different error codes) in line 9. Our
tool initially reported an overwrite at that line in the case of a retry.
We observe that the goto statement in line 12 is always located
inside an if statement. In addition, the variable being overwritten
always appears in the condition (line 11), making it possible to
identify the variable that needs to be cleared before retrying.

The last pattern is shown in Figure 4(c). Both variables retval
and err might contain error codes at line 1. Thus a potential
overwrite would be reported in line 2 when the error stored in
err replaces that in retval. In this case, we can see that the
programmer acknowledges that those variables might contain error
codes before performing the assignment: the assignment occurs
only if both variables are nonzero. We trust the programmer in
this particular scenario and assume that overwriting the error code
contained in retval is safe.

Most false positives arise from overwriting one error code with
another error code without clear knowledge that an error may be
overwritten. Unfortunately, there is no formal error hierarchy, which
prevents us from automatically differentiating between correct and
incorrect overwrites. We identify two unsafe patterns in which error
codes are commonly overwritten. We find that 27 out of 44 false
positives obey the pattern shown in Figure 5(a). In this case, only
the variable err is acknowledged to be nonzero in line 1. We do
not consider the overwrite in line 2 to be safe because it is not
clear that the developer is aware of the overwrite. Our tool reports
the potential bug and developers must determine its validity. The
second unsafe pattern is shown in Figure 5(c). If both ret and
ret2 contain error codes at line 4, then ret2 is overwritten in
line 7. In this case, ret has precedence over ret2. We find that
9 out of the remaining 17 false positives fall into this category.
We can recognize these patterns and mark these reports in the
future. This would allow developers to prioritize the reports or
skip certain categories altogether if considered safe. We call these
false positives “removable.” The 8 remaining false positives required
significant human intervention to determine their safeness; we call
these “unavoidable.”



CIFS ext3 ext4 IBM JFS ReiserFS VFS

Bug category TB FP T TB FP T TB FP T TB FP T TB FP T TB FP T

Overwritten 8 1+5 14 5 5+0 10 5 10+0 15 2 7+0 9 3 2+0 5 2 11+3 16
Out of scope 2 0+0 2 5 6+0 11 3 7+0 10 2 0+1 3 3 12+1 16 3 16+5 24
Unsaved 12 11+4 27 69 16+2 87 68 39+1 108 58 0+3 61 24 6+5 35 38 10+0 48

Total 22 12+9 43 79 27+2 108 76 56+1 133 62 7+4 73 30 20+6 56 43 37+8 88

Table 3. Summary results for the six case studies. Bug reports are broken down into overwritten, out-of-scope and unsaved. Each category is
further divided into true bugs (TB) and false positives (FP). The first column under FPs corresponds to “removable” FPs (FPs that can be
removed if our tool recognizes unsafe patterns). The second column corresponds to “unavoidable” FPs (FPs that cannot be automatically
removed because significant human intervention is required). The last column (T) gives the total number of bug reports per bug category.
Results for unsaved errors were produced in copy mode.

5.2 Out-of-Scope Bug Reports
Out-of-scope bugs are the least common. A total of 66 bug reports
concern out-of-scope errors. Among these, 18 true bugs are iden-
tified. Figure 2(b) shows an out-of-scope bug found in IBM JFS.
Most of these bugs relate to ignoring I/O errors. We identify four
recurring safe patterns for out-of-scope errors, of which three are
variants of those discussed in Section 5.1.

The first pattern appears in CIFS, ext4 and IBM JFS. This pattern
is similar to that shown in Figure 4(a), however if the variable holds
a specific error code, then zero or a different error code is returned
in line 3, i.e., there is a return statement instead of an assignment.
We also trust the programmer in this case and err is not reported
to go out of scope at this line.

The second pattern, shown in Figure 4(d), appears in ext3 and
ext4. Without recognizing this pattern, our tool would report that
err is out of scope in line 6. This is not the case when err is
cleared before retrying.

The third pattern has already been shown in Figure 4(b), however
there is a subtle difference. In this case, reiserfs_warning
takes the variable that is about to go out of scope as parameter. As a
general approach for this pattern, we clear any variable that is passed
as parameter to reiserfs_warning and similar functions.

The fourth pattern concerns error transformation: changes in
how errors are represented as they cross software layers. Integer
error codes may pass through structure fields, be cast into other
types, be transformed into null pointers, and so on. Our analysis
does not track errors across all of these representations. As a result,
error codes are not propagated when transformed, yielding out-of-
scope false positives. We also find that transformation from integers
to pointers predominates. This transformation uses the ERR_PTR
macro, which takes the error to be transformed as parameter. As in
the case of functions such as reiserfs_warning, we clear any
variable that is passed as parameter to ERR_PTR.

Ad hoc error precedence is the main source of false positives.
Figure 5(b) presents one example. Both ret and err may be
assigned error codes in lines 6 and 7, respectively. Variable ret is
propagated regardless the contents of err, unless it does not contain
an error code, i.e., ret has precedence over err. Our tool produces
an out-of-scope report for err in line 12. This could be a bug or not
depending on the context. We find that 41 out of 48 false positives
exhibit this pattern. We can recognize this pattern to provide more
information in the future. As for overwrites, the “false” positives
here are not indications of analysis imprecision, but rather are based
on a human expert’s judgment that some errors can fall out of scope
safely.

5.3 Unsaved Bug Reports
Unsaved bugs predominate in all five file systems. Developers and
our local expert identify 269 true bugs among 366 unsaved bug
reports in copy mode. Transfer mode produces 48% fewer false

Analysis time (h:mm:ss)

File system KLOC Phase 1 Phase 2 Phase 3 Total

CIFS 91 0:00:12 1:14:18 0:01:10 1:15:40
ext3 83 0:00:12 1:37:00 0:01:06 1:38:18
ext4 97 0:00:13 3:36:54 0:01:22 3:38:29
IBM JFS 93 0:00:12 1:16:01 0:01:00 1:17:13
ReiserFS 88 0:00:12 2:28:59 0:01:19 2:30:30

Table 4. Analysis performance. KLOC gives the size of each file
system in thousands of lines of code, including 60 KLOC of shared
VFS code.

positives but misses 33% of the true bugs found in copy mode. The
most common unsaved error code is EIO, followed by ENOSPC and
ENOMEM. Figure 2(c) shows an unsaved bug found in ext3.

Close inspection reveals serious inconsistencies in use of some
functions’ return values. For example, we find one function whose
returned error code is unsaved at 35 call sites, but saved at 17 others.
In this particular example, 9 out of the 35 bad calls are true bugs; the
rest are false positives. When we alerted developers, some suggested
they could use annotations to explicitly mark cases where error
codes are intentionally ignored.

The main source of false positives concerns error paths: paths
along which an error is already being returned, so other errors may
be safely ignored. The second most common source of false positives
is due to the fact there is another way to detect the problem, which
we term redundant error reporting. Figure 5(d) shows an example
from ReiserFS. The sync_dirty_buffer call in line 4 may
return an error code, but checking its parameter tbh in line 7 is
sufficient in this case. However, it is still possible for a more specific
error to be dropped leading to loss of information about what exactly
went wrong. A few false positives arise when callers know that the
callee returns an error code only if certain preconditions are not met.
Callers that have already established those preconditions know that
success is assured and therefore ignore the return value.

We find that error paths and redundant error reporting describe 82
out of 97 false positives. We consider these removable since we can
recognize these unsafe patterns and provide additional information
for the developer to decide about their safety. The remaining 15
unavoidable false positives correspond to met preconditions.

5.4 Performance
Our experiments use a dual 3.2 GHz Intel processor workstation
with 2.96 GB RAM. We divide the analysis into three phases:
(1) extracting a textual weighted pushdown representation of the
kernel code, (2) solving the poststar query, and (3) finding bugs and
traversing the witness information to produce diagnostic output.

Table 4 shows the sizes and the time required to analyze each
file system. While turnaround time is not fast enough for interac-
tive use, the analysis is clearly suitable for regular use by kernel



developers using widely-available hardware. Extracting the push-
down system (phase 1) is quite cheap, as is traversing witnesses
to produce diagnostic output (phase 3). Solving the poststar query
(phase 2) is the most costly operation, and is also the operation that
is most generic to WPDSs. Thus, future improvements to this phase
will further boost both the performance of this specific tool as well
as any number of other WPDS-based analyses. Furthermore, this
phase involves the application of hundreds of thousands of semiring
operations. Operation performance is given by the weight domain
representation. The BDD representation is known for already provid-
ing a highly efficient implementation, however BDD performance
is notoriously fickle; additional tuning or alternate implementations
may yield substantial improvements.

5.5 Other File Systems
We have performed the analysis on 43 other Linux file systems
and verified that it runs correctly. Together, these account for
250 thousand additional lines of kernel code (KLOC). However
we have not identified recurring safe patterns, and therefore we
refrain from reporting detailed results. Our implementation readily
accommodates pattern changes with a modicum of OCaml coding.

We have also analyzed different Linux versions, and find that file
system code evolves significantly in each release. This demonstrates
that fixing this class of bugs is not a one-time operation. Rather,
kernel developers need robust tools to ensure that existing error
propagation bugs are fixed, and also that new bugs are not introduced
as implementations change over time.

The NASA/JPL Laboratory for Reliable Software is currently
using our implementation to check code in the Mars Science
Laboratory. JPL builds upon the VxWorks real-time operating
system, not Linux, but was able to tune the tool themselves without
difficulty. To date our tool has found one error-propagation bug in
“flying” code (code used for space missions):

We’ve found one legitimate problem. . . . We call a non-void
function (that can return some critical error codes) and don’t
assign the return value, dropping some nice things such as
EASSERT, EABOUND, and EEBADHDR on the ground. We
would have expected the compiler or [another code-checking
tool] to catch that, actually. . . We’re going to rerun on a big
update to the code, soon. [10]

6. Related work
The problem of unchecked function return values is longstanding,
and is seen as especially endemic in C due to the wide use of
return values to indicate success or failure of system calls. LCLint
statically checks for function calls whose return value is immediately
discarded [6], but does not trace the flow of errors over extended
paths. GCC 3.4 introduced a warn_unused_result annotation
for functions whose return values should be checked, but again
enforcement is limited to the call itself: storing the result in a variable
that is never subsequently used is enough to satisfy GCC. Neither
LCLint nor GCC analyzes deeply enough to uncover bugs along
extended propagation chains.

It is tempting to blame this problem on C, and argue for struc-
tured exception handling instead. Language designs for exception
management have been under consideration for decades [8, 23]. Set-
ting aside the impracticality of reimplementing existing operating
systems in new languages, static verification of proper exception
management has its own difficulties. C++ exception throwing decla-
rations are explicitly checked at run time only, not at compile time.
Java’s insistence that most exceptions be either caught or explic-
itly declared as thrown is controversial [29, 30]. Frustrated Java
programmers are known to pacify the compiler by adding blanket
catch clauses that catch and discard all possible exceptions. C#

imposes no static validation; Sacramento et al. [26] found that 90%
of relevant exceptions thrown by .NET assemblies (C# libraries) are
undocumented. Thus, while exceptions change the error propagation
problem in interesting ways, they certainly do not solve it.

Numerous proposals detect or monitor error propagation patterns
at run time, typically during controlled in-house testing with fault-
injection to elicit failures [4, 7, 9, 13–17, 28]. Work by Guo et al.
[12] on dynamic abstract type inference could be used to distinguish
error-carrying variables from ordinary integers, but this approach
also requires running on real (error-inducing) inputs. In contrast
to these dynamic techniques, our approach offers the stronger
assurances of static analysis, which become especially important
for critical software components such as operating system kernels.
Storage errors are rare enough to be difficult to test dynamically,
but can be catastrophic when they do occur. This is precisely the
scenario in which intensive static analysis is most suitable.

Gunawi et al. [11] highlight error code propagation bugs in file
systems as a special concern. Gunawi’s proposed Error Detection
and Propagation (EDP) analysis is essentially a type inference over
the file system’s call graph, classifying functions as generators,
propagators, or terminators of error codes. Our approach uses a more
precise analysis framework that offers flow- and context-sensitivity.
The difference is not merely theoretical: we have compared the two
in detail and while Gunawi’s EDP finds 97% of our true unsaved
bugs, it also produces 2.75 times more false positives. Furthermore,
EDP finds no overwrites and just one of our true out-of-scope bugs.
EDP runs faster, producing results in a matter of seconds. However,
it does not produce detailed diagnostic information; WPDS witness
traces (Section 4) offer a level of diagnostic feedback not possible
with EDP’s whole-function-classification approach.

Bigrigg and Vos [1] describe a dataflow analysis for detecting
bugs in the propagation of errors in user applications. Their ap-
proach augments traditional def-use chains with intermediate check
operations: correct propagation requires a check between each defi-
nition and subsequent use. This is similar to our tracking of error
values from generation to eventual handling or accidental discarding.
Bigrigg and Vos apply their analysis manually, whereas we have a
working implementation that is interprocedural, context-sensitive,
and has been applied to 516 thousand lines of kernel code.

The FiSC system of Yang et al. [32] uses software model
checking to check for a number of file-system-specific bugs. Relative
to our work, FiSC employs a richer (more domain-specific) model of
file system behavior, including properties of on-disk representations.
However, FiSC does not check for error propagation bugs and has
been applied to only three of Linux’s many file systems.

7. Conclusions
We have designed and implemented an interprocedural, flow- and
context-sensitive static analysis for tracking the propagation of
errors through file systems. Our approach is based on a novel over-
approximating counterpart to copy constant propagation analysis,
with additional specializations for our unusual problem domain. The
analysis is encoded as a WPDS, and poststar queries on this system
allow detailed diagnosis of a variety of error mismanagement bugs.
We present six case studies, including four widely-used Linux file
systems and one relatively new file system. We find 312 nontrivial
bugs. False positives arise, but many of these can be ascribed to
a small number of recurring unsafe patterns that should also be
amenable to automated analysis; we identify several such patterns in
our detailed case studies. We also find that the same patterns repeat
among different file system implementations.

The unstructured nature of C error reporting creates a significant
analysis challenge. Programmer intent is often implicit, and our
findings show that current practice (manual inspection and testing)
is insufficient. For good or ill, implementing operating systems



in C is also part of the status quo, and this is unlikely to change
soon. Analyses such as that we describe here can go a long way
toward eliminating error propagation bugs. This increases the
trustworthiness of file systems and, in turn, of computer systems as
a whole.
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