Application-specific Foreign-interface Generation

John Reppy

University of Chicago
jhr@cs.uchicago.edu

Categories and Subject Descriptors D.1.2 [Automatic Program-
ming]: Program transformation; D.2.12 [Interoperability]: Data

mapping
General Terms Languages

Keywords Foreign-interface generation, Term rewriting

Abstract

A foreign interface (FI) mechanism to support interoperability with
libraries written in other languages (especially C) is an impor-
tant feature in most high-level language implementations. Such FI
mechanisms provide a Foreign Function Interface (FFI) for the
high-level language to call C functions and marshaling and unmar-
shaling mechanisms to support conversion between the high-level
and C data representations. Often, systems provide tools to auto-
mate the generation of Fls, but these tools typically lock the user
into a specific model of interoperability. It is our belief that the
policy used to craft the mapping between the high-level language
and C should be distinct from the underlying mechanism used to
implement the mapping.

In this paper, we describe a FI generation tool, called FiG(for
Foreign Interface Generator) that embodies a new approach to the
problem of generating foreign interfaces for high-level languages.
FIG takes as input raw C header files plus a declarative script that
specifies the generation of the foreign interface from the header
file. The script sets the policy for the translation, which allows
the user to tailor the resulting FI to his or her application. We
call this approach application-specific foreign-interface generation.
The scripting language uses rewriting strategies as its execution
model. The other major feature of the scripting language is a novel
notion of composable rypemaps that describe the mapping between
high-level and low-level types.

1. Introduction

An important part of most high-level programming language imple-
mentations is the foreign interface (FI) mechanism, which allows
high-level code to access code and data defined in low-level lan-
guages (usually C). At a minimum, a FI mechanism allows foreign

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE’06 October 22-26, 2006, Portland, Oregon, USA.

Copyright (© 2006 ACM 1-59593-237-2/06/0010. .. $5.00.

Chunyan Song

University of Chicago
cysong@cs.uchicago.edu

functions to be called and provides a mechanism for translating be-
tween high-level and low-level data representations (e.g., boxed vs.
unboxed floats). FI mechanisms may also provide support for call-
backs (i.e., calling high-level code from low-level functions) and
data-level interoperability (i.e., direct access to low-level data rep-
resentations from high-level code) [FPROO].

On top of this mechanism, one defines glue code that handles
the mapping between the low-level and high-level types and func-
tions. For example, a C struct might be mapped to a high-level
record type, or to an abstract type with accessor functions. Because
the C type system does not distinguish between different possible
uses of pointer types (e.g., arrays, reference parameters, result pa-
rameters), user intervention is if often required to specify the map-
ping from C types to high-level types. These choice between dif-
ferent mappings are policy decisions, which should be left to the
designer of the foreign interface. The choice of policy has a ma-
jor impact on how well the foreign interface fits into the high-level
programming model and on the efficiency of the interface.

While glue code can be written by hand, many language im-
plementations provide tools to automate its implementation. One
approach has been to use existing Interface Description Languages
(IDLs) to specify foreign interfaces [FLMP99]. Another recent ap-
proach are tools that embed the C type system into polymorphic
high-level language using phantom types [Blu01, FPRO1]. In both
of these examples, the FI policy is fixed by the tool and there is
little or no room for customization of the interface.

We believe that the lack of flexibility in specifying the FI policy
is a serious weakness in existing FI generation tools. For example,
the IDL-based approach of HASKELLDIRECT [FLMP99] provides
an effective way to handle simple C functions, but does not provide
support for efficient access to aggregate data structures. On the
other hand, tools like NLFFIGEN [Blu0O1] and CHARON [FPRO1]
provide efficient access to C data representations, but produce
large, low-level interfaces that are often ill suited to the high-
level progamming model (one is essentially writing C code using
a high-level language’s syntax). We believe that foreign interfaces
should be tuned to the application in question, balancing the goals
of aesthetics and performance. In this paper, we present FIG, a
tool that supports application-specific foreign-interface generation
for the MOBY system [FR99]. Our tool takes as input a raw C
header file and an application-specific script written in a declarative
specification language. It uses the script to guide a rewriting-based
transformation of the C header file into a high-level interface. FIG
has a “pay as you go” programming model: at their simplest scripts,
can use default policies to translate C interfaces in a way that is
similar to that of CHARON and NLFFIGEN, but more complicated
scripts can be defined to customize the translation. In addition to
default policies, FIG also provides a library of common FI idioms,
mechanisms that make it easy to factor the specification.

The main focus of this paper is on the approach that we use to
support application-specific foreign-interface generation in FIG. At
its core, FIG uses a term-rewriting engine based on the approach of
rewriting strategies. FIG scripts are compiled into rewriting rules,
which are then applied to a term representation of a C header file.
FIG uses the notion of a fypemap as the building block for con-
structing FI glue code. Typemaps are terms that are manipulated by
the rewriting engine. We present a formal description of typemaps
along with a combinator system for defining marshaling and un-
marshaling conversions.

The remainder of the paper has the following structure. In the
next section, we give review FI mechanisms and give a brief de-
scription of the FI mechanism provided by the MOBY system,
which serves as the target for FIG. In Section 3, we motivate
the need for application-specific foreign-interface generation with
some examples taken from the OpenGL API. We then turn to the
implementation of FIG in Section 4. There are two important con-
cepts in the implementation of FIG: the first is the use of rypemaps
to represent the translation between the two languages, and the
second is the use of rewriting strategies to implement the trans-
lation. We describe these in Section 6 and Section 5. Section 7
gives a user’s-level view of how FIG is used to generate application-
specific foreign interfaces. Finally, we survey related work and con-
clude.

2. FI mechanisms and policies

It is useful to distinguish between FI mechanisms, which we define
to be the way that an implementation connects together low-level
and high-level code, and FI policies, which we define to be the way
that low-level interfaces are mapped into the high-level language.
It is often possible to support multiple policies on top of a given
mechanism, although some policies may require specific mecha-
nisms.

One common FI mechanism is glue code written in C that
provides the connective tissue. The glue code is aware of the high-
level language’s runtime conventions and is able to convert between
representations. This approach has been used by the Java native
interface [Lia99], OCaml [FF05], SML/NJ, and Swig [Bea04],
among others. An alternative approach is to extend the high-level
language with primitives that support the writing of glue code, such
as has been done in SML/NJ [Blu01] and Haskell [CFHT03].

The motive of developing FIG is to provide users with mech-
anisms to support their various selection of policies according to
their needs. The following table compares FIG with a number of
existing FI tools, which serve as exemplars for the different ap-
proaches to the FI generation problem.

Feature
C headers Data-level
System Scriptable? asinput? Interoperability?
Fic yes yes yes
CHARON/NLFFIGEN no yes yes
GREENCARD yes no yes
SWIG yes yes no
HASKELLDIRECT yes! no no

The columns in this table correspond to significant characteristics
in the design space. The first is whether the tool allows users to

" HASKELLDIRECT uses IDL specifications as input, which are a form of
annotated header file, but also allows the annotations to be specified in a
separate file.

control the generation of the FI using some form of specification or
script. The second column is whether the tool uses C header files to
generate the interface, and the last column is whether the tool (and
target system) support data-level interoperability.

2.1 The MoBY FI mechanism

FIG is part of the MOBY system, although its architecture is such
that it can support backends for other languages. In the design
of MOBY, we have paid careful attention providing an efficient
foundation for efficient foreign interfaces. The MOBY system sup-
ports foreign interfaces through an open compiler infrastructure.
While the design of this infrastructure has been described else-
where [FPR0OO, FPRO1], we review its basic features here to pro-
vide the context for the rest of the paper. There are several aspects
of this infrastructure that are key to supporting interoperability:

e The compiler’s intermediate representation, called BOL, is ex-
pressive enough to describe low-level data representations and
manipulations that are not expressible in MOBY itself.

Primitive MOBY types and operations are defined in terms
of BOL types and functions. These definitions are given in
external MOBY interface files, called MBI files, and play a role
similar to that of native methods in JAVA [Lia99] in that they
allow MOBY interfaces to be implemented by low-level code
that cannot be written in MOBY.

The compiler can import and inline code from MBI files.

There is a tool for generating MBI files from textual descrip-
tions, called MBX files.

BOL is expressive enough to describe C data-structures and op-
erations on them, which allows MOBY code to directly access C
data. Furthermore, with cross-module inlining, the compiler will
inline the access functions that are generated to manipulate C data
structures, which means that manipulation of C data structures is as
efficient as in C itself. We call the ability for a high-level language
to efficiently access low-level representations data-level interoper-
ability [FPROO] and it is essential for the efficient implementation
of FIs that involve aggregate data structures.

The MOBY compiler also provides support for exporting MOBY
functions to be called by C code (e.g., for callbacks). This support
consists of an annotation on BOL functions that specifies that they
should use the C calling convention, plus runtime system support
for turning MOBY function closures into C function pointers.>

3. Motivation

Most FI generation tools take a “one size fits all” approach to
the policy used in mapping between the high-level and low-level
languages. In this section, we present a number of examples that
demonstrate the need for flexibility in specifying the FI policy.
These examples are taken from the OpenGL API, which is a widely
supported standard for low-level 3D graphics [Ope04] We use
OpenGL (and related libraries, such as GLUT), since it has a
number of characteristics that make it an interesting case study:

e The OpenGL API defines a large number of symbolic con-
stants (the values of these constants are fixed by the API). At
a minimum, a high-level interface to OpenGL should support
symbolic names for the constants, but we can go further. The

2We the runtime code generation approach suggested by Huelsber-
gen [Hue95].

OpenGL API uses a single C type (GLenum) for all of the con-
stants, but a given function will only accept a fixed subset of the
constants and will signal an error at runtime on unexpected val-
ues. A high-level API should reflect this behavior and organize
the constants into different types. Another complication is that
some constants inhabit multiple types (e.g., GL_NEAREST is
used to specify texture filters for both magnification and mini-
fication).

One of the limiting factors in the performance of 3D-graphics is
the bandwidth between the client application and the graphics
library. If a high-level language is to be a viable alternative
for programming 3D-graphics applications, then the foreign
interface to the graphics library (e.g., OpenGL) must provide
competitive performance to the native interface.

e While OpenGL is a standard with a well-specified API, there
are differences in the header files from platform to platform. For
example, some versions of gl.h use a single C enumeration
type to define the symbolic constants of the interface, while
other versions use C pre-processor definitions.

Because of the rapid evolution in 3D-graphics hardware, the
OpenGL specification is revised on a frequent basis.> A foreign-
interface generation tool should make it possible to easily track
an evolving interface.

The OpenGL API is very large. On MacOS X (10.3), the g1 .h
header file contains 15 typedefs, 465 function prototypes, and
803 symbolic constants (logically organized into 107 different
types). A tool that generates the high-level API from the header
file can greatly speed the creation of new interfaces.

In the remainder of this section, we present some examples from the
OpenGL API that illustrate the need for application-specific foreign
interfaces.

3.1 Type abstraction and constants

As mentioned above, OpenGL defines a large number of symbolic
constants. Some of these constants are logically grouped into an
enumeration, while others serve as bitmasks. In the former case, we
want to map the C constants to a collection of abstract values of that
have a distinct type, whereas in the latter case, we may want to use
MOBY integers to represent the constants, which allows the use of
bit operations. To make this choice more concrete, we examine two
OpenGL functions that take integer arguments that are specified
using the symbolic constants.

void glBegin (GLenum mode) ;
void glPushAttrib (GLbitfield mask);

For the g1Begin function, there is a fixed set of ten mode con-
stants that are valid arguments to the function. We can reflect this
restriction by defining a type BeginMode and using the following
MOBY specification for the function:

val begin BeginMode -> ()

We would then map the mode constants, such as GL_POINTS,
GL_LINES, efc., to abstract values of the BeginMode type. Al-
ternatively, we might choose to use a datatype for these constants,
which requires additional marshaling overhead, but allows pat-
tern matching on the values. In either case, the MOBY type sys-
tem guarantees that we will never pass an incorrect mode value to
glBegin.

3 There have been seven major revisions of the specification since OpenGL
1.0 was released in 1992.

In the case of glPushAttrib, the argument is formed by
bitwise or of one or more constants. For this reason, we may want
to expose the integer representation of the argument type in the
MOBY interface

val pushAttrib Int —> ()

and map the bitfield constants to integer values

val CurrentBit : Int
val PointBit : Int

An alternative interface is to again use an abstract type (say
Attrib) and the interface

val pushAttrib List (Attrib) -> ()

These examples illustrate that the grouping of constants is appli-
cation specific and, furthermore, the choice of typing also depends
on the application.

3.2 Specialized wrapper functions

The OpenGL API provides several functions for querying the cur-
rent state of the rendering pipeline.

void glGetBooleanv (GLenum pname, int xp);
void glGetDoublev (GLenum pname, double x*p);
void glGetFloatv (GLenum pname, float =xp);
void glGetIntegerv (GLenum pname, int xp);

The first argument to these functions is a constant that specifies
which state value should be returned. The type of the second argu-
ment depends on the particular state value being queried. For ex-
ample, if the constant is GL_BLEND, then the glGetBooleanv
function should be called with a single element as its second ar-
gument, while if the constant is GL_BLEND_COLOR, then the
glGetFloatv function should be called with a four-element ar-
ray as its second argument.

One way to define a strongly-typed interface to these functions
is to generate a high-level function for each constant that uses the
correct underlying C function and arguments. For example, we
might define high-level functions

val getBlend : () -> Bool
val getBlendColor : () —-> RGBA

for the two cases above. An alternative approach is to use a single
MOBY function for each of these C functions and to express the
typing constraints using phantom types.

This example illustrates that a simple one-to-one mapping from
C functions to high-level functions is not always desirable. Some
applications benefit from mapping a C function to multiple special-
ized representations.

3.3 Data-structure representations

While the cost of converting between high-level and low-level
representations for simple types (e.g., ints, floats, etc.) is typically
low, converting structured data, such as arrays or structs, can be
quite expensive. With data-level interoperability, this expense can
be avoided by allowing the high-level language direct access to
the C representation, but in some cases we may prefer paying the
marshaling cost for programmer convenience. For example, the
function

char xgluErrorString (GLenum error);

can be used to map an OpenGL error code to an error message.
For this function, we clearly want to convert the C string to a

C header
file

(9

FIG

(#deﬁnes)47 CPP

CKit

. . FIG

FIG IDL

Backend

Foreign
Interface

Oaylizls

Figure 1. The architecture of FIG

MOBY string. On the other hand, OpenGL also uses arrays to pass
large data values, such as textures and vertex buffers, to the library.
Imposing a marshaling overhead on these transfers would greatly
reduce the rendering performance of applications, so in these cases
it is better to use the low-level representation. Thus, we see that
policy used to handle data structures depends on the application.

4. Implementation overview

Figure 1 gives an overview of the architecture of FIG. Our front-end
consists of a C preprocessor (CPP) library that records information
about preprocessor symbols and the CKIT library for parsing and
type checking ANSI C code. The front-end produces two objects: a
map from preprocessor symbols to definitions and a typed abstract
syntax tree representation of the C header file. The core of the
FI1G implementation is a programmable term-rewriting engine that
translates the outputs of the front-end to FIG IDL, which is an
intermediate representation of the glue between the HLL and C.
The FIG compiler takes the user-supplied script and generates a
rewriting program that the engine runs. It is this rewriting phase
that fixes the policies being used in the foreign interface. The
F1G IDL representation contains information about the high-level
API that was generated, as well as the typemaps that define the
glue code between the high-level and low-level representations.
This representation is then translated to a HLL-specific output
representation.

We have found rewriting to be particularly well-suited to our
problem domain and we explain why in the next section. Following
that, we describe FIG’s typemaps and give examples of how they
can be used to specify various FI policies.

5. Rewriting strategies

The FI1G implementation uses a term rewriting engine to implement
the translation from C header files to the high-level language API.
We chose term rewriting as the evaluation model for several rea-
sons:

e Source-to-source translations are naturally expressed as term
rewriting systems.

e Term rewriting is a declarative programming model.

e The failure model of term rewriting supports composition of
different policies.

This last point is perhaps the most important and deserves expan-
sion.

Our term-rewriting engine is based on the approach of rewriting
strategies proposed by Visser and Benaissa [VeAB98]. A rewriting
strategy is a function from an environment and a term to either L
(denoting failure) or a new environment and term. The operational
semantics of rewriting strategies can be defined using judgments of
the form: e,t —— ¢’,¢', which is read to mean that the strategy s
maps the environment e and term ¢ to a new environment e’ and
new term ¢, If s fails when applied to e and ¢, we write e, —— L.

The basic operations of pattern matching and term construc-
tion can be defined as strategies. If p is a template (i.e., a term
with variables), then ?7p is a strategy for matching the template
against a term. Matching is defined by the following two rules:

77p

t,e — L

In the left rule, p matches ¢ and €’ is the enrichment of e with the
pattern variables in p bound to the corresponding subterms in ¢.*
While the right rule covers the case where p does not match the
term t. Likewise, we can define term construction where template
variables are replaced by their corresponding bindings in the envi-
ronment:

.
’’p ’
t,e —t,e

p
t? € — 6(p)7 €
If p has variables that are not defined in e, then we get failure.

As we hinted above, what makes term rewriting a good match
for our problem domain is the propagation of failure and the com-
position operators. For our purposes, the two most important com-
position operators are sequencing and asymmetric choice. If two
strategies, s1 and s, are in sequence, then we first apply s1, and if
that succeeds, then we apply sz to its result. If either fail, then we
get failure. This behavior is formalized in the following rules:

S1 rogr rogr 52 "o
e,t — et e, tt —e't

81:82
e, t 22 e ¢

S1 S1 52
et — L e,t — 1 et —= L
513892 S$13582
e, t — L et — L

Sequencing can be used to construct conditional rewrites by pre-
ceding them by predicate strategies.’

The asymmetric choice of two strategies, s and s2, is a strategy
that first attempts s1 and if that fails it attempts s2. This behavior
is formalized in the following rules:

4 The original formalization of rewriting strategies defines pattern matching
and term building directly as strategies [VeAB98].

5 A predicate is just a strategy that acts as the identity when true and fails
when false.

S1 S1 52
e,t — et e,t — 1L et et

s1<+s2 s1<+s2
e,t — et e, t — et

et -5 1 et 1

s51<+s
et 'S5 1

We use asymmetric choice to combine user-defined rewrites (on the
left) with default behaviors (on the right). If the user rewrite does
not apply (i.e., it failed), then the default is applied.

5.1 Rewriting combinators in SML

FIG’s rewriting engine is implemented using a combinator library
written in SML based on the “rewriting strategies”” model described
above. A strategy is an SML function with the type

datatype result = FAIL | OK of (env % term)
type strategy = (env x term) -> result

Implementing strategy combinators is quite simple, for example the
combinator for sequencing a list of strategies is

fun seqg [] res = res
| seq (s::r) arg = (case s arg
of FAIL => FAIL
| OK arg => seq r arg)

and the asymmetric choice combinator is

fun <+ (sl, s2) arg = (case sl arg
of FAIL => s2 arg
| res => res)

While these combinators may not be as efficient as the compiled ap-
proach used by STRATEGO, they make it easy to integrate rewriting
into the rest of the FIG implementation infrastructure. For example,
any SML function that matches the st rategy type can be used
as a strategy. Being able to escape to SML has greatly reduced the
implementation effort, since many operations can be more directly
programmed in SML than by using term rewriting.

6. Typemaps

The core task of a foreign-interface generator is to implement a
mapping between high-level types and low-level representations.
In FIG, we use the concept of a fypemap to model this mapping.®

DEFINITION 1. A typemap 0 is a 4-tuple {mt, ct, m, u), where

e mt is a high-level representation type,
e ctis alow-level (i.e., C) representation type,

e m : mt — ct is a marshalling function that converts high-level
values to their low-level representation, and

® u : ct — mt is an unmarshalling function that converts low-
level values to their high-level representation.

It is also useful to consider partial typemaps, where either the
m or u conversions are absent. For example, recall the glGet
functions from Section 3.2 where the parameter-name arguments
are constant. We use the following partial typemap

(void, int, val(v), -)

© The term “typemap” was coined by Beazley for the SWIG system [Bea96,
Bea04], but there are some significant differences between our typemaps
and those of SWIG, which are discussed in Section 8.

¢ == void discards value

val(v) constant value
id identity
wrap wrap unboxed representation
unwrap unwrap boxed representation
#1 select ¢th field of tuple
alloc,, allocate n-tuple
stackalloc,{c} stack allocate temporary storage
prim,, primitive operation

| cisen sequencing

| [eiy.-,cnl congruence

| 1L (21, .-y 0n) permute

| a&---&en branching

| entry,, ,,{c} = MoByY-callable function

| centry,{c} C-callable function

| call,,—, MoOBY function call

| ccall, C function call

Figure 2. Conversion combinators

where v is the constant value, to represent such constant parame-
ters. FIG provides combinators for combining typemaps (described
in Section 6.3), so we also need tuples of typemaps and typemaps
that have tuples of types for either the low-level or high-level rep-
resentation.

FIG uses typemaps as the basic building block for defining FI
policies. We start with a collection of standard typemaps for basic
types. For example, the typemap

(wrap(double), double, unwrap, wrap)

defines the conversion between high-level double-precision floating-
point values, which have a wrapped representation, and C’s double
type. Using FIG’s typemap combinators, these basic typemaps can

be combined to to constructmore complicated typemaps that rep-

resent a wide range of FI policies. For example, a typemap for

converting a C function like

double sgrt (double) ;
to a MOBY function

val sqgrt Double -> Double

can be constructed from the typemap for doubles shown above.

6.1 Conversions

The marshaling and unmarshaling conversions in a typemap are
representations of the glue code needed to connect the high and
low-level languages. We represent these functions using a simple
combinator language that is inspired by the STRATEGO rewriting
language. A simplified version of the combinators are given in
Figure 2. A conversion works on one or more values and produces
one or more results. In the implementation of FIG, conversions
are just terms that specify marshaling and unmarshaling code. The
backend translates these terms to glue code; this translation is
described in Section 6.4.

We say that a conversion is well-formed if the arities of con-
secutive operators match up. We formalize the notion of well-
formedness using a simple type system that tracks the arity of the
combinators. Types in this system are defined as follows:

E = e
| (&, &) n20

where e represents a BOL type’ and (£1,. .., &,) is an n-tuple of
types. Note that while the nested-tuple structure of types is needed
for bookkeeping purposes, these tuples have no runtime effect. We
equate the types (£) and £ and use the notation (™) to denote a
tuple of n BOL types. The typing judgement on conversions is

Fce:&—¢

In the remainder of this section, we give the typing rules for the
conversion combinators and informally describe their semantics.

The void combinator discards its argument, which is reflected
in its type
F void : @ — ()
while the val combinator injects a new constant value

Fval(v): () — e

We also have an identity conversion (id), a conversion for wrapping
unboxed values (wrap), a conversion for unwrapping boxed values
(unwrap), and one for selecting a field from a heap-allocated
tuple (#1i). These conversions all have the type e — e. For heap
allocation, we have F alloc, : (") — e. To support C return
parameters, we provide a stack allocation combinator:

Fec:(e &) —¢
F stackalloc,{c} : & — ¢

This combinator passes the address of n bytes of stack allocated
memory as the first argument to the conversion c.

Access to the BOL primitive operations (including address
arithmetic and load and store operations) is provided by the
prim,, conversion, where op is a BOL primitive operation.

op takes m arguments and produces n results
F primup (o) — (o7)

The rule for sequencing is where types are forced to match
Fep:é€—¢ Fep: & — ¢
Feijep: & — ¢
The congruence operator lifts a tuple of conversions to be a conver-
sion of a tuple of values

Fei:&— & forl<i<n
F[Cl,...,cn]:<£1,...,§n>*)<£{’...7§41>

The permutation operator can be used to rearrange a tuple of values,
including duplicating and dropping elements.

i1,...,0n €{1]1 <3< m}
FILn(it, . eyin): (€1, ey &m) — (Eiyyo v oy i)
The branch operator maps a single value to a tuple
Fei:&€—¢& forl<i<n
Fa& - &cen:&—(&,...,8&)

A conversion can be lifted to be a conversion from C functions to
MoOBY functions by using the entry combinator.

Fc: (e, () — o

Fentry, .. {c}:e—e

Here, m is the number of arguments to the function and n is the
number of results. The conversion c is applied to the pair of a C
function and a tuple of the function’s arguments. We also have a
conversion combinator for converting from MOBY functions to C
functions.
Fc:(e, (o)) — e
F centry, {c} :e — e

7 Note that in practice, we track the actual BOL types of the values being
translated, but we have not yet formalized this system.

The call conversion applies a MOBY function to its arguments.
Fcally,—p, : (o, (0™)) — o"

Likewise, a the ccall conversion applies a C function to its argu-

ments.

F ccall, : (e, <o">> — e

6.2 A Conversion example

As an example of how these combinators work, consider the con-
version from the C function type

double (*) (double, double);
to the MOBY function type®
$ (Double, Double) => Double

Applying such a conversion to an appropriately typed C function
produces a wrapped function that can be called from MOBY.

The first step is to unbundle the MOBY function’s argument,
which has the type $ (Double, Double) and is represented as
a pointer to a pair of pointers to doubles. The conversion

#0 & #1

will deconstruct the pair. We follow that by a congruence transfor-
mation to unwrap the doubles and we have the conversion needed
to marshal the C function’s argument.

#0 & #1; [unwrap, unwrap|

The next step is to call the C function, using the ccall combinator.
This combinator expects a pair of the C function and a tuple of the
arguments, so we first need to embed the argument conversion in a
congruence with the identity and then sequence it with the ccall

[id, #0 & #1; [unwrap, unwrap||; ccally

The C call will return an unwrapped double, so we need to wrap its
result

[id, #0 & #1; [unwrap, unwrap]]; ccally; wrap

The final step is to lift this conversion up to a conversion on
functions

entry, ,{
[id, #0 & #1; [unwrap, unwrap]|; ccally; wrap

which defines the wrapper code needed to map a C function of the
above C type to a MOBY function with the above MOBY type.

6.3 Typemap operators

The conversion combinators described in the previous section pro-
vide an “assembly code” for data marshalling. In practice, users
work at the typemap level when defining FI policies. To facilitate
this practice, FIG provides a collection of standard typemaps and
typemap operators for combining typemaps.

One common operator is “$”, which takes a tuple of typemaps
and constructs a typemap that defines a mapping between a high-
level heap-allocated tuple and a sequence of C values.

$((mt1, ct1,my,u1),. .., (Mln, ctn, My, Uy))
= (mt, ct, m, u)

8 The “$” is the MOBY type operator for heap-allocated tuples.

where

mt = struct{mti,...,mt,}

ct = (cti,...,ctn)

m = (#1&: - -&#n);[my,...,m,]
u = [u,...,uy];alloc,

Note that the resulting typemap has a sequence of low-level types
its low-level representation.

The congruence operator for typemaps, is defined as follows:

[m1,...,mn] = (mt, ct,m,u)
where
m; = (mts, cti, my, uy)
mt = (mti,...,mtp)
ct = (ct1,...,ctpn)
m = [my,...,m,]
u = [u,...,uy

Essentially, this operator is lifting the congruence on conversions
to the typemap level.

6.4 Translating conversions

After the term-rewriting phase of FIG has selected the FI policies,
the residual typemaps are translated to BOL code. In this section,
we give a formal description of this translation. Since the combina-
tors define conversions on nested tuples of values, we find it useful
to mirror that nested structure in the handling of BOL variables in
the translation to BOL code. We use x and y to denote meta vari-
ables in the translation and a to denote BOL variables. We assume
a “gensym” mechanism for generating fresh BOL variables on de-
mand. Variables are organized in a nested-tuple structure, called
patterns, that follows the structure of conversion types (§). The set
of patterns (Pat) is defined inductively as

= a BOL variable
| = meta variable
| (p1,-.spn) m20

b,q

We write & for (x1,...,Zn) (i.e., a tuple of meta variables). We
say that a pattern p matches a type £ (written p :) if they have
isomorphic structures.

The translation of a conversion c, is specified by the expression
[e] p k, where p is a pattern matching the inputs to ¢ and k is a
“continuation” that consumes the output of the conversion. This
translation has the following type:

[[] : Pat — (Pat — BOL) — BOL

where BOL is the type of BOL expression terms produced by FIG.
Note that the nested value structure does not represent runtime data
structures, but, rather, is just a bookkeeping tool used in the specifi-
cation. The formal definition of the translation is given in Figure 3.
We follow the convention of using teletype font for the BOL
syntactic terms. As can be seen from this figure, some conversion
combinators, such as void, id, and permutation, do not produce
code, but instead just act as plumbing. Most of the conversions that
map to actual BOL code are mapped to a let-binding, where the
conversion’s arguments are used on the right-hand-side of the let
and the left-hand-side is passed to the conversion’s continuation.

To illustrate the translation, we consider the translation of a con-
version that maps maps a heap-allocated pair of wrapped doubles
to a pair of doubles:

[#0 & #1; [unwrap, unwrap|] z k

This translation evaluates to the following BOL fragment:

let t1 = #0(z) in
let t2 = #1(x) in
let t3 = unwrap(tl) in

let t4 = unwrap(t2) in
k(t3, t4)

7. FIG by example

The declarative FIG scripting language allows the users to specify
the policies for translating C header files to MOBY interfaces with
their supporting glue code. There are two kinds of commands in the
scripting language: definitions and rule-applications. A definition
command defines typemaps or their components (such as types
and conversions), which are usually used by later rule-application
commands. A rule-application command usually consists of two
parts: matching and building. The matching part provides a pattern
embraced by backquotes to match the C term, and the building part
usually defines a MOBY term which corresponds to a MOBY type,
constant or function. There are meta variables carrying information
about the C term from the matching part to the building part. The
values of meta variables are filled in when this rule applies to a C
term successfully.

7.1 Constants

For our first example, we revisit the g1Begin function that we
discussed in Section 3.1. Recall that this function takes an integer
argument that can have one of ten legal values; any other value
results in an OpenGL runtime error.

The most straightforward way is to translate the ten begin-
mode constants to integer constants,” and to translate the prototype
of glBegin to a function that takes an integer argument. This
translation results in the following MOBY interface:

const GL_POINTS : Int
const GL_LINES : Int

val glBegin Int -> ()
This translation is easy to specify, since it matches FIG’s defaults;
the script is as follows:

MATCH ‘#define {GL_(POINTS | LINES
| LINE_STRIP | LINE_LOOP | TRIANGLES
| TRIANGLE_STRIP | TRIANGLE_FAN | QUADS
| QUAD_STRIP | POLYGON)} _ V¢
=> CONST default
MATCH ‘void glBegin (GLenum mode) '
=> FUNCTION default

The first command uses a regular expression to match the names
of C constant definitions and defines the corresponding MOBY
constants using the default mapping from the FIG library. The
second rule uses the default mapping for simple function types.

For a strongly-typed high-level language like MOBY, however,
we want better static type checking than provided by this interface.
The following MOBY interface illustrates the approach described
in Section 3.1:

type BeginMode
const POINTS
const LINES

BeginMode
BeginMode

9The const definitions is a MOBY mechanism that allows the pro-
grammer to define data constructors and constants independently of
datatypes [AR92].

[void]zk = k()

[val(v)] () k = lett=wvink(t)
[id]zk = k=)
[wrap]zk = 1lett=wrap(z)ink(t)

[unwrap] z k

let t =unwrap(z)ink(t)

where t is a fresh BOL variable

where t is a fresh BOL variable

where v is a fresh BOL variable

[#i]lzk = lett=#i(z)ink(t) where t is a fresh BOL variable
[alloc,]Zk = 1lett=alloc(Z)ink(t) where t is a fresh BOL variable
[stackalloc,{c}]pk = 1lett =stackalloc(n)ink (t,p) where t is a fresh BOL variable
[prim,,J(z1,...,2m)k = let(ti,...,tn)=0p(x1,...,Tm)ink(t1,...,tn)
where the t; are fresh BOL variables
[ev;-sealprk = el pr (Ap2-fee] p2 (- (Apn-[en] P k) -)

Mch...,cnm<p1“..,pn)k

[[01]]191 (>\q1~[[c2]] P2 (- (Agn-kqr, - qn)) -2 2))

[T ity o)) (pro- o opm) b = k(piy, oo piy)
[er& - &en]pk = [a]lpQagife2]p (.. (Agn-klqr, .., qn))--.))
[entry,, . {c}Jzk = £unf(f) = [](z,t) (\j.return (7)) ink(f)
where |€| = m and the t are fresh BOL variables, and |ij] = n.
[centry, {c}]rk = cfunf(t) = [](x,t)(\y.return (y))ink(f)
where |£] = n and the £ are fresh BOL variables.
[callm—n] (f,Z)k = lett =call f(¥)ink(t)

where |Z| = m, |€| = n, and the £ are fresh BOL variables.

[ccall,] (f,Z)k = lett=ccall f(Z)ink(t)

where || = n and t is a fresh BOL variable

Figure 3. Translating conversion combinators to BOL

val begin : BeginMode => ()

This translation requires more work on the part of the FIG user,
since we must specify a new type and the assignment of the con-
stants to the type. We have also stripped the GL__ prefixes from the
constants (and the g1 prefix from the function), since the MOBY
module system will provide the necessary name-space manage-
ment. The FIG script defining this interface is as follows:

MOBYTYPE BeginMode = (int, int, id, id)
MATCH ‘#define {GL_?name{POINTS | LINES
| LINE_STRIP | LINE_LOOP | TRIANGLES
| TRIANGLE_STRIP | TRIANGLE_FAN | QUADS
| QUAD_STRIP | POLYGON}} ?i?
=> CONST {NAME=!name,
VALUE=!1,
TYPE = BeginMode}
MATCH ‘void {glBegin} _‘
=> FUNCTION {NAME = "begin",
TYPE = BeginMode -> (),
GLUECODE = default}

The first command defines a MOBY type BeginMode using
a typemap specifying its BOL representation, and conversions
from/to the C int type. In this way, in the MOBY interface,
BeginMode appears as an abstract type, and the underlying BOL
representation is hidden. In the second command, “?name” and
“?4” are meta variables in the matching part, and their values are
defined in when this rule successfully applies to a C term. The
building part of the rule uses the syntax “!name” and “!1i” to re-
fer to the variables’ values. The third command defines a MOBY
function begin that takes an argument of type BeginMode. The
glue code of the function can be generated automatically by FIG
using the BeginMode typemap.

7.2 Pattern matching

Libraries often have common naming conventions and type struc-
ture. FIG provides pattern-matching mechanisms to allow the FIG
user to take advantage of these patterns and factor the FIG script at
several levels. For example, the g1 . h header has ten functions that
have prototypes of the form

void glOperation3f (GLfloat, GLfloat, GLfloat);

By pattern matching the names of the functions, we can define a
single FIG rule that will uniformly translate these prototypes to the
form

val operation : (Float, Float, Float) -> ()

This generic translation can be defined by the following script:

MATCH ‘void {gl?name{[a-zA-Z]x}3f}
(float, float, float)®
=> FUNCTION { NAME = lower (!name),
TYPE = (Float, Float, Float) -> ()
GLUECODE = default }

The function 1ower converts the letters in a string to lower case.
For example, the above script command translates the C function

void glColor3f (GLfloat, GLfloat, GLfloat);
to

val color : (Float, Float, Float) —-> ()

We can further take advantage of the fact that the OpenGL API
follows the convention of encoding the arity and type information
of an operation into its name and write a single rule for translating
all of the fixed arity operations. FIG patterns involve both regular
expressions (useful in the OpenGL example) and the structure of

the terms that represent the C type information, so it is possible to
write generic rules even when the source library does not follow
strict naming conventions.

7.3 C data structures

While making it easy to generate interfaces to C functions with
simple types is important, we also want to support interfaces to
libraries that have more complicated C data structures that might
not easily match the higher-level language’s representations. We
consider two such examples in this section.

In many cases, OpenGL uses small fixed-size C arrays to pass
data to the library. For example, the following function is used to
set a number of lighting properties:

void glLightfv (
GLenum light,
GLenum pname,
const GLfloat xparams)

One approach to translating this function is to embed the C
types into the high-level language as is done by the CHARON and
NLFFIGEN tools. For MOBY, the resulting type would be

val glLightv : (Int, Int, C_Ptr(Float)) -> ()

where C_Ptr (Float) is an abstract type for accessing the C
array representation. While this approach has the advantage that
it can handle the whole range of C interfaces (except for varargs),
it has the disadvantage that it type of the third argument does not
specify the array size. On the other hand, we could define the
MOBY function as follows:

val lightv:
(Int, Int, $(Float, Float, Float, Float))
=> ()

In this interface, the C array type “const GLfloat *” is mapped
to a high-level representation — a heap-allocated tuple. This inter-
face has stronger type-safety guarantees and fits MOBY better than
the CHARON generated interface.

The script of this translation is a little complicated. An impor-
tant part is to define a typemap between the C array and MOBY
tuple types. The script is as follows:

TYPEMAP tymapl = (int, int, id, id)
TYPE m_float = wrap(float)
CONVERSION moby2c = {
(#0 & #1 & #2 & #3);
all (unwrap) ;
stackalloc;
[puta 0, puta 1, puta 2, puta 3];
ptr}
CONVERSION c2moby = {
ref;
(geta 0 & geta 1 & geta 2 & geta 3);
all (wrap);
alloc}
TYPEMAP tymap2 = (
S (m_float, m_float, m_float, m_float),
ptr(float),
moby2c,
c2moby)
TYPEMAP tymap3 = [tymapl, tymapl, tymap2]
MATCH ‘void glLightv ?args®
=> FUNCTION (
NAME = "lightv",
TYPE = (x:Int, y:Int,
z:$(Float, Float, Float, Float)) -> (),
GLUECODE = {%toC (a,b,c) = tymap3 (x,y,2z),
$ccall = glLightv (a,b,c)}}

In this script, we first define tymapl to be the identity typemap
on integers. The typemap tymap?2 is defined to map between a C
float pointer and a heap-allocated 4-tuple of MOBY Float values.
This typemap consists of two conversions: moby2c and c2moby.
The first works by decomposing the tuple into four values, then
unwrapping the values (the “a11” operator lifts a conversion to a
congruence), then allocating temporary space in the stack, storing
the values in the temporary storage, and finally yielding the ad-
dress of the storage. The conversion operations geta and puta
mean loading and storing array elements. Typemap tymap3 is the
typemap for the arguments of the g1Light fv function, which we
then use in the glue code to convert from MOBY arguments to C.

8. Related work

Term rewriting has been used to implement a number of program-
transformation systems [VisO1], but we are not aware of it previ-
ously being used to generate foreign interfaces. The main body of
related work is the large collection of tools that people have de-
veloped for generating foreign interfaces. We compare FIG to a
representative sample.

The FFIGEN [Han96] tool for SCHEME is perhaps the closest
in design to FIG. It translates a C header file into a collection of
SCHEME data structures for the constants, types, prototypes, etc.
User-written SCHEME code is then applied to these data structures
to generate the foreign interface. The user code can be specialized
to both the target system and the source header file. The main dif-
ference in our approach is that we are using a declarative scripting
language to specify the transformation and a term-rewriting engine
to implement the transformation, instead of a general-purpose pro-
gramming language. Furthermore, FFIGEN does not have any no-
tion of typemaps.

As we mentioned in Section 6, the notion of typemaps was
invented by Beazley in SWIG [Bea96, Bea04], which is a tool
that uses a combination of user-supplied scripts and information
mined from header files to generate foreign interfaces for a num-
ber of high-level languages (most notably Python, but also JAVA,
OCAML, Perl, Tcl, and others). While SWIG does allow customiza-
tion of interfaces, it does not support data-level interoperability (it
generates C functions for that have to be called to access C data
structures). Typemaps in SWIG have an object-oriented flavor and
are more substantial those of FIG. Specifically, they have a pat-
tern matching component that controls when they are applied and
they can have a number of “methods” in addition to the basic mar-
shaling/unmarshaling methods (e.g., error checking code, cleanup
code, efc.). Methods are specified as C code fragments with meta-
variables that get expended when SWIG generates the glue code.

One popular approach to FI generation are tools that use In-
terface Definition Language (IDL) specifications to generate glue
code [FLMP99]. The advantage of this approach is that IDL is a
standard (two, actually) and there are many existing IDL specifica-
tions (especially for Microsoft’s APIs). Unfortunately, the IDL ap-
proach does not provide much room for customizing the API and
does not support data-level interoperability for data structures.

GREENCARD [Tea] is a FI preprocessor for HASKELL. Simi-
lar to F1IG, GREENCARD supports application-specific FIs, but re-
quires that the entire interface be specified. It does not extract any
information from C header files. GREENCARD has the mechanism
of data-interface schemes (DIS) that are similar to typemaps.

Another HASKELL FI generator is C->Haskell [Cha99].
This tool analyses C header files to determine the data layout and
function prototypes and then processes a HASKELL template that

contains hooks for foreign references. The hooks are expanded by
the tool to produce the foreign interface consisting of a HASKELL
file and a C file that implements glue code. This tool support cus-
tomization of the interface, but the set of hooks is fixed so the
customization has to be done by writing HASKELL (or C) code.

An alternative to mapping a low-level API into a high-level one,
is to embed the low-level API directly in a high-level language. The
tools NLFFIGEN [Blu01] and CHARON [FPRO1] follow this ap-
proach. They take raw C header files and generate an embedding of
the C types into the high-level language. While the resulting code
is efficient and requires little user effort to generate, it low-level.
Essentially, one is writing C code using the high-level language
syntax.

9. Conclusion

In this paper, we have argued for foreign-interface generation tools
that support the generation of application-specific interfaces. We
have presented FIG, which is a tool that we have developed to
meet this need. FIG processes the raw C header files together with
a declarative FIG script, using the script as the guide of transfor-
mation, and produces foreign interface code for MOBY programs.
F1G’s scripting language is based on a theory of typemaps and
term rewriting strategies. FIG’s scripting language is designed to
have good defaults, which minimize the user effort for most for-
eign functions, but at the same time, users have almost unlimited
power to customize the foreign interface.

The typemapping between high-level types and low-level types
is the core of a foreign interface and our composable typemaps
make it possible for users to define complicated and even higher-
order typemaps from basic building blocks. We have presented a
formal description of typemaps, including a formal translation from
our conversion combinators to BOL expressions.

We are continuing this work in several ways. First, we are
working on a type system for conversions that tracks the BOL
types. We believe that this type system will allow us to prove
that well-formed typemaps produce type-correct glue code (in the
sense of Furr and Foster [FF05]). We are also continuing to refine
the FIG scripting language to better cover common idioms. Our
current implementation is missing a number of important features
that we plan to add. This include support for error handling (i.e.,
mapping error return values in C functions to exceptions) and
handling constant expressions in header files. The architecture of
F1G is flexible enough to support other targets and we are currently
implementing a version for SML.

References

[AR92] Aitken, W. E. and J. H. Reppy. Abstract value constructors:
Symbolic constants for standard ml. Technical Report TR 92-
1290, Dept. of CS, Cornell University, June 1992. A shorter
version appears in the proceedings of the “ACM SIGPLAN
Workshop on ML and its Applications,” 1992.

[Bea96] Beazley, D. M. SWIG: An easy to use tool for integrating
scripting languages with C and C++. In TCL’96, July 1996.
[Bea04] Beazley, D. SWIG-1.3 Documentation, December 2004.

Available from www . swig.org.

[BluO1] Blume, M. No-longer-foreign: Teaching an ML compiler
to speak C “natively”. In N. Benton and A. Kennedy (eds.),
BABEL’01, vol. 59 of ENTCS, New York, NY, September 2001.
Elsevier Science Publishers. Available from http://www.
elsevier.nl/locate/entcs/volume59.html.

[CFH103] Chakravarty, M. M. T., S. Finne, F. Henderson, M. Kowalczyk,
D. Leijen, S. Marlow, E. Meijer, S. Panne, S. Peyton Jones,
A. Reid, M. Wallace, and M. Weber. The Haskell 98
Foreign Function Interface 1.0, 2003. Available from http:
//www.cse.unsw.edu.au/~chak/haskell/ffi/.

Chakravarty, M. M. T. C — Haskell, or yet another interfacing
tool. In IFL’99, vol. 1868 of LNCS, New York, NY, 1868 1999.
Springer-Verlag.

[Cha99]

[FFOS5] Furr, M. and J. S. Foster. Checking type safety of foreign
function calls. In PLDI’05, New York, NY, June 2005. ACM,
pp. 62-72.

[FLMP99] Finne, S., D. Leijen, E. Meijer, and S. Peyton Jones. H/Direct:
A binary foreign language interface for Haskell. In ICFP’98,
September 1999, pp. 153-162.

[FPROO] Fisher, K., R. Pucella, and J. Reppy. Data-level interoperability.
Technical report, Bell Labs, Lucent Technologies, April 2000.
Available from http://moby.cs.uchicago.edu.

[FPRO1] Fisher, K., R. Pucella, and J. Reppy. A framework for

interoperability. In N. Benton and A. Kennedy (eds.),
BABEL’01, vol. 59 of ENTCS, New York, NY, September 2001.
Elsevier Science Publishers. Available from http://www.
elsevier.nl/locate/entcs/volume59.html.

[FR99] Fisher, K. and J. Reppy. The design of a class mechanism
for Moby. In PLDI’99, New York, NY, May 1999. ACM, pp.
37-49.

[Han96] Hansen, L. T. FFIGEN User’s Manual, February 1996. Avail-
able from www.ccs.neu.edu/home/1th/ffigen/.
[Hue95] Huelsbergen, L. A portable C interface for Standard ML of

New Jersey. Technical report, Bell Laboratories, November
1995. Available from http://www.cs.bell-1labs.
com/who/lorenz/papers/smlnj-c.pdf.

[Lia99] Liang, S. The Java Native Interface. Addison-Wesley, Reading,
MA, 1999.

OpenGL Architecture Review Board. The OpenGL Graphics
System: A Specification (Version 1.5), 2004.

[Tea] Team, T. G. C. The Green Card User’s Guide. Available from
www.haskell.org/greencard.

[VeAB98] Visser, E. and Z. el Abidine Benaissa. A core language for
rewriting. In WRLA’98, vol. 15 of ENTCS, New York, NY,
September 1998. Elsevier Science Publishers.

[Ope04]

[VisO1] Visser, E. A survey of rewriting strategies in program
transformation systems. In WRS’01, vol. 57 of ENTCS, New
York, NY, May 2001. Elsevier Science Publishers.

