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Abstract— Designed to adapt spectrum usage on-the-fly, (a) 1-agile radios m

frequency-agile radios can drastically improve performarce of

wireless networks. Such flexibility, however, comes with aast of (b) k-agile radios m
increased hardware complexity. This motivates us to undetand

when and why having higher degree of frequency-agility help ) ) ) .
and how much improvement it can lead to. In this paper, we Fig. 1. Comparing the two types of frequency-agile radiosthBradios
approach this question by comparing two types of agile radis in partition the available spectrum into a Iar_ge number of segm1-agile radios
the context of dynamic spectrum sharing in any given spectrm can use only one chunk while-agile radios can use up to chunks.
chunk. We consider 1-agile radios that use a single frequency

channel but can adjust the channel’s width and central frequency,

and k-agile radios that can combine up to & non-contiguously ; ; ; ;
aligned frequency segments into one transmission. We showvat, collection of contiguously aligned subcarriers. A profaty

due to inherent demand dynamics and conflict heterogeneity, 0f_1.-agll_e radios is available nOV\_’ by modifying commodity
networks using 1-agile radios often face the problem ofspectrum”  WIFi radios to change channel width betwegnl0, 20, and
fragmentation. But k-agile radios can effectively suppress this 40MHz [4]. The second and more advanced typekiagile
problem directly at the physical layer. Using theoretical aalysis radios, where each radio can use upktdrequency chunks

and simulation experiments, we quantify the advantage ofk- 4 o g single transmission. These chunks of spectrum can
agile radios over1-agile radios in their network spectrum usage.

For a fair comparison, we abstract the impact of demand P€ non-contiguously aligned in frequency. This type of @gil
and topology configurations by evaluating the worst case and radios is often implemented in the form of OFDMA, requiring
average case performance. Our results show that in worst cas, sophisticated signal processing techniques beyond theesg u
the improvement of using fully-agile radios is arbitrarily large, in WiFi radios [5], [6], [7], [8], [9]. Our recent work has
although the improvement of using k-agile radios is upper geyeloped a fully decentralizetragile radio [9]. The level

bounded by k. In average cases, the improvement reduces to f ity i ith d the hard
10-40% under typical network configurations. Interestingly, in O Trequency-agility increases with, so does the hardware

the context of dynamic spectrum sharing,2-agile radios realize Complexity.

the majority of the improvement brought by fully-agile radi os. Intuitively, k-agile radios are more advantageous thHan
agile radios in terms of spectrum access. This is partitular
|. INTRODUCTION true when transmissions carry highly dynamic spectrum de-

The introduction of software defined radios and cognitiv@ands and experience heterogeneous interference carsditio
radios has led to a fast growing interest in “frequencyedgil In these casesl-agile radios, which must use a contiguous
radios. An agile radio can adapt on-the-fly the frequendtequency chunk, face the problemsgectrum fragmentation
location and the amount of its spectrum usage. Such fleyibiliOver time, as individual transmissions adjust their spautr
opens up new exciting functionalities for wireless devjcegsage, available spectrum becomes increasingly pasition
particularly in the area of dynamic spectrum access [1]. Féito a collection of discrete fragments. This fragmentatio
example, infrastructure access points can vary the amdunt@eans that a significant portion of spectrum, while freefis e
spectrum usage proportional to their present traffic vosimdectively unusable because individual fragments do notigeo
achieving network-wide load balancing and improving uséhe minimum contiguous frequency usage required by subse-
satisfaction [2], [3]. guent spectrum demands-agile radios, on the other hand,

In this paper, we consider a specific form of frequencypuccessfully suppress the impact of spectrum fragmentatio
agility and its impact on dynamic spectrum access. Fordiectly at the physical layer. By utilizing multiple spectrum
given spectrum band, the frequency-agility is defined as tR@gments in a single transmission, each radio can now suppor
flexibility in using the spectrum band. Fig. 1 presents tweety high bandwidth transmissions even in the presence of spactr
of frequency-agile radios in terms of their spectrum usadégmentation.
pattern. Both radios partition the spectrum band finely into Ideally, one would prefer agile radios with large to
many sectionsg.g. OFDMA subcarriers). The first type,- obtain desired spectrum usage and suppress fragmentation.
agile radios, can build a transmission using any single khuAside from having higher implementation cost [9], larder
of frequency in this band. Using OFDMA, each chunk is also means higher spectrum overhead from “frequency guard



bands” placed at allocated frequency boundaries. In biged 1. PRELIMINARIES
spectrum sharing, guard bands are required to suppreiss We consider a representative dynamic spectrum access

of-band_ em|ss.|on$h.at produce cross-band interference ,b%'cenario where access points or base stations (herebyeckfer

tween links using <_j|f_ferent frequency chunks [10], [11]kei 0 as nodes) share a spectrum band to support their subrscribe
]tchose used _by_WlFlhchanneIs, guard ban(rj]s (:Ire rIjOF usa% e to user mobility and traffic dynamics, each node experi-
or communication, thus are spectrum overhead and INCreasg. o time_varying traffic load and seeks to match spectrum

a:f trqns;‘mssmnsl rr;]ake usz gf n:jore frﬁqugncy fragments.Lﬁ ge to its traffic demand. Each node and its associatesl user
effectively control the guard band overhead, a system Woulg, equipped with a single agile radid-4gile or k-agile).

prefer agile radios with smallgr, because the overhead is atp o spectrum band is finely partitioned into a large set of

most/: times of those using-agile rad|os_. frequency segments, where a segment refers to the minimum
From the above, we see that the choice of frequency-agilit of spectrum usage. For example, when implemented via
radios has clear impligationg on both netw_ork performan@q:DMA [5], [9], each segment corresponds to a frequency
and hardware complexity. It is important to identify whethesphcarrier or a set of contiguously aligned subcarriers. We
and when having additional frequency-agility matters a0 h 555ume that the number of segments is large, 256-
much improvement it can lead to. In this paper, we approaghsg. we also consider a distributed network setting where
this problem by asking and addressing the following questiongdes access spectrum without any central control. Forra fai

“In the context of dynamic spectrum sharing, how mu@Pmparison, we do not consider any primary users, because
performance improvement canagile radios achieve over 1- their presence by taking a chunk of the spectrum autom#tical

agile radios, and how would the choicelofffect the results? imply that k-agile radios are advantageous. Instead, we focus
hi ion b ideri on flat spectrum sharing among nodes.
We answer this question by considering a representativgye se the notion of-agile radio to define radios with
spectrum sharing scenario where multiple access pomts@q

b . d sh erent levels of agility. Ak-agile radio is able to use up
ase s_,tat|ons) access and share spectrum to COU”eCt Y noncontiguous frequency chunks simultaneously, where
subscribers. Using both theoretical analysis and sinorati

each chunk is one or multiple contiguously aligned segments

expe_riments,vv_e examine and compare the amount of spectrwg refer to radios that can access any combination of the
requ.|red to sat|§fy all access pomlts spectrgm demand{gu_slsegments akllly-agile radios. Thus, if the number of segments
1-agile andk-agile radios. For a fair comparison, we examing, 1M, a full-agile radio is ak-agile radio withk — M /2. For

both worst case and average case performance to absté%(*sty notation, we refer to this fully-agile radio As— oc.

the impact of spectrum demand and topology Comcigur""tiof'hroughout the paper, we use the techunkto refer to a set

We also consider a complementary scenario where the toé?lcontiguously aligned frequency segments/subcarries

spectrum is _giyen, angl examine how often an access poanf_ag"e radio is only able to access one chuck.
cannot obtain its desired spectrum. To make the analysis

tractable, we do not consider the impact of guard bands in 1. WHY ADDITIONAL AGILITY MATTERS

our analytical results. Instead, we assume that the ovdrhea : . o .
: - . : . Before presenting our analysis, we first identify when and
is controlled by limitingk, and use simulation experiments to

examine the impact of guard bands and verify our analyticWIhy having different levels of frequency-agility matterse

claims sahow that two inherent properties of dynamic spectrum a;ces

I t d dd iaad conflict topol het-
To the best of our knowledge, this work is the first tname yspecum demanc dynafiaadcontiict topology he

i detailed ) caail q i di cérogeneitylead to the problem of spectrum fragmentation. The
provide a detalled comparison dfagile andk-agile radios gmentation is particularly harmful amomepngile radios, but

in distributed dynamic spectrum access. Our analytical apd, pe suppressed effectively usinggile radios. While prior
experimental results lead to the following interesting ifirgs: work has observed the fragmentation problem [2], [12], [13]
« In the worst case, using fully-agile radids ¢> 1) leads in this paper we formally model and analyze its penalty.
to arbitrarily large improvement ovdragile radios. The
improvement becomes upper-boundedibwhen using
k-agile radios.

Spectrum Demand Dynamics. Adapting spectrum usage

to time-varying demands is the key new feature of dynamic

spectrum access. The nature of dynamic access, howewer, als

« In the average case, the improvementl&/t-40% for |eads to the problem of spectrum fragmentation. As indizidu
typical traffic patterns and interference conditions. Thgyges dynamically occupy, change and release their spectru
benefit of frequency-agility increases when both deman@ages, the available spectrum becomes gradually divided i
dynamics and interference heterogeneity are present. 5 set of individual fragments. Such fragmentation is pastic

« In the average case2;agile radios achieve the majoritylarly harmful for nodes using-agile radios. Many fragments,
of improvement brought by fully-agile radios. although free, are now unusable because they are too small to

o Using the application-level disruption rate as an ahold any subsequent demands requiring contiguous fregquenc
ternative performance metric, we found that increadodes withk-agile radios, by combining multiple fragments
ing frequency-agility produces more visible impact tanto a single transmission, can maintain high-throughyaurtg-
application-level performance. missions even in the presence of spectrum fragmentation.
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Fig. 2. An example of fragmentation due to dynamic spectremahds. Fig. 3. An example of spectrum fragmentation due to netwakflict
Because of the fragmentation, the total frequency consomi 4 segments topology. The total frequency consumption7isegments when usintragile
for 1-agile radios, and it reduces segments foR-agile radios. radios, but reduces t6 segments when usinzragile radios.

Consider an example in Fig. 2 where three nodes dynamodes experience heterogeneous interference condifimns
cally acquire spectrum based on their present demands, eightrates this fact using a simple example. Considerehre
using al-agile radio. After obtaining its desired spectrumpnodesA, B andC, each represented by a vertex in the figure.
each node maintains the same frequency usage till the endrab nodes are connected if they conflict with each other and
its session or when its demand changes. In this example, wh@mnot use the same frequency segment simultaneously. The
R3 arrives and request (contiguous) frequency segmentsplocks next to each vertex represent the available frequenc
it has to use segments4 although segment is available. segments, and the filled blocks are the segments assigrieal to t
By using a2-agile radio, R3 can combine segmerit and vertex. In this example, nodé has a demand of two segments
3 together, reducing the total frequency consumption frtbmand occupies segmeihtand2, and nodeB demands one and
to 3 segments. This example shows that usinggile radios occupies segmer# to avoid conflicting withA. As a result,
can effectively suppress spectrum fragmentation direxttthe the usable spectrum for nodgis fragmented into two chunks:
physical layer. segmentd-2 and segmentd-7. Using 1-agile radios,C' has

The fragmentation problem df-agile radios could be par- to use segment$-7, making the total frequency consumption
tially remedied using higher-layer solutions, although abst. of 7 segments for the system. On the other hand, ugiagile
The first solution optimizes spectrum allocation algorighto  radios, the frequency consumption is reduced.to
reduce fragmentation. In the above exampleRifhad occu-  Similarly, we now explore alternative solutions to supgres
pied segmens rather thar2, R3 would have used segmentshis fragmentation problem. For the example in Fig. 3, the
1 and2. This solution, however, requires knowledge of futurragmentation can be avoided using a different allocation:
network-wide spectrum demands, which is generally infdasi assigning segments and 3 to node A, segmentl to B and
in distributed networks that our paper targets. Indeed, lle wsegment2-5 to C. Thus, an interesting question is whether
show thatno online algorithm can avoid a heavy penalty ofising 1-agile radios is good enough if one can optimize the
fragmentation in the worst case. The second solution makdlcation algorithm. Our analysis in Sec. VI, however,who
nodes “defragment” frequency on-the-fl,g. R, moves to that even optimal algorithms cannot eliminate spectrurg-fra
segment whenR; departs. This solution, however, could leagnentation in the presence of heterogeneous conflict conditi
to dlsru_ptlons tq ongoing transmissions as nodes defra’gm%}equency Guard Bands. From the above, we see
The third solution is to compensate the frequency-domatwat ideally one would prefer agile radios with largeto
fragmentation in the time-domain [14]. That is, nodes uss le . . .

. ; . fully overcome spectrum fragmentation and obtain desired
frequency than they originally desire but occupy a longaeti )
! frequency usage. In practice, however, largealso means
period. In the above exampl&; can now usé segment rather

than 2 by taking twice the time to transmit its data. Whilehlgher spectrum overhead due to "frequency guard bands

this solution may work well for delay-tolerant applicatfon pIaC(_ed at_ aIIc_)ca_ted frequency boundgries. Gl_Jar_d bands are
like file transfer, it would lead to undesirable delay forlreareqUIreOl in distributed spectrum sharing to eliminate sfos

. o . o : : band interference from out-of-band emissions [10]. Out-of
time applications and ultimately visible disruptions toeus o : . ) .
applications, band emissions are triggered by signal time-domain trimcat

: . . . and transmission nonlinearity [11]. These leakages can be
While h|gher—layer solutions could partially remedy Fh%ontrolled through advanced hardware design at the cost of
fragr_n_entatlon problem, they all come at some cost, e'Fhﬁirgher hardware complexity and cost. By placing guard bands
requiring heavy protocol complexity/overhead or reSlgItInacross frequency allocation boundaries, the degree ok-<cros
in application-level artifacts. Therefore, it is worthwéito band interference can be effectively con’trolled.
consider the physical layer solution of migrating teagile fBecause guard bands are not usable for communication, they

0

;?Jci'r? Sr.nilnrgt?éna?nalt);]sésexiei?zl; Egﬁgggg ;hee(i?l:ﬁn;%iare essentially spectrum overhead and increase as transmis
: 9 ) ) P . Sions make use of more frequency fragments. Guard bands
without time compensation and online defragmentation.

are commonly used in existing distributed systems — each
Conflict Topology Heterogeneity. Even without demand WiFi channel contains a set of guard bands at each side of its
dynamics, spectrum fragmentation can still occur becausequency boundary. Their sizes are related to constréints



hardware, processing and energy costs. To effectivelyrabntfrequency, the start time and the end time. For instance, in
the guard band overhead, a system would prefer agile radieg. 2,S = { Ry, R, R3}. R; starts at time, and ends at,,
with smaller k, because the overhead is at mastimes of requesting forl segment. In static traffic scenaridgscan be
those usingl-agile radios. abbreviated using a vector of the spectrum demand of each

node. For instance, in Fi =1{2,1,4}.
IV. METHODOLOGY 93={ }

. . . : . . Let a,, n+ = 1 represent that the frequency segmenis
After identifying the benefit and cost of usihgagile radios, assigned to node at timet, anda,» ., — 0 otherwise.

we now present our methodology for quantifying their gain _ _
over1-agile radios. We start with the assumptions, then defie Let G represent the conflict graph that captures the inter-

our main metrics. ference constraints among nodes. We require that at any time
. ) an allocation is conflict-fred,e. a, .+ - am.x+ = 0 if nodes
A. Assumptions and Notations n andk are connected if.

To make the analysis tractable, we introduce the following rqjiowing the discussions in Sec. Ill, we measure the sys-
four assumptions. _ tem spectrum efficiency usir@ (S, A, G), the total number
First, we use an abstract model of conflict-free frequen%\f frequency segments required to satisfy demgndsing k-

access. By making spectrum usage conflict-free, nodes @n 4 radios. It is evaluated under a conflict topoldgywsing
their desirable MAC access strategy independent of othegs; aj10cation algorithmb.

We assume that the interference constraints among nodes are

represented into a static conflict graph. An example confligt Scenarios and Metrics

graph is shown in Fig. 3 where two nodes are connected if . . .

they conflict with each other and cannot use the same fre-W.eI mez;ure the performance distancé-aigile radios over

guency segment concurrently. We use this simple abstractilo'agl € radios using

to make the analysis easy to explain, and refer the readers to ~ U(S,A1L,G)
Vi i i M1 (S, Ak, AL G) = s———=5-

recent work on deriving accurate conflict graphs from phalsic : Qi (S, Ay, G)

interference measurements [15]. Our analysis and comncissi

can also be extended to other advanced interference modd@dinderstand the impact of dynamic traffic and conflict tepol
following the same methodology. ogy individually, we consider the following two scenarios:

Second, focusing on spectrum access, our analysis assumgsamic Traffic Scenario.  Focusing on demand dynamics,
that all frequency segments are “homogeneous.” They peovigle exclude the impact of conflict topology by assuming that

the sameaverage transmission bandwidth and experiencg|l nodes conflict with each other. In this case, we abbreviat
statistically the same interference conditions. In caskere/ the notation

segments are “heterogeneous;agile radios become even
more advantageous by offering more freedom for nodes to Qi (S, A) £ Qi (S, Ax, G,),
choose segments. Our current analysis, however, does not _ . .
consider this impact. whereG, is a clique graph. Accordingly,
Third, to make the analysis tractable, we do not consider 2 (S, Ay)
the impact of guard bands directly, and assume they are of A1 (S, Ag, A1) = m
negligible size compared to nodes’ average spectrum desnand ) ’ _ ] _
and allocations. Instead, we indirectly examine their iotpal "€ €xample of Fig. 2 maps to the dynamic traffic scenario,
by analyzingk-agile radios with general. We also verify the and we have(2; (S, A,) = 4 and Q4 (S, Ax) = 3, (k > 2).
impact of guard bands using simulations. m this examplaléxl and Ay, are commonly used FirstFit algo-
Finally, we do not consider primary users in our analysié'.thms [17]{ which allocate lowest indexed spectrum chunks
The presence of primary users will further increase the ne@@en possible. And we hav 1 (S, Ax, A1) = 4/3 (k = 2),
for k-agile radios. As primary users create fragments fRaPping to a33% improvement.
available spectrum, secondary users witiagile radios can  Clearly Ax1(.) depends heavily on the spectrum demand
scavenge mu|t|p|e small fragments to form h|gh_throughpStand the allocation algorithms. To abstract their impaCt, we
transmissions, and even reduce their sensing overheadiiLejconsider the following two complementary metrics:
this paper, h_o_wever,_ we fpcus on dyn_amic spectrum sharingl) Worst Case Distance:
among cognitive radios without any primary users. To measure the worst casg ;(.), one possible option
With the above assumptions in mind, we now define the s (o define a metric assuming both systems use the
potaﬂons used in our analysis. Consider the scenanmbesk_:r optimal algorithmsA;, and A;. This option, however,
in Sec. I, whereN nodes request frequency segments in @  g5sumes that the optimal algorithm is selectster

distributed manner. knowing the trafficS, and indeed measures tioéfline

e LetS represent th&raffic demandf the system. In general, performance of the system. As we discussed in Fig. 2,
S = {R1, Rs,--- } where eachR; is arequest A requestR; since traffic prediction is in general very difficult, a
is a 4-tuple that records the requesting node, the amount of more fair comparison would be to consider theline



performance,i.e. the performance under all possible « In the worst case?-agile radios have an improvement
traffics for fixed algorithms: ratio betweenl.5 and?2 over 1-agile radios.
Q1(S,A;) e+ In Fhe average casé;agile radio_s havg an improvement
ma ratio of 3z /(2x, + 1) over 1-agile radios, where, is

(1) the expected number of chunks used by each request.
which is a function of algorithmg\;, and A, . o Simulation results show that our analysis satisfactorily
predicts the average performanceiehgile radios. Us-
ing k-agile radios reduces spectrum consumption by up
to 22% over 1-agile radios. Noticeably2-agile radios
achieve most of the improvement.

e (Ag, Ar) = max Mo (S, Ap, Ay) = max

2) Average Case Distance:
We also analyze the average case distance over all

possible trafficsS:

— Es[Qk(S,Ay)]” A. Worst Case Distance

which is also a function of algorithmé; and A;. We first consider the extreme casg ' (A, A1) (EQ. 1).
i ) i It is easy to see that for fully-agile radios, the optimalcalg
Heterogeneous Contflict Topology Scenario In this sce- yijm A __ selects the lowest indexed segments when possible,
nario, we consider static traffics and exclude the impact Pégardless of the demand. Thus we focus on examining the
demand dynamics. Because the demand is static and gi‘ﬁ?ﬁbact of Ay
one can determine an optimal allocation that minimizes the
frequency consumption. Thus we define

At (Ag, Aq)

Theorem 1 N2 (A, A1) is unbounded regardless of;.
Qk(S,G) £ min Qi (S, Ak, G), Namely, for any allocation algorithm thatagile radios use,
e ) o there exists a dynamic traffi8 such that\22 (A, A1) is
as the amount of frequency segments required usirgpamal arbitrarily large. '
allocation algorithm based oB. To abstract the impact &
andG, we consider the following two complementary metrics: ~ Proof: The theorem follows directly from a result in
[19]. It shows that for any online allocation algorithm wgin
contiguous memory allocation, the total memory required to
maz & max Ae1 (S, G) = max (S, G). 3) satisfy a set of dynamic requestscould be at least - w(S).
' S,G 56 U (S,G) Herew(S) is the maximum total size of all active requests at
By considering optimal allocation algorithms for bottany given time.r is a factor that scales logarithmically with
radios, we maintain a fair comparison between the tw8e maximum size of a request, and is thus unbounded.
The above result implieQ, (S, A1) > r-w(S) in the context
of spectrum allocation. It is easy to see thaf (S, A) =
w(S). Therefore,\%¢ (A, A1) > r is unbounded in the
Apean & Esclh(S,G)] (4) Worst case. ' u
’ Es c[Q%(S,G)] Now we turn to\**(A;, A;) whenk is finite. First we

o Prove an upper bound:

1) Worst Case Distance:

2) Average Case Distance:

In the following two sections, we analy2g, ;(-) for the tw

scenarios, respectively.
Theorem 2 For any Ay, there exists arf\; such that/\gf‘f”

V. IMPACT OF DEMAND DYNAMICS (A, Ay) < k, k = 2,3,4,---. Namely, 1-agile radios can

In this section, we analyze the impact of frequency agilitfupport any trafficS, using at most: times the spectrum that
under dynamic spectrum demands. To independently study thagile radios use.
u_npact of d_emand Qy_nam|c_s, We assume the nodes are in-a Proof: We design a strategy far-agile radios to select
single conflict domaini.e. G is always a clique. As shown in '
Fi : A - i frequency segments, such that for any traffic, they use ne mor
ig. 2, radio agility is beneficial when the available spestr : : .
: ” o m nk times the spectrum consumed byagile radios.
is fragmented into separate chunks. This is analogous to n this strategy, we first allocate spectrum assuming nodes
fragmentation problem in memory allocation [18], althougnavek—a ile radgigls Each request carrl) receive multi Iegchunks
previous works on memory allocation only consider= 1 t at Iegst one ch' ki noqlesst of the re epst size
and k = oo. While our analysis is inspired by these previou u ¢ h u tl inl tI[E”;I_it; ) %u h Ili .b
results, a major difference is that we indirectly capture t ext, for each request we mnfiate 11s assigned chunks by
: : -folds in frequency so that the largest one is large enough
impact of the guard band overhead by exploring the cases for 4 . W -
smallk =2.3.4. ... 0 support the entire request. Finally, we “reassign” each
LR request to its largest inflated chunk so that all the requests
Summary of Results supported using-agile radios. In this way, we have derived
« In the worst case, fully-agile radios have an arbitrarilpn allocation strategy for nodes withagile radios, and the
large improvement over-agile radios, regardless of thecorresponding spectrum consumption iskofimes that from
on-line allocation algorithm that-agile radios use. using k-agile radios. Fig. 4 illustrates the concept using a
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(a) Allocation using k-agile (b) Using 1-agile radios to

radios

simulate k-agile radios

Fig. 4. Usingl-agile radios to simulaté-agile radios, using: times the
spectrum thatt-agile radios use. The figure shows a case whes 2. In
b), the 1-agile radio only utilizes one of the two allocated (greyuwcks to
support demands.

simple example assuming =
1-agile radios consume twice the spectrum.
Next, we show a lower bound fdr = 2:

Theorem 3 Using a simple algorithmA,, for any A,

A3 P* (A2, A1) > 1.5. Namely, regardless of the allocation,
algorithm that1-agile radios use-agile radios can achieve

an improvement ratio of at leagt5 over 1-agile radios under
certain dynamic trafficS.

Proof: To prove the theorem, we focus on a special typ

of traffic ST, where all requests have sizeslofr 2 segments.
It is obvious that for this type of traffi@-agile radios can fully
utilize the spectrum by using a simple.§.FirstFit) algorithm
As. Thus, Q(ST, Ay) equalsw(ST), the maximum sum of
all the active requests ifiT at any given time.

In [19], it is shown thatvA;, Q;(ST,A;) > (Bw(ST) —
1)/2, for some trafficS* that depends oi;. Thus we have

maz Ql(S+7A‘1) (3W(S+) - 1)/2
— > )
(A2, A1) g w(ST) w(ST)
Taking the limitw(ST) — oo, we getAy'{*(Ay,A;) > 1.5.

n
An example wherteﬁ;—ﬁ;“) = 1.5 is shown in Fig. 5, where

2 where three nodes using

f1rzequency

ANRAOON®D O

time

+
Fig. 5. A case wheré% = 1.5. All requests have sizes df or 2

segments. The traffic dynamics create fragmented segmgnss %, and7)
that are not usable by subsequent requests. As a résadfile radios require
12 segments while-agile radios require onl$ segments.

Theorems 1 and 2 show that in terms of the worst case
distance, the benefit of-agile radios is bounded while the
benefit of fully-agile radios is unbounded. This result irapl
that highly-agile radios have the potential to significantl
improve spectrum usage efficiency. It also motivates us to
investigate the benefit further from the average case viewpo

B. Average Case Distance
In the following, we study the average case distance by aver-

ing over the traffic patters: )\me“"(Ak,Al) £ g:[glg ﬁ;)]
2). Clearly the results depend on the traffic mode

Advanced traffic models from recent measurement resulis [20
however, are highly complex and make the analysis intréetab
Thus, we focus on a simple and yet general model in our
theoretical analysis, and in Sec. V-C use network simuiatio
to verify our analysis and study the impact of traffic statist

For our theoretical analysis, we focus on a specific type
of traffic model where the traffic stabilizes after a period of
time. Our analytical model is inspired by a result in memory
allocation, referred to as thigfty percent rule[17]. It states
that:“In a dynamic memory allocation system, using a simple
FirstFit allocation algorithm, the expected utilizatiohat the
system can stably support 293”

Inspired by this model, we make the following assumptions

A, is a FirstFit algorithm [17] that allocates lowest indexeth our analysis. We assume that the traffic is recurrent aad st
segments when possible. Initially the system containsteigiilizes after a period of time. This is a property found in pan
nodes each occupying one frequency segment, thus segmeygieal network applications. Using the FirstFit [17] algbm
1-8 are occupied. Then four of the eight requests depdty bothA, andA, the system will reach aequilibrium state
releasing four frequency fragments of size 1 segment. Whanan equilibrium state, the following properties hold:

two new requests (each asking for 2 segments) arrive, then)

cannot use the fragments when equipped wihgile radios.

The number of allocated chunks and the number of
empty chunks stabilize.

In this casef2,(S7, A1) = 12. Itis clear thatu(ST) =8 and  2) The average size of empty chunks is approximately
thusmeAl) = 1.5. Note that in this example we consider a  equal to the average size of allocated chunks.
specific algorithmA ;. For other algorithms, the traffi§™ that 3) Usingk-agile radios, each request is satisfied by an ex-

creates the worst case performance feagile radios might

change, but the intuition remains the same: creating a large

number of fragments each of sizesegment.

pected number of;, chunks {; < k). The relationship
betweenz; andk depends on the traffic.

Based on the above assumptions, we estimate the expected

Together, Theorems 2 and 3 can be interpreted into tBeectrum consumption fdr-agile radios:

following corollary:

Corollary 1 The improvement ratio df-agile radios overl-
agile radios is up tor, wherel.5 <r < 2.

Theorem 4 Eg[Q,(S,Ay)] = 2:HE[S], k = 1,2,3,--
Here E[S] is the expected total demand of all active requests

when the system is in an equilibrium state.
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Fig. 6. The average case impact of radio agility under dynaspectrum demands. We examine the normalized frequencsupgstion and the average
number of chunks used by each request. The same experimepested for guard band sizes®and 4 segments, respectively. We also experimented under
30 and 50 nodes and obtained similar results.

The proof of Theorem 4 is in the Appendix. its demand in exponentially distributed time intervalsgl dime
Directly from Theorem 4, we quantify the average caselume of each demand is uniformly distributed with a mean
benefit ofk-agile radios ovei-agile radios: value of100 segments. To access spectrum, each node applies

an online greedy algorithm to occupy unused spectrum chunks
Theorem 5 The average case distancle;c’f“”(Ak,Al) 2 and minimize Q4 (S, Ay) in its current view. For instance,

Es[Q:(S,01)] _ 3a consider an example where at timehe first 500 segments
Es[Q4 (S,A1)] — 2ap+17 are occupied, and at tinter 1 two nodes depart and leave two
Proof: Obviouslyz; = 1. So we have frequency fragments of sizd) and20 segments, respectively.
2141 5 At ¢t 4+ 2 a new node demand¥ segments. Using a&-agile
Es[Q41(S, Ay)] _ 2z [S] __2 _ 3Ty, radio, the node will occupy thg0)1th through540th segments,
Es[Q%(S, Ay)] %E[S] % 2o + 1 makingQ; (.) = 540, while using a2-agile radio the node will

- combine the two fragments, leaviigp(.) = 500.

Theorem 5 implies that the average case improvement broughfig. 6(a) compares the system-wide spectrum consumption
by k-agile radios is upper bounded by a factorla (when $&(S, Ay) for differentk. We normalize the-axis by dividing

x, — 00). Compared to the results in Theorem 1 and 2, 2. (S,A) by the average traffic load. To understand the
is clear that radio agility has higher impact in the worstecagmpact of demand dynamics, we fix the mean demand volume

performance than the average case. and vary their standard deviations from 0 to 0.6. We observe
We will compare the analytical results in Theorem 5 witthat the spectrum consumption does increase with the lével o
simulation results in the following subsection. demand dynamics, but the differences among different sadio
) ) remain stable. In this example configuratidhagile radios
C. Simulation Results achieve a major improvement of 13%-20% oveagile radios.

In this subsection, we use network simulations to verify andls & increases, the improvement converges quickly. Finally,
complement the analysis in Sec. V-B. We also study the impduatly-agile radios gain byl 7%-22% over 1-agile radios.
of traffic statistics and guard bands. To validate our analytical results in Theorem 5, we first
We simulatel0 nodes sharing an arbitrarily large spectrurmeasurex;, the expected number of chunks used by each
trunk and examine the total spectrum consufig(S, A;). To request from the experiments. Results in Fig 6(b) show:that
simulate dynamic demands, we configure each node to chadgereases as the demand variance increases. This olmervati



TABLE | | B Used segment |

COMPARING THE AVERAGE CASE DISTANCEA]'T"™ (Ag, A1) { 3 Unused segment
DERIVED FROM OUR ANALYSIS AND SIMULATIONS. e S ’ E
k-agile radio E
k=co k=4 k=3 k=2
10 nodes (Simulation) 1.1726 1.1696 1.1598 1.1305
10 nodes (Theorem 5) 1.1671 1.1537 1.1300 1.0831
30 nodes (Simulation) 1.1525 1.1456 1.1348 1.1028 i E g
50 nodes (Simulation) 1.1296 1.1256 1.1160 1.0879
(a) k-agile radios (k = 2) (b) 1-agile radios
require 5 segments require 6 segments

is consistent with Theorem 4, which predicts thiaY(S, Ay,) Fig. 7. An example illustrating the benefit of frequencyklagiunder
increases agy decreases. We select the results with traffigeterogeneous conflict topology. The network contains fivées and their
volume uniformly distributed in[1,200] (i.e. with standard EO”;';’éhgfnagc:‘eis Taofiggstioﬂogﬁzﬁ T]g(ejg"gdsg'Orf]'ésntfseg\fl‘ftﬁgﬂitsaegfzggi:;”t‘:)ed
deviation0.577) and compare the‘;cy?flm (Aka A1) values ob- uging k-agile r:adios k 292) requiresb segmgnts, while in (b) uéing—agile
tained by two methods: the simulation results from Fig. 6(#gdios require$s segments.
and the analytical results from Theorem 5 with measured
from Fig. 6(b). Table | shows that the analytical resultsvmte
a reasonable prediction of the improvement. We also look ate Simulation results show that-agile radios achieve0-
the impact of node density to the above results. Table | shows 12% improvement, and the additional improvement using
that the average gain is relatively stable when the number of a largerk is very small.
nodes increases &) and50. It slightly decreases because of i
the higher level of multiplexing. A. Worst Case Distance

Finally, we examine the impact of guard band overhead onWe start with the worst case analysis. As we mentioned
the above results. We repeat the simulations assuming a guarSec. I, the fragmentation problem in the Fig. 3 example
band size of4 segments per frequency chunk, mapping toan be avoided with a better allocation. However, we find that
an averagel% overhead for 10 nodes usingagile radios. in general cases, fragmentation is a fundamental artifact o
Fig. 6(c) and 6(d) show that while the spectrum consumptidhe conflict topology and cannot be avoided by optimizing
increases due to the guard band overhead, the improventaetallocation. Consider the example in Fig. 7, whermodes
of k-agile radios decreases. In particular, the improvementfofm a ring conflict topology. Assume the traffic demahe:
fully-agile radios reduces t®3%-15%. {2,2,2,2,2}. Using k-agile radios k > 2), 5 segments are

sufficient to satisfy the demand (Fig. 7(a)). In contrasingis

VI. | MPACT OF CONFLICT TOPOLOGY 1-agile radios, at least segments are required (Fig. 7(b)). In
this case 21E0) —

In this section. we studv h _ _ LT 6/5, leading to an 20% improvement.

o ’ y Now co_nfhct topology affects agile Next, we generalize the above observation and examine
radios’ spectrum usage. We consider a network where no% ¥ £ maxg g Aeo,1(S,G). The answer depends on the
are placed in a large space, and some of them do.n(.)t con @SblogyG, so we start with general conflict topologies.

with each other. Instead, nodes have different conflictieerg

and only need to avoid using the same segments occupieddgneral Conflict Topology =~ We show that when there is
conflicting peers. As we have shown in Sec. Ill, because nod¥ restriction onG, A7 can be arbitrarily large.

have different views of their spectrum availability, theyllw

produce fragments in spectrum usage. Theorem 6 A% is unbounded. Namely, for any > 1,

. . 1
To focus solely on the impact of conflict topology, Wehere exists a network topology* and traffic S* such that
assume the spectrum demands are static, redSdio@ vector 2.(5".6%) - .

recording the number of segments requested by each node. Fof® ¢ ~
instance, in Fig. 35S = {2,1,4}. Proof: Our proof utilizes a result of graph coloring
theory:the ratio between a graph’s Chromatic Number and its

, Fractional Chromatic Number can be arbitrarily larg21].
« We show that the fragmentation problem caused by h§f; yhe following, we first define the chromatic number and the

erogeneous conflict topology is unavoidable even undgr q(ional chromatic number, and then prove the main result
optimal allocation algorithms. Given a graphG, its Chromatic Numbery(G) is the
« In the worst case " £ maxs ¢ Aeo,1(S, G) (EQ. 3) IS minimum number of colors required to color all the vertices
unbounded for general conflict topologies. such that no two directly connected vertices share the same
» For special conflict topologies, we interpret previousolor. By its definition, x(G) = Q;({1,1,---,1},G). In
results in approximation algorithms and show thgt’¥ the example of Fig. 7x(G) = 3. For the same grapl,
is bounded by small constants for unit disk graphs arnbe Fractional Chromatic Numbery»(G) is the minimum
interval graphs. number of colors required if the color received by each

Summary of Results
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Fig. 8. The average case impact of frequency agility und&@rbgeneous conflict topologies. In both uniform and chesteéopologies2-agile radios reduce
the spectrum consumption lY%-12% compared tol-agile radios.

node can be divided into fractions and assigned in a naalt requests in a clique ofs, which is a lower bound of

contiguous manner. Like the example of Fig. 7(a), by mappifg,. (S, G), i.e. w(S,G) < Q(S,G). Prior work [22], [23]

each segment into &/2 color, we need.5 colors and thus shows that,(S,G) < 7 - w(S,G) for unit disk graphs, and

xr(G) = 2.5. 01(S,G) < 3-w(S,G) for interval graphs. Thus we build the
Using these definitions, we show that the following resufollowing theorem:

holds (The proof is listed in the Appendix):

Theorem 8 A% < 7 if the conflict topology is a unit disk

Lemma 1 For any G, there exists an integer > 1, graph, A7 < 3 if the conflict topology is an interval graph.
w({rry-rh,G) = roxp(G) () Again, the worst case analytical results reveal the paiknti
Q({r,r,--,rHG) = r-x(G). (6) benefit of using more frequency-agility. To obtain a compre-

) hensive view of this issue, we now investigate the average ca

For the example of Fig. 7, we have performance.

0({2,2,---,21,G) = 5 = 2xr(G) B. Average Case Distance
2({2,2,---,2},G) = 6 = 2x(G). In evaluating the average case benafitt"" (Eq. 4), we

In [21], it has been shown that for any> 1, there always face two challenges. First, the benefit depends on thetstatis
existsétgrapl(ﬁ}* where XD~ . UsingG* :';md Lemma 1. distribution of the conflict graplts, which is intractable to
) = ’

we can alwavs find arr((;}\d s 2 g 1, where model since it involves hard combinatorial distributiofibus,
(s Y N LR we rely on simulations to study;’s*". The second challenge
(& G7) — Txr(Gr) = © B s that given anmys andG, it is NP- hard to obtain the optimal

For A}"{”, we have the following upper bound. The proojjlocations and determin®;(S,G) £ ming, Q(S, Ay, G).
uses a technique very similar to that of Theorem 2, and is thy& thus consider both, andA; to be a greedy algorithm:

omitted due to space limitation. sequentially allocate segments to satisfy nodes’ traffachE
node chooses segments greedily to mininfiggs, Ay, G) in

Theorem 7 \'¢* < k, k = 2,3,4,---. Namely, 1-agile the current step. This is the same greedy strategy used in

radios can always support any traffi; using at mosk times  Sec. V-C.

the amount of spectrum thatagile radios use. We perform experiments using both random uniform and

clustered conflict topologies. In the first set of experiment

Special Conflict Topology  While A72%" is unbounded in we randomly placel00 nodes on al000m x 1000m plane,
general, the worst case happens only for some special donflind use a simple criteria to construct the conflict gré&ph
topologies [21]. For conflict topologies that are more hkeltwo nodes conflict if they are within distaneé For each
to appear in real networks, howevefy " could be bounded. node, we randomly generate a static traffic volume uniformly
Now we consider two well-known graphs unit-disk graphs ardistributed in[1, 40]. Fig. 8(a) evaluates;’{*" under different
interval graphs. Unit-disk graphs map to the distancedbaseetwork densities by varying. The z-axis lists the average
interference model where two access points conflict if tirey aconflict degree of the network,e. the per-node expected
located within a predefined distance. Interval graphs aee thumber of conflicting peers. Again we see that the majority
one-dimensional version of unit disk graphs. Both graph&haof improvements is achieved Bragile radios which reduce
been widely used to model wireless interference conditionsspectrum consumption by0%-12%.

To upper-bound\ 2% for interval graphs and unit disk Next we repeat the above experiment but using clustered
graphs, we interpret prewous results in approximatioro-algtopologies. To generate clustered topologies, we put a pro-
rithms. We definew(S,G) as the maximum total size ofportion of the nodes in 800m x 400m area and distribute
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Fig. 9. The impact of frequency agility when both demand dyica and conflict heterogeneity are present. Usiragile radios reduces the spectrum
consumption byl2%-26% compared tol-agile radios. The improvement increase2%%s-40% when using fully-agile radios, but decreases in the presenc
of guard band overhead.

the rest in thel000m x 1000m area. We vary the proportionamong a fixed set of segments, the disruption rate is a well-
of nodes in the cluster and plot the result in Fig. 8(b). Waccepted metric of user experience. The disruption raergef
observe that while the total frequency consumption in@eado the proportion of time when a node is unable to acquire
with the density of the cluster, the benefit of radio agilitpdequate spectrum to support its demand. High disruptien ra
remains stable,e. 10%-12%. implies lower application quality or additional complexit
These results, combined with our analytical results, shdvigher protocol layers to mitigate its effect.
that usingk-agile radios can lead to significant improvements To examine the impact of radio agility using the disruption
under specific conflict topologies, but much smaller improveate metric, we assume that nodes share a fixed number
ments under typical conflict topologies. of 1000 spectrum segments and their traffic patterns follow
VI the settings in Sec. V-C. Our experimental results show that
when the normalized load i8.75, 2-agile radios can reduce
When Two Factors Combine. Having examined the impactthe disruption rate t®%, compared to the 1% of 1-agile
of demand dynamics and conflict heterogeneity individyallyadios. Compared to the frequency consumption results, the
we now examine the performance of agile radios when boflpplication-performance improvement becomes much more
factors are present. visible. This observation also implies that the metricssidn
We first present the analytical conclusions. Clearly theStvorered in our paper are 0n|y a small Samp|e set on the system
case results in previous sections continue to hold becatﬂﬁgformance, Depending on the applications, using radiths w
the combined scenario is a generalization of the indiVidUmgher frequency-agi”ty may generate more profound impac

scenarios. In particular, Theorems 2 and 7 still hold. Ngmebn the system and application performance.
k-agile radios still reduce spectrum consumption by no more

than a factor ok compared td-agile radios. The average case VIIl. RELATED WORK
analysis in Sec. V-B, however, becomes very hard to extendOur work is inspired by and built on existing works on
due to the hardness in modeling conflict graph distributiongrequency-agile radios. A significant amount of work hasrbee
For completeness we also use simulations to quantify thene towards dynamic spectrum access udiragile radios
impact of frequency agility under the combined scenario. Wghd contiguous spectrum access [4], [13], [14]. These works
combined the default settings of the previous simulatians &njoy the advantage of easy implementation using commodity
configure the combined scenario. Fig. 9(a) plots the normalFi radios. Others examine the performance of dynamic
ized spectrum consumption usirlg and k-agile radios. We spectrum allocation using fully-agile radios combined hwit
see that2-agile radios achieve an improvementdf%-26% both centralized and distributed algorithms [3], [24],]1426].
over 1-agile radios, and the improvement increasegt- Also, spectrum auction schemes are designed for batbile
40% using fully-agile radios. Even with a guard band size atdios and fully-agile radios [27], [28]. Our main contrilmn
4 segments, Fig. 9(b) shows that the improvement for fullyn this paper is to understand the tradeoff between perfocma
agile radios becomeks%-32%. and complexity in the context of frequency-agility. We do so
An Alternative Performance Metric. Throughout this by evaluating the performance improvementkefgile radios
paper, we evaluate the spectrum usage performance usingr 1-agile radios for different.
the metricQ (S, A, G), the amount of spectrum required to The advantage of frequency-agility has been explored in
support a given demand. While this metric allows a consista®cent works. First, in the context of opportunistic spemtr
comparison across different scenarios and makes the madlytaccess, recent work recognizes the advantage of fullg-agil
problem tractable, it should not be interpreted as the onigdios overl-agile radios in terms of channel sensing over-
indication of practical system performance. For instarice, head [16]. It shows that fully-agile radios will need to sens
practical streaming applications where nodes share gpactiess number of channels because they are able to utilizé smal

FURTHER CONSIDERATION



spectrum fragments discovered by spectrum sensing. Ok wog]
complements this effort by systematically studying thedfign
in terms of the spectrum sharing efficiency. We also extead tH4]
investigation to generat values. Second, prior work [2] has
studied the problem of fragmentation withagile radios and [5]
proposed to compensate it in the time-domain. The authors
also examined the performance gap assuming unit-disk grapg
based conflict graphs. In comparison, our work analyzes the
performance difference from a much broader perspective. V\{g]
analytically quantify the impact for both general and spkci
conflict topologies, fok-agile radios with general, and from
both the worst case and the average case point of view. (8]
Finally, many recent works have designed prototypes and]
testbeds for frequency-agile radios [5], [7], [9], [29]0]3[31],
[32]. These efforts recognize that increasing the freqylenﬁo]
agility requires sophisticated hardware and softwaregtssi
Our study advances the state of the art by providing a
guantitative understanding on the gain of increasing feegy- !
agility. It would be an interesting work to verify our result [12]
on these testbeds, particularly usipggile radios.

IX. CONCLUSION [13]

To understand the need for additional frequency-agiliy, w
develop a systematic framework to study the spectrum accgé‘l,
performance of networks usingragile radios rather tham-
agile radios. We show that because of two inherent propert/éS]
of dynamic spectrum sharing;-agile radios can be highly [16]
advantageous. We analytically quantify the improvemedeunn
both properties, individually and when combined. Our ressul
show that in the worst cases, fully-agile radios can lead !
unbounded performance improvement, while in the averagg)
cases, the improvement becomg8%-40% under typical
traffic models and conflict conditions considered by our pape; o)

Perhaps the most important and interesting observation is
that2-agile radios can realize the majority of the improvement
brought by fully-agile radios (unlimiteé). This trend bounds [
not only the radio hardware complexity/cost, but also thieaex [21]
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APPENDIX B. Proof of Lemma 1
A. Proof of Theorem 4 We divide the proof into two steps:

As shown in Fig. 10, we classify allocated chunks iBto Step 1:  In this step, we prove that for arfg, there exists
categories. Typed chunks have their both neighbor chunksin integerr > 1, s.t. (5) is satisfied.
empty. Type B chunks have one empty neighbor and one It has been shown thatr(G) = minb@ [33], where
allocated neighbor. Typ€' chunks have their both neighbory,(G), the b-fold Chromatic Numbemefers to the minimum
chunks allocated. We udes, Ly, Lo to denote the number of number of colors needed to colGrsuch that every node geis
A, B, andC chunks respectively, and lét= Lo+ Lg+ Lc.  colors. In this case, the colors assigned to a node are nesnhec
We useM to denote the number of empty chunks. sarily contiguous. Thereforey, (G) = Qo ({b, b, - -+ , b}, G).

Assume the system reaches an equilibrium. We estimate thet » = argmin, X% We havey(G) = X8 and hence

b 0
dynamics of the number of empty chunksé caused by new Q. ({r,r,--- ,7},G) =r- xr(G).

system activities. The only two types pf system activitiEgs a Step2:  We prove that for angs andanyintegerr > 1, (6)
« Starta new request: The system fingschunks to satisfy is always satisfied. Based on this result and the conclusion i

the reques_t. _At least, —1 empty chun_ks disappear. SinCE'Step 1, we can always findrathat satisfies both (5) and (6),
an exact fit is very rare, we approximately consider thgiﬁd complete the proof

the z-th chunk is not an exact fit, thus will only shrink prove (6), we first sho@, ({r,,--- ,r},G) < r-x(G).

but not disappear. Therefore, we estimate the dynamilggt A(r,c) represent an allocation usingagile radios that
of M by M — M — (z;, — 1).

End st t Th t laimschunk assignsr segments to each node and usesegments in

* f ndan exis 'tf_‘g reques_t Ae sys_emtrr]ectawna: lfm S total. From the definition of¢(G) we know there exists an
fom an existing request. Assuming e ypes o ihe allocation A(1, x(G)). By substituting each segment with
chunks are independent, we can estimate the dyna

7 segments, we get an allocatidi(r, r - x(G)).
of M by M «— M + xy - (L¢/L — La/L). This is Next we showQ G > (G, Assumin
because reclaiming a Typé chunk will decrease\/ by W 1({r,r,--+ 7}, G) =7 - x(G). Assuming

1 laimi Tvoe chunk will i o by 1 and there is an allocationA(r, ¢), we need to show that >
, feclaiming a Typ& s chunk wiitincreas yl.and .. x(G). To do so, we define an allocation to ladigned
reclaiming a TypeB chunk does not affect/.

- if every node’s assigned segment set starts flom- 1 and
When the system stabilizes, the requests start and end,qfig at(k + 1)r for some integet > 0. In other words, by

equal rates. From the above dynamics.anz?\lysis, we have binding everyr contiguous segments togethgr, 2, - - - , 7},
ok - (Lo/L = La/L) — (xx — 1) = 0, which is equal to {r+1,7+2,---,2r}, ---, each node will receive a set of
Lo — T — 1L + L @ contiguously-aligned segments. We now describe a proeedur
Ty that can transform any allocatiaA(r, ¢) to an aligned allo-
From (7) andL = L4 + L + L¢, we obtain cation A’(r, ') with ¢ < ¢. Find the set of node¥) who
Tr — 1 are assigned un-aligned segments. Find a nothel’ whose
L=La+Lp+ ( o L+ LA)a thus assigned segments have the lowest index. Modlfysegment
1 allocation so that: takes ther available segments with the
—L=2Ls+ Lp. (8) lowest index. Because each 0k conflicting neighbors that

. Tk . ) occupy lower-indexed segments will have an aligned segment
By analyzing the spectrum map (Fig. 10) and counting tg,cation, the above operation will provide an aligned

number of empty chunks, we have (ignoring boundary condiggment allocation that is also conflict free. Repeat thisgss

tions) 1 until all nodes have an aligned segment allocation.

M = 5(21),4 + Lp). 9) It is clear that since the above transformation only moves
node’s segment allocation towards lower indices, it wiflui¢
in an aligned allocatio’ (r, ¢’) with ¢’ < ¢. Now the aligned
allocation A’(r, ¢') can be directly mapped into an allocation
A"(1,1£]), with segmentk assigned to a node inl” iff

T

This is because each Typé& chunk is adjacent t@ empty
chunks and each TypB chunk is adjacent téa empty chunk.
Now, compare (8) and (9) it is clear that= 2z - M. This
means that the number of allocated chunk&ag times the - o
number of unused chunks. Together with Assumptipthis SSIMeNt&(k—1)r+1,kr) are assigned to it inl’. Therefore,
means that the total amount of unused fragments/ @z, 712 x(G), ande = ¢ > - x(G). u
that of the allocated spectrum. Thus, the expected spectrum
consumptionEs[(2, (S, Ay,)] is approximately?Z--E[S]. B



