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ABSTRACT

Users’ prior expectations are an important but understudied degree
of freedom in visual inferences. We ask: To what extent are priors
learned through visual experience? How do they impact behavior?
Can we design visual analytics systems to manipulate users’ priors
and calibrate their sensitivity to the signal in data? We connect
theoretical accounts of priors in visual inference with the empirical
results from psychophysical and physiological studies of visual adap-
tation: a ubiquitous process by which the neural code calibrates to
statistics of the immediate environment. The way the visual system
adapts its internal representations based on experience explains im-
plicit learning of empirical priors for the purpose of visual inference.
Drawing on the visual adaptation literature, we present a framework
for researching and designing for priors in visual inference.

Index Terms: Human-centered computing—Visualization—
Visualization theory, concepts and paradigms

1 VISUAL INFERENCE AS MODEL CHECKING

Both exploratory data analysis (EDA) and statistical inference are
concerned with the discrepancy between observed data and the pre-
dictions of a reference model [6,13,14]. While often implicit in the
case of EDA, the reference model represents the analyst’s prior be-
lief about how the data should be distributed and what relationships
are expected. In the case of confirmatory statistical inference, the
reference model represents a null hypothesis (e.g., no difference be-
tween two groups). Thus, visual statistical inference usually involves
some sort of implicit or explicit comparison between the observed
data y and predicted data yrep replicated from the reference model.
Gelman [13, 14] analogizes this formalization to model checking.

In recent work [19], Hullman argues that how we show uncer-
tainty in visualizations informs the user’s reference model for the
purpose of visual inference. Specifically, if we do not show users un-
certainty in a visualization, then their notion of the reference model
is unconstrained. Users are left to imagine a data generating process
and how it might map onto a visualization of the observed data. On
the other hand, when we visualize uncertainty we expose a “seam”
in the process by which the data were constructed and visualized.
From this perspective, effective uncertainty visualization signals the
author’s intended reference distribution to the user and enables them
to easily compare y to yrep, and any uncertainty visualization reduces
degrees of freedom in the user’s inference of yrep.

That visual analytics platforms should enable comparisons be-
tween the observed data and a reference or null model is perhaps
most memorably illustrated by visualization lineups [6, 40](Fig. 2).
The lineup technique aims to apply confirmatory procedures to the
typically informal process of visually assessing a plot to determine
if it contains a pattern. A lineup is composed of a set of small mul-
tiples where one plot depicts observed data y and the others depict
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replications yrep from a null model. Prior work [27] characterized
the extent to which users are able to recognize real data plots among
null plots in lineups at different levels of signal strength, and they
found large individual differences which they attribute to visual skill.
We consider the extent to which such individual differences may
reflect exposure and visual adaptation to charts, through which users
form empirical priors about expected visual properties of yrep.

Priors describing reference models used in visual inference are
an important factor in graphical perception, yet visualization re-
searchers and practitioners may find it difficult to reason systemati-
cally about their impacts in visual analytics systems. In particular,
we focus on the capacity for visual experience to influence priors 1.
We call expectations learned from experience empirical priors, in
contrast with expectations informed by declarative knowledge. It is
prudent for our community to better understand: What is reasonable
to assume about how a user’s previous exposure to charts will impact
their perception of patterns in a visualization?

2 LEARNING PRIORS THROUGH EXPERIENCE

We examine whether it would be reasonable to assume that people
learn priors for graphical statistical inference through an optimal
Bayesian accumulation of experiences. In previous theoretical work,
DeWeese and Zador [8] make predictions about the how a Bayesian
would learn the underlying mean and variance of a sequence of ob-
served quantities. They derive a recursive definition of the Bayesian
estimate of these parameters θi after a set observations j through i,

P(θi | s j≤i) =
P(si | θi,s j<i)P(θi | s j<i)

P(si | s j<i)

where s j<i are observations before the current observation si. The
running estimate of mean and variance for a set of observations
depends on previous observations and the prior they inform.

This formulation of Bayesian learning makes several noteworthy
predictions about the way people learn priors from experience [8]:

1. It takes more observations to accurately learn the mean and
variance parameters underlying a stream of observations when
the variance is high.

2. Learning variance accurately requires more observations than
learning means.

3. When means change over time, it does not take many observa-
tions to detect the new mean.

4. When variance changes over time, there is an asymmetry in
how long it takes to detect increments vs decrements: Incre-
ments of variance are noticed after fewer observations than
decrements of variance because they are not expected.

5. Previous learning interferes with later learning because priors
start flat but over time become more specific and stable.

These are all consequences of a theoretical statistical formulation of
learning. Does human behavior conform to these predictions?

1There is a body of literature on implicit learning from non-visual experi-
ences (e.g., [30]) that falls outside the scope of our review.



Figure 1: An illustration of how the locations of the coin and precue
are sampled and used in Bayesian update (adapted from Berniker
et al. [3]). Formulas match the DeWeese and Zador’s [8] recursive
formulation of Bayesian adaptation.

2.1 Reviewing a Study on Bayesian Visual Learning

Berniker and colleagues [3] measure visual learning and compare
observed behavior to a benchmark model resembling DeWeese
and Zador’s [8] formulation of Bayesian update. They find close
correspondence between human behavior and the predictions of a
Bayesian benchmark, suggesting that people are optimal Bayesians
when it comes to visual learning. Note that this study sets up a situa-
tion where knowledge outside the experimental task is irrelevant, so
consequently their findings reflect how priors are learned in the ab-
sence of previous conceptual knowledge. Before we interrogate the
generalizability of this finding, we explicate this study as a concrete
example of how people learn priors through visual experience.

2.1.1 Task Structure

Participants try to catch a coin in a virtual net based on a noisy
precue about the coin’s location. The precue is a visual cue at
the beginning of each trial which gives an uncertain indication of
where the actual coin will fall along a horizontal axis. On each
trial, the location of the coin is drawn from a Gaussian distribution,
and the location of the precue is drawn from a second Gaussian
distribution with a mean equal to the coin’s location and standard
deviation equal to a tenth the width of the display (Fig. 1). The
participant must place their net where they expect the coin to fall,
and they receive feedback as to whether they catch the coin. This
task requires a Bayesian visual inference where participants must
integrate the location of the precue (i.e., likelihood) with their prior
about the parameters of the underlying Gaussian distribution from
which the coin’s location is drawn. The experimenters manipulate
the mean and standard deviation of the coin location distribution
between blocks of trials and infer the participant’s prior from their
net placement across many repeated trials.

2.1.2 Findings

Berniker and colleagues [3] benchmark participants’ implicit es-
timates of the mean and variance of coin locations against an
idealized Bayesian model representing the upper bound of infer-
ential accuracy after a given sequence of trials. Human perfor-
mance mirrors the model relatively closely, corroborating evidence

that the human visual system is able to automatically extract sum-
mary statistical information from visual ensembles presented over
time [1, 18, 26, 29]. Their findings mostly follow the predictions of
DeWeese and Zador [8]:

1. Participants’ sense of the mean is less accurate when the vari-
ance of the coin location distribution is high. However, since
participants seem to start the task with a flat prior, their sense
of variance converges more quickly when variance is high.

2. Participants learn the mean very quickly, within about ten trials,
whereas it takes them about 200 trials to learn the variance.

3. When the mean coin position changes abruptly, participants
notice after only a couple trials.

4. When variance changes, participants update their priors more
easily when variance increases than when variance decreases.

5. Previous learning interferes with participants’ ability to update
their priors after changes in the variance of coin locations.

Given the correspondence between DeWeese and Zador’s the-
ory [8] and empirical evidence from Berniker [3] and others [2, 32],
it is enticing to conclude that visual learning is approximately
Bayesian. However, the foregoing evidence leaves us with unan-
swered practical questions. For example, in the context of visual
analysis, do chart users learn priors in the same way regardless of
variations in marks and encodings? How does conceptual knowl-
edge about chart types and data context integrate with Bayesian
visual learning? In order to design for visual inferences which incor-
porate user priors, we need to anticipate how these priors are formed
and their impacts on graphical perception. In search of a framework
for reasoning about these questions in relation to empirical priors,
we review the visual neuroscience literature on a process supporting
implicit learning from experience: adaptation.

3 VISUAL ADAPTATION TO THE ENVIRONMENT

A large body of literature in vision science points to a physiological
mechanism by which empirical priors may be represented. Adapta-
tion is a ubiquitous process by which the representational codes of
neurons in the brain are continuously updated relative to the norm
of an environment [23, 36, 37], which is learned through experience.
We argue that this sense of the norm functions like an empirical prior
about what statistical properties are expected in a given environment.
If we view visual analytics as a kind of artificial environment, litera-
ture on adaptation suggests open questions for visualization research
as well as design patterns for systems supporting visual inferences.

3.1 What is Adaptation?
Adaptation is continuous tuning of the way neurons represent in-
formation. It weakens responses to stimuli which are common in
the environment and relatively strengthens responses to novel stim-
uli [23]. The result is a perceptual calibration of which stimuli
appear subjectively neutral and which stimuli attract attention [37].

Some well known visual illusions such as color afterimages and
motion aftereffects (e.g., the “waterfall illusion“) are caused by
visual adaptation [15, 23, 37]. These illusions are used in teaching
and research to illustrate and study opponent processing mechanisms
in the visual system. In each case prolonged exposure diminishes
the response of neurons to the adapting stimulus, and consequently
the viewer experiences an afterimage of the opposite percept when
the adapting stimulus stops: In color afterimages, exposure to a red
or blue stimulus yields a green or yellow afterimage, respectively.
In motion aftereffects, exposure to a moving stimulus yields illusory
motion in the opposite direction.

Accumulating evidence of adaptation to visual stimuli with vary-
ing complexity (reviewed separately by Kohn [23] and Webster [37])
suggests that adaptation is ubiquitous. For example, adaptation
has been measured for stimuli as complex as faces, viewpoints on
objects, and the perceived navigability of landscapes.



The strength and duration of adaptation effects depend on the du-
ration of exposure to the adapting stimulus [8, 9, 15, 23, 37]. Chopin
and Mamassian [7] even find opposite effects of adaptation at dif-
ferent timecourses: Perception is repelled (i.e., biased away) from
the adapting stimulus within two or three minutes of viewing that
stimulus. However, perception is attracted toward adapting stimuli
shown in the more distant past. Extensive evidence shows both
repulsive and attractive effects of adaptation [23].

We account for these opposite effects by distinguishing two com-
ponents of adaptation, the adjusted sensory signal and the sense of
the statistical regularities of an environment. We call the calibration
of sensory signal to a sense of the norm in a specific environment an
adaptation state. Friston [11, 12] argues that this sense of the norm
represents an empirical prior, which encodes our predictions about
the possible causes of sensory input. According to Friston, sensory
signals are adjusted to represent prediction errors, such that signals
are coded as differences from our expectations. In this framework,
the short-term repulsive effects of adaptation reflect rapid adjust-
ments to incoming sensory signal, and longer-term attractive effects
reflect the formation of empirical priors.

3.2 Why and How Does the Visual System Adapt?

The brain is composed of cells called neurons which communicate
through electrochemical pulses called action potentials. The pat-
terns and frequencies of these pulses encode information about the
combination of inputs to each neuron and constitute the cell’s output.

The rate at which neurons can produce action potentials is limited,
so they need to map a large domain of stimulation onto a smaller
dynamic range of action potential frequencies. For example, light-
sensitive cells in the retina have a response range of about two orders
of magnitude, yet they must encode light levels that vary over ten or-
ders of magnitude in the natural environment [2]. Adaptation enables
this flexibility of representation resulting in a maximally efficient
code for information transmission [5,35], which reduces redundancy
in and improves the metabolic efficiency of the brain [23].

In the efficient neural code, the meaning of a specific sequence of
action potentials depends on the norm of the environment to which
the visual system is adapted [9, 36, 37]. In order to disambiguate
the meaning of this normalized code, the visual system needs to
somehow represent the the statistical properties of its current en-
vironment [8]. In a landmark study, Fairhall and colleagues [9]
analyze direct measurements of action potentials 2 and find evidence
that separate components of the neural code represent normalized
sensory signal and immediate statistical context, respectively. Sen-
sory information is represented in brief patterns of action potentials,
whereas the variance among stimuli presented is represented in
slower changes of the overall pulse rate. They find that the compo-
nent of adaptation states which represents variance is slow to learn
variance to a high degree of accuracy and learns increases in variance
faster than decreases, mirroring optimal Bayesian learning [8].

We argue that the confluence of findings from theoretical, physio-
logical, and behavioral research suggest that learning environmental
norms from visual experience to support adaptation is the mecha-
nism through which we form empirical priors for visual inference.

3.3 How Do Empirical Priors Influence Perception?

As visualization researchers, the crux of our interest in adaptation
is how normalization to the environment impacts perception. We
argue that the statistics which the visual system learns about different
environments to support adaptation function like Bayesian priors
about what expected versus unexpected visual patterns look like.

2Fairhall and colleagues [9] take direct measurements of action poten-
tials from visual motion-sensitive neurons in the house fly, a procedure too
invasive for human subjects.

3.3.1 Overemphasizing the Mean

There is a long history of research on a phenomenon called the cen-
tral tendency of judgments [17] in which estimates of a sequence of
quantities are attracted toward the mean of the previously presented
quantities. We argue that this perceptual attraction toward the mean
is a consequence of adaptation states. The visual system learns the
mean through ensemble processing to form a prior about what is
normal in a sequence of quantities. This prior induces an adaptation
state in which the neural code represents quantities as deviations
from the norm [9, 36–38] or prediction errors [11, 12], allocating the
extremes of its dynamic range to encode unexpected stimuli which
are consequently more salient but perceived with lower fidelity.

Empirical priors result in a pattern of perceptual bias where values
close to the mean are estimated with greater accuracy than values
further from the mean [37, 38]. Zhang and colleagues [41] have
proposed that this is a ubiquitous pattern of bias in judgments of
frequency and probability. Similarly, others have proposed that
perceptual bias toward the mean can account for seemingly irrational
behaviors of risk seeking and aversion [21], which have traditionally
been characterized as framing effects [34]. Note that a qualitatively
similar but even stronger bias would occur if the mean itself is
heuristically substituted [33] for individual quantities in a set. Thus,
perceptual biases induced by adaptation states may interact with or
be exacerbated by cognitive biases such as representativeness [33].

3.3.2 Inferring Different Environments

The visual system is organized as a hierarchical network such that
successive stages of information processing build up representations
of increasing abstraction, from low-level visual features such as
orientation, color, and motion to categories of objects such as faces,
places, and perhaps even charts. The visual system adapts [23,
37] and learns priors [11, 12] at each level of abstraction such that
high-level hyperpriors entail predictions about what low-level visual
features are expected in different environments.

The visual system’s ability to adapt to the norms of different
environments helps to stablize perception across different contexts.
Because natural environments vary widely in their statistical prop-
erties (e.g., lightness [2, 31] and color [39]), we need a neural code
which is relative to immediate context in order to maintain percep-
tual constancy [10, 37, 38]. For example, the visual system learns
priors about objects’ surface reflectances and illumination in differ-
ent environments (e.g., times of day) to maintain constant mapping
between colors and objects despite changes in raw sensory signal
under different sources of illumination [4]. In this sense, the visual
system infers the conditions that might produce a pattern of sensory
input by learning priors for different environments and attempting to
minimize prediction error [11, 12]. Thus, understanding adaptation
states gives us a framework for understanding visual inferences.

4 DESIGNING FOR ADAPTATION IN VISUAL ANALYTICS

In visual analytics contexts, users bring prior knowledge and experi-
ence to their interpretations of signal in charts. It also seems very
likely that the visual system adapts to the statistical regularities of a
set of charts viewed in close spatial and temporal proximity. We can
think of modern work situations involving visual skill, such as visual
analytics, as artificial environments [37] with distinct adaptation
states contingent on the user’s experience. This raises questions
about how we should design visual analytics interfaces with adapta-
tion states and consequent perceptual biases in mind.

4.1 Defining Reference Models and Setting Priors

Consider the visualization lineup [6, 40] where a user’s task is to
recognize which of an array of charts shows real data y rather than
simulated data yrep. How should we define the reference model from
which to sample yrep? In analogy to null hypothesis significance



Figure 2: A lineup of cancer rates in Texas (from Wickham et al. [40]).
Chart 3 shows real data while other charts show random noise.

testing, Wickham and colleagues [40] suggest using relatively un-
informed reference models which represent the absence of a trend.
Consider their example (Fig. 2) of a lineup showing cancer rates in
each county of Texas where the suggested null model is a random
spatial trend. This implies an assumption that comparing real data
to a null model is the right design choice.

However, it might be more appropriate to use reference models
which are informed by prior knowledge about one or more possible
data generating processes. For example, a more appropriate refer-
ence model for cancer rates in each county of Texas would be the
population in each county multiplied by a known average cancer
rate plus simulated sampling error based on the number of people
surveyed in each county. Such a reference model would suggest that
a spatial pattern resembling population density should be expected.

Similar to the idea of a null reference model, visual analysis
software designers might think they ought to enforce a flat prior if
there is concern that a user might not be adapted in a way that serves
the task at hand. We argue that we probably should not try to enforce
flat priors. For highly experienced analysts, prior expectations
inform reference models which are valuable for inference, and it
might be harmful to try to extinguish them in favor of a flat prior.

Outside of lineups, visualization users still compare observed
data to an often implicit reference model when making visual in-
ferences [13, 14, 19]. We argue for showing users instantiations of
reference models as an additional step in data analysis which can
be used to calibrate user priors to any reference model3. For exam-
ple, in a related graphical perception study [20] we showed users
uncertainty visualizations of two different reference distributions
representing two alternative data generating models yrep, and users
chose which of these two models was more likely to have produced a
given chart of observed data y. Users were more sensitive to signal in
y differentiating these two reference models when we showed them
yrep in animated hypothetical outcome plots (HOPs) rather than
static uncertainty visualizations. Perhaps HOPs improve sensitivity
to signal because their temporal nature is more in line with how the
visual system learns priors by adapting over time. We argue that
using HOPs to manipulate priors through adaptation is a promising
design pattern that could be used to convey any reference model.

4.2 Adaptation States, Expertise, and Knowledge

Recall that the visual system learns priors at multiple levels of
abstraction [11, 12], invoking different adaptation states when stim-
uli are recognized as belonging to different categories or environ-
ments [36]. This means that the visual system is probably capable
of learning separate priors for different chart types, distributions,
and data generating processes. In this sense, the specificity of users’
adaptation states probably depends on their familiarity with chart
types and graphical conventions, their previous exposure to data
visualizations, and their domain knowledge about the data context.
We consider two examples of users with different levels of expertise.

Imagine a data scientist conducting exploratory data analysis
(EDA). She see a series of charts with varying geometries and distri-

3This echos Buja and colleagues’ [6] proposal of the visualization
Rorschach, where users are shown many charts of model predictions yrep to
train them to recognize the statistical signatures of random variability.

butions4. Because her visual system recognizes different chart types
and distributions as special categories of stimuli, she interprets each
chart in terms of the visual features she expects and does not expect
to see based on her prior for a given chart type and distribution.

Importantly, the visual system’s ability to differentiate between
distributions based on their visual properties may be diminished
by smart defaults in visual analytics software which scale axes in
order to reduce unused white space. This artificially stabilizes the
mean and variance of the positions of marks on charts regardless of
important differences in the distributions they represent.

In general, users may perceive each chart using the adaptation
state, among a set of candidate adaptation states, which minimizes
prediction error [11, 12]. In this sense, they implicitly search the
space of possibilities suggested by their experience to select a prior
under which they are least surprised by what they see in a chart.
Supporting the idea that adaptation states can be specific to task en-
vironments, experiments find adaptation states which are contingent
on task-relevant properties of radiological images [24, 25].

Imagine a user who has little experience with visualizations view-
ing a single chart in the news. Since this user may not reliably
employ separate priors for different chart types or data distributions,
his adaptation state is more likely to be tuned to expectations about
low-level visual features rather than categorical distinctions. For
example, if he sees a multiple line chart showing concurrent trends
for different countries, the ensemble of lines might inform his sense
of what slope or contour is the norm and which countries look like
outliers. In this sense, a user’s prior may be informed by the space
of possibilities implied by a single chart [19]. Especially in cases
where users lack relevant experience and background knowledge,
showing predictions from different reference models yrep may help
to calibrate users to possible interpretations of the data.

However, manipulating users’ priors through visual experience
alone is unlikely to work. At short time scales the effects of adap-
tation are weak [3, 9, 23, 37] and opposite of the effect of forming
priors [7]. Further, when adaptation to a new stimulus disrupts an
older, more entrenched adaptation state, the older adaptation state
“spontaneously recovers” after a short time [28]. This suggests that
attempts to manipulate priors through visual adaptation alone will
result only in transient changes. In order to manipulate the adapta-
tion states of users in ways that are likely to stick, we need to design
adaptation interfaces so that users associate samples from yrep with
semantic content such as possible explanations for a phenomenon.

Future research should investigate how the visual system learns
categorical priors in visual inference environments by benchmark-
ing behavior against hierarchical Bayesian models, such as those
described by Griffiths [16]. To measure user priors, visualization
researchers and software designers might follow Berniker and col-
leagues [3] by inferring user priors from judgments, or they might
employ the approach of Kim and colleagues [22] by asking users to
draw their expectations.

5 CONCLUSION

We review vision science literature on adaptation, a ubiquitous pro-
cess by which neural representation is normalized to the statistical
regularities of the environment. We argue that the sense of what is
normal or expected in an environment, which underlies adaptation,
functions like a prior supporting visual inferences. We explicate
predictions of how these empirical priors are learned through visual
experience and discuss implications for design in visual analytics
systems. Our hope is that this work will inspire a wave of graphical
perception studies on adaptive learning of priors, and will ultimately
result in new ways of designing for user priors in visualization.

4Irregular distributions especially need to be studied since the predictions
of DeWeese and Zador [8] only generalize to distributions with thin tails.
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