
Compiler support for lightweight concurrency

Kathleen Fisher
AT&T Labs, Research

kfisher@research.att.com

John Reppy
Bell Labs, Lucent Technologies
jhr@research.bell-labs.com

April 3, 2020

Abstract

This paper describes the design of a direct-style, λ-calculus-based compiler intermediate representa-
tion (IR) suitable for implementing a wide range of surface-language concurrency features while allow-
ing flexibility in the back-end implementation. The features that this IR includes to support concurrency
include a weak but inexpensive form of continuations and primitives for thread creation, scheduling,
and termination. Although this work has been done in the context of implementing concurrency for the
MOBY programming language, the model is general and could be used in the context of other languages.
In this paper, we describe the IR’s continuations and thread manipulation primitives and illustrate their
expressiveness with examples of various concurrency operations. We define an operational semantics to
specify the operations precisely and to provide a tool for reasoning about the correctness of implemen-
tations. To illustrate the flexibility of our the approach, we describe two existing implementations of the
threading model — one based on a one-to-one mapping of language threads to POSIX threads and one
based on a many-to-many mapping.

1 Introduction

Concurrency provides an important abstraction mechanism for programming various kinds of reactive sys-
tems, such as user interfaces and distributed services [Pik89, GR93, HJT+93, Rep99]. Thread libraries for
sequential languages like C or C++ are currently the most common form of concurrent programming, but
languages that support concurrency directly are becoming more common. As with any abstraction, it is
important that concurrency be implemented efficiently, otherwise programmers will not take advantage of
it.

The important performance issues for concurrency are the time it takes to create threads, the speed of
synchronization and communication, and the space required to represent threads. Experience with Concur-
rent ML (CML) has shown that a very lightweight implementation of concurrency primitives encourages
a programming model where thread abstraction can be used liberally [Rep99].1 We are currently working
on the implementation of concurrency for the MOBY programming language, which is an ML-like lan-
guage with support for both object-oriented [FR99] and CML-style concurrent programming. Our goal
is to provide an implementation of MOBY’s concurrency features that is as close in efficiency to CML’s
implementation as possible.2 More specifically, our goals are to support low-overhead synchronization and
communication, fast thread creation, space efficient thread data structures, and easy access to the multipro-
cessing and concurrency features of the underlying operating system.

1Many CML applications use hundreds, or even thousands, of threads.
2We do not expect to achieve parity with the CML implementation, because our implementation supports multiprocessing and

multiple system threads, whereas CML’s implementation uses a single system process.

One common approach to implementing threading libraries for sequential languages has been to use
continuations as a representation of threads [Wan80, Shi97, Rep99]. This approach includes many ex-
amples using the first-class continuations of SCHEME [ADH+98] and SML/NJ [AM91], as well the use
of setjmp/longjmp in C. Depending on the efficiency of the underlying continuation mechanism, this
approach can result in extremely efficient threading libraries. Our approach builds on this idea that continu-
ations are an effective tool for implementing concurrency mechanisms, but instead of adding continuations
to MOBY, we added them to our compiler’s intermediate representation (IR). Putting continuations into the
IR has several advantages: we avoid the complexity of continuations as a surface-language feature, we can
use a more restricted form of continuations that admits efficient implementation, and we can take advantage
of existing compiler optimizations to improve the performance of the concurrency mechanisms.

This paper describes our approach to implementing concurrency in the MOBY compiler. The main
contribution of the paper is the design of a compiler IR, called BOL, that effectively supports the efficient
implementation of concurrent language mechanisms. This design has two major components: a restricted
form of continuations and a collection of operations that support thread creation and scheduling. Our contin-
uations are one-shot and have a lifetime delimited by their scope. Our scheduling model is abstract, which
allows multiple implementations with different performance characteristics. We describe two implementa-
tions that illustrate the flexibility of our design. While this work has been done in the context of compiling
MOBY, the approach is general and could be used to implement other concurrent languages.

We organize the remainder of this paper as follows. In the next section, we introduce BOL, describe
BOL continuations, and illustrate their use by showing how to use such continuations to implement non-
local control flow. In Section 3, we describe the BOL primitives for thread management and scheduling. To
illustrate the expressiveness of BOL’s thread model, we show in Section 4 how to use BOL operations to
implement a variety of surface-language concurrency features. Section 5 presents an operational semantics
for BOL, providing a tool for reasoning about the limited lifetimes of BOL continuations and documentation
for the behavior of the various scheduling primitives. We have two implementations of our design, which
we describe in Section 6. The first implementation maps each MOBY thread onto its own system thread,
while the second maps multiple MOBY threads onto each system thread. Section 8 describes some areas for
improvement in these implementations and Section 9 describes related work. We conclude with a summary
in Section 10.

2 BOL

The MOBY compiler translates the typed abstract syntax tree produced by typechecking to a weakly typed,
direct-style intermediate representation called BOL.3 This IR is used both for optimizing the code from
a single module and also for cross-module inlining [FPR01]. Because BOL is a compiler IR, it does not
perform runtime checking to avoid executing buggy code: it assumes that the language front-end has already
done such checking on user code and has generated correct BOL code. This assumption allows BOL to avoid
expensive runtime checks.

BOL is a normalized representation that makes dataflow explicit by binding each intermediate result to
a variable [FSDF93], but in this paper we use the denormalized syntax of Figure 1 to make the examples
more readable.

BOL includes four syntactic classes: blocks, statements, expressions, and primops. Blocks group state-
ments and serve to delineate the scope of bindings. A statement is either an expression or a binding followed
by a statement. Bindings include function bindings, let bindings, and a “do” binding, which evaluates

3BOL’s type system is roughly equivalent to C’s without recursive types. It is used to guide the mapping of BOL variables to
machine registers and to provide representation information for the garbage collector. Since the type system is largely orthogonal
to concurrency issues, we have omitted the BOL types from the examples in this paper.

2

blk ::= { stmt }

stmt ::= exp
| fun f (x1, . . . , xn) blk stmt
| let (x1, . . . , xn) = exp stmt
| do exp stmt
| letcont k (x1, . . . , xn) = exp in blk
| let k′ = apply_cont k (exp1, . . . , expn) stmt
| · · ·

exp ::= blk
| if expthen exp else exp
| f (exp1, . . . , expn)
| alloc (exp1, . . . , expn)
| exp#i
| exp#i := exp
| throw k (exp1, . . . , expn)
| primop(exp1, . . . , expn)
| · · ·

primop ::= AcquireLock | ReleaseLock
| I32Add | . . .

Figure 1: BOL syntax

its right-hand-side expression for side effects. Expressions include blocks, conditionals, function calls,
heap-object allocation, heap-object field selection (zero-based indexing), imperative update of heap-object
fields, the application of primitive operations to arguments, variables, and literals. Statements and expres-
sions also include the continuation operations that we describe in the next section. Primitive operations
include AcquireLock and ReleaseLock for manipulating spinlocks and arithmetical operations such
as I32Add for adding 32-bit integers and I32Eq for testing two 32-bit integers for equality.

2.1 BOL continuations

To support non-local control flow, BOL has a weak form of explicit continuations. The binding

letcont k (x1, . . . , xn) = exp in blk

reifies the current continuation by binding k to the current continuation prefixed by λ (x1, . . . , xn) . exp.
The scope of k is blk. We use a different syntax from the other binding forms to make the scope of a
letcont clear. The expression

throw k (exp1, . . . , expn)

transfers control to the continuation bound to k, with the values of the expi bound to the parameters of k.
Finally, the binding

let k′ = apply_cont k (exp1, . . . , expn)

3

partially applies the continuation k to its arguments and binds k′ to a parameterless continuation that repre-
sents the control part of k. We illustrate the use of apply_cont to pass values from one thread to another
in Section 4.3.

BOL continuations are not first-class, but instead have a lifetime that is restricted to the lifetime of
their scope. This restriction makes it possible to stack allocate continuations and is the reason that the
apply_cont operation is primitive. In terms of expressiveness, BOL continuations are weaker than
Bruggeman et al.’s one-shot continuations [BWD96] because of their limited lifetimes. They are similar
to the continuations of C-- [RP00b] except that C-- continuations are not one-shot. BOL continuations are
perhaps closest to C’s setjmp/longjmp mechanism [ANS90] in terms of expressiveness. The formal
semantics for the fragments of BOL described in this section appear in Section 5.1.

2.2 Example — exception handlers

To illustrate how letcont and throw may be used to implement non-local control flow features, we
give an example illustrating how they are used in the MOBY compiler to implement exception handling.
Figure 2(a) gives a simple MOBY function that has an exception handler. In this example, the function f
applies g to x divided by y. The application is wrapped by an exception handler that catches all exceptions
and returns 17. The result of the call to g or the handler is incremented by 1 and returned as the result of
f. The handler in this example will handle uncaught exceptions raised in g as well as the DivByZero

fun f (x : Int, y : Int) -> Int {
(try g(x/y) except { ex => 17 }) + 1

}

(a) A MOBY exception handler

fun f (x, y, exh) = (
let t1 =

letcont exhK (ex) = 17
in (

let t2 = if I32Eq (y, 0)
then throw exhK (DivByZero)
else I32Div (x, y)

in g (t2, exhK)
)

in I32Add (t1, 1)
)

(b) The BOL representation

Figure 2: A MOBY exception handler and its BOL representation

exception raised when y is zero.
Figure 2(b) shows the translation of f into BOL. When translating to BOL, we add an extra parameter

to each function, which is its exception handler continuation (e.g., the parameter exh in f). The exception
handler in Figure 2(a) is translated to a letcont binding of the continuation exhK, which takes the excep-
tion packet as an argument (unused in this case). In this example, the continuation bound to exhK is used

4

both in a local throw and is passed as the exception handler to g.

3 BOL thread operations

Although the continuations we have presented so far are an important part of our concurrency implemen-
tation, they are not sufficient by themselves to support concurrency and multiprocessing. The restricted
lifetime of BOL continuations means that we cannot use them to implement thread creation, so we extend
BOL with operations for thread creation and termination. We also extend BOL with operations for ma-
nipulating an abstract scheduling queue. By using abstract scheduling operations, we can support different
runtime threading models without changing the front-end or libraries. The only changes are in the code
generator, which maps BOL scheduling operations to machine code, and in the runtime system code. In
this section, we describe our extensions to BOL, which collectively define an abstract interface to the thread
support provided by the code generator and runtime system. A formal semantics for these operations is
given in Section 5.2, and we describe two different implementations of them in Section 6.

3.1 Tasks and threads

The BOL thread model distinguishes between tasks and threads. Tasks correspond to operating-system
threads, such as POSIX threads [But97], or processes, whereas threads correspond to language-level threads
(i.e., MOBY threads). Tasks provide the computation resources for running (or hosting) threads. We as-
sume that tasks may run in parallel and that task creation, termination, and scheduling are handled by the
underlying operating system.

There are several different ways to map threads to tasks. In the one-to-one mapping, there is a one-to-one
correspondence between threads and tasks; in the many-to-one mapping, multiple threads are multiplexed
on a single task, while in the many-to-many mapping, multiple threads are multiplexed over multiple tasks.
When there are multiple threads per task, the implementation of the threading model may support pre-
emptive scheduling between threads on a given task. The BOL thread model hides the choice of mapping
from threads to tasks, along with other implementation details, which allows us to support different imple-
mentations of the threading model. This flexibility has two advantages: it supports improved application
performance by allowing one to choose a threading model that best matches the needs of the application and
it provides a testbed for experimenting with different implementation techniques.

BOL does not have an explicit representation of tasks; instead there is an implicit notion of the host,
which is the task running the code. BOL does have an abstract thread ID type, which is an abstraction
of thread-specific data (e.g., its stack, locks, etc.). Each task has a current thread; the BOL operation
get_thread_id is used to get the current thread ID. Threads that are not running (called suspended) are
represented by a pair of a thread ID and a resume continuation.

3.2 Thread creation

Because BOL continuations have limited lifetimes, it is not possible to bootstrap new execution contexts
using letcont. Instead, BOL provides a thread creation statement

let (tid, k) = create (f)

This statement creates and returns a new (suspended) thread for evaluating the function f. The new thread
is represented by its ID (tid) and an initial resume continuation (k) that will execute the application f().
Unlike continuations created by letcont, k has unlimited lifetime, although it is still one-shot.

5

3.3 Scheduling support

Implementing synchronization and communication primitives requires operations for scheduling threads. To
provide explicit control over such scheduling in an implementation-independent fashion, we augment BOL
with a scheduling queue abstraction. The basic idea is that there is a collection, called the ready queue, of
suspended threads that are ready to run and operations for adding and removing threads from this collection.
The following BOL forms define the interface to the scheduling queue abstraction:

do lock_self ()
This operation locks the state of the current thread; the state is unlocked when the host task starts
executing some other thread (see dispatch below). Threads must be locked prior to being added to
the ready queue or stored in some communication data structure (e.g., channel waiting queue).

do enqueue (tid, k)
This operation marks the argument thread as ready to run. It is an unchecked run-time error for this
operation to be called on a thread that is either running or ready.

do enqueue_self (k)
This operation adds the current thread to the ready queue with resume continuation k. It is an
unchecked runtime error to call this operation when the current thread is unlocked.

let (tid, k) = dequeue()
This operation removes a thread from the ready queue. This operation should succeed even when
there are no ready threads; in that case either an idle thread or special scheduler thread should be
returned by the implementation.

dispatch(tid, k)
This expression form is used to switch control to the thread tid at the continuation k. It is only enabled
when the thread tid is unlocked (except in the special case where tid is the host’s current thread). In
addition to throwing to k, this expression unlocks the host task’s current thread and makes tid be the
host’s new current thread.

These operations manage any concurrency control required to protect the scheduler data structures. Concur-
rency control on the thread-specific data (e.g., stack) is provided by the combination of lock_self and
dispatch. The typical usage pattern of these primitives has the form

letcont k () = ()
in {

do lock_self()
scheduling code
dispatch (nextTid, nextK)

}

where the current thread’s resume continuation is bound to k and then “scheduling code” enqueues k in
either the ready queue or some communication primitive’s waiting queue. The “scheduling code” is executed
with the current thread’s state being locked. Conceptually, the lock_self primitive can be thought of as
marking the transition of the current thread from running to suspended. We need the locking because the
host task is using the current thread’s stack to execute the “scheduling code.”

3.4 Thread termination

To release the resources associated with a given thread, we provide expression form

terminate()

6

which terminates the host task’s current thread. Once a thread has been terminated, its host task is free to
execute some other ready thread (i.e. via dequeue and dispatch).

4 Implementing concurrency in BOL

In this section, we give a few examples of how the combination of BOL continuations and thread operations
are used to implement various concurrency mechanisms. These examples are implemented in BOL; in some
cases this code is generated by the compiler as it translates MOBY concurrency features to BOL, whereas
in other cases, the code is defined in library modules. In either case, the compiler is able to inline these
definitions at their points of use. An extensive set of examples of implementing concurrency features using
continuations can be found in Chapter 10 of [Rep99].

4.1 Context switching

Our first example is the implementation of yield, which performs explicit context switching. While
yield is not necessary in a preemptively scheduled system, its implementation illustrates the dispatch
pattern found in many other operations. It is implemented in BOL as follows:

fun yield (exh) {
letcont myK () = ()
in {

do lock_self ()
do enqueue_self (myK)
let (tid, nextK) = dequeue()
dispatch (tid, nextK)

}
}

This code first reifies the return continuation of the yield function as the variable myK. It then enqueues
this continuation and the current thread’s ID in the scheduling queue. Finally, it dequeues another thread
from the scheduling queue and dispatches to it.

4.2 Thread spawning

Another standard operation is spawning a new thread to execute some expression. This operation is more
complicated than just using the create operation, since we need to protect against uncaught exceptions
in the new thread. Figure 3 has the BOL implementation of a spawn function that creates a new thread
to evaluate the function f that is passed to spawn as an argument. To handle uncaught exceptions in the
evaluation of f, we define a new function (f’) that wraps the application of f with an exception handler
of last resort and termination code. The implementation of spawn creates a new thread to evaluate f’ and
enqueues it in the scheduling queue. Then it yields control to the next ready thread.4

Because we are defining these higher-level concurrency operations in BOL, the compiler may be able
to apply optimizations. For example, if the compiler inlines spawn at the site of its application to a known
function, then it can inline the body of f in f’.5 In a program that uses many small, short-lived threads,6

this inlining can have a significant impact by reducing the number of function closures created and enabling
other optimizations. For example, the compiler can sometimes detect the case where the thread does not
raise an exception, which allows the “last resort” exception handler to be eliminated.

4Yielding is not necessary, but it lets the child thread run before the parent runs again.
5In the MOBY compiler, spawn is always applied to a known function because of the way translation from the surface language

works.
6We have found such usage patterns common in CML programs.

7

fun spawn (f, exh) {
fun f’ () {

do { letcont handler (exn) = ()
in { f(handler) }

}
terminate()

}
let (tid, childK) = create (f’)
do enqueue (tid, childK)
yield (exh)

}

Figure 3: BOL code for spawning a thread

4.3 MVars

Our third example is the implementation of MVars, which are a form of synchronous memory [Mil90,
BNA91, PGF96, Rep99]. An MVar is a memory cell that is either empty or full. There are two operations
on MVars:

take (mv)
This operation takes a value out of the MVar mv and makes it empty. If no value is available (i.e., mv
is empty), then the caller is blocked until mv becomes full.

put (mv, v)
This operation puts the value v into the MVar mv, changing mv’s state from empty to full. If mv is
already full, then an exception is raised.7

In our implementation, we represent an MVar as a triple of a spinlock, the MVar state, and the MVar
cell. This example uses the spinlock operations AcquireLock and ReleaseLock to provide lightweight
concurrency control for the MVar’s state. The state is an integer count of the number of threads waiting on
the MVar, with -1 signifying the full state. The cell stores the value in a full MVar and the list of waiting
threads in an empty MVar (to simplify this example, we use a LIFO scheduling policy).

The BOL code that implements take and put appears in Figures 4 and 5. The take operation
acquires the MVar’s spin lock and then checks to see if the MVar is full. If it is full, then take gets the
value, sets the state to empty, clears the cell, and releases the lock before returning the value. When the MVar
is empty, the take operation must add the calling thread to the waiting list. Notice that the continuations in
the waiting queue take the result as an argument; when put is called on an MVar that has waiting threads,
it passes the value directly to the waiting taker as part of its wakeup sequence.

The put operation first checks if there are any waiting threads. If there are none (i.e., the state field
mv#1 is 0), it installs its value into the MVar. If there are no waiting threads, but the MVar is full (i.e.,
the state field mv#1 is -1), it raises the FullMVar exception. Otherwise, there are threads waiting on the
empty MVar and the state field mv#1 holds the number of waiting threads. In this case, the put operation
decrements the number of waiting threads and removes the first waiting taker thread in the list. Since the
waiting taker’s continuation expects the MVar’s value, the put operation uses apply_cont to bind the

7Some forms of MVars block the caller until the MVar is empty [Mil90].

8

fun take (mv, exh) {
do AcquireLock(mv#0)
if I32Eq(mv#1, -1)

then {
let res = mv#2
do mv#1 := 0
do mv#2 := 0
do ReleaseLock(mv#0)
res

}
else {

letcont k(res) = res
in {

do lock_self ()
do mv#1 := I32Add(mv#1, 1)
do mv#2 := alloc(get_thread_id(), k, mv#2)
do ReleaseLock(mv#0)
let (tid, nextK) = dequeue()
dispatch (tid, nextK)

}
}

}

Figure 4: BOL implementation of MVar take operation

value in a resume continuation that can be added to the scheduling queue. This approach to passing the value
directly to the waiting taker contrasts with the typical imperative approach, in which the value is stored in
shared memory that is protected by a mutex and a condition variable is used to signal the waiting taker. Note
that we do not force a context switch when there is a waiting thread, although we might want to do so.

While these functions are too large to be good candidates for inlining, we can restructure them into a
wrapper that handles the fastpath (i.e., taking from a full MVar and putting into an empty one) and which
calls a separate BOL function for the the more complicated case that involves synchronization. Then the
wrapper function is a good candidate for inlining.

5 The semantics of BOL

In this section, we present a two-tiered formal system that defines the semantics of core elements of BOL.
In Section 5.1 we present a model of single-threaded BOL programs; in Section 5.2, we lift this model to
multi-threaded programs.8

5.1 Core BOL

The syntax of the single-threaded fragment of core BOL appears in Figure 6. Our semantics for this frag-
ment, which appears in full in Appendix A, is patterned after the CEK machine [FSDF93]. It is intended

8For notational convenience, we do not require core BOL terms to be written in a direct style.

9

fun put (mv, v, exh) {
do AcquireLock(mv#0)
if I32Eq(mv#1, 0)

then {
do mv#1 := -1
do mv#2 := v
ReleaseLock(mv#0)

}
else if I32Lt(mv#1, 0)

then {
do ReleaseLock(mv#0)
throw exh(FullMVar)

}
else {

do mv#1 := I32Sub(mv#1, 1)
let tid = mv#2#0
let rk = mv#2#1
do mv#2 := mv#2#2
do ReleaseLock(mv#0)
let rk’ = apply_cont rk(v)
enqueue (tid, rk’)

}
}

Figure 5: BOL implementation of MVar put operation

to serve as a tool for reasoning about the limited lifetimes of BOL continuations. To that end, we have re-
placed the continuation portion of the CEK machine with a pair consisting of a stack of continuations S and
a label l indicating which location in the stack contains the next continuation. Whenever the evaluation of
an expression reaches a value, the label is used to look up the next continuation k and the continuation stack
is cut to one below l using the operation S ↓ l. This cutting ensures that any continuations that have gone
out of scope are no longer available and that the continuation k can be used only once. Similarly, when a
continuation is thrown to, the continuation stack is cut to one below the label of the thrown-to continuation.

The evaluation of let k = apply_cont e1(e2) in e3 evaluates e1 to a label l denoting a continuation
and e2 to a value Vd. It then modifies in place the continuation at label l to store the value Vd in the
continuation. Evaluation then proceeds with expression e3. If later code throws to k with a unit argument,
we use the stored value as the argument for the continuation.

5.2 Core BOL with scheduling primitives

To model BOL’s scheduling primitives, we extend the grammar for Core BOL with the operations shown in
Figure 7. We then layer a machine abstraction on top of the thread states from the single-threaded semantics.
Appendix B presents the full system in detail.

In this model, a machine state M is a triple of the form:

{: P ; Q ; T :}

where intuitively P is a pool of threads, Q records the threads waiting to run, and T gives the state of each

10

e ::= V
| let x = e1 in e2
| if e1 then e2 else e3
| e1e2
| letcont k(x) = e1 in e2
| let k = apply_cont e1(e2) in e3
| throw e1(e2)

V ::= c | x | λx.e

e ∈ CBOL
V ∈ Values

x, k, tid ∈ Variables
c, • ∈ Constants

We use • to denote the unit constant.

Figure 6: Abstract Syntax of Core BOL (CBOL).

underlying task. Technically, P is a finite map from thread IDs to thread states; Q is a set of (thread ID,
continuation label) pairs; and T is a finite map from task IDs to the state of the associated task: Idle for
an idle task and (i,Md) for a task executing thread i in mode Md (Md is either U for normal execution or
L for privileged).

Active threads are those which have a task executing them. Suspended threads are represented as a pair
of a thread ID and a continuation label, whether this pair is stored in the ready queueQ or in a data structure.
Intuitively, the thread ID identifies the suspended thread in the pool P , while the continuation label indicates
where in the suspended thread’s continuation stack computation should resume.

The semantics includes two kinds of transitions: thread-local and scheduling-related. A thread-local
transition occurs in machine M whenever there is an active thread i whose state P (i) matches the left-
hand side of one of the transition rules of the single-threaded semantics. In contrast, a scheduling-related
transition manipulates the thread pool, the ready “queue,” and/or the tasks. The semantics of each of the BOL
scheduling primitives may involve some initial thread-local transitions to evaluate arguments, after which
there is a scheduling-related transition to describe the desired behavior. We give an intuitive description of
the key rules here.

The semantics of the create construct adds a new thread to the thread pool for evaluating the argument
function. The thread ID of the new thread and the continuation label for applying its function to the unit
value are bound in the thread invoking create. Note that this pair constitutes a suspended thread for
evaluating the argument function.

When run in a thread with ID i, the lock_self primitive updates the state of i to be privileged,
L, ensuring that the thread will not be interrupted until it executes a dispatch, which (among other
things) unlocks the state of the dispatching thread. The lock_self primitive allows a thread to execute
“scheduling” code after it has finished its main execution.

The two enqueue operations add a (thread ID, continuation label) pair to the collection of pending threads
Q. The first, enqueue_self, adds the ID of the executing thread and the argument continuation label to
Q. In this case, the executing thread should be in the L mode. The second, enqueue, adds the argument

11

thread ID and continuation label to Q. In this case, the argument thread should not be in the ready queue
already nor should it be running.

The dequeue operation uses the (unspecified) next(Q) function to choose some ready thread to pass
to the executing thread, presumably to schedule for execution using the dispatch operation. Different
implementations of the next function correspond to different scheduling policies.

The dispatch primitive causes control of the underlying task to transfer from the currently executing
thread i to the suspended thread denoted by the argument thread ID and continuation label l. The dispatching
thread should be executing in the locked state. If the dispatch were self-inflicted, this operation essentially
throws to l and unlocks the state of the thread. In the non-self-inflicted case, thread i becomes suspended
(and consequently unlocked) after executing dispatch.

Executing the get_thread_id primitive in thread i returns i, while executing the terminate prim-
itive causes the host thread to be removed from the thread pool P .

Finally, the semantics includes non-deterministic rules for managing task resources. Two rules permit
idle tasks to be added or removed from the task collection T at any time, allowing an implementation
freedom in how it manages underlying system threads. A third non-deterministic rule allows a busy task
to swap out its computation to the ready queue, while a fourth such rule allows an idle task to swap in
a thread from the ready queue. Different choices about when to apply such rules, paired with different
implementations of the next function, correspond to different scheduling and preemption policies.

e ::= . . .
| let (tid, k) = create e1 in e2
| let tid = get_thread_id() in e
| do lock_self() in e
| do enqueue_self (e1) in e2
| do enqueue (e1, e2) in e3
| let (tid, k) = dequeue() in e
| dispatch (e1, e2)
| terminate()

Figure 7: Abstract Syntax of Core BOL refined to include scheduling primitives.

6 Implementing BOL threads

The BOL threading model, described in Section 3, is implemented as a collaboration between the MOBY

compiler’s code generator and the runtime system. In this section, we describe two different implementations
of this model. The first is a one-to-one implementation that maps each language-level thread to its own host
task. The second is a simple many-to-many implementation that multiplexes language-level threads over a
collection of tasks. Each of these implementations does most of its work in its runtime system, which is
written in C (with some asm directives). We expect to migrate some of the work to the code generator in
the future. We describe these implementations below.

12

6.1 Representation of continuations

In both implementations, we represent a BOL continuation as a pair of the continuation’s code address and
the stack pointer to the continuation’s stack frame. We allocate space for a continuation in the stack frame
of its procedure. Additional space is allocated for the continuation’s parameters. With this representation,
constructing a continuation takes only a couple machine instructions. Throwing to a continuation requires
storing its arguments, loading its stack pointer, and jumping to its address. Because BOL continuations
do not require stack segment manipulations, they can be implemented more efficiently than the one-shot
continuations of Bruggeman et al. [BWD96]. Furthermore, BOL continuations do not force a particular
stack implementation; they can be implemented on a contiguous stack or a segmented stack.

6.2 Tasks

Tasks are the computation agents that host the execution of threads; they typically correspond to operating-
system threads or processes. On multiprocessor systems tasks can run in parallel. We assume the un-
derlying system provides mutex locks, condition variables, and semaphores as found in the POSIX thread
API [But97]. Both of our current implementations map each runtime system task onto a POSIX thread.

6.3 The scheduler interface

Both of our current implementations map the BOL threading model directly onto a collection of C functions,
whose prototypes appear in Figure 8. These functions manipulate four abstract C types: we use Closure

void Create (Closure *clos, ThreadID *tidOut, Cont *kOut);

void LockSelf (Task *host);
void Enqueue (Task *host, ThreadID tid, Cont k);
void EnqueueSelf (Task *host, Cont k);
void Dequeue (Task *host, ThreadID *tidOut, Cont *kOut);
void Dispatch (Task *host, ThreadID tid, Cont k);

void Terminate (Task *host);

Figure 8: Runtime interface of BOL thread operations

to represent closure values, Cont to represent continuations, ThreadID to represent thread-local data, and
Task to represent task-specific information.

6.4 A one-to-one scheduler

Our one-to-one implementation of the BOL threading model uses the underlying operating system’s schedul-
ing mechanisms to provide thread-level concurrency. This implementation maintains a one-to-one corre-
spondence between threads and tasks. Each time a new thread is created, a new task is created as well (or
recycled from a cache of idle tasks). Each thread always runs on its associated task, and a given task runs
only the code for its thread or special scheduling code (which we represent as a BOL continuation). The de-
queue operation returns either the running thread’s resume continuation (if it has been previously enqueued)
or the associated task’s scheduling continuation.

13

In this implementation, the Task type is a C data structure with following fields:

Mutex lock;
This field holds a lock that controls access to the task’s state.

Cond wait;
We use this condition variable to suspend the task when the associated thread is idle.

Cont resumeCont;
If non-NULL, this field holds the continuation at which to resume executing the task’s thread. A NULL
value indicates no resume continuation has been scheduled via an enqueue operation.

Cont schedCont;
This field holds the scheduling continuation for the task.

ThreadID myThread;
This field holds the thread ID of the task’s thread.

The ThreadID type is a pointer to a data structure that has the following field:

Task myTask;
This field points to the corresponding task data structure.

6.4.1 Thread creation

Thread creation involves creating a new task, initializing the task’s scheduling continuation, and creating a
new thread ID. This process requires coordination between the routine that starts the new task (Create)
and the task startup code. Space limitations prevent us from presenting the code, but the basic idea is
that Create passes the address of a stack-allocated data structure to the new task startup code. On entry,
this structure contains the task data structure and the closure containing the code for the new thread. On
return, the structure contains the initial continuation for the new thread. The data structure also contains a
semaphore that the new task uses to signal when it is ready to begin execution.

6.4.2 Scheduling operations

The most interesting aspect of our one-to-one implementation is how the BOL scheduling abstraction is
mapped onto a one-thread-per-task implementation model. In this model, threads are not multiplexed across
tasks, and so the runtime system does not need a scheduling queue. Instead, it uses the thread scheduling
operations to suspend and resume the associated task.

The LockSelf operation is a noop in this implementation, since a thread is always hosted by the same
task.

The Enqueue and EnqueueSelf operations record the given continuation in the resume continuation
field of the task associated with the enqueued thread. In the case of the Enqueue operation, we must first
acquire the associated lock to guard against a potential race condition with the Dequeue operation and/or
task scheduling code. We must also wakeup the underlying task of the thread being enqueued.

14

void Enqueue (Task *host, ThreadID tid, Cont k)
{

Task *task = tid->myTask;
MutexLock (task->lock);
task->resumeCont = k;
CondSignal (task->wait);
MutexUnlock (task->lock);

}
void EnqueueSelf (Task *host, Cont k)
{

host->resumeCont = k;
}

The Dequeue operation returns the current thread ID and a continuation that depends on the thread’s
state. If the thread is suspended (i.e., its host’s resume continuation is NULL), then the returned continuation
is the task’s scheduler continuation. If the thread is enabled, the stored resume continuation is returned and
the resume field is nullified.

void Dequeue (Task *host, ThreadID *tidOut, Cont *kOut)
{

MutexLock (host->lock);
if (host->resumeCont == NULL)

*kOut = host->schedCont;
else {

*kOut = host->resumeCont;
host->resumeCont = NULL;

}
MutexUnlock (host->lock);

*tidOut = host->myThread;
}

The scheduler continuation (stored in the schedCont field) is implemented as an assembly-code wrap-
per around the following function:

void Scheduler (Task *host)
{

Cont k;
MutexLock (host->lock);
if (host->resumeCont == NULL)

CondWait (host->lock, host->wait);
k = host->resumeCont;
host->resumeCont = NULL;
MutexUnlock (host->lock);
THROW(k);

}

Once the scheduler has the task’s lock, it checks the task’s resume continuation. If the continuation is NULL,
the task blocks on its condition variable to wait for a resume continuation. Although this check might seem
redundant, as the Dequeue code only returns the scheduler continuation when the resume continuation is
NULL, the check is necessary because some other thread might have Enqueued this thread between the
time that the Dequeue code released the task lock and the Scheduler code acquired it.9 Once the thread
is signaled by Enqueue, control is transfered to the resume continuation using the THROW macro, which
expands to a sequence of asm directives that throw to the continuation k.

The dispatch operation in this implementation is equivalent to a BOL throw operation.
9An alternative would be to hold the lock between the Dequeue and Scheduler code, but it is simpler and more robust to

have each operation manage the lock independently.

15

void Dispatch (Task *host, ThreadID tid, Cont k)
{

THROW(k);
}

6.4.3 Thread termination

Thread termination involves freeing the task data structure and terminating the underlying system thread.
As an optimization, we can keep a pool of idle system threads around to reduce the cost of thread creation.

6.5 A many-to-many scheduler

We have also implemented the BOL thread abstraction using a simple many-to-many scheme in which
threads are multiplexed over multiple tasks. In this implementation, threads execute in a conventional stack-
based environment, but the stacks are smaller than the default OS-thread stack 10 and are managed by the
runtime system. To support multiplexing, the runtime system maintains a single global queue of ready
threads.

The Task type is much simpler in the many-to-many implementation. For scheduling purposes, it has
the following fields:

Cont schedCont;
This field holds a continuation that is used when there are no ready threads.

ThreadID myThread;
If the task is executing a thread, this field holds the associated thread ID. Otherwise, it holds the
special value idleTid.

The ThreadID type is a pointer to a thread descriptor, which is a data structure that has the following
fields:

Task myTask;
If the thread is executing, this field points to the underlying task data structure. Otherwise, it contains
the value 0.

int lock;
This field is used to lock the thread’s state during context switches.

6.5.1 Thread creation

Thread creation is simpler in the many-to-many case, because it is independent of task creation. The
Create function allocates a new stack and thread descriptor and initializes the stack with a continua-
tion that will launch the thread. The launching code is a small piece of assembly code that calls the thread’s
initial function. The Create function returns a pointer to the new thread descriptor (the thread ID) and the
initial continuation.

6.5.2 Scheduling operations

The many-to-many scheduler uses a single global queue of ready threads with the following interface:11

10Our stacks are 128K bytes vs. the 2Mb default stack used by the Linux implementation of POSIX threads.
11We expect to move to a per-task scheduling queue at some point, which is one reason for the host argument to the scheduling

operations.

16

void RdyEnq (ThreadID tid, Cont k, Bool wake)
void RdyDeq (ThreadID *tidOut, Cont *kOut)

The ready queue is protected by a mutex lock and has an associated condition variable that is used to block
tasks when the queue is empty (see the description of Dequeue below). Tasks blocked on the ready queue’s
condition variable are signaled by RdyEnq when its wake parameter is true.

The LockSelf operation sets the current thread’s lock, which protects against the thread being resched-
uled by some other task before it dispatches a new thread.

void LockSelf (Task *host)
{

host->myThread->lock = LOCKED;
}

Depending on the underlying hardware, it may be necessary to use a write barrier to guarantee that all
processors see the effect of LockSelf before subsequent scheduling operations. The thread’s lock is
released when the next thread is dispatched.

The Enqueue and EnqueueSelf operations simply add a (thread ID, continuation) pair to the global
ready queue.

void Enqueue (Task *host, ThreadID tid, Cont k)
{

RdyEnq (tid, k, TRUE);
}
void EnqueueSelf (Task *host, Cont k)
{

RdyEnq (host->myThread, k, FALSE);
}

Because EnqueueSelf does not increase the net number of ready threads, there is no advantage to waking
a blocked task.

Dequeueing a thread from the global queue requires checking to see if any ready threads are available.
If not, we schedule a special continuation that will block this task on the condition variable for the ready
queue.

void Dequeue (Task *host, ThreadID *tidOut, Cont *kOut)
{

if (Empty(ReadyQ)) {
tidOut = idleTid;
kOut = host->schedCont;

}
else

Dequeue (ReadyQ, tidOut, kOut);
}

Dispatching a thread in the many-to-many implementation requires some bookkeeping in the task and
thread structures and also clearing the current thread’s lock. We also need to verify that the thread we are
about to start executing is not locked.

17

void Dispatch (Task *host, ThreadID tid, Cont k)
{

int *lock = &(host->myThread->lock);
host->myThread->myTask = 0;
host->myThread = tid;
tid->myTask = host;

*lock = UNLOCKED;
while (tid->lock == LOCKED)

continue;
THROW(k);

}

Note that once we have unlocked the current thread we cannot use its stack; we use asm directives to ensure
this property.

An important property of our thread locking scheme is that it is deadlock free. Assuming that the BOL
code follows the guidelines of Section 3, any task that locks its current thread in LockSelf cannot be
blocked before unlocking the thread in Dispatch (this property is why Dequeue returns a scheduler
continuation when the ready queue is empty instead of blocking immediately). The thread locking scheme
also ensures that two tasks will not try to execute using the same thread’s stack at the same time.

6.5.3 Thread termination

Thread termination in the many-to-many case requires some care to avoid reusing the thread’s stack before
it is fully terminated. Fortunately, we can use the existing locking mechanism to protect against this race
condition. The Terminate function first locks the current thread’s stack and then puts it into the list of
free stacks. It then dequeues and dispatches the next thread, which has the side-effect of unlocking the stack.
The stack allocation code use by Create will not allocate a locked stack.

6.6 Preemption

Preemptive scheduling is an important feature for concurrent programming. Like garbage collection, it
supports modularity by freeing the programmer from having to manage resources explicitly. To this end,
tasks in our many-to-many implementation periodically preempt the current thread, causing another ready
thread to be run. We also use preemption in both implementations to synchronize tasks for garbage collection
(see Section 6.7). Our runtime system uses UNIX signals to preempt tasks. To avoid problems in the case
where a signal arrives in the midst of a context switch, we use the UNIX sigaltstack mechanism to set
a different stack for handling signals.

A common way to implement preemption is by defining safe points where the state of the thread can be
captured in a predictable way [LCJS87, Rep90]. Safe points have the disadvantage that they add execution
overhead. For example, in CML GC tests are used as safe points, which means that even non-allocating
loops must have GC tests.

In MOBY, we don’t use safe points, so we can avoid their execution overhead. Instead, we support
preemption at any program point using PC maps. The compiler generates such maps, which map program
counter (PC) values to information about the generated code. This information includes liveness and type
information used by the garbage collector. The PC map is also used to mark heap allocations that must be
atomic with respect to preemption. If the runtime attempts to preempt a thread inside an atomic allocation,
the PC-map entry provides enough information to roll back execution to the start of the allocation [SCM99];
the allocation is then attempted from the beginning when the preempted thread is resumed. The PC-map
entry for an allocation also contains a bound on the amount of memory required before the next heap limit
check; this information is used to perform a heap limit check prior to resuming the thread. One other detail

18

that the compiler must handle is ensuring that the values used to initialize the allocated object are kept live
until the end of the atomic region. We ensure this property by generating a special pseudo operation at
the very end of the atomic allocation sequence that uses all of the initial values, which forces the register
allocator to preserve the initialization values until the end of the allocation. An alternative proposed by
Shivers et al. is to preallocate the object atomically and then incrementally initialize it [SCM99]. Shivers’
technique requires additional information in the PC maps to help the GC manage partially initialized objects.

6.7 Allocation and garbage collection

Our current implementation uses a “stop-the-world” garbage collector based on Smith and Morrisett’s
mostly-copying collector [SM97]. The collector organizes the heap into small (8Kb) pages and each task
has its own list of free pages from which to allocate. We dedicate a register, called the allocation pointer,
to point to the next word to allocate in the current page. The compiler generates inline allocation code and
heap limit checks. As is typical in ML-style languages, objects are initialized when they are allocated. Since
allocation pages are a power of two in size and alignment, we can compute the start and end of the current
allocation page easily from the allocation pointer. We use the first few words in the allocation page to hold
task-specific data, including the current task descriptor and the task’s list of free pages. When a heap limit
check hits the end of the current allocation page for a given task, a small assembly stub is called that gets an-
other page from the task’s free list. Since each task has its own list of free allocation pages, synchronization
is only required when the task’s free list is empty. In this case, control passes to the run-time system, where
a small number of pages are grabbed from the global free list. Access to the global free list is protected by
a global lock.

If the global free list is empty when a task T requires more memory, then a garbage collection is required.
To perform a garbage collection, we must first suspend all other tasks and record their registers so that the
collector can access the root set. To initiate this process, T sends a POSIX signal to each of the other
tasks. The signal handler for each task saves its register state and transfers control back to a special runtime
system routine that suspends T . This runtime routine uses the PC maps described in Section 6.6 to rollback
preempted allocations. T then waits for the other tasks to record their states and suspend themselves before
proceeding with the collection. Once the collection is finished, the other tasks are resumed.

7 Compiler issues

In this section, we describe a number of issues in the implementation of BOL continuations and threads.
These issues include continuation-specific optimizations, continuation representations, register allocation,
and supporting thread preemption.

7.1 Cluster conversion

A cluster is a collection of fragments, which are BOL functions that contain no nested function bindings. At
runtime, these fragments share the same stack frame; intuitively, a cluster is a representation of a procedure’s
control-flow graph. One fragment in a cluster is the entry fragment and all calls to the cluster target it; the
other fragments in the cluster are only called by internal tail calls, which we write as gotos.

An important part of the cluster conversion phase is Local CPS (LCPS) conversion, which is used to
collapse nested recursions into a single cluster [Rep01]. We also use LCPS conversion to introduce join-
point functions when we restructure letcont bindings by converting their right-hand-side into a goto
to a separate fragment. This transformation serves two purposes: it makes management of free variables
easier and it allows a later optimization phase to convert local throws to gotos. For example, the BOL
code from Figure 2(b) is translated into the representation in Figure 9. In this figure, we have written the

19

fun f (x, y, exh) =
{

letcont exhK (exn) = goto exhFrag ()
if I32Eq (y, 0)

then goto exhFrag ()
else {

let t2 = I32Div(x, y)
let t3 = g (t2, exhK)

goto rcont(t3)
}

}
and label exhFrag () = goto rcont (17)
and label rcont (t1) = return I32Add(t1, 1)

Figure 9: The cluster representation of Figure 2(b)

cluster as a collection of mutually recursive fragment definitions, where f is the cluster entry point. Control
transfers from one fragment to another are written as gotos with arguments.12 The fragment exhFrag is
the right-hand-side of the original letcont binding; notice that the local throw to exhK when y is zero
was converted to a goto to exhFrag. The fragment rcont was introduced by LCPS conversion to be the
join point for the right-hand-side and body of the original letcont binding.

7.2 Register allocation issues

The most complicated aspect of compiling the letcont binding is ensuring that the register allocator will
manage callee-save registers correctly. The recommended way to manage callee-save registers in MLRISC
is to copy them to fresh pseudo-registers (we call these shadow registers) on function entry and restore
the callee save registers from the shadow registers on function exit. If the register allocator needs to use a
callee-save register, the incoming value will be spilled at the function’s entry and restored at exit, otherwise
the moves are coalesced [GA96].

With the introduction of continuations, we need to provide the MLRISC framework with information
about possible non-local control transfers [RP00b, Rei01]. Consider the letcont binding of a continuation
k. For any call site in k’s cluster that has k as an argument, we add an implicit control-flow edge from the
call to the entry label associated with k. Since the callee-save registers are in an unknown state upon entry
to the continuation fragment, we place a special pseudo instruction at the fragment’s entry that defines the
callee-save registers. This pseudo instruction is followed by a parallel copy that restores the callee-save
registers from the shadow registers. Figure 10 illustrates this technique for the cluster in Figure 9. In this
figure, each fragment is in its own box; normal controlflow edges are solid arrows and the dotted arrow
represents the implicit controlflow induced by the passing of exhK as an argument to g. The shaded italic
code is MLRISC instructions introduced to manage the callee-save registers, where cs are the callee-save
registers and srs are the shadow registers. In practice, we introduce additional pseudo-registers to split the
live range of the shadow registers and we use shrink-wrapping to localize register saving and restoring.

12Note that if the cluster were a recursive function, then there would be a call to its entry fragment.

20

fun f (x, y, exh)
 srs := cs
 ...
 if (y == 0)
 then goto exhFrag()
 else {
 let t2 = x/y
 let t3 = g(t2, exhK)
 goto rcont(t3)
 }

cont exhK (exn)
 DEFINE cs
 cs := srs
 goto exhFrag()

label exhFrag ()
 goto rcont(17)

label rcont(t1)
 cs := srs
 return (t1+1)

Figure 10: CFG representation of Figure 9

8 Future work

While our current implementations demonstrate the flexibility and expressiveness of our design and while
they are well suited for some workloads, there is much room for improvement. We are especially inter-
ested in improving the many-to-many implementation, since most system thread implementations are too
expensive to support very large numbers of threads. In this section, we briefly discuss some possible im-
provements.

8.1 Scheduling

Our many-to-many implementation uses a single global scheduling queue for ready threads. This choice is
problematic both because the lock on the queue is a point of contention and because threads bounce from
task to task, which does not preserve cache locality on multiprocessors. Our design can support per-task
scheduling queues easily, since the scheduling operations already take the host task as an argument. This
scheme will require a mechanism for load balancing across threads.

8.2 Stack management

Our many-to-many implementation uses fixed-size contiguous stacks, which is both wasteful for threads
that require only a few stack frames to execute and inadequate for threads that have deep recursion. There
are several alternative stack management schemes that can provide more flexibility:

• Stack copying — threads run on a contiguous stack; if a thread overflows its stack, then the runtime
grows the stack, which may require copying it.

• Segmented stacks — threads run on a segmented stack; when a thread overflows one segment, another
segment is added [HDB90, BWD96].

21

• Linked stack frames — threads heap allocate their stack frames and the stack is represented as a linked
list. This scheme provides the lowest per-thread space overhead, but increases the cost of function
applications and complicates interoperability.

Our current architecture is compatible with any of these schemes, although implementing them will require
changes in the calling conventions.

8.3 Compiler support

Over time, we plan to move parts of the implementation from the runtime system into the compiler. In
particular, we would like to generate inline code for the fast paths through the scheduling operations.

9 Related work

The correspondence between continuations and multiple threads of control dates back to Wand’s seminal
work [Wan80] and has been exploited in many concurrency libraries [HFW84, CM90, Ram90, Rep91].
Various researchers have observed that the full power of first-class continuations is not necessary for imple-
menting either exceptions or concurrency. Bruggeman et al. propose a form of one-shot continuations that
are sufficient to support concurrency [BWD96]. These one-shot continuations are more expensive to create
than BOL continuations because they require beginning a new stack segment; the lifetime restrictions that
we place on BOL continuations make them cheap to create in contrast. This cheapness comes at a cost,
however, as it requires an additional thread creation operation to support concurrency. Essentially, we have
isolated the expensive case in the create operator.

C-- is a “portable assembly language” with C-like syntax [PNO97]. It has a restricted form of continua-
tion that is similar in power to ours and can be used to implement non-local controlflow [RP00b]. Ramsey
and Peyton Jones have proposed using C-- continuations to implement concurrency [RP00a], although to
our knowledge there is currently no implementation of the C-- concurrency mechanisms. Like our approach,
their goal is to support a range of different implementation techniques in a common framework. In contrast
to BOL, C-- is a compiler target, not an IR. In our approach, the source language compiler can optimize
the BOL concurrency primitives using the same optimizations it uses on the rest of the IR; the C-- compiler
converts C-- code output from the source language compiler into machine code and performs its own opti-
mizations in the process. In many ways, the C-- framework plays a rôle similar to the MLRISC [GGR94]
framework that we use for code generation. Indeed, one could imagine retargeting the MOBY backend to
generate C-- code from our BOL representation.

Dealing with the combination of preemption and atomic code sequences, such as allocation, has been
addressed in a number of systems. The Trellis/Owl system used a VAX instruction interpreter in its runtime
to execute the preempted thread’s code to the end of the critical region [MK87]. This approach is not very
portable and introduces significant interpretive overhead to preemption. Bershad et al. proposed using roll
backs as a way to implement efficient mutual exclusion on uniprocessors [BRE92]. Shivers et al. applied
this idea to heap allocation [SCM99]. In their implementation, they use the low bit of the allocation register
as a flag to signal when execution is inside an atomic allocation and their runtime system uses PC maps to
determine how to roll back the program counter. Our approach dispenses with using a bit of the allocation
pointer as a flag, since the PC map itself can be used to determine when execution is inside an atomic
allocation. In a many-to-many implementation of the BOL model, we may also use PC maps to delay
preemption of threads in critical regions [ABLL92]. One disadvantage of our approach is that PC maps can
consume significant storage. We currently see a doubling of the code size on the IA32, but other researchers
have reported success with more compact representations of this sort of information [DMH92, SLC99,
Tar00], so we expect that the space overhead of PC maps can be reduced significantly.

22

JAVA is probably the most widely used concurrent language. It supports a shared-memory program-
ming model with objects playing the rôle of monitors. Because any JAVA object can be a monitor, a naı̈ve
implementation of JAVA will incur significant space and time overhead. The main focus on implementing
concurrency in JAVA has been on reducing the space overhead of per-object locks [BKMS98] and statically
eliminating unnecessary synchronizations [OOP99]. Our work is complementary to these efforts.

10 Conclusion

This paper describes the design of a direct-style compiler IR suitable for implementing a wide range of
surface-language concurrency features while allowing flexibility in the back-end implementation. The fea-
tures that this IR includes to support concurrency include weak continuations and primitives for thread
creation, scheduling, and termination. Although this work has been done in the context of implementing
concurrency for the MOBY programming language, the model is general and could be used in the imple-
mentation of other concurrent languages.

The examples in Section 4 illustrate that the IR is expressive enough to support a variety of surface
language concurrency mechanisms. The back-end flexibility allows us to experiment with a range of im-
plementation techniques and to provide implementations with different performance characteristics, each
suitable for a different class of application. For example, a computationally bound application with few
threads would perform best on a one-to-one implementation, whereas a highly threaded application would
benefit more from the low-overhead threads of a many-to-many implementation. The implementations de-
scribed in Sections 6.4 and 6.5 illustrate that the model can accommodate a wide range of implementations.

The operational semantics, presented informally in Section 5 and described in detail in the appendices,
precisely specify the behavior of the IR and provide a tool for reasoning about the correctness of a given
implementation.

The performance goals for our implementations are to provide low-overhead synchronization and com-
munication, fast thread creation, space-efficient thread data structures, and access to the multiprocessing and
concurrency mechanisms of the underlying operating system. We have implemented both the one-to-one
mapping of Section 6.4 and the many-to-many mapping of Section 6.5 on top of the Linux implementation
of POSIX threads. The one-to-one implementation satisfies the first and fourth of our performance goals,
but because it maps each MOBY thread onto its own POSIX thread, this implementation cannot provide
fast thread creation or space efficient threads. In contrast, the many-to-many implementation of Section 6.5
uses less space per thread and supports efficient thread creation. We expect that the refinements described
in Section 8 will let us achieve our performance goals.

Acknowledgments

Daniel Grossman implemented the first version of PC maps and multiprocessing runtime support during the
summer of 2000. We had significant help and support with the MLRISC framework from Lal George and
Allen Leung. Discussions with Matthias Blume and Lal George helped us work out the implementation
details.

References

[ABLL92] Anderson, T. E., B. N. Bershad, E. D. Lazowska, and H. M. Levy. Scheduler activations:
Effective kernel support for the user-level management of parallelism. ACM Transactions on
Computer Systems, 10(1), February 1992, pp. 53–79.

23

[ADH+98] Abelson, H., R. Dybvig, C. Haynes, G. Rozas, N. Adams IV, D. Friedman, E. Kohlbecker,
G. Steele Jr., D. Bartley, R. Halstead, D. Oxley, G. Sussman, G. Brooks, C. Hanson, K. Pitman,
and M. Wand. Revised report on the algorithmic language Scheme. Higher-Order and Symbolic
Computation, 11(1), August 1998, pp. 7–105.

[AM91] Appel, A. W. and D. B. MacQueen. Standard ML of New Jersey. In Programming Lan-
guage Implementation and Logic Programming, vol. 528 of Lecture Notes in Computer Science.
Springer-Verlag, New York, NY, August 1991, pp. 1–26.

[ANS90] American National Standards Institute, Inc., New York, NY. American National Standard for
Information Systems — Programming Language — C, 1990.

[BKMS98] Bacon, D. F., R. Konuru, C. Murthy, and M. Serrano. Thin locks: Featherweight synchro-
nization for Java. In Proceedings of the SIGPLAN’98 Conference on Programming Language
Design and Implementation, June 1998, pp. 258–268.

[BNA91] Barth, P., R. S. Nikhil, and Arvind. M-structures: Extending a parallel, non-strict, functional
language with state. In Functional Programming Languages and Computer Architecture, vol.
523 of Lecture Notes in Computer Science, New York, N.Y., August 1991. Springer-Verlag, pp.
538–568.

[BRE92] Bershad, B. N., D. D. Redell, and J. R. Ellis. Fast mutual exclusion for uniprocessors. In Fifth
International Conference on Architectural Support for Programming Languages and Operating
Systems, September 1992, pp. 223–233.

[But97] Butenhof, D. R. Programming with POSIX Threads. Addison-Wesley, Reading, MA, 1997.

[BWD96] Bruggeman, C., O. Waddell, and R. K. Dybvig. Representing control in the presence of one-
shot continuations. In Proceedings of the SIGPLAN’96 Conference on Programming Language
Design and Implementation, May 1996, pp. 99–107.

[CM90] Cooper, E. C. and J. G. Morrisett. Adding threads to Standard ML. Technical Report CMU-CS-
90-186, School of Computer Science, Carnegie Mellon University, December 1990.

[DMH92] Diwan, A., J. E. B. Moss, and R. L. Hudson. Compiler support for garbage collection in a
statically typed language. In Proceedings of the SIGPLAN’92 Conference on Programming
Language Design and Implementation, June 1992, pp. 273–282.

[FPR01] Fisher, K., R. Pucella, and J. Reppy. A framework for interoperability. In N. Benton and
A. Kennedy (eds.), Electronic Notes in Theoretical Computer Science, vol. 59, New York, NY,
2001. Elsevier Science Publishers.

[FR99] Fisher, K. and J. Reppy. The design of a class mechanism for Moby. In Proceedings of the
SIGPLAN’99 Conference on Programming Language Design and Implementation, May 1999,
pp. 37–49.

[FSDF93] Flanagan, C., A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with continua-
tions. In Proceedings of the SIGPLAN’93 Conference on Programming Language Design and
Implementation, June 1993, pp. 237–247.

[GA96] George, L. and A. Appel. Iterated register coalescing. ACM Transactions on Programming
Languages and Systems, 18(3), May 1996, pp. 300–324.

24

[GGR94] George, L., F. Guillame, and J. Reppy. A portable and optimizing back end for the SML/NJ
compiler. In Fifth International Conference on Compiler Construction, April 1994, pp. 83–97.

[GR93] Gansner, E. R. and J. H. Reppy. A Multi-threaded Higher-order User Interface Toolkit, vol. 1
of Software Trends, pp. 61–80. John Wiley & Sons, 1993.

[HDB90] Hieb, R., R. K. Dybvig, and C. Bruggeman. Representing control in the presence of first-
class continuations. In Proceedings of the SIGPLAN’90 Conference on Programming Language
Design and Implementation, June 1990, pp. 66–77.

[HFW84] Haynes, C. T., D. P. Friedman, and M. Wand. Continuations and coroutines. In Conference
Record of the 1984 ACM Symposium on Lisp and Functional Programming, July 1984, pp.
293–298.

[HJT+93] Hauser, C., C. Jacobi, M. Theimer, B. Welch, and M. Weiser. Using threads in interactive
systems: A case study. In Proceedings of the 14th ACM Symposium on Operating System
Principles, December 1993, pp. 94–105.

[LCJS87] Liskov, B., D. Curtis, P. Johnson, and R. Scheifler. Implementation of Argus. In Proceedings
of the 11th ACM Symposium on Operating System Principles, November 1987, pp. 111–122.

[Mil90] Milewski, J. Functional data structures as updatable objects. IEEE Transactions on Software
Engineering, 16(12), December 1990, pp. 1427–1432.

[MK87] Moss, J. and W. Kohler. Concurrency features for the trellis/owl language. In ECOOP’87, vol.
276 of Lecture Notes in Computer Science, 1987, pp. 171–180.

[OOP99] OOPSLA’99 Conference Proceedings, November 1999. This proceedings contains several pa-
pers on eliminating synchronizations in JAVA using escape analysis.

[PGF96] Peyton Jones, S., A. Gordon, and S. Finne. Concurrent Haskell. In Conference Record of the
23rd Annual ACM Symposium on Principles of Programming Languages, January 1996, pp.
295–308.

[Pik89] Pike, R. A concurrent window system. Computing Systems, 2(2), 1989, pp. 133–153.

[PNO97] Peyton Jones, S., T. Nordin, and D. Oliva. C–: A portable assembly language. In 9th Interna-
tional Workshop on the Implementation of Functional Languages, vol. 1467 of Lecture Notes
in Computer Science, New York, N.Y., September 1997. Springer-Verlag, pp. 1–19.

[Ram90] Ramsey, N. Concurrent programming in ML. Technical Report CS-TR-262-90, Department of
Computer Science, Princeton University, April 1990.

[Rei01] Reig, F. Annotations for portable intermediate languages. In N. Benton and A. Kennedy (eds.),
Electronic Notes in Theoretical Computer Science, vol. 59, New York, NY, 2001. Elsevier Sci-
ence Publishers.

[Rep90] Reppy, J. H. Asynchronous signals in Standard ML. Technical Report TR 90-1144, Department
of Computer Science, Cornell University, Ithaca, NY, August 1990.

[Rep91] Reppy, J. H. CML: A higher-order concurrent language. In Proceedings of the SIGPLAN’91
Conference on Programming Language Design and Implementation, June 1991, pp. 293–305.

25

[Rep99] Reppy, J. H. Concurrent Programming in ML. Cambridge University Press, Cambridge, Eng-
land, 1999.

[Rep01] Reppy, J. Local CPS conversion in a direct-style compiler. In Proceedings of the Third ACM
SIGPLAN Workshop on Continuations (CW’01), January 2001, pp. 13–22.

[RP00a] Ramsey, N. and S. Peyton Jones. Featherweight concurrency in
a portable assembly language. Unpublished paper available at
http://www.cminusminus.org/abstracts/c--con.html, November 2000.

[RP00b] Ramsey, N. and S. Peyton Jones. A single intermediate language that supports multiple im-
plementations of exceptions. In Proceedings of the SIGPLAN’00 Conference on Programming
Language Design and Implementation, June 2000, pp. 285–298.

[SCM99] Shivers, O., J. W. Clark, and R. McGrath. Atomic heap transactions and fine-grain interrupts. In
Proceedings of the Fourth ACM SIGPLAN International Conference on Functional Program-
ming, September 1999, pp. 48–59.

[Shi97] Shivers, O. Continuations and threads: Expressing machine concurrency directly in advanced
languages. In Proceedings of the Second ACM SIGPLAN Workshop on Continuations, January
1997.

[SLC99] Stichnoth, J. M., G.-Y. Lueh, and M. Cierniak. Support for garbage collection at every in-
struction in a Java compiler. In Proceedings of the SIGPLAN’99 Conference on Programming
Language Design and Implementation, May 1999, pp. 118–127.

[SM97] Smith, F. and G. Morrisett. Mostly-copying collection: A viable alternative to conservative
mark-sweep. Technical Report 97-1644, Department of Computer Science, Cornell University,
August 1997.

[Tar00] Tarditi, D. Compact garbage collection tables. In ACM SIGPLAN International Symposium on
Memory Management, October 2000, pp. 50–58.

[Wan80] Wand, M. Continuation-based multiprocessing. In Conference Record of the 1980 Lisp Con-
ference, August 1980, pp. 19–28.

A The semantics of single-threaded Core BOL

Semantics of single-threaded program e:

eval(e) = c if 〈e, ∅, 0, [0 7→ stop]〉 7−→∗ 〈stop, c, []〉.

26

Data specifications:

St ∈ Stated = CBOL × Envd × Labd × Stackd | Contd × V alued × Stackd (thread states)
E ∈ Envd = Variables fin→ Valued (environments)
l ∈ Labd = Nat (continuation labels)
S ∈ Stackd = Labd

fin→ Contd (continuation stack)
Vd ∈ V alued = c | {|clx.e, E|} | {|cbx, Vd, e, E, l|} | l (machine values)
K ∈ Contd = stop | error (continuations)

| {|ltx, ebody, E, l|} – evaluating let binding
| {|if, etrue, efalse, E, l|} – evaluating conditional
| {|ap1, earg, E, l|} – evaluating function
| {|ap2, Vd, E, l|} – evaluating function argument
| {|thr1, earg, E, l|} – evaluating continuation
| {|thr2, Vd, E, l|} – evaluating continuation argument
| {|cbx, Vd, ewrap, E, l|} – evaluating letcont binding, with space for arg
| {|apk1 k, earg, ebody, E, l|} – evaluating apply cont binding
| {|apk2 k, Vd, ebody, E, l|} – evaluating apply cont argument

Operations on continuation stacks:

top(S) = least n such that n 6∈ dom(S)

S ↓ l =

{
S(l′) if l′ < l
error otherwise

Converting syntactic values to machine values:

γ(c, E) = c
γ(x, E) = E(x)

γ(λx.e, E) = {|clx.e, E|}

27

Thread transition rules:

〈V, E, l, S〉 7−→ 〈S(l), γ(V, E), S ↓ l〉
〈let x = e1 in e2, E, l, S〉 7−→ 〈e1, E, l′, S[l′ 7→ {|ltx, e2, E, l|}]〉

where l′ = top(S)

〈if e1 then e2 else e3, E, l, S〉 7−→ 〈e1, E, l′, S[l′ 7→ {|if, e2, e3, E, l|}]〉
where l′ = top(S)

〈e1e2, E, l, S〉 7−→ 〈e1, E, l′, S[l′ 7→ {|ap1, e2, E, l|}]〉
where l′ = top(S)

〈letcont k(x) = e1 in e2, E, l, S〉 7−→ 〈e2, E[k 7→ l′], l, S[l′ 7→ {|cbx, •, e1, E, l|}]〉
where l′ = top(S)

〈let k = apply_cont e1(e2) in e3, E, l, S〉 7−→ 〈e1, E, l′, S[l′ 7→ {|apk1 k, e2, e3, E, l|}]〉
where l′ = top(S)

〈throw e1(e2), E, l, S〉 7−→ 〈e1, E, l′, S[l′ 7→ {|thr1, e2, E, l|}]〉
where l′ = top(S)

〈{|ltx, e2, E, l|}, Vd, S〉 7−→ 〈e2, E[x 7→ Vd], l, S〉
〈{|if, e2, e3, E, l|}, true, S〉 7−→ 〈e2, E, l, S〉
〈{|if, e2, e3, E, l|}, Vd, S〉 7−→ 〈e3, E, l, S〉

if Vd 6= true

〈{|ap1, e2, E, l|}, Vd, S〉 7−→ 〈e2, E, l′, S[l′ 7→ {|ap2, Vd, E, l|}]〉
where l′ = top(S)

〈{|ap2, V ′
d , E, l|}, Vd, S〉 7−→ 〈e′, E′[x 7→ Vd], l, S〉

if V ′
d = {|clx.e′, E′|}

〈{|apk1 k, e2, e3, E, l|}, Vd, S〉 7−→ 〈e2, E, l′, S[l′ 7→ {|apk2 k, Vd, e3, E, l|}]〉
where l′ = top(S)

〈{|apk2 k, l′′, e3, E, l|}, Vd, S〉 7−→ 〈e3, E[k 7→ l′′], l, S[l′′ 7→ {|cbx, Vd, e′, E′, l′|}]〉
if S(l′′) = {|cbx, , e′, E′, l′|}

〈{|thr1, e2, E, l|}, Vd, S〉 7−→ 〈e2, E, l′, S[l′ 7→ {|thr2, Vd, E, l|}]〉
where l′ = top(S)

〈{|thr2, l′, E, l′′|}, •, S〉 7−→ 〈e′, E′[x 7→ Vd], l, S ↓ l′〉
if S(l′) = {|cbx, Vd, e′, E′, l|}

〈{|thr2, l′, E, l′′|}, Vd, S〉 7−→ 〈e′, E′[x 7→ Vd], l, S ↓ l′〉
if S(l′) = {|cbx, , e′, E′, l|} and Vd 6= •.

B The semantics of multi-threaded Core BOL

Initial configuration for multi-threaded program e:

{: 〈e, ∅, 0, [0 7→ stop]〉0 ; ∅ ; [0 7→ (0, U)] :}

28

Data specifications:

M ∈ Machine = {: P ; Q ; T :} (machine states)
P ∈ ThreadPool = ThreadId fin→ Stated (all threads)

Note: P written as list of elements of the form Sti
i, j ∈ ThreadId = Nat (thread identification number)
Q ∈ ReadyThreads = ℘(ThreadID× Labd) (set of ready threads)

Note: We will sometimes treat Q as a finite map
from ThreadID’s to Lab′

ds.
T ∈ Tasks = TaskId fin→ TaskState (tasks for executing threads)
m ∈ TaskId = Nat (task identification number)
ts ∈ TaskState = Idle (task states)

| (i, U) – thread i running in normal mode.
| (i, L) – thread i running in privileged mode.

K ∈ Contd = ... (continuations)
| wait – thread suspended
| {|crt (tid, k), ebody, E, l|} – evaluating function to create
| {|enqs, ebody, E, l|} – evaluating enqueue self
| {|enq1, econt, ebody, E, l|} – evaluating enqueue thread id
| {|enq2, Vthd, ebody, E, l|} – evaluating enqueue continuation
| {|dsp1, econt, E, l|} – evaluating dispatch thread id
| {|dsp2, Vthd, E, l|} – evaluating dispatch continuation

Auxiliary functions:

fresh(N) = least n such that n 6∈ N,N ⊂ Nat
next(Q) = some (i, l) ∈ Q

stack(St) =

{
S if St = 〈e, E, l, S〉
S if St = 〈K, Vd, S〉

locked(T) = {i | ∃m ∈ dom(T).T (m) = (i, L)}
active(T) = {i | ∃m ∈ dom(T).T (m) = (i,)}

taskId(T, i) =

{
m if T (m) = (i,)
undefined otherwise

Additional thread transition rules:

〈let (tid, k) = create e1 in e2, E, l, S〉 7−→ 〈e1, E, l′, S[l′ 7→ {|crt (tid, k), e2, E, l|}]〉
where l′ = top(S)

〈do enqueue_self (e1) in e2, E, l, S〉 7−→ 〈e1, E, l′, S[l′ 7→ {|enqs, e2, E, l|}]〉
where l′ = top(S)

〈do enqueue (e1, e2) in e3, E, l, S〉 7−→ 〈e1, E, l′, S[l′ 7→ {|enq1, e2, e3, E, l|}]〉
where l′ = top(S)

〈dispatch (e1, e2), E, l, S〉 7−→ 〈e1, E, l′, S[l′ 7→ {|dsp1, e2, E, l|}]〉
where l′ = top(S)

〈terminate(), E, l, S〉 7−→ 〈stop, •, S〉

〈{|enq1, e2, e3, E, l|}, Vd, S〉 7−→ 〈e2, E, l′, S[l′ 7→ {|enq2, Vd, e3, E, l|}]〉
where l′ = top(S)

〈{|dsp1, e2, E, l|}, Vd, S〉 7−→ 〈e2, E, l′, S[l′ 7→ {|dsp2, Vd, E, l|}]〉
where l′ = top(S)

〈{|cbx, Varg, e2, E, l|}, Vd, S〉 7−→ 〈e2, E[x 7→ V ′
d], l, S〉

whereV ′
d =

{
Varg if Vd = •
Vd otherwise

29

Machine transition rules:

{: P, Sti ; Q ; T :} =⇒ {: P, St′i ; Q ; T :} – thread execution

where i ∈ active(T) and St 7−→ St′

{: P ; Q ; T :} =⇒ {: P ; Q ; T [m 7→ Idle] :} – add task

where m 6∈ dom(T)

{: P ; Q ; T :} =⇒ {: P ; Q ; T\m :} – remove task

where T (m) = Idle

{: P, 〈{|crt (tid, k), e2, E, l|}, Vd, S〉i ; Q ; T :} – create new thread

=⇒ {: P, 〈e2, E[tid 7→ j, k 7→ 1], l, S〉i, 〈wait, •, Snew〉j ; Q ; T :}
where i ∈ active(T) and j = fresh(dom(P) ∪ {i})

Snew = [0 7→ stop, 1 7→ {|ap2, Vd, ∅, 0|}]

{: P, 〈let tid = get_thread_id() in e, E, l, S〉i ; Q ; T :} – get current tid

=⇒ {: P, 〈e, E[tid 7→ i], l, S〉i ; Q ; T :}
where i = active(T)

{: P, 〈do lock_self() in e, E, l, S〉i ; Q ; T :} – lock self

=⇒ {: P, 〈e, E, l, S〉i ; Q ; T (m)[i 7→ L] :}
where m = taskId(T, i)

{: P, 〈{|enqs, e2, E, l|}, Vd, S〉i ; Q ; T :} – enqueue self

=⇒ {: P, 〈e2, E, l, S〉i ; Q, (i, Vd) ; T :}
where i ∈ locked(T)

{: P, 〈{|enq2, j, e, E, l|}, l, S〉i ; Q ; T :} – enqueue

=⇒ {: P, 〈e, E, l, S〉i ; Q, (j, l) ; T :}
where i ∈ active(T), j 6∈ active(T), and j 6∈ dom(Q)

{: P, 〈let (tid, k) = dequeue() in e, E, l, S〉i ; Q ; T :} – dequeue

=⇒ {: P, 〈e, E[tid 7→ j, k 7→ lj], l, S〉i ; Q\j ; T :}
where i ∈ active(T) and (j, lj) ∈ next(Q)

30

{: P, 〈{|dsp2, i, E, l|}, li, S〉i ; Q ; T :} – dispatch (self)

=⇒ {: P, 〈S(li), •, S ↓ li〉i ; Q ; T [m 7→ (i, U)] :}
where m = taskId(T, i)

{: P, 〈{|dsp2, j, E, l|}, lj , S〉i ; Q ; T :} – dispatch (other)

=⇒ {: P ′, 〈Sj(lj), •, Sj ↓ lj〉j , 〈wait, •, S〉i ; Q ; T [m 7→ (j, U)] :}
where m = taskId(T, i) , j 6∈ active(T), j 6∈ dom(Q),

P = P ′, Stj and Sj = stack(Stj)

{: P, 〈stop, Vd, S〉i ; Q ; T :} =⇒ {: P ; Q ; T [m 7→ Idle] :} – terminate

where m = taskId(T, i)

{: P ; Q ; T :} =⇒ {: P ′, 〈Si(li), •, Si ↓ li〉i ; Q\i ; T [m 7→ (i, U)] :} – swap in

where T (m) = Idle and (i, li) = next(Q) and P = P ′, Sti and Si = stack(Sti)

{: P ; Q ; T :} =⇒ {: P ′, 〈wait, •, Snew〉i ; Q, (i, li) ; T [m 7→ Idle] :} – swap out

where T (m) = (i, U) and P = P ′, 〈e, E, l, S〉i and y 6∈ FreeV ars(e)
Snew = S[li 7→ {|ap2, {|cl y.e, E|}, E, l|}]

31

