
Optimizing Nested Loops Using Local CPS Conversion

John Reppy (jhr@research.bell-labs.com)
Bell Labs, Lucent Technologies
600 Mountain Ave.
Murray Hill, NJ 07901
U.S.A.

Abstract. Local CPS conversion is a compiler transformation for improving the code gen-
erated for nested loops by a direct-style compiler that uses recursive functions to represent
loops. The transformation selectively applies CPS conversion at non-tail call sites, which
allows the compiler to use a single machine procedure and stack frame for both the caller and
callee. In this paper, we describe LCPS conversion, as well as a supporting analysis. We have
implemented Local CPS conversion in the MOBY compiler and describe our implementation.
In addition to improving the performance of loops, Local CPS conversion is also used to aid
the optimization of non-local control flow by the MOBY compiler. We present results from
preliminary experiments with our compiler that show significant reductions in loop overhead
as a result of Local CPS conversion.
An earlier version of this paper was presented at the Third ACM SIGPLAN Workshop
on Continuations [25].

1. Introduction

Most compilers for functional languages use a λ-calculus based intermediate
representation (IR) for their optimization phases. The λ-calculus is a good
match for this purpose because, on the one hand, it models surface-language
features such as higher-order functions and lexical scoping, while, on the
other hand, it can be transformed into a first-order form that is quite close
to the machine model.

To make analysis and optimization more tractable, compilers typically
restrict the IR to a subset of the λ-calculus. One such subset is the so-called
Direct Style (DS) representation, where terms are normalized so that function
arguments are always syntactic values (i.e., variables and constants) and all
intermediate results are bound to variables.1 By giving names to all inter-
mediate results, the DS representation makes the data flow of the program
explicit (i.e., the left-hand-side binding occurrences of variables correspond
to nodes and the right-hand-side use occurrences correspond to edges in a
data-flow graph), which eases the implementation of analysis and optimiza-
tion algorithms. Another common IR in functional-language compilers is
Continuation-Passing Style (CPS), where function applications are further
restricted to occur only in tail positions and function returns are represented

1 There are a number of different direct-style representations: e.g., Flanagan et al.’s A-
form [8], the TIL compiler’s B-form [34], and the RML compiler’s SIL [23].

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 6/09/2006; 17:17; p.1



2 Reppy

explicitly as the tail-application of continuation functions [1, 32, 17]. As with
DS representations, the names given to intermediate results in a CPS repre-
sentation make the data flow explicit. Furthermore, the explicit return contin-
uations make the control flow explicit (i.e., calls to continuations correspond
to edges and continuation functions correspond to nodes in a control-flow
graph), which makes CPS well suited to optimizing the program’s control
structures. A third class of IRs are the monadic normal forms, such as Benton
et al.’s MIL [3], which are based on the ideas of Moggi’s computational λ-
calculus [20]. Like DS and CPS, this class of IRs make a syntactic distinction
between values and computations; the main difference is that they have a
much richer notion of value. The results of this paper should apply to this
class of IRs without much change.

The choice between basing a compiler on a DS or CPS IR is one that
many feel strongly about [1, 4, 8, 26, 29, 33]. A DS representation more
closely follows the original program structure than a CPS representation and
is more compact, since it does not explicitly represent return continuations.
CPS representations, on the other hand, provide a more natural framework
for control-flow optimizations. In the end, the choice of IR is an engineering
decision that must be made for each compiler and there are many examples
of quality compilers using both techniques (some of these are described in
Section 7).

Compilers for functional languages must deal with mapping nested and
higher-order functions down to machine code; λ-calculus based IRs provide
an effective notation for this translation. Typically, such compilers perform
closure conversion to convert a higher-order IR to a first-order IR [1, 27,
34]; such first-order IRs can be either DS or CPS. An important property of
these first-order IRs is that tail calls to known functions can be mapped to
gotos [31]. Essentially, in these IRs, λ abstractions are DAGs of basic blocks
and control-flow edges between these DAGs are represented as tail calls to
known functions.2

This paper describes a transformation, called Local CPS (LCPS) conver-
sion, and a supporting analysis that allows a DS-based compiler to increase
the number of tail calls to known functions by converting non-tail calls into
tail calls. This transformation is especially effective for improving the per-
formance of programs with nested loop structure. LCPS conversion is based
on the idea of locally applying CPS conversion when it is useful to have
explicit return continuations. The transformation is local in the sense that a
given application of the transformation only CPS converts the non-tail call’s
context and is limited to the body of the function containing the non-tail call.
This technique is possible because the CPS terms are a subset of the DS terms

2 In some normal forms, such as CPS, λ abstractions are trees of basic blocks (called
extended basic blocks in the compiler literature).

paper.tex; 6/09/2006; 17:17; p.2



Optimizing Nested Loops 3

(i.e., CPS ⊂ DS ⊂ λ-calculus). LCPS conversion should be useful for most
DS-based optimizers.

We have implemented LCPS conversion in the MOBY compiler [6].3 In
the next section, we describe the phases and representations of our compiler
that provide the setting for this paper. In Section 3, we describe a motivating
example. We then present a formal description of LCPS conversion and an
analysis for detecting when it is applicable in Section 4 using a simple DS IR.
In Section 5 describe how LCPS is implemented in the MOBY compiler and
give another example of its use. We present some preliminary performance
measurements of our implementation in Section 6. Related work is discussed
in Section 7 followed by our conclusions.

2. The Moby compiler

Before describing either the problem addressed by this paper, or the solu-
tion, we need to provide some context. The optimizer and code generation
phases of the MOBY compiler use two different intermediate representations.
The first, called BOL,4 is a higher-order direct-style representation on which
we perform traditional λ-calculus style transformations (e.g., contraction [2],
useless-variable elimination, and CSE [1]). Loops are represented using tail
recursion in BOL. While BOL is a normalized IR that binds names to all
intermediate results, that property is not important to the issues of this paper,
so we use a more standard SML-style syntax for the examples. BOL has the
standard call-by-value λ-calculus semantics. After optimization, the MOBY
compiler performs cluster conversion to convert the higher-order BOL repre-
sentation to a first-order representation with explicit closures called BOL clus-
ters. After further simplification and the introduction of heap-limit checks,
the cluster representation is translated to assembly code using the MLRISC
framework [11, 10]. In the remainder of this section, we describe the details of
the BOL cluster representation and give an overview of the cluster conversion
phase.

2.1. BOL CLUSTERS

A BOL cluster is a collection of fragments, which are functions that con-
tain no nested function definitions. A fragment is essentially a DAG of basic
blocks, albeit expressed in a λ-calculus style notation. At runtime, these frag-
ments share the same stack frame; intuitively, a cluster is a representation of

3 MOBY is a higher-order typed language that combines support for functional, object-
oriented, and concurrent programming. See www.cs.bell-labs.com/˜jhr/moby for
more information.

4 The name “BOL” does not stand for anything; rather, it is the lexical average of the
acronyms “ANF” and “CPS.”

paper.tex; 6/09/2006; 17:17; p.3



4 Reppy

a procedure’s control-flow graph. Each cluster has a distinguished fragment,
called the entry fragment, that is the target of any external or non-tail call of
the cluster. The other fragments in the cluster are only called by internal tail
calls.

More formally, let the known fragments of the program be

Known = {f | all of f ’s call sites are known}

Then a cluster is defined as follows:

DEFINITION 1. A cluster is a pair 〈f,F〉 of a fragment f , called the en-
try fragment, and a set of internal fragments F , which satisfy the following
properties:

1. f 6∈ F ,

2. F ⊆ Known (i.e., all call sites of internal fragments are known),

3. for any g ∈ F and fragment h, if h has a tail call to g then h ∈ {f} ∪F ,
and

4. for any g ∈ F , 6 ∃h such that h has a non-tail call to g.

where a fragment is a BOL function that contains no nested function bindings.
Furthermore, any free variable in a fragment is either the name of a fragment
in the same cluster, the name of an entry fragment of some other cluster in the
same compilation unit, or the name of a statically allocated variable imported
from some other compilation unit.

Each BOL cluster is mapped to a single machine procedure by the code
generator; i.e., its fragments share the same stack frame at run-time. Control
transfers inside the cluster are implemented as jumps and local variables, in-
cluding internal fragment parameters, are mapped to MLRISC pseudo-registers.
Maximizing the size of clusters provides more opportunities to the MLRISC
register allocator to keep variables in registers and reduce memory traffic,
which is crucial to good performance.

2.2. CLUSTER CONVERSION

There are two important aspects to cluster conversion: frame conversion,
which groups fragments into clusters, and closure conversion, which deter-
mines the explicit representation of function environments [1]. We perform
these conversions without actually transforming the program. Instead, we
compute all of the information needed to transform the program in auxiliary

paper.tex; 6/09/2006; 17:17; p.4



Optimizing Nested Loops 5

data structures. Once this information has been computed we use it to trans-
form the higher-order BOL representation into the first-order BOL cluster
representation.5

The compiler performs cluster conversion by first constructing a known
call graph (i.e., an approximate call graph where edges correspond to known
function calls) and using that graph to determine a mapping from functions in
the higher-order BOL representation to clusters and fragments. The algorithm
that maps functions to clusters is similar to Kelsey’s algorithm for merging
functions [13, 14]; it is designed to maximize the size of clusters. We then
compute the free variables of each cluster and determine its closure represen-
tation. The free variables are computed on a per-cluster basis (i.e., all of the
fragments in a cluster share the same closure) using the original higher-order
representation in the standard way [12]. If a variable is free in a fragment, but
is bound elsewhere in the same cluster, then we arrange for it to be passed
as an explicit parameter to the fragment using a technique that is reminiscent
of light-weight closure conversion [30]. For example, consider the following
BOL representation of a function that applies f to the elements of an array a:

fun applyToArray (f, a) = let
val n = length a
fun lp i = if (i < n)

then let
val x = sub(a, i)
in f x; lp(i+1) end

else ()
in
lp 0

end

Cluster conversion maps this code to single cluster consisting of two frag-
ments: the entry fragment applyToArray and an internal fragment lp.
The lp fragment has f, a, and n as free variables; light-weight closure con-
version maps these to parameters. This results in the following BOL cluster
representation:

5 Our first implementation split these into two separate passes, with closure conver-
sion first producing singleton clusters that were then merged into larger clusters by frame
conversion [24].

paper.tex; 6/09/2006; 17:17; p.5



6 Reppy

fun applyToArray (f, a) = let
val n = length a
in
lp (0, f, a, n)

end
and lp (i, f’, a’, n’) = if (i < n’)

then let
val x = sub(a’, i)
in
f’ x;
lp(i+1, f’, a’, n’)

end
else ()

When writing a cluster, we write the entry fragment (applyToArray in this
case) first. When we translate this representation to MLRISC, the variables
f’, a’, and n’ are mapped to pseudo registers. The MLRISC register alloca-
tor then assigns these to machine registers or local stack variables, depending
on the available registers. To simplify the examples in this paper, we do not
include the conversion of functions to their explicit closure representation.

3. The problem

Many compilers for functional languages use tail recursion to represent loops
in their IR. By treating tail-recursive function calls as “gotos with arguments,”
a compiler can generate code for a loop that is comparable to that gener-
ated by a compiler for an imperative language. But when loops are nested,
generating efficient code becomes more difficult. For example, consider the
following C-code, which is typical of the nested loop structure found in many
algorithms (e.g., matrix multiplication):

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
f (i, j);

In a DS representation, the for-loops are represented by tail-recursive func-
tions. Figure 1 gives this example using our SML-like syntax as a sugared
form of DS representation. Note that while the two loop functions, lp_i and
lp_j, are tail-recursive, the call “lp_j 0” from the outer loop (lp_i) to
the inner loop is not tail recursive. This non-tail call forces the frame phase
to map lp_i and lp_j to different clusters (by Property 4 of Definition 1).
When the resulting clusters are translated to assembly code, the two loops will
occupy separate procedures with separate stack frames. Splitting the loops
across two different clusters inhibits loop optimizations, register allocation,
and scheduling, as well as adding call/return overhead to the outer loop.

paper.tex; 6/09/2006; 17:17; p.6



Optimizing Nested Loops 7

fun applyf (f, n) = let
fun lp_i i = if (i < n)

then let
fun lp_j j = if (j < n)

then (f(i, j); lp_j(j+1))
else ()

in
lp_j 0; (* not tail recursive *)
lp_i(i+1)

end
else ()

in
lp_i 0

end

Figure 1. A nested loop expressed as nested tail-recursive functions

fun applyf (f, n, k1) = let
fun lp_i (i, k2) = if (i < n)

then let
fun lp_j (j, k3) = if (j < n)

then let
fun k4 () = lp_j(i+1, k3)
in
f(i, j, k4)

end
else k3()

fun k5 () = lp_i(i+1, k2)
in

lp_j (0, k5)
end

else k2()
in
lp_i (0, k1)

end

Figure 2. The CPS converted applyf example

On the other hand, the CPS representation of this example, given in Fig-
ure 2, makes explicit the connection between the return from lp_j and the
next iteration of lp_i. A simple control-flow analysis will show that the
return continuation of lp_j is always the known function k5, which enables
compiling the nested loops into a single machine procedure.

This example suggests that by making the return continuation of lp_j
explicit, we can replace the call/return of lp_j with direct jumps.

paper.tex; 6/09/2006; 17:17; p.7



8 Reppy

e ::= l : t labeled term

t ::= x variable
| fun f (~x) = e1 in e2 function binding
| let x = e1 in e2 let binding
| if x then e1 else e2 conditional
| f (~x) application

Figure 3. A simple direct-style IR

4. The solution

Our goal is to have nested loops, like the one in Figure 1, translate into a
single cluster (as they would in an imperative language like C). Doing so has
many performance advantages. It enables better loop optimizations, register
allocation, and instruction scheduling. It also eliminates the overhead of cre-
ating a closure for the inner loop, the call to the inner loop, and the heap-limit
check on return from the inner loop.

To achieve the goal of a single merged cluster, we need to address the
problem of the non-tail call from lp_i to lp_j. Our technique is to use
Local CPS (LCPS) conversion to convert the non-tail call and return into a
pair of tail calls. Once LCPS conversion has been applied, it is possible to
group the functions that comprise the nested loop into the same cluster.

To determine where it is useful to apply the transformation, we need some
form of control-flow analysis. The property that we are interested in is when
a known function has the same return continuation at all of its call-sites.
For each function defined in the module being compiled, we conservatively
estimate the set of return continuations for the function. If the estimated set
is a singleton set, then we apply the transformation.

In the remainder of this section, we give a formal description of LCPS and
a simple syntactic analysis of when LCPS can be applied. We also describe
some of the issues that a compiler must address in an implementation of
LCPS. We use the simple DS IR given in Figure 3 for this formal presentation
(Section 5 describes the actual implementation in our compiler). As usual,
we assume bound variables are unique so we do not have to worry about
unintended name capture when transforming code. In this IR, expressions are
uniquely labeled terms.

4.1. ANALYSIS

The analysis computes an approximation of return continuations of each known
function, so a standard control-flow analysis is applicable [22]. In this section,
we describe a one-pass, linear-time, analysis that uses the term labels as an ab-

paper.tex; 6/09/2006; 17:17; p.8



Optimizing Nested Loops 9

R[[l : x]]ρ = {x 7→ >} (1)
R[[l : fun f (~x) = e1 in e2]]ρ = R[[e1]]ρ′ ] Γ ] {~x 7→ >}

where Γ = R[[e2]]ρ and ρ′ = Γ(f).
(2)

R[[l : let x = e1 in l′ : t2]]ρ = R[[e1]]l′ ]R[[l′ : t2]]ρ ] {x 7→ >} (3)
R[[l : if x then e1 else e2]]ρ = R[[e1]]ρ ]R[[e2]]ρ (4)

R[[l : f (~x)]]ρ = {f 7→ ρ} ] {~x 7→ >} (5)

Figure 4. The analysis

straction of return continuations (we call these abstract continuations). This
analysis uses a simple notion of escaping function — if a function name is
mentioned in a non-application rôle, it is regarded as escaping and we define
its return continuation to be >.6

Let LABEL be the set of term labels. Then we define an abstract domain
RCONT = LABEL ∪ {⊥,>} of return continuations. We use ρ to denote
elements of RCONT. Intuitively, one can think of RCONT as a squashed pow-
erset domain, with ⊥ for the empty set, l for the singleton set {l}, and > for
everything else. We define the partial order v on RCONT, with ⊥ v l v >
for any l ∈ LABEL, and we define ρ1 t ρ2 to be the least upper bound of ρ1

and ρ2 under v.
Given an expression and its abstract continuation, the analysis computes a

map Γ from variables (i.e., function names) to abstract continuations.

Γ ∈ RENV = VAR
fin→ RCONT

We extend Γ to a total function by defining Γ(x) = ⊥ for x 6∈ dom(Γ). We
define the join of Γ1 and Γ2 by

Γ1 ] Γ2 = {x 7→ Γ1(x) t Γ2(x) | x ∈ dom(Γ1) ∪ dom(Γ2)}

The analysis itself has the following type:

R : EXP → RCONT → RENV

and we write R[[e]]ρ for the analysis of an expression e with the abstract
return continuation ρ. With these definitions, we can describe the analysis,
which is presented in Figure 4. We map unknown and escaping functions to
>, as can be seen in Rules 1, 2, and 5. Rule 2 shows how we analyse function
definitions — first we analyse the uses of f in its scope and then we use
the result of that analysis as the return continuation for the body of f . For
let bindings, the body of the let is the continuation of the binding. The

6 This definition is the one used by Appel [1] in his CPS-based framework.

paper.tex; 6/09/2006; 17:17; p.9



10 Reppy

result of analysing a conditional (Rule 4) is the join of the sub-analyses of its
arms. When analysing a function application (Rule 5), we map the applied
function to the application’s abstract continuation and treat the arguments as
escaping. To analyse a complete program, we use> as the return continuation
and define ANALYSE(e) = R[[e]]>. The termination of this analysis follows
from the fact that it is defined inductively over the structure of the program.
We do not need fixed point computations, because the simple language we
are using does not have mutually recursive functions (Section 5.1 discusses
how the implementation handles mutual recursion).

4.2. LCPS CONVERSION

If the analysis has determined that all call sites of a function f have the same
return continuation (i.e., RENV(f) = l), then we apply LCPS conversion f .
Transforming f has two parts: we must reify the continuation of f , creating
an explicit continuation function kf , and we must introduce calls to kf at the
return sites of f . For example, consider the following code fragment:

fun f () = ... w in ...
fun g () = ... let y = f() in exp

where w is returned as the result of f . Assuming that f is eligible for LCPS
conversion, this fragment is converted to

fun f (k) = (... k(w)) in ...
fun g () = ... fun kf (y) = exp in f(kf)

Here we have made the return continuation of f explicit by modifying f to
take its continuation as an argument (k), which it calls at its return sites. We
have also split the body of g to create the explicit representation of f ’s return
continuation (kf ) and have modified the non-tail call site of f to pass kf to f .

To understand how LCPS conversion works, it is instructive to examine
the global CPS conversion. Figure 5 gives the transformation for the simple
IR of Figure 3 (ignoring the labels). For LCPS conversion, we only want to
apply the CPS conversion under certain conditions. Assuming that Γ is the
result of analysing the program, let the set of eligible functions be defined
as E = {f | Γ(f) ∈ LABEL}. We can describe LCPS conversion, which is
given in Figure 6, as a modification of CPS conversion from Figure 5.

Rule 6: When the expression x is in the tail position of an eligible function
f ∈ E , then we apply the CPS conversion, as is shown in Rule 12. We
use the symbol ♦ to signal the situation where CPS conversion should
not be performed (Rule 11).

Rule 7: We apply the CPS conversion when f ∈ E (Rule 13).

paper.tex; 6/09/2006; 17:17; p.10



Optimizing Nested Loops 11

C[[x]]k = k (x) (6)
C[[fun f (~x) = e1 in e2]]k = fun f (k′, ~x) = C[[e1]]k′ in C[[e2]]k

where k′ is fresh
(7)

C[[let x = e1 in e2]]k = fun k′ (x) = C[[e2]]k in C[[e1]]k′

where k′ is fresh
(8)

C[[if x then e1 else e2]]k = if x then C[[e1]]k else C[[e2]]k (9)
C[[f (~x)]]k = f (k, ~x) (10)

Figure 5. A global CPS conversion

Rule 8: When the expression e1 contains an application of some eligible
function f ∈ E (signified by the S predicate being true) we apply the
CPS transformation (Rule 14).

Rule 9: Since this rule does not transform the expression, we only need to
apply the transformation to the arms of the conditional. Note that code
duplication is not a problem, since k is a variable and not a λ-term.

Rule 10: If the continuation is ♦, which implies that f 6∈ E , then the appli-
cation is unchanged (Rule 16). Otherwise, if the function f is eligible
(i.e., f ∈ E), then we apply CPS conversion (Rule 17). In this situation,
k will either be an explicit return continuation (introduced by Rule 14)
or a return continuation parameter (introduced by Rule 13). If f is not
eligible, then we apply the continuation k to its result.

To transform a program e, we compute L[[e]]♦.
It is interesting to examine what happens when the call-site of an eligible

function f is buried in the branch of a conditional. For example, consider the
following fragment:

let x = if y then (let w = f() in exp1) else exp2

in exp3

Applying LCPS to f results in the following code:

fun kif (x) = exp3 in
if y

then fun kf (w) = L[[exp1]]kif in f(kf)
else L[[exp2]]kif

Here we have introduced two continuation functions: kif for the join-point
following the if and kf for the return continuation of f .

Up to now, we have been passing the return continuation of an eligible
function as an additional argument (as is standard in CPS conversion), but
since our analysis has already told us that any eligible function f has exactly

paper.tex; 6/09/2006; 17:17; p.11



12 Reppy

L[[x]]♦ = x (11)
L[[x]]k = k (x) (12)

L[[fun f (~x) = e1 in e2]]k =


fun f (k′, ~x) = L[[e1]]k′ in L[[e2]]k

when f ∈ E (k′ is fresh)

fun f (~x) = L[[e1]]♦ in L[[e2]]k
otherwise

(13)

L[[let x = e1 in e2]]k =


fun k′ (x) = L[[e2]]k in L[[e1]]k′

when S(e1) = true (k′ is fresh)

let x = L[[e1]]♦ in L[[e2]]k
otherwise

(14)

L[[if x then e1 else e2]]k = if x then L[[e1]]k else L[[e2]]k (15)
L[[f (~x)]]♦ = f (~x) (16)

L[[f (~x)]]k =


f (k, ~x)

when f ∈ E
let y = f (~x) in k (y)

otherwise (y is fresh)

(17)

S(x) = false (18)
S(fun f (~x) = e1 in e2) = S(e2) (19)

S(let x = e1 in e2) = S(e1) or S(e2) (20)
S(if x then e1 else e2) = S(e1) or S(e2) (21)

S(f (~x)) = true if f ∈ E and false otherwise (22)

Figure 6. Local CPS conversion

one return continuation kf , we can specialize the return sites of f to call
kf directly. To do so requires lifting the definition of kf up to the binding
site of f .7 The difficulty with this lifting is that the return continuation and
its functions have different free variables, so we need to close the function
over those variables that will be out of scope at the destination of the func-
tion. While we could allocate a closure for this purpose, it is more efficient
to pass the free variables as function parameters as is done by light-weight
closure conversion [30]. Having these variables as parameters in the final DS
representation means that they will get mapped to MLRISC pseudo regis-
ters, which allows the register allocator to manage them. To illustrate closure
conversion, consider the following fragment:

7 We also need to extend the IR to support mutually recursive bindings.

paper.tex; 6/09/2006; 17:17; p.12



Optimizing Nested Loops 13

fun applyf (f, n) = lp_i (0, f, n)
and lp_i (i, f, n) = if (i < n)

then lp_j (0, i, f, n)
else ()

and lp_j (j, i, f, n) =
if (j < n)
then (
f(i, j);
lp_j(j+1, i, f, n))

else k (i, f, n)
and k (i, f, n) = lp_i(i+1, f, n)

Figure 7. The applyf cluster after LCPS conversion

fun f () = ... z in
...

let y = ... in
...

let x = f() in
let w = x + y in

w

In this code, the return continuation of the call to f has y as a free variable, so
we add y to the parameters of f and the transformed f passes y to its return
continuation. The result of the transformation is:

fun f (y) = ... kf(z, y)
and kf (x, y) = let w = x + y in w
...

let y = ... in
...

f(y)

We define f and kf in the same binding because, in general, they may be mu-
tually recursive. In general, LCPS conversion migrates the converted function
f and its explicit continuation to the binding site of f ’s non-tail caller. By
doing so, we guarantee that all these functions will be compiled into a single
machine procedure.

Revisiting our original motivating example from Figure 1, the result of
the analysis will identify lp_j as a candidate for LCPS conversion (i.e.,
all of its call sites have the same return continuation). The cluster resulting
from applying the transformation to lp_j is given in Figure 7. We have used
light-weight closure conversion on the internal fragments of applyf. When
translated to the target machine code, the functions applyf, lp_i, lp_j,
and k will all be in the same cluster and share the same stack frame. Notice
also that the cluster is still in a DS representation; for example, the call to f
has an implicit return continuation.

paper.tex; 6/09/2006; 17:17; p.13



14 Reppy

5. Implementation

We have described LCPS as a transformation that is applied prior to the clo-
sure conversion, but in the MOBY compiler it is implemented as part of the
cluster-conversion phase described in Section 2.2. In this section, we describe
how our analysis and LCPS conversion are integrated into cluster conversion,
and we also describe one other application of LCPS in our compiler.

5.1. ANALYSIS

The analysis is organized into two sub-phases. The first sub-phase constructs
a known-call graph (i.e., a partial call graph with edges for calls to known
functions) and uses the graph to detect LCPS candidates and map functions to
clusters. The second sub-phase determines the free variables of each cluster.

Computing the cluster assignment involves the following steps:

1. We construct the known-call graph from the BOL term. This graph has
nodes corresponding to the functions defined in the BOL term, plus spe-
cial unknown caller and unknown callee nodes. The graph has forward
edges from callers to callees, which are labeled as corresponding to a tail
or non-tail call, and back-edges from callees to callers, which are also
labeled as to whether the corresponding call was a tail call. Either the
callee or caller may be unknown.

2. The known-call graph is used to identify LCPS candidates by comput-
ing a conservative approximation of the return continuations of known
functions. The analysis works by propagating abstract return continua-
tions across the forward edges in the known-call graph. We handle mu-
tually recursive functions by iterating to a fixed-point; since the analysis
is monotonic and the abstract domain is short, this process converges
quickly. This analysis produces a set of known functions whose non-tail
call sites are candidates for LCPS conversion.

3. Frame conversion computes the cluster assignment using the known-call
graph. We first determine those functions that must map to entry frag-
ments; i.e., those functions that either escape or have non-tail calls. The
remaining functions are known functions that only have tail calls to them.
If such a function is dominated by a single cluster, then it can be mapped
to an internal fragment in that cluster. Otherwise, it must be mapped to
an entry fragment of a new cluster. We use a depth-first traversal across
the back edges in the known-call graph to compute this mapping.

4. If the LCPS analysis (Step 2 above) computes a non-empty set of can-
didate sites, then we determine split-points (i.e., program points where a

paper.tex; 6/09/2006; 17:17; p.14



Optimizing Nested Loops 15

new λ-abstraction must be introduced to explicitly represent a continu-
ation). Split points correspond to the case in Rule 14 of Figure 6 where
S(e1) = true. We also determine the places where tail-calls to these
continuations must be introduced.

5. The last step is to merge the cluster of the caller and callee for each LCPS
candidate site. We also introduce fragments that correspond to the explicit
continuation functions introduced by LCPS conversion.

In this process, the steps 2, 4, and 5 were added to support LCPS conversion.
Once this sub-phase is complete, the mapping to clusters and fragments has
been determined. It is represented using a combination of annotations on the
BOL terms and auxiliary data structures.

The second part of the analysis is the free variable analysis. For each
cluster, we compute its free variables, and for each fragment, we compute
its light-weight closure variables. These variables are free variables of the
fragment that defined elsewhere in the cluster, and thus can be passed in as
extra arguments.

5.2. TRANSFORMATION

With the information computed by the analysis sub-phases, the transforma-
tion part of cluster conversion rewrites the BOL input term to BOL clusters.
The transformation sub-phase also makes the representation of functions as
code-pointer/environment-pointer pairs explicit by introducing code to allo-
cate closures and replacing free variable references with fetches from the
cluster’s closure. Following cluster conversion, we have a pass that inlines
continuation fragments that are only called once (for example, the continua-
tion k in Figure 7 can be inlined in the body of lp_j).

5.3. DECONTIFICATION

Another application of LCPS conversion in the MOBY compiler is decontif-
ication — turning local continuation operations into tail function calls. BOL
has a weak form of explicit continuations that is used to implement exceptions
and concurrency primitives [7]. BOL continuations are not first-class, but
instead have a lifetime that is restricted to the lifetime of their scope. This
restriction makes it possible to stack allocate continuations. The binding

let cont k(x1, . . . , xn) = e1 in e2 end

reifies the current continuation by binding k to the current continuation pre-
fixed by λ (x1, . . . , xn) . e1. The scope of k is e2. The expression

throw k (x1, . . . , xn)

paper.tex; 6/09/2006; 17:17; p.15



16 Reppy

transfers control to the continuation bound to k, with the values of the xi

bound to the parameters of k. For example, the expression

(let cont k(x) = x+1 in (throw k (7)) - 5 end) + 4

evaluates 12.
As an example of how BOL continuations are used, consider the following

MOBY function that wraps an exception handler around the call to f:

fun g (x : Int, y : Int) -> Int {
(try f(x / y) except { ex => 17 }) + x

}

The compiler translates this code into the following BOL representation:

fun g (x, y, exh) = let
val t1 = let

cont handler (ex) = 17
val t2 = if (y = 0)
then throw handler (DivZeroExn)
else x / y

in f (t2, handler) end
in t1 + x end

where DivZeroExn is a global BOL variable that is bound to the “division
by zero” exception. In this translation, the continuation bound to handler
is used both in a local throw and is passed as the exception handler to f.8

This example illustrates an opportunity for optimization. We would like
the local throw to be compiled as a direct jump, but the continuation at
the throw to handler is different from the continuation at handler’s
binding. Our solution is to convert the right-hand-side of a cont binding
into a tail-call of a new fragment and to use LCPS conversion to convert
the enclosing continuation of the cont binding into another fragment. For
the above example, this transformation results in the following BOL cluster
(as before, we have omitted the explicit closure representations to make the
example more readable):

fun g (x, y, exh) = let
cont handler (ex) = k1 (17, x)
in
if (y = 0)
then throw handler (DivZeroExn)
else k1 (f (x / y, handler), x)

end
and k1 (t1, x) = t1 + x

8 When translating to BOL, we add an extra parameter to each function, which is its ex-
ception handler continuation. We omitted the handler parameters for the sake of simplicity in
the previous examples.

paper.tex; 6/09/2006; 17:17; p.16



Optimizing Nested Loops 17

Cluster conversion has introduced the fragment k1 for the enclosing contin-
uation of handler (k1 is a join-point in the control-flow). The right-hand-
side of the continuation binding is replaced by a tail-call (goto) to k1 and the
result of calling f is also passed to k1.

This code has the property that the throw to handler has the same
continuation as at handler’s binding (i.e., the throw is in a tail position),
which means that we can correctly inline handler at the throw site.

fun g (x, y, exh) = let
cont handler (ex) = k1 (17, x)
in
if (y = 0)
then k1 (17, x)
else k1 (f (x / y, handler))

end
and k1 (t1, x) = t1 + x

We perform this transformation on all cont bindings and rely on a subse-
quent phase to inline throws to continuations that are bound in the same
cluster.

6. Experience

To judge the usefulness of LCPS conversion, we measured the performance
of three small programs compiled both with and without LCPS conversion.
We disabled LCPS conversion by having the analysis return an empty set of
LCPS candidates, which was the only difference between the two versions of
the compiler. The programs we measured are:

loop2 — a two-deep loop nest, where each loop is iterated 10000 times for
a total of 108 iterations. This program is essentially the example given
in Figure 1.

loop3 — a three-deep loop nest,where each loop is iterated 1000 times for
a total of 109 iterations.

mm — 100 iterations of the multiplication of two 100× 100 integer matrices.
We use a row-major representation of the matrices with explicit index
computations and unchecked (or unsafe) array accesses.

The first two of these are synthetic benchmarks designed to highlight the
impact of loop overhead. In these programs, the body of the inner loop is a
call to an unknown null-function with the loop variables passed as arguments.
Because the workload of these loops is minimal, the loop overhead dominates
their execution time and any performance differences can be attributed to

paper.tex; 6/09/2006; 17:17; p.17



18 Reppy

Table I. Measured execution times (in seconds)

Moby OCAML C
Benchmark (no LCPS) (LCPS) (no loops) (loops)

loop2 2.15 1.83 2.08 1.81 1.54
loop3 23.64 20.63 22.21 20.87 16.79
mm 1.95 1.39 1.88 1.71 1.13

Moby
(no LCPS)

Moby
(LCPS)

OCAML
(no loops)

OCAML
(loops)

C
0.00

0.20

0.40

0.60

0.80

1.00

Loop2
Loop3
MM

Figure 8. Normalized execution times

LCPS conversion. The third program is small, but represents a real-world
application of nested loops.

We measured the wall-clock time (using the time command) to execute
the program on a lightly-loaded 733MHz Pentium III system running version
2.2.14 of the Linux kernel. Each program was run five times and we report
the median time. The raw performance data are given in Table I. We also nor-
malized the execution time to the MOBY version without LCPS conversion.
The normalized times are shown in Figure 8; from this graph one can see that
LCPS conversion reduces loop overhead in these cases from 10% to 25%.
An examination of the generated machine code suggests several reasons for
this improvement: the non-LCPS code allocates closure objects for the inner
functions, which adds time to the loop and increases GC overhead; the non-
LCPS code uses procedure call/return to implement the control-flow between
the outer and inner loops; lastly, because LCPS conversion results in larger
clusters, the register allocator is able to use machine registers more effectively
for it. We expect to be able to increase the benefits of LCPS conversion by
applying standard loop optimizations to the BOL cluster representation.

paper.tex; 6/09/2006; 17:17; p.18



Optimizing Nested Loops 19

We also measured the execution time of optimized OCAML and C ver-
sions of these benchmarks.9 The OCAML language provides for-loops over
integer intervals as a language feature. These loops are preserved in the IR
and result in code that is similar to that produced by a C compiler [18], so we
measured OCAML versions of our benchmarks, written both with for-loops
and with tail recursion. There are a couple of observations that we can make
about the OCAML numbers. The tail-recursive MOBY code, when compiled
with LCPS enabled, is competitive with the OCAML for-loop code (slightly
slower on loop2 and faster on loop3 and mm), which demonstrates that
one does not need special loop forms in a compiler’s IR to support efficient
loops. While special loop forms are not required in the IR, including them
in the surface language may be desirable since they can provide a more
concise notation for some computational structures. Unfortunately, OCAML
exhibits a significant performance discrepancy between the two styles of
writing nested loops, which means that programmers must consider the per-
formance impact when choosing a programming style. By using LCPS, we
can simplify the compiler (by eliminating the need for special looping forms
in the IR), while providing consistent performance for both styles of pro-
gramming nested loops. Since OCAML also uses a direct-style IR, it should
be possible to improve its handling of nested recursion by adding LCPS
conversion.

The C numbers are included as a sanity check; they demonstrate that while
the MOBY/LCPS version is slower than C, it is a matter of less than 20% and
not a factor of two. We believe that a large part of this difference is owed to
the fact that the MLRISC framework does not do sophisticated code layout
and jump chaining yet.

7. Related work

Most of the literature about compiler optimizations for strict functional lan-
guages uses CPS as a representation. Tarditi’s thesis [33] is probably the most
detailed description of a DS-based optimizer for strict functional languages,
but he does not collapse nested loops. We are not aware of any direct-style
compiler that implements LCPS conversion (the OCAML [19], TIL [34, 33],
and RML [23] compilers do not), but our techniques should be applicable to
them. The MLJ compiler, which compiles SML to JAVA bytecodes performs
a transformation that converts non-tail calls to gotos in a way that is simi-
lar to LCPS (see Section 6.6 of [3]), but the details of how and when this
transformation is applied are not given.

9 We used ocamlopt version 3.00 with the -unsafe option and gcc version 2.91.66
with the -O2 option.

paper.tex; 6/09/2006; 17:17; p.19



20 Reppy

Kelsey describes a technique for merging functions in a first-order CPS-
based representation [13, 14]. In his representation, λ abstractions are anno-
tated with either proc, cont, or jump — λproc functions correspond to BOL
clusters, λjump functions correspond to internal fragments, and λcont functions
are return continuations. Kelsey outlines a scheme for merging clusters by
converting a λproc to a λjump when the λproc is always called with the same
return continuation. The MLton compiler for Standard ML uses a first-order
representation, called FOL, that is similar to Kelsey’s and it has a transfor-
mation phase, called contification, that performs a transformation similar to
Kelsey’s technique. Kelsey’s paper did not describe an analysis for his trans-
formation, but a recent paper by Fluet and Weeks describes the two analyses
used in MLton [9]. The first of these, called ACall, detects the situation where
Kelsey’s transformation can be applied. It is similar to our frame conversion
analysis (Step 3 on page 14). The second, ACont, is an adaptation of our
analysis to FOL. The major difference between our work and these schemes
is that they are starting from a CPS representation where they already have
all the explicit continuations they need and so their focus is on the cluster as-
signment problem, whereas we are focused on introducing a minimal number
of explicit continuation functions in a DS representation to improve cluster
merging. The fact that our analysis can be applied to a CPS IR to drive cluster
merging is a result of the fact that it detects call sites that have a statically
known return continuation.

LCPS is a special instance of the more general class of transformations,
called Selective CPS Transformation, where a CPS conversion is applied
partially rather than completely. One early example is work by Danvy and
Hatcliff for CPS transforming call-by-name programs that have strictness an-
notations [5]. Their technique selectively uses the CBV CPS transformation
for strict terms and the CBN CPS transformation for non-strict terms.

Kim, Yi, and Danvy have used selective CPS transformation as a technique
for replacing SML’s exception raising and handling mechanisms with con-
tinuation operations [16]. They introduce a pair of explicit return and handler
continuations for each expression that might raise an uncaught exception and
they add explicit continuation parameters to each function that might raise
an uncaught exception. Their motivation is to allow optimizations similar to
our decontification optimization described in Section 5.3. One major differ-
ence is that BOL already has an explicit representation of exception handler
continuations, whereas Kim et al.’s work is primarily concerned with adding
such continuations. Another difference is that while selective CPS conversion
is a partial CPS conversion (i.e., terms that cannot raise uncaught exceptions
do not need explicit continuations), it is a global transformation that can span
multiple functions. Our LCPS conversion, on the other hand, is local to one
or two functions.

paper.tex; 6/09/2006; 17:17; p.20



Optimizing Nested Loops 21

More recently, Kim and Yi have described a type-based approach for
controlling partial CPS conversion [15]. Their motivating example is call-
ing CPS-converted functions from non-CPS converted code, but one could
probably use their annotated representation as a target of our analysis. A
recent paper by Nielsen formally defines and proves correct a selective CPS
conversion for a language with first-class continuations [21]. As with Kim et
al.’s work, this technique requires global transformations.

8. Conclusion

We have presented a transformation, called Local CPS conversion, that can
be used in a direct-style compiler to improve the performance of nested loops
and have described its implementation in the MOBY compiler. Our measure-
ments show a 10% to 25% reduction in loop overhead for a simple loop nests.
While we have only presented fairly simple examples, LCPS conversion can
handle complicated looping structures, such as multiple inner loops and loops
expressed as mutually recursive functions as one would get when encoding
state machines. LCPS also enables specializing returns when the return con-
text is known (i.e., there is only one return continuation) [28]. We have also
sketched another application of LCPS conversion: decontification, where we
replace throws with direct jumps (represented as tail calls). LCPS conver-
sion is one example of exploiting the advantages of CPS in a direct-style
compiler; we plan to explore other opportunities for exploiting CPS in our
compiler.

Acknowledgements

Olivier Danvy, Kathleen Fisher, Lal George, Jon Riecke, and the anonymous
referees provided many useful comments on various drafts of this paper.
Kathleen Fisher helped debug the implementation and Allen Leung provided
timely MLRISC improvements and bugfixes. Stephen Weeks provided a de-
tailed description of the MLton contification analysis and transformation.

References

1. Appel, A. W.: 1992, Compiling with Continuations. New York, N.Y.: Cambridge
University Press.

2. Appel, A. W. and T. Jim: 1997, ‘Shrinking lambda expressions in linear time’. Journal
of Functional Programming 7(4), 515–540.

3. Benton, N., A. Kennedy, and G. Russell: 1998, ‘Compiling Standard ML to Java byte-
codes’. In: Proceedings of the Third ACM SIGPLAN International Conference on
Functional Programming. pp. 129–140.

paper.tex; 6/09/2006; 17:17; p.21



22 Reppy

4. Damian, D. and O. Danvy: 2000, ‘Syntactic accidents in program analysis: On the impact
of the CPS transformation’. In: Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming. pp. 209–220.

5. Danvy, O. and J. Hatcliff: 1992, ‘CPS transformation after strictness analysis’. ACM
Letters on Programming Languages and Systems 1(3), 195–212.

6. Fisher, K. and J. Reppy: 1999, ‘The design of a class mechanism for Moby’. In:
Proceedings of the SIGPLAN’99 Conference on Programming Language Design and
Implementation. pp. 37–49.

7. Fisher, K. and J. Reppy: 2001, ‘Compiler support for lightweight concurrency’. Submit-
ted for publication (available from www.cs.bell-labs.com/˜jhr/moby).

8. Flanagan, C., A. Sabry, B. F. Duba, and M. Felleisen: 1993, ‘The essence of compiling
with continuations’. In: Proceedings of the SIGPLAN’93 Conference on Programming
Language Design and Implementation. pp. 237–247.

9. Fluet, M. and S. Weeks: 2001, ‘Contification using dominators’. In: Proceedings of the
Sixth ACM SIGPLAN International Conference on Functional Programming. pp. 2–13.

10. George, L. and A. Appel: 1996, ‘Iterated register coalescing’. ACM Transactions on
Programming Languages and Systems 18(3), 300–324.

11. George, L., F. Guillaume, and J. Reppy: 1994, ‘A portable and optimizing back end for
the SML/NJ compiler’. In: Fifth International Conference on Compiler Construction.
pp. 83–97.

12. Johnsson, T.: 1985, ‘Lambda-lifting: Transforming programs to recursive equations’. In:
Functional Programming Languages and Computer Architecture. pp. 190–203.

13. Kelsey, R. and P. Hudak: 1989, ‘Realistic compilation by program transformation’. In:
Conference Record of the 16th Annual ACM Symposium on Principles of Programming
Languages. pp. 281–292.

14. Kelsey, R. A.: 1995, ‘A correspondence between continuation passing style and static
single assignment form’. In: Proceedings of the ACM SIGPLAN Workshop on
Intermediate Representations. pp. 13–22.

15. Kim, J. and K. Yi: 2001, ‘Interconnecting between CPS terms and non-CPS terms’. in
[25], pp. 7–16.

16. Kim, J., K. Yi, and O. Danvy: 1998, ‘Assessing the overhead of ML exceptions by
selective CPS transformation’. In: Proceedings of the 1998 ACM SIGPLAN Workshop
on ML. pp. 103–114.

17. Kranz, D., R. Kelsey, J. Rees, P. Hudak, J. Philbin, and N. Adams: 1986, ‘Orbit: An
optimizing compiler for Scheme’. In: Proceedings of the SIGPLAN’86 Symposium on
Compiler Construction. pp. 219–233.

18. Leroy, X.: 1997, ‘The effectiveness of type-based unboxing’. In: ACM SIGPLAN Work-
shop on Types in Compilation (TIC97). Available as Technical report BCCS-97-03,
Boston College, Computer Science Department.

19. Leroy, X.: 2000, ‘The Objective Caml System (release 3.00)’. Available from
http://caml.inria.fr.

20. Moggi, E.: 1991, ‘Notions of computation and monads’. Information and Computation
93(1), 55–92.

21. Nielsen, L. R.: 2001, ‘A selective CPS transformation’. In: S. Brooks and M. Mislove
(eds.): Electronic Notes in Theoretical Computer Science, Vol. 45. Also available as
BRICS Report RS-01-30.

22. Nielson, F., H. R. Nielson, and C. Hankin: 1999, Principles of Program Analysis. New
York, NY: Springer-Verlag.

23. Oliva, D. P. and A. P. Tolmach: 1998, ‘From ML to Ada: Strongly-typed language
interoperability via source translation’. Journal of Functional Programming 8(4),
367–412.

paper.tex; 6/09/2006; 17:17; p.22



Optimizing Nested Loops 23

24. Reppy, J.: 2001, ‘Local CPS conversion in a direct-style compiler’. in [25], pp. 13–22.
25. Sabry, A. (ed.): 2001, ‘Proceedings of the Third ACM SIGPLAN Workshop on Con-

tinuations (CW’01)’. Technical Report 545, Computer Science Department, Indiana
University.

26. Sabry, A. and M. Felleisen: 1994, ‘Is Continuation-passing style useful for Data Flow
analysis?’. In: Proceedings of the SIGPLAN’94 Conference on Programming Language
Design and Implementation. pp. 1–12.

27. Shao, Z. and A. W. Appel: 1994, ‘Space-efficient closure representations’. In: Confer-
ence record of the 1994 ACM Conference on Lisp and Functional Programming. pp.
150–161.

28. Shao, Z., J. H. Reppy, and A. W. Appel: 1994, ‘Unrolling Lists’. In: Conference record
of the 1994 ACM Conference on Lisp and Functional Programming. pp. 185–191.

29. Shivers, O.: 1991, ‘Control-flow Analysis of Higher-order Languages or Taming
Lambda’. Ph.D. thesis, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA. Available as Technical Report CMU-CS-91-145.

30. Steckler, P. A. and M. Wand: 1997, ‘Lightweight Closure Conversion’. ACM Transac-
tions on Programming Languages and Systems 19(1), 48–86.

31. Steele Jr, G. L.: 1976, ‘LAMBDA: The ultimate declarative’. Technical Report AI Memo
379, Massachusetts Institute Technology, Artificial Intelligence Laboratory.

32. Steele Jr., G. L.: 1978, ‘Rabbit: A compiler for Scheme’. Master’s thesis, MIT.
33. Tarditi, D.: 1996, ‘Design and implementation of code optimizations for a type-directed

compiler for Standard ML’. Ph.D. thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA. Available as Technical Report CMU-CS-97-108.

34. Tarditi, D., G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee: 1996, ‘TIL: A type-
directed compiler optimizing compiler for ML’. In: Proceedings of the SIGPLAN’96
Conference on Programming Language Design and Implementation. pp. 181–192.

paper.tex; 6/09/2006; 17:17; p.23



paper.tex; 6/09/2006; 17:17; p.24


