# A Do It Yourself Guide to Linear Algebra 

Lecture Notes based on REUs, 2001-2010

Instructor: László Babai
Notes compiled by Howard Liu
7-2-2010

## 2 Polynomials and Fields

### 2.1 Polynomials

The set $\mathbb{R}[x]$ of all polynomials with real coefficients is a vector space.
Exercise 2.1.1. Show that $1, x, x^{2}, \ldots$ form a basis of $\mathbb{R}[x]$.
Definition 2.1.2. The polynomial $f(x)=\sum a_{i} x^{i}$ has degree $k$ if $a_{k} \neq 0$, but $(\forall j>k)\left(a_{j}=\right.$ $0)$. Notation: $\operatorname{deg}(f)=k$. We let $\operatorname{deg}(0)=-\infty$. Note: the nonzero constant polynomials have degree 0 .

Exercise 2.1.3. Prove: $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$. (Note that this remains true if one of the polynomials $f, g$ is the zero polynomial.)

Exercise 2.1.4. Prove: $\operatorname{deg}(f+g) \leq \max \{\operatorname{deg}(f), \operatorname{deg}(g)\}$.
Exercise 2.1.5. Prove that if $f_{0}, f_{1}, f_{2}, \ldots$ is a sequence of polynomials satisfying $\operatorname{deg}\left(f_{i}\right)=i$ then $f_{0}, f_{1}, f_{2}, \ldots$ form a basis of $\mathbb{R}[x]$.

Exercise 2.1.6. Prove: the set of polynomials of degree $\leq n$ forms a subspace of $\mathbb{R}[x]$. Find a basis of this subspace. State the dimension.

Exercise 2.1.7. Let $f(x)=\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{k}\right)$ where $\alpha_{i} \neq \alpha_{j}$ for $i \neq j$. Let $g_{i}(x)=$ $f(x) /\left(x-\alpha_{i}\right)$. Show that $g_{1}, \ldots, g_{k}$ form a basis of the space of polynomials of degree $\leq k-1$.

### 2.2 Number Fields

Definition 2.2.1. A subset $F \subseteq \mathbb{C}$ is a number field if $1 \in F$ and $F$ is closed under the four arithmetic operations, i.e. for $\alpha, \beta \in F$
(a) $\alpha \pm \beta \in F$
(b) $\alpha \beta \in F$
(c) $\frac{\alpha}{\beta} \in F$ (assuming $\left.\beta \neq 0\right)$.

Exercise 2.2.2. Show that if $F$ is a number field then $Q \subseteq F$.
Exercise 2.2.3. Let $a, b \in \mathbb{Q}$. If $a^{2}-2 b^{2}=0$ then $a=b=0$.
Exercise 2.2.4. Show that the set $\mathbb{Q}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ is a number field.
Exercise 2.2.5. Show that the set $\mathbb{Q}[\sqrt[3]{2}]=\{a+b \sqrt[3]{2}+c \sqrt[3]{4}: a, b, c \in \mathbb{Q}\}$ is a number field.
Exercise 2.2.6 (Vector spaces over number fields). Convince yourself that all of the things we have said about vector spaces remain valid if we replace $\mathbb{R}$ by a number field $F$.

Exercise 2.2.7. Show that if $F, G$ are number fields and $F \subseteq G$ then $G$ is a vector space over $F$.

Exercise 2.2.8. Show that $\operatorname{dim}_{\mathbb{R}} \mathbb{C}=2$. What is $\operatorname{dim}_{\mathbb{C}} \mathbb{C}$ ?
Exercise 2.2.9. Show that $\operatorname{dim}_{\mathbb{Q}} \mathbb{R}$ has the cardinality of "continuum," that is, it has the same cardinality as $\mathbb{R}$.

Exercise 2.2.10. Show that $\operatorname{dim}\left(F^{k}\right)=k$.
Exercise 2.2.11 (Cauchy's Functional Equation). We consider functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying Cauchy's Functional Equation: $f(x+y)=f(x)+f(y)$ with $x, y \in \mathbb{R}$. For such a function prove that
(a) If $f$ is continuous then $f(x)=c x$.
(b) If $f$ is continuous at a point then $f(x)=c x$.
(c) If $f$ is bounded on some interval then $f(x)=c x$.
(d) If $f$ is measurable in some interval then $f(x)=c x$.
(e) There exists a $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $g(x) \neq c x$ but $g(x+y)=g(x)+g(y)$. (Hint: Use the fact that $\mathbb{R}$ is a vector space over $\mathbb{Q}$. Use a basis of this vector space. Such a basis is called a Hamel basis.

Exercise 2.2.12. Show that $1, \sqrt{2}$, and $\sqrt{3}$ are linearly independent over $\mathbb{Q}$.

Exercise 2.2.13. Show that $1, \sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{6}, \sqrt{10}, \sqrt{15}$ and $\sqrt{30}$ are linearly independent over $\mathbb{Q}$.

Exercise 2.2.14. * Show that the set of square roots of all of the square-free integers are linearly independent over $\mathbb{Q}$. (An integer is square free if it is not divisible by the square of any prime number. For instance, 30 is square free but 18 is not.)

Exercise 2.2.15. $\operatorname{dim}_{\mathbb{R}[x]} \mathbb{R}(x)$ has the cardinality of "continuum" (the same cardinality as $\mathbb{R}$ ).

### 2.3 Roots of Unity

Definition 2.3.1. $z$ is a primitive $n$-th root of unity if $z^{n}=1$ and $z^{j} \neq 1$ for $1 \leq j \leq n-1$.
Exercise 2.3.2. Let $S_{n}$ be the sum of all $n$-th roots of unity. Show that $S_{0}=1$ and $S_{n}=0$ for $n \geq 1$.

Let

$$
\zeta_{n}:=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)=e^{2 \pi i / n}
$$

Exercise 2.3.3. $1, \zeta_{n}, \ldots, \zeta_{n}{ }^{n-1}$ are all of the $n$-th roots of unity.
Exercise 2.3.4. Let $z^{n}=1$. Then the powers of $z$ give all $n$-th roots of unity iff $z$ is a primitive $n$-th root of unity.

Exercise 2.3.5. Suppose $z$ is a primitive $n$-th root of unity. For what $k$ is $z^{k}$ also a primitive $n$-th root of unity?

Exercise 2.3.6. If $z$ is an $n$-th root of unity then $z^{k}$ is also an $n$-th root of unity.
Definition 2.3.7. The order of a complex number is the smallest positive $n$ such that $z^{n}=1$. (If no such $n$ exists then we say $z$ has infinite order.)

Example 2.3.8. $\operatorname{ord}(-1)=2, \operatorname{ord}\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=3, \operatorname{ord}(i)=4, \operatorname{ord}(1)=1, \operatorname{ord}(2)=\infty$.
Exercise 2.3.9. $\operatorname{ord}(z)=n$ iff $z$ is a primitive $n$-th root of unity.
Exercise 2.3.10. Let $\mu(n)$ be the sum of all primitive $n$-th roots of unity.
a) Prove that for every $n, \mu(n)=0,1$, or -1 .
b) Prove $\mu(n) \neq 0$ iff $n$ is square free.
c) Prove if g.c.d. $(k, \ell)=1$ then $\mu(k \ell)=\mu(k) \mu(\ell)$.
d) If $n=p_{1}{ }^{t_{1}} \ldots p_{k}{ }^{t_{k}}$, find an explicit formula for $\mu(n)$ in terms of the $t_{i}$.

Exercise 2.3.11. Show that the number of primitive $n$-th roots of unity is equal to Euler's phi function. $\varphi(n):=$ number of $k$ such that $1 \leq k \leq n$ and g.c.d. $(k, n)=1$.

$$
\begin{array}{cccccccccc}
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\varphi(n) & 1 & 1 & 2 & 2 & 4 & 2 & 6 & 4 & 6
\end{array}
$$

Definition 2.3.12. $f: \mathbb{N}^{+} \rightarrow \mathbb{C}$ is multiplicative if $(\forall k, \ell)$ (if g.c.d. $(k, \ell)=1$ then $f(k \ell)=$ $f(k) f(\ell))$.

Definition 2.3.13. $f$ is totally multiplicative if $(\forall k, \ell)(f(k \ell)=f(k) f(\ell))$.
Exercise 2.3.14. The $\mu$ function is multiplicative.
Exercise 2.3.15. The $\varphi$ function is multiplicative.
Exercise 2.3.16. Neither $\mu$ nor $\varphi$ are totally multiplicative.
Exercise 2.3.17. Prove that $\sum_{d \mid n, 1 \leq d \leq n} \varphi(d)=n$.
Remark 2.3.18. Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be a function $(\mathbb{N}=\{1,2,3, \ldots\})$. We call

$$
g(n)=\sum_{d \mid n, 1 \leq d \leq n} f(d)
$$

the summation function of $f$.
Exercise 2.3.19 (Möbius Inversion Formula). $f(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d)$.
Exercise 2.3.20. $f$ is multiplicative if and only if $g$ is.
Now, using the preceding ideas, we can apply in $\mathbb{Q}[\sqrt[3]{2}]$ the same construction we used in $\mathbb{Q}[\sqrt{2}]$. Let $a, b, c$ be rational numbers, not all zero. Let $\omega$ be a primitive third root of unity. Consider

$$
\frac{1}{a+\sqrt[3]{2} b+\sqrt[3]{4} c} \cdot \frac{a+\omega \sqrt[3]{2} b+\omega^{2} \sqrt[3]{4} c}{a+\omega \sqrt[3]{2} b+\omega^{2} \sqrt[3]{4} c} \cdot \frac{a+\omega^{2} \sqrt[3]{2} b+\omega \sqrt[3]{4} c}{a+\omega^{2} \sqrt[3]{2} b+\omega \sqrt[3]{4} c}
$$

Exercise 2.3.21. Show that the denominator in the above expression is rational and non-zero.
Exercise 2.3.22 (Kronecker). Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{Z}[x]$ be monic ( $a_{n}=1$ ). Suppose all complex roots $z$ of $f$ satisfy $|z|=1$. Then all complex roots of $f$ are roots of unity.

Exercise 2.3.23. The above statement is false if we drop the assumption that $f$ is monic.

### 2.4 Modular Arithmetic

Notation 2.4.1. The formula $d \mid n$ denotes the relation " $d$ divides $n$," i.e., $(\exists k)(n=d k)$. We write $a \equiv b(\bmod m)$ if $m \mid(a-b)$ (" $a$ is congruent to $b$ modulo $m$ ").

Exercise 2.4.2. Prove: congruence modulo $m$ is an equivalence relation on $\mathbb{Z}$. The equivalence classes are called the residue classes. We denote the set of modulo $m$ resuide classes by $\mathbb{Z} / m \mathbb{Z}$. There are $m$ residue classes modulo $m$.

Exercise 2.4.3. Prove: if $a_{1} \equiv a_{2}(\bmod m)$ and $b_{1} \equiv b_{2}(\bmod m)$, then $a_{1}+b_{1} \equiv a_{2}+b_{2}$ $(\bmod m)$ and $a_{1} b_{1} \equiv a_{2} b_{2}(\bmod m)$.

Exercise 2.4.4. Define addition and multiplication on the set of modulo $m$ residue classes by representatives. Show that these operations don't depend on the choice of the representatives (Exercise 2.4.3). This way we will have defined a finite commutative ring structure on $\mathbb{Z} / \mathrm{m} \mathbb{Z}$.

Example 2.4.5. $\mathbb{Z} / m \mathbb{Z}$ :

$$
\begin{aligned}
& m=2: \begin{array}{l|ll}
+ & 0 & 1 \\
\begin{array}{ll|ll|ll}
0 & 0 & 1 \\
1 & 1 & 0
\end{array} \quad \begin{array}{llll}
\times & 0 & 1 \\
\hline & 1 & 0 & 0 \\
1
\end{array}
\end{array}
\end{aligned}
$$

Exercise 2.4.6. If $a c \equiv b c(\bmod m)$ and g.c.d. $(c, m)=1$, then $a \equiv b(\bmod m)$.
Exercise 2.4.7 (Multiplicative inverse). $(\exists x)(a x \equiv 1(\bmod m)) \Longleftrightarrow$ g.c.d. $(a, m)=1$.
Exercise 2.4.8 (Euler-Fermat congruence). If g.c.d. $(a, m)=1$ then $a^{\rho(m)} \equiv 1(\bmod m)$.

### 2.5 Fields

Definition 2.5.1. A field is a set $F$ with 2 operations (addition + and multiplication $\times$ ), $(\mathbb{F},+, \times)$ such that $(F,+)$ is an abelian group:
(a1) $(\forall \alpha, \beta \in F)(\exists!\alpha+\beta \in F)$,
(a2) $(\forall \alpha, \beta \in F)(\alpha+\beta=\beta+\alpha)$ (commutative law),
(a3) $(\forall \alpha, \beta, \gamma \in F)((\alpha+\beta)+\gamma=\alpha+(\beta+\gamma))$ (associative law),
(a4) $(\exists 0 \in F)(\forall \alpha)(\alpha+0=0+\alpha=\alpha)$ (existence of zero),
(a5) $(\forall \alpha \in F)(\exists(-\alpha) \in F)(\alpha+(-\alpha)=0)$,
and $(F, \times)$ satisfies the following. $F^{\times}=F \backslash\{0\}$ is an abelian group with respect to multiplication:
(b1) $(\forall \alpha, \beta \in F)(\exists!\alpha \beta \in F)$,
(b2) $(\forall \alpha, \beta \in F)(\alpha \beta=\beta \alpha)$ (commutative law),
(b3) $(\forall \alpha, \beta, \gamma \in F)((\alpha \beta) \gamma=\alpha(\beta \gamma))$ (associative law),
(b4) $(\exists 1 \in F)(\forall \alpha)(\alpha \times 1=1 \times \alpha=\alpha)$ (existence of identity),
(b5) $\left(\forall \alpha \in F^{\times}\right)\left(\exists\left(\alpha^{-1} \in F^{\times}\right)\left(\alpha\left(\alpha^{-1}\right)=\left(\alpha^{-1}\right) \alpha=1\right)\right.$,
(b6) $1 \neq 0$
(b7) $(\forall \alpha, \beta, \gamma \in F)((\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma)$ (distributive law)
Example 2.5.2. Examples of fields:
(1) Number fields (every number field is a field)
(2) $\mathbb{R}(x)$, the set of "rational functions"
(3) For prime $p, \mathbb{Z} / p \mathbb{Z}$ is a field, denoted by $\mathbb{F}_{p}$.

Exercise 2.5.3. If $F=\mathbb{F}_{p}$ and $V$ is a $k$-dimensional vector space over $F$, then $|V|=p^{k}$.

## Axiom (c) ("no zero divisors")

$$
(\forall \alpha, \beta \in F)(\alpha \beta=0 \Longleftrightarrow \alpha=0 \text { or } \beta=0)
$$

Exercise 2.5.4. Prove that Axiom (c) holds in every field.
Exercise 2.5.5. Show that Axiom (c) fails in $\mathbb{Z} / 6 \mathbb{Z}$. So $\mathbb{Z} / 6 \mathbb{Z}$ is not a field.
Exercise 2.5.6. If $F$ is finite and satisfies all field axioms except possibly (b5), then (b5) $\Longleftrightarrow$ (c). In other words, if $F$ is a finite commutative ring, $|F| \geqslant 2$ and $F$ has no zero divisors, then $F$ is a field. Note: (c) does not necessarily imply (b5) if $\mathbb{F}$ is infinite: $\mathbb{Z}$ is a counterexample.

Theorem 2.5.7. $\mathbb{Z} / m \mathbb{Z}$ is a field $\Longleftrightarrow m$ is prime.

## Proof:

(1) If $m$ is composite, i.e., $m=a b$ where $a, b>1$, then $\mathbb{Z} / m \mathbb{Z}$ is not a field: it violates axiom (c) because $a b=0$.
(2) $\mathbb{Z} / p \mathbb{Z}$ is finite, thus need to show that it satisfies axiom (c): This follows from the prime property: if $p$ is a prime and $p \mid a b$ then $p \mid a$ or $p \mid b$.

### 2.6 The "Number Theory" of Polynomials

Definition 2.6.1. Let $F$ be a field. $F[x]$ denotes the set of all univariate polynomials with coefficients in $F$.

Definition 2.6.2. Let $f, g \in \mathbb{F}[x]$. We say $f$ divides $g$ if $(\exists h)(f h=g)$. Notation: $f \mid g$.
Exercise 2.6.3 (Division Theorem). For all $f, g \in F[x])$, if $g \neq 0$, then
$(\exists!q, r \in F[x])(f=g q+r)$ and $\operatorname{deg}(r)<\operatorname{deg}(g))$.
Notation 2.6.4. $F^{\times}=F \backslash\{0\}$.
Definition 2.6.5. $f \in F[x]$ is a unit if $(\forall g \in F[x])(f \mid g)$.
Exercise 2.6.6. $f$ is a unit $\Longleftrightarrow f \mid 1 \Longleftrightarrow f$ is a nonzero constant, i.e., $f \in F^{\times}$.
Definition 2.6.7. For $f, g, h \in F[x], f$ is a greatest common divisor (g.c.d.) of $g$ and $h$ if
(1) $f \mid g$ and $f \mid h$.
(2) $(\forall e \in F[x])$ ( if $e \mid g$ and $e \mid h$ then $e \mid f$ ).

Exercise 2.6.8. (1) $(\forall f, g \in F[x])(\exists d \in F[x])(d$ is a g.c.d. of $f$ and $g)$.
(2) $d$ is unique up to multiplication by a unit.
(3) $(\exists u, v \in F[x])(d=f u+g v)$.

Exercise 2.6.9. g.c.d. $(f g, f h)=f d$, where $d=$ g.c.d. $(g, h)$.
Definition 2.6.10. $f$ is irreducible over $F$ if
(1) $\operatorname{deg}(f) \geq 1$ and
(2) $(\forall g, h \in \mathbb{F}[x])(f=g h \Rightarrow \operatorname{deg}(f)=0$ or $\operatorname{deg}(g)=0)$.

Remark 2.6.11. If $\operatorname{deg}(f)=1$, then $f$ is irreducible because degree is additive.
Exercise 2.6.12 (Prime property). If $f$ is irreducible and $f \mid g h$ then $f \mid g$ or $f \mid h$. (Hint: Exercise 2.6.9.)

Exercise 2.6.13 (Unique factorization). Every polynomial over $F$ can be uniquely written as a product of irreducible polynomials.

Exercise 2.6.14. $(\forall \alpha)(x-\alpha) \mid(f(x)-f(\alpha))$. Hint: If $f(x)=x^{n}$, then

$$
x^{n}-\alpha^{n}=(x-\alpha)\left(x^{n-1}+\alpha x^{n-2}+\ldots+\alpha^{n-1}\right) .
$$

Corollary 2.6.15. $\alpha$ is a root of $f$ iff $(x-\alpha) \mid f(x)$.
Theorem 2.6.16 (Fundamental Theorem of Algebra). If $f \in \mathbb{C}[x]$ and $\operatorname{deg}(f) \geq 1$ then $(\exists \alpha \in \mathbb{C})(f(\alpha)=0)$.

Exercise 2.6.17. Over $\mathbb{C}$ a polynomial is irreducible iff it is of degree 1. Hint: Follows from the FTA and Corollary 2.6 .15 that lets you pull out root factors $(x-\alpha)$.
Exercise 2.6.18. $f(x)=a x^{2}+b x+c, a \neq 0$, is irreducible over $\mathbb{R}$ iff $b^{2}-4 a c<0$.
Remark 2.6.19. An odd degree polynomial over $\mathbb{R}$ always has a real root.
Exercise 2.6.20. If $f \in \mathbb{R}[x]$, and $z \in \mathbb{C}$, then $f(\bar{z})=\overline{f(z)}$.
Consequence: If $z$ is a root of $f \in \mathbb{R}[x]$ then so is $\bar{z}$.
Theorem 2.6.21. Over $\mathbb{R}$, all irreducible polynomials have $\operatorname{deg} \leq 2$.
Proof: Suppose $f \in \mathbb{R}[x], \operatorname{deg}(f) \geq 3$. We want to show that $f$ is not irreducible over $\mathbb{R}$.
(1) If $f$ has a real root $\alpha$, then $(x-\alpha) \mid f$.
(2) Otherwise by FTA $f$ has a complex root $z$ which is not real, so that $z \neq \bar{z}$. Thus $(x-z)(x-\bar{z})=x^{2}-2 a x+a^{2}+b^{2}$ divides $f$, where $z=a+b i$.

Definition 2.6.22. $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{Z}[x]$ is a primitive polynomial if g.c.d. $\left(a_{0}, \ldots, a_{n}\right)=1$.

Examples of primitive polynomials: $x^{n}-2 ; 15 x^{2}+10 x+6$. Note that in the second example, every pair of coefficients has a nontrivial common divisor, but the three coefficients together don't.

Exercise 2.6.23 (No zero divisors). For any field $F$, if $f, g \in F[x]$ then $f g=0 \Longleftrightarrow f=0$ or $g=0$.

Exercise 2.6.24 (Gauss Lemma \#1). If $f, g$ are primitive polynomials, then so is $f g$. (Hint: use the preceding exercise.)

Exercise 2.6.25 (Gauss Lemma \#2). If $f=g h, f \in \mathbb{Z}[x], g, h \in \mathbb{Q}[x]$ then $\exists \alpha \in \mathbb{Q}$ such that $\alpha g \in \mathbb{Z}[x]$ and $\frac{h}{\alpha} \in \mathbb{Z}[x]$. So if $f \in \mathbb{Z}[x]$ factors nontrivially over $\mathbb{Q}$ then it factors nontrivially over $\mathbb{Z}$.

Exercise 2.6.26 (Rational Root Theorem). Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ with $a_{i} \in \mathbb{Z}$, and $\alpha=\frac{r}{s} \in \mathbb{Q}$ with g.c.d. $(r, s)=1$. If $f(\alpha)=0$, then $r \mid a_{0}$ and $s \mid a_{n}$.

Theorem 2.6.27 (Schönemann-Eisenstein Criterion). Let $f \in \mathbb{Z}[x], f(x)=a_{0}+a_{1} x+$ $\cdots+a_{n} x^{n}$. Assume there exists a prime $p$ such that
(a) $p \nmid a_{n}$.
(b) $p \mid a_{0}, \ldots, a_{n}$.
(c) $p^{2} \nmid a_{0}$.

Then $f$ is irreducible over $\mathbb{Q}$.
Exercise 2.6.28. Prove the Schönemann-Eisenstein Criterion. Hint: use unique factorization in $\mathbb{F}_{p}[x]$ (Exercise 2.6.13).
Exercise 2.6.29. If $a_{1}, \ldots, a_{n}$ are distinct integers, then $\prod_{i=1}^{n}\left(x-a_{i}\right)-1$ is irreducible over $\mathbb{Q}$.
Exercise 2.6.30. If $a_{1}, \ldots, a_{n}$ are distinct integers, then $\prod_{i=1}^{n}\left(x-a_{i}\right)^{2}+1$ is irreducible over $\mathbb{Q}$.

Exercise 2.6.31. $(\forall n)\left(x^{n}-2\right.$ is irreducible over $\left.\mathbb{Q}\right)$.
Exercise 2.6.32. Let $p$ be a prime. Show that $\Phi_{p}(x):=\frac{x^{p}-1}{x-1}=1+x+\cdots+x^{p-1}$ is irreducible. (Hint: use Schönemann-Eisenstein.)

Definition 2.6.33. The formal derivative of $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in F[x]$ (over any field $F$ ) is defined as $f^{\prime}(x)=a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}$.

Exercise 2.6.34 (Linearity of differentiation). $(f+g)^{\prime}=f^{\prime}+g^{\prime}$.
Exercise 2.6.35 (Product rule). $(\alpha f)^{\prime}=\alpha f^{\prime}$, and $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$.
Exercise 2.6.36 (Chain Rule). If $h(x)=f(g(x))$, then $h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.
Exercise 2.6.37. $\alpha \in F$ is a multiple root of $f \Longleftrightarrow f(\alpha)=f^{\prime}(\alpha)=0$.
Exercise 2.6.38. $f \in \mathbb{C}[x]$ has no multiple roots $\Longleftrightarrow$ g.c.d. $\left(f, f^{\prime}\right)=1$.
Exercise 2.6.39. Prove that the polynomial $x^{n}+x+1$ has no multiple roots in $\mathbb{C}$ for $n \geqslant 2$.

### 2.7 Cyclotomic Polynomials

Definition 2.7.1. The n -th cyclotomic polynomial is $\Phi_{n}(x)=\Pi(x-\zeta)$, where $\zeta$ ranges over the primitive $n$-th roots of unity.

Remark 2.7.2. $\operatorname{deg} \Phi_{n}(x)=\varphi(n)$.

$$
\begin{gathered}
\Phi_{1}(x)=x-1 \\
\Phi_{2}(x)=x+1 \\
\Phi_{3}(x)=x^{2}+x+1 \\
\Phi_{4}(x)=x^{2}+1 \\
\Phi_{5}(x)=x^{4}+x^{3}+x^{2}+x+1 \\
\Phi_{6}(x)=x^{2}-x+1 \\
\Phi_{7}(x)=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 \\
\Phi_{8}(x)=x^{4}+1
\end{gathered}
$$

Exercise 2.7.3. $x^{n}-1=\prod_{d \mid n, 1 \leq d \leq n} \Phi_{n}(x)$.
Exercise 2.7.4. Show that $\Phi_{n}(x) \in \mathbb{Z}[x]$.
Exercise 2.7.5. Show that for primes $p, q, \Phi_{p}(x)=\frac{x^{p}-1}{x-1}, \Phi_{p^{k}}(x)=\frac{x^{p^{k}}-1}{x^{p^{k-1}-1}}$, and $\Phi_{p q}(x)=$ $\frac{\left(x^{p q}-1\right)(x-1)}{\left(x^{p}-1\right)\left(x^{q}-1\right)}$.

Theorem 2.7.6. ${ }^{*} \Phi_{n}(x)$ is irreducible over $\mathbb{Q}$. (We proved this when $n$ is prime, Exercise 2.6.32.)

### 2.8 Minimal Polynomials

Definition 2.8.1. $\alpha \in \mathbb{C}$ is algebraic if $(\exists f)(f \in \mathbb{Q}[x], f \neq 0, f(\alpha)=0)$. Numbers that are not algebraic are called transcendental numbers.

Exercise 2.8.2. (a) Prove that every rational number is algebraic.
(b) Prove: $\sqrt{2}, \frac{1+\sqrt{5}}{2}$ (the golden ratio), $\sqrt[3]{2}, 1 /(\sqrt{2}+\sqrt{3})$ are algebraic.
(c) Prove: there are only countably many algebraic numbers. So "almost all" real numbers are transcendental.

Very difficult proofs show that e, $\pi, \ln 2$ are transcendental numbers. It is an open question whether or not $\mathrm{e}+\pi$ is transcendental; in fact, it is not even known whether or not $\mathrm{e}+\pi$ is irrational.

Definition 2.8.3. A monic polynomial is a polynomial with leading coefficient 1.
Definition 2.8.4. The minimal polynomial of an algebraic number $\alpha$ is a monic polynomial $m_{\alpha}(x) \in \mathbb{Q}[x]$ such that

$$
\begin{equation*}
m_{\alpha}(\alpha)=0 \tag{1}
\end{equation*}
$$

and $m_{\alpha}(x)$ has minimal degree, among polynomials satisfying (1).
Exercise 2.8.5. $(\forall f \in \mathbb{Q}[x])\left(f(\alpha)=0 \Longleftrightarrow m_{\alpha} \mid f\right)$.
Exercise 2.8.6. The minimal polynomial is unique.
Exercise 2.8.7. $m_{\alpha}(x)$ is irreducible. In fact, for a monic polynomial $f$, we have $f=m_{\alpha} \Longleftrightarrow$ $f(\alpha)=0$ and $f$ is irreducible.
Definition 2.8.8 (degree of an algebraic number). $\operatorname{deg}(\alpha)=\operatorname{deg}\left(m_{\alpha}\right)$.
Exercise 2.8.9. Prove:
(a) $\operatorname{deg}(\sqrt[n]{2})=n$.
(b) If $\zeta$ is a primitive $n$-th root of unity then $\operatorname{deg}(\zeta)=\varphi(n)$. (This is equivalent to Exercise 2.3.10.)
(c) $\operatorname{deg}(\sqrt{2}+\sqrt{3})=4$.

Definition 2.8.10. The algebraic conjugates of $\alpha$ are the roots of $m_{\alpha}$.
Exercise 2.8.11. Find the algebraic conjugates of the numbers listed in Ex. 2.8.9.
Exercise 2.8.12. If $\operatorname{deg}(\alpha)=n$ then the set

$$
\mathbb{Q}[\alpha]:=\left\{a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1} \mid a_{i} \in \mathbb{Q}\right\}
$$

is a field.
Exercise 2.8.13. Prove: $\operatorname{dim}_{\mathbb{Q}} \mathbb{Q}[\alpha]=\operatorname{deg}(\alpha)$.
Exercise 2.8.14. Let $F$ be a subfield of the field $G$. Generalize the definitions above by replacing $\mathbb{Q}$ by $F$ and $\mathbb{C}$ by $G$. So you will have $\operatorname{defined}^{\operatorname{deg}}{ }_{F}(\alpha)$ for $\alpha \in G$.
Exercise 2.8.15. Prove:
(a) $\operatorname{deg}_{\mathbb{Q}[\sqrt{2}]}(\sqrt{3})=2$
(b) $\operatorname{deg}_{\mathbb{Q}[\sqrt{2}]}(\sqrt[3]{2})=3$

Exercise 2.8.16. Prove: if $F \subset K \subset L$ are fields then $\operatorname{dim}_{F} L=\left(\operatorname{dim}_{K} L\right)\left(\operatorname{dim}_{F} K\right)$.
Exercise 2.8.17. Prove: the algebraic numbers form a subfield of $\mathbb{C}$.

