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Abstract— Designed to adapt spectrum usage on-the-fly,
frequency-agile radios can drastically improve performance of
wireless networks. Such flexibility, however, comes with a cost of
increased hardware complexity. This motivates us to understand
when and why having higher degree of frequency-agility helps
and how much improvement it can lead to. In this paper, we
approach this question by comparing two types of agile radios in
the context of dynamic spectrum sharing in any given spectrum
chunk. We consider 1-agile radios that use a single frequency
channel but can adjust the channel’s width and central frequency,
and k-agile radios that can combine up to k non-contiguously
aligned frequency segments into one transmission. We show that,
due to inherent demand dynamics and conflict heterogeneity,
networks using1-agile radios often face the problem ofspectrum
fragmentation. But k-agile radios can effectively suppress this
problem directly at the physical layer. Using theoretical analysis
and simulation experiments, we quantify the advantage ofk-
agile radios over1-agile radios in their network spectrum usage.
For a fair comparison, we abstract the impact of demand
and topology configurations by evaluating the worst case and
average case performance. Our results show that in worst cases,
the improvement of using fully-agile radios is arbitrarily large,
although the improvement of using k-agile radios is upper
bounded by k. In average cases, the improvement reduces to
10–40% under typical network configurations. Interestingly, in
the context of dynamic spectrum sharing,2-agile radios realize
the majority of the improvement brought by fully-agile radi os.

I. I NTRODUCTION

The introduction of software defined radios and cognitive
radios has led to a fast growing interest in “frequency-agile”
radios. An agile radio can adapt on-the-fly the frequency
location and the amount of its spectrum usage. Such flexibility
opens up new exciting functionalities for wireless devices,
particularly in the area of dynamic spectrum access [1]. For
example, infrastructure access points can vary the amount of
spectrum usage proportional to their present traffic volumes,
achieving network-wide load balancing and improving user
satisfaction [2], [3].

In this paper, we consider a specific form of frequency-
agility and its impact on dynamic spectrum access. For a
given spectrum band, the frequency-agility is defined as the
flexibility in using the spectrum band. Fig. 1 presents two types
of frequency-agile radios in terms of their spectrum usage
pattern. Both radios partition the spectrum band finely into
many sections (e.g. OFDMA subcarriers). The first type,1-
agile radios, can build a transmission using any single chunk
of frequency in this band. Using OFDMA, each chunk is a

(a) 1-agile radios

(b) k-agile radios

Fig. 1. Comparing the two types of frequency-agile radios. Both radios
partition the available spectrum into a large number of segments.1-agile radios
can use only one chunk whilek-agile radios can use up tok chunks.

collection of contiguously aligned subcarriers. A prototype
of 1-agile radios is available now by modifying commodity
WiFi radios to change channel width between5, 10, 20, and
40MHz [4]. The second and more advanced type isk-agile
radios, where each radio can use up tok frequency chunks
to form a single transmission. These chunks of spectrum can
be non-contiguously aligned in frequency. This type of agile
radios is often implemented in the form of OFDMA, requiring
sophisticated signal processing techniques beyond those used
in WiFi radios [5], [6], [7], [8], [9]. Our recent work has
developed a fully decentralizedk-agile radio [9]. The level
of frequency-agility increases withk, so does the hardware
complexity.

Intuitively, k-agile radios are more advantageous than1-
agile radios in terms of spectrum access. This is particularly
true when transmissions carry highly dynamic spectrum de-
mands and experience heterogeneous interference conditions.
In these cases,1-agile radios, which must use a contiguous
frequency chunk, face the problem ofspectrum fragmentation.
Over time, as individual transmissions adjust their spectrum
usage, available spectrum becomes increasingly partitioned
into a collection of discrete fragments. This fragmentation
means that a significant portion of spectrum, while free, is ef-
fectively unusable because individual fragments do not provide
the minimum contiguous frequency usage required by subse-
quent spectrum demands.k-agile radios, on the other hand,
successfully suppress the impact of spectrum fragmentation
directly at the physical layer. By utilizing multiple spectrum
segments in a single transmission, each radio can now support
high bandwidth transmissions even in the presence of spectrum
fragmentation.

Ideally, one would prefer agile radios with largek to
obtain desired spectrum usage and suppress fragmentation.
Aside from having higher implementation cost [9], largerk
also means higher spectrum overhead from “frequency guard



bands” placed at allocated frequency boundaries. In distributed
spectrum sharing, guard bands are required to suppressout-
of-band emissionsthat produce cross-band interference be-
tween links using different frequency chunks [10], [11]. Like
those used by WiFi channels, guard bands are not usable
for communication, thus are spectrum overhead and increase
as transmissions make use of more frequency fragments. To
effectively control the guard band overhead, a system would
prefer agile radios with smallerk, because the overhead is at
mostk times of those using1-agile radios.

From the above, we see that the choice of frequency-agile
radios has clear implications on both network performance
and hardware complexity. It is important to identify whether
and when having additional frequency-agility matters and how
much improvement it can lead to. In this paper, we approach
this problem by asking and addressing the following question:

“ In the context of dynamic spectrum sharing, how much
performance improvement cank-agile radios achieve over 1-
agile radios, and how would the choice ofk affect the results?”

We answer this question by considering a representative
spectrum sharing scenario where multiple access points (or
base stations) access and share spectrum to connect their
subscribers. Using both theoretical analysis and simulation
experiments, we examine and compare the amount of spectrum
required to satisfy all access points’ spectrum demands using
1-agile andk-agile radios. For a fair comparison, we examine
both worst case and average case performance to abstract
the impact of spectrum demand and topology configuration.
We also consider a complementary scenario where the total
spectrum is given, and examine how often an access point
cannot obtain its desired spectrum. To make the analysis
tractable, we do not consider the impact of guard bands in
our analytical results. Instead, we assume that the overhead
is controlled by limitingk, and use simulation experiments to
examine the impact of guard bands and verify our analytical
claims.

To the best of our knowledge, this work is the first to
provide a detailed comparison of1-agile andk-agile radios
in distributed dynamic spectrum access. Our analytical and
experimental results lead to the following interesting findings:

• In the worst case, using fully-agile radios (k >> 1) leads
to arbitrarily large improvement over1-agile radios. The
improvement becomes upper-bounded byk when using
k-agile radios.

• In the average case, the improvement is10%-40% for
typical traffic patterns and interference conditions. The
benefit of frequency-agility increases when both demand
dynamics and interference heterogeneity are present.

• In the average cases,2-agile radios achieve the majority
of improvement brought by fully-agile radios.

• Using the application-level disruption rate as an al-
ternative performance metric, we found that increas-
ing frequency-agility produces more visible impact to
application-level performance.

II. PRELIMINARIES

We consider a representative dynamic spectrum access
scenario where access points or base stations (hereby referred
to as nodes) share a spectrum band to support their subscribers.
Due to user mobility and traffic dynamics, each node experi-
ences time-varying traffic load and seeks to match spectrum
usage to its traffic demand. Each node and its associated users
are equipped with a single agile radio (1-agile or k-agile).
The spectrum band is finely partitioned into a large set of
frequency segments, where a segment refers to the minimum
unit of spectrum usage. For example, when implemented via
OFDMA [5], [9], each segment corresponds to a frequency
subcarrier or a set of contiguously aligned subcarriers. We
assume that the number of segments is large,e.g. 256-
2048. We also consider a distributed network setting where
nodes access spectrum without any central control. For a fair
comparison, we do not consider any primary users, because
their presence by taking a chunk of the spectrum automatically
imply that k-agile radios are advantageous. Instead, we focus
on flat spectrum sharing among nodes.

We use the notion ofk-agile radio to define radios with
different levels of agility. Ak-agile radio is able to use up
to k noncontiguous frequency chunks simultaneously, where
each chunk is one or multiple contiguously aligned segments.
We refer to radios that can access any combination of the
segments asfully-agile radios. Thus, if the number of segments
is M , a full-agile radio is ak-agile radio withk = M/2. For
easy notation, we refer to this fully-agile radio ask = ∞.
Throughout the paper, we use the termchunkto refer to a set
of contiguously aligned frequency segments/subcarriers.Thus
a 1-agile radio is only able to access one chuck.

III. W HY ADDITIONAL AGILITY MATTERS

Before presenting our analysis, we first identify when and
why having different levels of frequency-agility matters.we
show that two inherent properties of dynamic spectrum access,
namelyspectrum demand dynamicsandconflict topology het-
erogeneity, lead to the problem of spectrum fragmentation. The
fragmentation is particularly harmful among1-agile radios, but
can be suppressed effectively usingk-agile radios. While prior
work has observed the fragmentation problem [2], [12], [13],
in this paper we formally model and analyze its penalty.

Spectrum Demand Dynamics. Adapting spectrum usage
to time-varying demands is the key new feature of dynamic
spectrum access. The nature of dynamic access, however, also
leads to the problem of spectrum fragmentation. As individual
nodes dynamically occupy, change and release their spectrum
usages, the available spectrum becomes gradually divided into
a set of individual fragments. Such fragmentation is particu-
larly harmful for nodes using1-agile radios. Many fragments,
although free, are now unusable because they are too small to
hold any subsequent demands requiring contiguous frequency.
Nodes withk-agile radios, by combining multiple fragments
into a single transmission, can maintain high-throughput trans-
missions even in the presence of spectrum fragmentation.
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Fig. 2. An example of fragmentation due to dynamic spectrum demands.
Because of the fragmentation, the total frequency consumption is 4 segments
for 1-agile radios, and it reduces to3 segments for2-agile radios.

Consider an example in Fig. 2 where three nodes dynami-
cally acquire spectrum based on their present demands, each
using a1-agile radio. After obtaining its desired spectrum,
each node maintains the same frequency usage till the end of
its session or when its demand changes. In this example, when
R3 arrives and requests2 (contiguous) frequency segments,
it has to use segments3-4 although segment1 is available.
By using a 2-agile radio,R3 can combine segment1 and
3 together, reducing the total frequency consumption from4
to 3 segments. This example shows that usingk-agile radios
can effectively suppress spectrum fragmentation directlyat the
physical layer.

The fragmentation problem of1-agile radios could be par-
tially remedied using higher-layer solutions, although ata cost.
The first solution optimizes spectrum allocation algorithms to
reduce fragmentation. In the above example, ifR2 had occu-
pied segment3 rather than2, R3 would have used segments
1 and2. This solution, however, requires knowledge of future
network-wide spectrum demands, which is generally infeasible
in distributed networks that our paper targets. Indeed, we will
show thatno online algorithm can avoid a heavy penalty of
fragmentation in the worst case. The second solution makes
nodes “defragment” frequency on-the-fly,e.g. R2 moves to
segment1 whenR1 departs. This solution, however, could lead
to disruptions to ongoing transmissions as nodes defragment.
The third solution is to compensate the frequency-domain
fragmentation in the time-domain [14]. That is, nodes use less
frequency than they originally desire but occupy a longer time
period. In the above example,R3 can now use1 segment rather
than 2 by taking twice the time to transmit its data. While
this solution may work well for delay-tolerant applications
like file transfer, it would lead to undesirable delay for real-
time applications and ultimately visible disruptions to user
applications.

While higher-layer solutions could partially remedy the
fragmentation problem, they all come at some cost, either
requiring heavy protocol complexity/overhead or resulting
in application-level artifacts. Therefore, it is worthwhile to
consider the physical layer solution of migrating tok-agile
radios. In our analysis, we seek to quantify the advantage of
such migration in the context of distributed spectrum access
without time compensation and online defragmentation.

Conflict Topology Heterogeneity. Even without demand
dynamics, spectrum fragmentation can still occur because
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Fig. 3. An example of spectrum fragmentation due to network conflict
topology. The total frequency consumption is7 segments when using1-agile
radios, but reduces to5 segments when using2-agile radios.

nodes experience heterogeneous interference conditions.Fig. 3
illustrates this fact using a simple example. Consider three
nodesA, B andC, each represented by a vertex in the figure.
Two nodes are connected if they conflict with each other and
cannot use the same frequency segment simultaneously. The
blocks next to each vertex represent the available frequency
segments, and the filled blocks are the segments assigned to the
vertex. In this example, nodeA has a demand of two segments
and occupies segment1 and2, and nodeB demands one and
occupies segment3 to avoid conflicting withA. As a result,
the usable spectrum for nodeC is fragmented into two chunks:
segments1-2 and segments4-7. Using 1-agile radios,C has
to use segments4-7, making the total frequency consumption
of 7 segments for the system. On the other hand, using2-agile
radios, the frequency consumption is reduced to5.

Similarly, we now explore alternative solutions to suppress
this fragmentation problem. For the example in Fig. 3, the
fragmentation can be avoided using a different allocation:
assigning segments2 and 3 to nodeA, segment1 to B and
segments2–5 to C. Thus, an interesting question is whether
using 1-agile radios is good enough if one can optimize the
allocation algorithm. Our analysis in Sec. VI, however, shows
that even optimal algorithms cannot eliminate spectrum frag-
mentation in the presence of heterogeneous conflict conditions.

Frequency Guard Bands. From the above, we see
that ideally one would prefer agile radios with largek to
fully overcome spectrum fragmentation and obtain desired
frequency usage. In practice, however, largerk also means
higher spectrum overhead due to “frequency guard bands”
placed at allocated frequency boundaries. Guard bands are
required in distributed spectrum sharing to eliminate cross-
band interference from out-of-band emissions [10]. Out-of-
band emissions are triggered by signal time-domain truncation
and transmission nonlinearity [11]. These leakages can be
controlled through advanced hardware design at the cost of
higher hardware complexity and cost. By placing guard bands
across frequency allocation boundaries, the degree of cross-
band interference can be effectively controlled.

Because guard bands are not usable for communication, they
are essentially spectrum overhead and increase as transmis-
sions make use of more frequency fragments. Guard bands
are commonly used in existing distributed systems – each
WiFi channel contains a set of guard bands at each side of its
frequency boundary. Their sizes are related to constraintsin



hardware, processing and energy costs. To effectively control
the guard band overhead, a system would prefer agile radios
with smallerk, because the overhead is at mostk times of
those using1-agile radios.

IV. M ETHODOLOGY

After identifying the benefit and cost of usingk-agile radios,
we now present our methodology for quantifying their gain
over1-agile radios. We start with the assumptions, then define
our main metrics.

A. Assumptions and Notations

To make the analysis tractable, we introduce the following
four assumptions.

First, we use an abstract model of conflict-free frequency
access. By making spectrum usage conflict-free, nodes can use
their desirable MAC access strategy independent of others.
We assume that the interference constraints among nodes are
represented into a static conflict graph. An example conflict
graph is shown in Fig. 3 where two nodes are connected if
they conflict with each other and cannot use the same fre-
quency segment concurrently. We use this simple abstraction
to make the analysis easy to explain, and refer the readers to
recent work on deriving accurate conflict graphs from physical
interference measurements [15]. Our analysis and conclusions
can also be extended to other advanced interference models
following the same methodology.

Second, focusing on spectrum access, our analysis assumes
that all frequency segments are “homogeneous.” They provide
the sameaverage transmission bandwidth and experience
statistically the same interference conditions. In cases where
segments are “heterogeneous,”k-agile radios become even
more advantageous by offering more freedom for nodes to
choose segments. Our current analysis, however, does not
consider this impact.

Third, to make the analysis tractable, we do not consider
the impact of guard bands directly, and assume they are of
negligible size compared to nodes’ average spectrum demands
and allocations. Instead, we indirectly examine their impact
by analyzingk-agile radios with generalk. We also verify the
impact of guard bands using simulations.

Finally, we do not consider primary users in our analysis.
The presence of primary users will further increase the need
for k-agile radios. As primary users create fragments in
available spectrum, secondary users withk-agile radios can
scavenge multiple small fragments to form high-throughput
transmissions, and even reduce their sensing overhead [16]. In
this paper, however, we focus on dynamic spectrum sharing
among cognitive radios without any primary users.

With the above assumptions in mind, we now define the
notations used in our analysis. Consider the scenario described
in Sec. II, whereN nodes request frequency segments in a
distributed manner.

• Let S represent thetraffic demandof the system. In general,
S = {R1, R2, · · · } where eachRi is a request. A requestRi

is a 4-tuple that records the requesting node, the amount of

frequency, the start time and the end time. For instance, in
Fig. 2, S = {R1, R2, R3}. R1 starts at timet0 and ends att2,
requesting for1 segment. In static traffic scenarios,S can be
abbreviated using a vector of the spectrum demand of each
node. For instance, in Fig 3,S = {2, 1, 4}.

• Let am,n,t = 1 represent that the frequency segmentm is
assigned to noden at time t, andam,n,t = 0 otherwise.

• Let G represent the conflict graph that captures the inter-
ference constraints among nodes. We require that at any time,
an allocation is conflict-free,i.e. am,n,t · am,k,t = 0 if nodes
n andk are connected inG.

• Following the discussions in Sec. III, we measure the sys-
tem spectrum efficiency usingΩk(S, Ak, G), the total number
of frequency segments required to satisfy demandS usingk-
agile radios. It is evaluated under a conflict topologyG using
an allocation algorithmAk.

B. Scenarios and Metrics

We measure the performance distance ofk-agile radios over
1-agile radios using

λk,1(S, Ak, A1, G) ,
Ω1(S, A1, G)

Ωk(S, Ak, G)
.

To understand the impact of dynamic traffic and conflict topol-
ogy individually, we consider the following two scenarios:

Dynamic Traffic Scenario. Focusing on demand dynamics,
we exclude the impact of conflict topology by assuming that
all nodes conflict with each other. In this case, we abbreviate
the notation

Ωk(S, Ak) , Ωk(S, Ak, Go),

whereGo is a clique graph. Accordingly,

λk,1(S, Ak, A1) ,
Ω1(S, A1)

Ωk(S, Ak)
.

The example of Fig. 2 maps to the dynamic traffic scenario,
and we haveΩ1(S, A1) = 4 and Ωk(S, Ak) = 3, (k ≥ 2).
In this exampleA1 andAk are commonly used FirstFit algo-
rithms [17], which allocate lowest indexed spectrum chunks
when possible. And we haveλk,1(S, Ak, A1) = 4/3 (k ≥ 2),
mapping to a33% improvement.

Clearly λk,1(.) depends heavily on the spectrum demand
S and the allocation algorithms. To abstract their impact, we
consider the following two complementary metrics:

1) Worst Case Distance:
To measure the worst caseλk,1(.), one possible option
is to define a metric assuming both systems use the
optimal algorithmsAk and A1. This option, however,
assumes that the optimal algorithm is selectedafter
knowing the trafficS, and indeed measures theoffline
performance of the system. As we discussed in Fig. 2,
since traffic prediction is in general very difficult, a
more fair comparison would be to consider theonline



performance,i.e. the performance under all possible
traffics for fixed algorithms:

λmax
k,1 (Ak, A1) , max

S

λk,1(S, Ak, A1) = max
S

Ω1(S, A1)

Ωk(S, Ak)
,

(1)
which is a function of algorithmsAk andA1.

2) Average Case Distance:
We also analyze the average case distance over all
possible trafficsS:

λmean
k,1 (Ak, A1) ,

ES[Ω1(S, A1)]

ES[Ωk(S, Ak)]
, (2)

which is also a function of algorithmsAk andA1.

Heterogeneous Conflict Topology Scenario In this sce-
nario, we consider static traffics and exclude the impact of
demand dynamics. Because the demand is static and given,
one can determine an optimal allocation that minimizes the
frequency consumption. Thus we define

Ωk(S, G) , min
Ak

Ωk(S, Ak, G),

as the amount of frequency segments required using anoptimal
allocation algorithm based onS. To abstract the impact ofS
andG, we consider the following two complementary metrics:

1) Worst Case Distance:

λmax
k,1 , max

S,G
λk,1(S, G) = max

S,G

Ω1(S, G)

Ωk(S, G)
. (3)

By considering optimal allocation algorithms for both
radios, we maintain a fair comparison between the two.

2) Average Case Distance:

λmean
k,1 ,

ES,G[Ω1(S, G)]

ES,G[Ωk(S, G)]
. (4)

In the following two sections, we analyzeλk,1(·) for the two
scenarios, respectively.

V. I MPACT OF DEMAND DYNAMICS

In this section, we analyze the impact of frequency agility
under dynamic spectrum demands. To independently study the
impact of demand dynamics, we assume the nodes are in a
single conflict domain,i.e. G is always a clique. As shown in
Fig. 2, radio agility is beneficial when the available spectrum
is fragmented into separate chunks. This is analogous to the
fragmentation problem in memory allocation [18], although
previous works on memory allocation only considerk = 1
andk =∞. While our analysis is inspired by these previous
results, a major difference is that we indirectly capture the
impact of the guard band overhead by exploring the cases for
small k = 2, 3, 4, · · · .

Summary of Results
• In the worst case, fully-agile radios have an arbitrarily

large improvement over1-agile radios, regardless of the
on-line allocation algorithm that1-agile radios use.

• In the worst case,2-agile radios have an improvement
ratio between1.5 and2 over 1-agile radios.

• In the average case,k-agile radios have an improvement
ratio of 3xk/(2xk + 1) over 1-agile radios, wherexk is
the expected number of chunks used by each request.

• Simulation results show that our analysis satisfactorily
predicts the average performance ofk-agile radios. Us-
ing k-agile radios reduces spectrum consumption by up
to 22% over 1-agile radios. Noticeably,2-agile radios
achieve most of the improvement.

A. Worst Case Distance

We first consider the extreme caseλmax
∞,1 (A∞, A1) (Eq. 1).

It is easy to see that for fully-agile radios, the optimal algo-
rithm A∞ selects the lowest indexed segments when possible,
regardless of the demand. Thus we focus on examining the
impact ofA1:

Theorem 1 λmax
∞,1 (A∞, A1) is unbounded regardless ofA1.

Namely, for any allocation algorithm that1-agile radios use,
there exists a dynamic trafficS such thatλmax

∞,1 (A∞, A1) is
arbitrarily large.

Proof: The theorem follows directly from a result in
[19]. It shows that for any online allocation algorithm using
contiguous memory allocation, the total memory required to
satisfy a set of dynamic requestsS could be at leastr · ω(S).
Hereω(S) is the maximum total size of all active requests at
any given time.r is a factor that scales logarithmically with
the maximum size of a request, and is thus unbounded.

The above result impliesΩ1(S, A1) ≥ r ·ω(S) in the context
of spectrum allocation. It is easy to see thatΩ∞(S, A∞) =
ω(S). Therefore,λmax

∞,1 (A∞, A1) ≥ r is unbounded in the
worst case.

Now we turn toλmax
k,1 (Ak, A1) when k is finite. First we

prove an upper bound:

Theorem 2 For any Ak, there exists anA1 such thatλmax
k,1

(Ak, A1) ≤ k, k = 2, 3, 4, · · · . Namely,1-agile radios can
support any trafficS, using at mostk times the spectrum that
k-agile radios use.

Proof: We design a strategy for1-agile radios to select
frequency segments, such that for any traffic, they use no more
thank times the spectrum consumed byk-agile radios.

In this strategy, we first allocate spectrum assuming nodes
havek-agile radios. Each request can receive multiple chunks
but at least one chunk is no less than1/k of the request size.
Next, for each request we “inflate” its assigned chunks by
k-folds in frequency so that the largest one is large enough
to support the entire request. Finally, we “reassign” each
request to its largest inflated chunk so that all the requestsare
supported using1-agile radios. In this way, we have derived
an allocation strategy for nodes with1-agile radios, and the
corresponding spectrum consumption is ofk times that from
using k-agile radios. Fig. 4 illustrates the concept using a
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spectrum thatk-agile radios use. The figure shows a case whenk = 2. In
b), the1-agile radio only utilizes one of the two allocated (grey) chunks to
support demandR3.

simple example assumingk = 2 where three nodes using
1-agile radios consume twice the spectrum.

Next, we show a lower bound fork = 2:

Theorem 3 Using a simple algorithmA2, for any A1,
λmax

2,1 (A2, A1) ≥ 1.5. Namely, regardless of the allocation
algorithm that1-agile radios use,2-agile radios can achieve
an improvement ratio of at least1.5 over1-agile radios under
certain dynamic trafficS.

Proof: To prove the theorem, we focus on a special type
of traffic S+, where all requests have sizes of1 or 2 segments.
It is obvious that for this type of traffic,2-agile radios can fully
utilize the spectrum by using a simple (e.g.FirstFit) algorithm
A2. Thus, Ω2(S

+, A2) equalsω(S+), the maximum sum of
all the active requests inS+ at any given time.

In [19], it is shown that∀A1, Ω1(S
+, A1) ≥ (3ω(S+) −

1)/2, for some trafficS+ that depends onA1. Thus we have

λmax
2,1 (A2, A1) = max

S+

Ω1(S
+, A1)

ω(S+)
≥

(3ω(S+)− 1)/2

ω(S+)
.

Taking the limit ω(S+) → ∞, we getλmax
2,1 (A2, A1) ≥ 1.5.

An example whereΩ1(S
+,A1)

ω(S+) = 1.5 is shown in Fig. 5, where
A1 is a FirstFit algorithm [17] that allocates lowest indexed
segments when possible. Initially the system contains eight
nodes each occupying one frequency segment, thus segments
1–8 are occupied. Then four of the eight requests depart,
releasing four frequency fragments of size 1 segment. When
two new requests (each asking for 2 segments) arrive, they
cannot use the fragments when equipped with1-agile radios.
In this case,Ω1(S

+, A1) = 12. It is clear thatω(S+) = 8 and
thus Ω1(S+,A1)

ω(S+) = 1.5. Note that in this example we consider a
specific algorithmA1. For other algorithms, the trafficS+ that
creates the worst case performance for1-agile radios might
change, but the intuition remains the same: creating a large
number of fragments each of size1 segment.

Together, Theorems 2 and 3 can be interpreted into the
following corollary:

Corollary 1 The improvement ratio of2-agile radios over1-
agile radios is up tor, where1.5 ≤ r ≤ 2.
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Fig. 5. A case whereΩ1(S
+,A1)

ω(S+)
= 1.5. All requests have sizes of1 or 2

segments. The traffic dynamics create fragmented segments (1, 3, 5, and7)
that are not usable by subsequent requests. As a result,1-agile radios require
12 segments while2-agile radios require only8 segments.

Theorems 1 and 2 show that in terms of the worst case
distance, the benefit ofk-agile radios is bounded while the
benefit of fully-agile radios is unbounded. This result implies
that highly-agile radios have the potential to significantly
improve spectrum usage efficiency. It also motivates us to
investigate the benefit further from the average case viewpoint.

B. Average Case Distance

In the following, we study the average case distance by aver-
aging over the traffic patternS: λmean

k,1 (Ak, A1) ,
ES[Ω1(S,A1)]
ES[Ωk(S,Ak)]

(Eq. 2). Clearly the results depend on the traffic model.
Advanced traffic models from recent measurement results [20],
however, are highly complex and make the analysis intractable.
Thus, we focus on a simple and yet general model in our
theoretical analysis, and in Sec. V-C use network simulations
to verify our analysis and study the impact of traffic statistics.

For our theoretical analysis, we focus on a specific type
of traffic model where the traffic stabilizes after a period of
time. Our analytical model is inspired by a result in memory
allocation, referred to as thefifty percent rule[17]. It states
that: “In a dynamic memory allocation system, using a simple
FirstFit allocation algorithm, the expected utilization that the
system can stably support is2/3.”

Inspired by this model, we make the following assumptions
in our analysis. We assume that the traffic is recurrent and sta-
bilizes after a period of time. This is a property found in many
typical network applications. Using the FirstFit [17] algorithm
for bothAk andA1, the system will reach anequilibrium state.
At an equilibrium state, the following properties hold:

1) The number of allocated chunks and the number of
empty chunks stabilize.

2) The average size of empty chunks is approximately
equal to the average size of allocated chunks.

3) Usingk-agile radios, each request is satisfied by an ex-
pected number ofxk chunks (xk ≤ k). The relationship
betweenxk andk depends on the traffic.

Based on the above assumptions, we estimate the expected
spectrum consumption fork-agile radios:

Theorem 4 ES[Ωk(S, Ak)] = 2xk+1
2xk

E[S], k = 1, 2, 3, · · · .
Here E[S] is the expected total demand of all active requests
when the system is in an equilibrium state.
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(a) Normalized frequency consumption, no guard band
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(b) Average number of chunks used by each request, no guard band
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(c) Normalized frequency consumption, guard band size= 4 segments
per chunk.
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(d) Average number of chunks used by each request, guard bandsize
= 4 segments per chunk.

Fig. 6. The average case impact of radio agility under dynamic spectrum demands. We examine the normalized frequency consumption and the average
number of chunks used by each request. The same experiment isrepeated for guard band sizes of0 and4 segments, respectively. We also experimented under
30 and50 nodes and obtained similar results.

The proof of Theorem 4 is in the Appendix.
Directly from Theorem 4, we quantify the average case

benefit ofk-agile radios over1-agile radios:

Theorem 5 The average case distanceλmean
k,1 (Ak, A1) ,

ES[Ω1(S,A1)]
ES[Ωk(S,Ak)] = 3xk

2xk+1 .

Proof: Obviouslyx1 = 1. So we have

ES[Ω1(S, A1)]

ES[Ωk(S, Ak)]
=

2x1+1
2x1

E[S]
2xk+1
2xk

E[S]
=

3
2

2xk+1
2xk

=
3xk

2xk + 1
.

Theorem 5 implies that the average case improvement brought
by k-agile radios is upper bounded by a factor of1.5 (when
xk → ∞). Compared to the results in Theorem 1 and 2, it
is clear that radio agility has higher impact in the worst case
performance than the average case.

We will compare the analytical results in Theorem 5 with
simulation results in the following subsection.

C. Simulation Results

In this subsection, we use network simulations to verify and
complement the analysis in Sec. V-B. We also study the impact
of traffic statistics and guard bands.

We simulate10 nodes sharing an arbitrarily large spectrum
trunk and examine the total spectrum consumedΩk(S, Ak). To
simulate dynamic demands, we configure each node to change

its demand in exponentially distributed time intervals, and the
volume of each demand is uniformly distributed with a mean
value of100 segments. To access spectrum, each node applies
an online greedy algorithm to occupy unused spectrum chunks
and minimizeΩk(S, Ak) in its current view. For instance,
consider an example where at timet the first 500 segments
are occupied, and at timet+1 two nodes depart and leave two
frequency fragments of size10 and20 segments, respectively.
At t + 2 a new node demands30 segments. Using a1-agile
radio, the node will occupy the501th through540th segments,
makingΩ1(.) = 540, while using a2-agile radio the node will
combine the two fragments, leavingΩ2(.) = 500.

Fig. 6(a) compares the system-wide spectrum consumption
Ωk(S, Ak) for differentk. We normalize they-axis by dividing
Ωk(S, Ak) by the average traffic load. To understand the
impact of demand dynamics, we fix the mean demand volume
and vary their standard deviations from 0 to 0.6. We observe
that the spectrum consumption does increase with the level of
demand dynamics, but the differences among different radios
remain stable. In this example configuration,2-agile radios
achieve a major improvement of 13%-20% over1-agile radios.
As k increases, the improvement converges quickly. Finally,
fully-agile radios gain by17%-22% over 1-agile radios.

To validate our analytical results in Theorem 5, we first
measurexk, the expected number of chunks used by each
request from the experiments. Results in Fig 6(b) show thatxk

decreases as the demand variance increases. This observation



TABLE I

COMPARING THE AVERAGE CASE DISTANCEλmean
k,1 (Ak, A1)

DERIVED FROM OUR ANALYSIS AND SIMULATIONS.

k-agile radio
k=∞ k=4 k=3 k=2

10 nodes (Simulation) 1.1726 1.1696 1.1598 1.1305
10 nodes (Theorem 5) 1.1671 1.1537 1.1300 1.0831
30 nodes (Simulation) 1.1525 1.1456 1.1348 1.1028
50 nodes (Simulation) 1.1296 1.1256 1.1160 1.0879

is consistent with Theorem 4, which predicts thatΩk(S, Ak)
increases asxk decreases. We select the results with traffic
volume uniformly distributed in[1, 200] (i.e. with standard
deviation0.577) and compare theλmean

k,1 (Ak, A1) values ob-
tained by two methods: the simulation results from Fig. 6(a)
and the analytical results from Theorem 5 withxk measured
from Fig. 6(b). Table I shows that the analytical results provide
a reasonable prediction of the improvement. We also look at
the impact of node density to the above results. Table I shows
that the average gain is relatively stable when the number of
nodes increases to30 and50. It slightly decreases because of
the higher level of multiplexing.

Finally, we examine the impact of guard band overhead on
the above results. We repeat the simulations assuming a guard
band size of4 segments per frequency chunk, mapping to
an average4% overhead for 10 nodes using1-agile radios.
Fig. 6(c) and 6(d) show that while the spectrum consumption
increases due to the guard band overhead, the improvement
of k-agile radios decreases. In particular, the improvement of
fully-agile radios reduces to13%-15%.

VI. I MPACT OF CONFLICT TOPOLOGY

In this section, we study how conflict topology affects agile
radios’ spectrum usage. We consider a network where nodes
are placed in a large space, and some of them do not conflict
with each other. Instead, nodes have different conflicting peers
and only need to avoid using the same segments occupied by
conflicting peers. As we have shown in Sec. III, because nodes
have different views of their spectrum availability, they will
produce fragments in spectrum usage.

To focus solely on the impact of conflict topology, we
assume the spectrum demands are static, reducingS to a vector
recording the number of segments requested by each node. For
instance, in Fig. 3,S = {2, 1, 4}.

Summary of Results

• We show that the fragmentation problem caused by het-
erogeneous conflict topology is unavoidable even under
optimal allocation algorithms.

• In the worst case,λmax
∞,1 , maxS,G λ∞,1(S, G) (Eq. 3) is

unbounded for general conflict topologies.

• For special conflict topologies, we interpret previous
results in approximation algorithms and show thatλmax

∞,1

is bounded by small constants for unit disk graphs and
interval graphs.

(a) k-agile radios (k ≥ 2)
require 5 segments

(b) 1-agile radios
require 6 segments

Used segment
Unused segment

Fig. 7. An example illustrating the benefit of frequency-agility under
heterogeneous conflict topology. The network contains five nodes and their
conflict graph is a ring topology. The filled blocks representthe segments used
by each node. To assign each node 2 segments without any conflict, in (a)
usingk-agile radios (k ≥ 2) requires5 segments, while in (b) using1-agile
radios requires6 segments.

• Simulation results show that2-agile radios achieve10-
12% improvement, and the additional improvement using
a largerk is very small.

A. Worst Case Distance

We start with the worst case analysis. As we mentioned
in Sec. III, the fragmentation problem in the Fig. 3 example
can be avoided with a better allocation. However, we find that
in general cases, fragmentation is a fundamental artifact of
the conflict topology and cannot be avoided by optimizing
the allocation. Consider the example in Fig. 7, where5 nodes
form a ring conflict topology. Assume the traffic demandS =
{2, 2, 2, 2, 2}. Using k-agile radios (k ≥ 2), 5 segments are
sufficient to satisfy the demand (Fig. 7(a)). In contrast, using
1-agile radios, at least6 segments are required (Fig. 7(b)). In
this case,Ω1(S,G)

Ωk(S,G) = 6/5, leading to an 20% improvement.
Next, we generalize the above observation and examine

λmax
∞,1 , maxS,G λ∞,1(S, G). The answer depends on the

topologyG, so we start with general conflict topologies.

General Conflict Topology We show that when there is
no restriction onG, λmax

∞,1 can be arbitrarily large.

Theorem 6 λmax
∞,1 is unbounded. Namely, for anyc > 1,

there exists a network topologyG∗ and traffic S∗ such that
Ω1(S∗,G∗)
Ω∞(S∗,G∗) ≥ c.

Proof: Our proof utilizes a result of graph coloring
theory:the ratio between a graph’s Chromatic Number and its
Fractional Chromatic Number can be arbitrarily large[21].
In the following, we first define the chromatic number and the
fractional chromatic number, and then prove the main result.

Given a graphG, its Chromatic Numberχ(G) is the
minimum number of colors required to color all the vertices
such that no two directly connected vertices share the same
color. By its definition, χ(G) = Ω1({1, 1, · · · , 1}, G). In
the example of Fig. 7,χ(G) = 3. For the same graphG,
the Fractional Chromatic NumberχF (G) is the minimum
number of colors required if the color received by each
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Fig. 8. The average case impact of frequency agility under heterogeneous conflict topologies. In both uniform and clustered topologies,2-agile radios reduce
the spectrum consumption by10%-12% compared to1-agile radios.

node can be divided into fractions and assigned in a non-
contiguous manner. Like the example of Fig. 7(a), by mapping
each segment into a1/2 color, we need2.5 colors and thus
χF (G) = 2.5.

Using these definitions, we show that the following result
holds (The proof is listed in the Appendix):

Lemma 1 For any G, there exists an integerr ≥ 1,

Ω∞({r, r, · · · , r}, G) = r · χF (G) (5)

Ω1({r, r, · · · , r}, G) = r · χ(G). (6)

For the example of Fig. 7, we have

Ω∞({2, 2, · · · , 2}, G) = 5 = 2χF (G)

Ω1({2, 2, · · · , 2}, G) = 6 = 2χ(G).

In [21], it has been shown that for anyc > 1, there always
exists a graphG∗ where χ(G∗)

χF (G∗) ≥ c. UsingG∗ and Lemma 1,

we can always find anr and S∗ , {r, r, · · · , r}, where
Ω1(S∗,G∗)
Ω∞(S∗,G∗) = r·χ(G∗)

r·χF (G∗) ≥ c.

For λmax
k,1 , we have the following upper bound. The proof

uses a technique very similar to that of Theorem 2, and is thus
omitted due to space limitation.

Theorem 7 λmax
k,1 ≤ k, k = 2, 3, 4, · · · . Namely, 1-agile

radios can always support any trafficS, using at mostk times
the amount of spectrum thatk-agile radios use.

Special Conflict Topology While λmax
∞,1 is unbounded in

general, the worst case happens only for some special conflict
topologies [21]. For conflict topologies that are more likely
to appear in real networks, however,λmax

∞,1 could be bounded.
Now we consider two well-known graphs: unit-disk graphs and
interval graphs. Unit-disk graphs map to the distance-based
interference model where two access points conflict if they are
located within a predefined distance. Interval graphs are the
one-dimensional version of unit disk graphs. Both graphs have
been widely used to model wireless interference conditions.

To upper-boundλmax
∞,1 for interval graphs and unit disk

graphs, we interpret previous results in approximation algo-
rithms. We defineω(S, G) as the maximum total size of

all requests in a clique ofG, which is a lower bound of
Ω∞(S, G), i.e. ω(S, G) ≤ Ω∞(S, G). Prior work [22], [23]
shows thatΩ1(S, G) ≤ 7 · ω(S, G) for unit disk graphs, and
Ω1(S, G) ≤ 3 ·ω(S, G) for interval graphs. Thus we build the
following theorem:

Theorem 8 λmax
∞,1 ≤ 7 if the conflict topology is a unit disk

graph,λmax
∞,1 ≤ 3 if the conflict topology is an interval graph.

Again, the worst case analytical results reveal the potential
benefit of using more frequency-agility. To obtain a compre-
hensive view of this issue, we now investigate the average case
performance.

B. Average Case Distance

In evaluating the average case benefitλmean
k,1 (Eq. 4), we

face two challenges. First, the benefit depends on the statistical
distribution of the conflict graphG, which is intractable to
model since it involves hard combinatorial distributions.Thus,
we rely on simulations to studyλmean

k,1 . The second challenge
is that given anyS andG, it is NP-hard to obtain the optimal
allocations and determineΩk(S, G) , minAk

Ωk(S, Ak, G).
We thus consider bothAk andA1 to be a greedy algorithm:
sequentially allocate segments to satisfy nodes’ traffic. Each
node chooses segments greedily to minimizeΩk(S, Ak, G) in
the current step. This is the same greedy strategy used in
Sec. V-C.

We perform experiments using both random uniform and
clustered conflict topologies. In the first set of experiments,
we randomly place100 nodes on a1000m × 1000m plane,
and use a simple criteria to construct the conflict graphG:
two nodes conflict if they are within distanced. For each
node, we randomly generate a static traffic volume uniformly
distributed in[1, 40]. Fig. 8(a) evaluatesλmean

k,1 under different
network densities by varyingd. The x-axis lists the average
conflict degree of the network,i.e. the per-node expected
number of conflicting peers. Again we see that the majority
of improvements is achieved by2-agile radios which reduce
spectrum consumption by10%-12%.

Next we repeat the above experiment but using clustered
topologies. To generate clustered topologies, we put a pro-
portion of the nodes in a300m × 400m area and distribute
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(b) Guard band size= 4 segments per chunk
Fig. 9. The impact of frequency agility when both demand dynamics and conflict heterogeneity are present. Using2-agile radios reduces the spectrum
consumption by12%-26% compared to1-agile radios. The improvement increases to27%-40% when using fully-agile radios, but decreases in the presence
of guard band overhead.

the rest in the1000m× 1000m area. We vary the proportion
of nodes in the cluster and plot the result in Fig. 8(b). We
observe that while the total frequency consumption increases
with the density of the cluster, the benefit of radio agility
remains stable,i.e. 10%-12%.

These results, combined with our analytical results, show
that usingk-agile radios can lead to significant improvements
under specific conflict topologies, but much smaller improve-
ments under typical conflict topologies.

VII. F URTHER CONSIDERATION

When Two Factors Combine. Having examined the impact
of demand dynamics and conflict heterogeneity individually,
we now examine the performance of agile radios when both
factors are present.

We first present the analytical conclusions. Clearly the worst
case results in previous sections continue to hold because
the combined scenario is a generalization of the individual
scenarios. In particular, Theorems 2 and 7 still hold. Namely,
k-agile radios still reduce spectrum consumption by no more
than a factor ofk compared to1-agile radios. The average case
analysis in Sec. V-B, however, becomes very hard to extend
due to the hardness in modeling conflict graph distributions.

For completeness we also use simulations to quantify the
impact of frequency agility under the combined scenario. We
combined the default settings of the previous simulations to
configure the combined scenario. Fig. 9(a) plots the normal-
ized spectrum consumption using1- and k-agile radios. We
see that2-agile radios achieve an improvement of12%-26%
over 1-agile radios, and the improvement increases to27%-
40% using fully-agile radios. Even with a guard band size of
4 segments, Fig. 9(b) shows that the improvement for fully-
agile radios becomes15%-32%.
An Alternative Performance Metric. Throughout this
paper, we evaluate the spectrum usage performance using
the metricΩk(S, A, G), the amount of spectrum required to
support a given demand. While this metric allows a consistent
comparison across different scenarios and makes the analytical
problem tractable, it should not be interpreted as the only
indication of practical system performance. For instance,in
practical streaming applications where nodes share spectrum

among a fixed set of segments, the disruption rate is a well-
accepted metric of user experience. The disruption rate refers
to the proportion of time when a node is unable to acquire
adequate spectrum to support its demand. High disruption rate
implies lower application quality or additional complexity at
higher protocol layers to mitigate its effect.

To examine the impact of radio agility using the disruption
rate metric, we assume that nodes share a fixed number
of 1000 spectrum segments and their traffic patterns follow
the settings in Sec. V-C. Our experimental results show that
when the normalized load is0.75, 2-agile radios can reduce
the disruption rate to3%, compared to the11% of 1-agile
radios. Compared to the frequency consumption results, the
application-performance improvement becomes much more
visible. This observation also implies that the metrics consid-
ered in our paper are only a small sample set on the system
performance. Depending on the applications, using radios with
higher frequency-agility may generate more profound impact
on the system and application performance.

VIII. R ELATED WORK

Our work is inspired by and built on existing works on
frequency-agile radios. A significant amount of work has been
done towards dynamic spectrum access using1-agile radios
and contiguous spectrum access [4], [13], [14]. These works
enjoy the advantage of easy implementation using commodity
WiFi radios. Others examine the performance of dynamic
spectrum allocation using fully-agile radios combined with
both centralized and distributed algorithms [3], [24], [25], [26].
Also, spectrum auction schemes are designed for both1-agile
radios and fully-agile radios [27], [28]. Our main contribution
in this paper is to understand the tradeoff between performance
and complexity in the context of frequency-agility. We do so
by evaluating the performance improvement ofk-agile radios
over 1-agile radios for differentk.

The advantage of frequency-agility has been explored in
recent works. First, in the context of opportunistic spectrum
access, recent work recognizes the advantage of fully-agile
radios over1-agile radios in terms of channel sensing over-
head [16]. It shows that fully-agile radios will need to sense
less number of channels because they are able to utilize small



spectrum fragments discovered by spectrum sensing. Our work
complements this effort by systematically studying the benefit
in terms of the spectrum sharing efficiency. We also extend the
investigation to generalk values. Second, prior work [2] has
studied the problem of fragmentation with1-agile radios and
proposed to compensate it in the time-domain. The authors
also examined the performance gap assuming unit-disk graph
based conflict graphs. In comparison, our work analyzes the
performance difference from a much broader perspective. We
analytically quantify the impact for both general and special
conflict topologies, fork-agile radios with generalk, and from
both the worst case and the average case point of view.

Finally, many recent works have designed prototypes and
testbeds for frequency-agile radios [5], [7], [9], [29], [30], [31],
[32]. These efforts recognize that increasing the frequency
agility requires sophisticated hardware and software designs.
Our study advances the state of the art by providing a
quantitative understanding on the gain of increasing frequency-
agility. It would be an interesting work to verify our results
on these testbeds, particularly using2-agile radios.

IX. CONCLUSION

To understand the need for additional frequency-agility, we
develop a systematic framework to study the spectrum access
performance of networks usingk-agile radios rather than1-
agile radios. We show that because of two inherent properties
of dynamic spectrum sharing,k-agile radios can be highly
advantageous. We analytically quantify the improvement under
both properties, individually and when combined. Our results
show that in the worst cases, fully-agile radios can lead to
unbounded performance improvement, while in the average
cases, the improvement becomes10%-40% under typical
traffic models and conflict conditions considered by our paper.

Perhaps the most important and interesting observation is
that2-agile radios can realize the majority of the improvement
brought by fully-agile radios (unlimitedk). This trend bounds
not only the radio hardware complexity/cost, but also the extra
spectrum overhead due to frequency guard bands placed at
allocation boundaries. While our conclusions are derived an-
alytically and via simulations, an interesting future workis to
verify these results using large frequency-agile radio testbeds
incorporating realistic traffic traces, interference measurements
and primary users.
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APPENDIX

A. Proof of Theorem 4

As shown in Fig. 10, we classify allocated chunks into3
categories. TypeA chunks have their both neighbor chunks
empty. TypeB chunks have one empty neighbor and one
allocated neighbor. TypeC chunks have their both neighbor
chunks allocated. We useLA, LB, LC to denote the number of
A, B, andC chunks respectively, and letL = LA +LB +LC .
We useM to denote the number of empty chunks.

Assume the system reaches an equilibrium. We estimate the
dynamics of the number of empty chunksM caused by new
system activities. The only two types of system activities are:

• Start a new request: The system findsxk chunks to satisfy
the request. At leastxk−1 empty chunks disappear. Since
an exact fit is very rare, we approximately consider that
the xk-th chunk is not an exact fit, thus will only shrink
but not disappear. Therefore, we estimate the dynamics
of M by M ←M − (xk − 1).

• End an existing request: The system reclaimsxk chunks
from an existing request. Assuming the types of thexk

chunks are independent, we can estimate the dynamics
of M by M ← M + xk · (LC/L − LA/L). This is
because reclaiming a TypeA chunk will decreaseM by
1, reclaiming a TypeC chunk will increaseM by 1, and
reclaiming a TypeB chunk does not affectM .

When the system stabilizes, the requests start and end at
equal rates. From the above dynamics analysis, we have
xk · (LC/L− LA/L)− (xk − 1) = 0, which is equal to

LC =
xk − 1

xk

L + LA. (7)

From (7) andL = LA + LB + LC , we obtain

L = LA + LB +
(xk − 1

xk

L + LA

)

, thus

1

xk

L = 2LA + LB. (8)

By analyzing the spectrum map (Fig. 10) and counting the
number of empty chunks, we have (ignoring boundary condi-
tions)

M =
1

2
(2LA + LB). (9)

This is because each TypeA chunk is adjacent to2 empty
chunks and each TypeB chunk is adjacent to1 empty chunk.

Now, compare (8) and (9) it is clear thatL = 2xk ·M. This
means that the number of allocated chunks is2xk times the
number of unused chunks. Together with Assumption2, this
means that the total amount of unused fragments is1/(2xk)
that of the allocated spectrum. Thus, the expected spectrum
consumptionES[Ωk(S, Ak)] is approximately2xk+1

2xk

E[S].

A B C C BC A B B... ...
Spectrum frequency

Fig. 10. An example spectrum allocation map. Allocated chunks are classified
into three categories (A, B, andC). Empty chunks are shaded.

B. Proof of Lemma 1

We divide the proof into two steps:

Step 1: In this step, we prove that for anyG, there exists
an integerr ≥ 1, s.t. (5) is satisfied.

It has been shown thatχF (G) = minb
χb(G)

b
[33], where

χb(G), the b-fold Chromatic Number, refers to the minimum
number of colors needed to colorG such that every node getsb
colors. In this case, the colors assigned to a node are not neces-
sarily contiguous. Therefore,χb(G) = Ω∞({b, b, · · · , b}, G).

Let r = argminb
χb(G)

b
. We haveχF (G) = χr(G)

r
, and hence

Ω∞({r, r, · · · , r}, G) = r · χF (G).

Step2: We prove that for anyG andany integerr ≥ 1, (6)
is always satisfied. Based on this result and the conclusion in
Step 1, we can always find ar that satisfies both (5) and (6),
and complete the proof.

To prove (6), we first showΩ1({r, r, · · · , r}, G) ≤ r ·χ(G).
Let A(r, c) represent an allocation using1-agile radios that
assignsr segments to each node and usesc segments in
total. From the definition ofχ(G) we know there exists an
allocationA(1, χ(G)). By substituting each segment withr
new segments, we get an allocationA′(r, r · χ(G)).

Next, we showΩ1({r, r, · · · , r}, G) ≥ r · χ(G). Assuming
there is an allocationA(r, c), we need to show thatc ≥
r · χ(G). To do so, we define an allocation to bealigned
if every node’s assigned segment set starts fromkr + 1 and
ends at(k + 1)r for some integerk ≥ 0. In other words, by
binding everyr contiguous segments together{1, 2, · · · , r},
{r + 1, r + 2, · · · , 2r}, · · · , each node will receive a set ofr
contiguously-aligned segments. We now describe a procedure
that can transform any allocationA(r, c) to an aligned allo-
cation A′(r, c′) with c′ ≤ c. Find the set of nodesW who
are assigned un-aligned segments. Find a noden in W whose
assigned segments have the lowest index. Modifyn’s segment
allocation so thatn takes ther available segments with the
lowest index. Because each ofn’s conflicting neighbors that
occupy lower-indexed segments will have an aligned segment
allocation, the above operation will providen an aligned
segment allocation that is also conflict free. Repeat this process
until all nodes have an aligned segment allocation.

It is clear that since the above transformation only moves
node’s segment allocation towards lower indices, it will result
in an aligned allocationA′(r, c′) with c′ ≤ c. Now the aligned
allocationA′(r, c′) can be directly mapped into an allocation
A′′(1, ⌊ c′

r
⌋), with segmentk assigned to a node inA′′ iff

segments((k−1)r+1, kr) are assigned to it inA′. Therefore,
⌊ c′

r
⌋ ≥ χ(G), andc ≥ c′ ≥ r · χ(G).


