
A Do It Yourself Guide to

Linear Algebra

Lecture Notes based on REUs, 2001-2010

Instructor: László Babai
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2 Polynomials and Fields

2.1 Polynomials

The set R[x] of all polynomials with real coefficients is a vector space.

Exercise 2.1.1. Show that 1, x, x2, . . . form a basis of R[x].

Definition 2.1.2. The polynomial f(x) =
∑
aix

i has degree k if ak 6= 0, but (∀j > k)(aj =
0). Notation: deg(f) = k. We let deg(0) = −∞. Note: the nonzero constant polynomials have
degree 0.

Exercise 2.1.3. Prove: deg(fg) = deg(f) + deg(g). (Note that this remains true if one of the
polynomials f , g is the zero polynomial.)

Exercise 2.1.4. Prove: deg(f + g) ≤ max{deg(f),deg(g)}.

Exercise 2.1.5. Prove that if f0, f1, f2, . . . is a sequence of polynomials satisfying deg(fi) = i
then f0, f1, f2, . . . form a basis of R[x].

Exercise 2.1.6. Prove: the set of polynomials of degree ≤ n forms a subspace of R[x]. Find
a basis of this subspace. State the dimension.

Exercise 2.1.7. Let f(x) = (x − α1)...(x − αk) where αi 6= αj for i 6= j. Let gi(x) =
f(x)/(x−αi). Show that g1, . . . , gk form a basis of the space of polynomials of degree ≤ k− 1.
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2.2 Number Fields

Definition 2.2.1. A subset F ⊆ C is a number field if 1 ∈ F and F is closed under the four
arithmetic operations, i.e. for α, β ∈ F

(a) α± β ∈ F

(b) αβ ∈ F

(c) α
β ∈ F (assuming β 6= 0).

Exercise 2.2.2. Show that if F is a number field then Q ⊆ F .

Exercise 2.2.3. Let a, b ∈ Q. If a2 − 2b2 = 0 then a = b = 0.

Exercise 2.2.4. Show that the set Q[
√

2] = {a+ b
√

2 : a, b ∈ Q} is a number field.

Exercise 2.2.5. Show that the set Q[ 3
√

2] = {a+ b 3
√

2 + c 3
√

4 : a, b, c ∈ Q} is a number field.

Exercise 2.2.6 (Vector spaces over number fields). Convince yourself that all of the
things we have said about vector spaces remain valid if we replace R by a number field F .

Exercise 2.2.7. Show that if F,G are number fields and F ⊆ G then G is a vector space over
F .

Exercise 2.2.8. Show that dimRC = 2. What is dimC C?

Exercise 2.2.9. Show that dimQR has the cardinality of “continuum,” that is, it has the same
cardinality as R.

Exercise 2.2.10. Show that dim(F k) = k.

Exercise 2.2.11 (Cauchy’s Functional Equation). We consider functions f : R → R
satisfying Cauchy’s Functional Equation: f(x + y) = f(x) + f(y) with x, y ∈ R. For such a
function prove that

(a) If f is continuous then f(x) = cx.

(b) If f is continuous at a point then f(x) = cx.

(c) If f is bounded on some interval then f(x) = cx.

(d) If f is measurable in some interval then f(x) = cx.

(e) There exists a g : R → R such that g(x) 6= cx but g(x + y) = g(x) + g(y). (Hint: Use
the fact that R is a vector space over Q. Use a basis of this vector space. Such a basis
is called a Hamel basis.

Exercise 2.2.12. Show that 1,
√

2, and
√

3 are linearly independent over Q.
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Exercise 2.2.13. Show that 1,
√

2,
√

3,
√

5,
√

6,
√

10,
√

15 and
√

30 are linearly independent
over Q.

Exercise 2.2.14. ∗ Show that the set of square roots of all of the square-free integers are
linearly independent over Q. (An integer is square free if it is not divisible by the square of
any prime number. For instance, 30 is square free but 18 is not.)

Exercise 2.2.15. dimR[x] R(x) has the cardinality of “continuum” (the same cardinality as
R).

2.3 Roots of Unity

Definition 2.3.1. z is a primitive n-th root of unity if zn = 1 and zj 6= 1 for 1 ≤ j ≤ n− 1.

Exercise 2.3.2. Let Sn be the sum of all n-th roots of unity. Show that S0 = 1 and Sn = 0
for n ≥ 1.

Let

ζn := cos
(

2π
n

)
+ i sin

(
2π
n

)
= e2πi/n

Exercise 2.3.3. 1, ζn, . . . , ζnn−1 are all of the n-th roots of unity.

Exercise 2.3.4. Let zn = 1. Then the powers of z give all n-th roots of unity iff z is a
primitive n-th root of unity.

Exercise 2.3.5. Suppose z is a primitive n-th root of unity. For what k is zk also a primitive
n-th root of unity?

Exercise 2.3.6. If z is an n-th root of unity then zk is also an n-th root of unity.

Definition 2.3.7. The order of a complex number is the smallest positive n such that zn = 1.
(If no such n exists then we say z has infinite order.)

Example 2.3.8. ord(−1) = 2, ord(−1
2 + i

√
3

2 ) = 3, ord(i) = 4, ord(1) = 1, ord(2) =∞.

Exercise 2.3.9. ord(z) = n iff z is a primitive n-th root of unity.

Exercise 2.3.10. Let µ(n) be the sum of all primitive n-th roots of unity.

a) Prove that for every n, µ(n) = 0, 1, or −1.

b) Prove µ(n) 6= 0 iff n is square free.

c) Prove if g.c.d. (k, `) = 1 then µ(k`) = µ(k)µ(`).

d) If n = p1
t1 . . . pk

tk , find an explicit formula for µ(n) in terms of the ti.
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Exercise 2.3.11. Show that the number of primitive n-th roots of unity is equal to Euler’s
phi function. ϕ(n) := number of k such that 1 ≤ k ≤ n and g.c.d. (k, n) = 1.

n 1 2 3 4 5 6 7 8 9
ϕ(n) 1 1 2 2 4 2 6 4 6

Definition 2.3.12. f : N+ → C is multiplicative if (∀k, `)(if g.c.d. (k, `) = 1 then f(k`) =
f(k)f(`)).

Definition 2.3.13. f is totally multiplicative if (∀k, `)(f(k`) = f(k)f(`)).

Exercise 2.3.14. The µ function is multiplicative.

Exercise 2.3.15. The ϕ function is multiplicative.

Exercise 2.3.16. Neither µ nor ϕ are totally multiplicative.

Exercise 2.3.17. Prove that
∑

d |n,1≤d≤n

ϕ(d) = n.

Remark 2.3.18. Let f : N→ C be a function (N = {1, 2, 3, . . . }). We call

g(n) =
∑

d |n,1≤d≤n

f(d)

the summation function of f .

Exercise 2.3.19 (Möbius Inversion Formula). f(n) =
∑
d |n

µ
(n
d

)
g(d).

Exercise 2.3.20. f is multiplicative if and only if g is.

Now, using the preceding ideas, we can apply in Q[ 3
√

2] the same construction we used in
Q[
√

2]. Let a, b, c be rational numbers, not all zero. Let ω be a primitive third root of unity.
Consider

1
a+ 3
√

2b+ 3
√

4c
· a+ ω 3

√
2b+ ω2 3

√
4c

a+ ω 3
√

2b+ ω2 3
√

4c
· a+ ω2 3

√
2b+ ω 3

√
4c

a+ ω2 3
√

2b+ ω 3
√

4c
·

Exercise 2.3.21. Show that the denominator in the above expression is rational and non-zero.

Exercise 2.3.22 (Kronecker). Let f(x) = a0 + a1x+ · · ·+ anx
n ∈ Z[x] be monic (an = 1).

Suppose all complex roots z of f satisfy |z| = 1. Then all complex roots of f are roots of unity.

Exercise 2.3.23. The above statement is false if we drop the assumption that f is monic.
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2.4 Modular Arithmetic

Notation 2.4.1. The formula d |n denotes the relation “d divides n,” i.e.,(∃k)(n = dk). We
write a ≡ b (mod m) if m | (a− b) (“a is congruent to b modulo m”).

Exercise 2.4.2. Prove: congruence modulo m is an equivalence relation on Z. The equivalence
classes are called the residue classes. We denote the set of modulom resuide classes by Z/mZ.
There are m residue classes modulo m.

Exercise 2.4.3. Prove: if a1 ≡ a2 (mod m) and b1 ≡ b2 (mod m), then a1 + b1 ≡ a2 + b2
(mod m) and a1b1 ≡ a2b2 (mod m).

Exercise 2.4.4. Define addition and multiplication on the set of modulo m residue classes by
representatives. Show that these operations don’t depend on the choice of the representatives
(Exercise 2.4.3). This way we will have defined a finite commutative ring structure on Z/mZ.

Example 2.4.5. Z/mZ:

m = 2:
+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

m = 3:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

m = 4:

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

× 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Exercise 2.4.6. If ac ≡ bc (mod m) and g.c.d. (c,m) = 1, then a ≡ b (mod m).

Exercise 2.4.7 (Multiplicative inverse). (∃x)(ax ≡ 1 (mod m))⇐⇒ g.c.d. (a,m) = 1.

Exercise 2.4.8 (Euler-Fermat congruence). If g.c.d. (a,m) = 1 then aρ(m) ≡ 1 (mod m).

2.5 Fields

Definition 2.5.1. A field is a set F with 2 operations (addition + and multiplication ×),
(F,+,×) such that (F,+) is an abelian group:

(a1) (∀α, β ∈ F )(∃!α+ β ∈ F ),
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(a2) (∀α, β ∈ F )(α+ β = β + α) (commutative law),

(a3) (∀α, β, γ ∈ F )((α+ β) + γ = α+ (β + γ)) (associative law),

(a4) (∃0 ∈ F )(∀α)(α+ 0 = 0 + α = α) (existence of zero),

(a5) (∀α ∈ F )(∃(−α) ∈ F )(α+ (−α) = 0),

and (F,×) satisfies the following. F× = F \ {0} is an abelian group with respect to multipli-
cation:

(b1) (∀α, β ∈ F )(∃!αβ ∈ F ),

(b2) (∀α, β ∈ F )(αβ = βα) (commutative law),

(b3) (∀α, β, γ ∈ F )((αβ)γ = α(βγ)) (associative law),

(b4) (∃1 ∈ F )(∀α)(α× 1 = 1× α = α) (existence of identity),

(b5) (∀α ∈ F×)(∃(α−1 ∈ F×)(α(α−1) = (α−1)α = 1),

(b6) 1 6= 0

(b7) (∀α, β, γ ∈ F )((α(β + γ) = αβ + αγ) (distributive law)

Example 2.5.2. Examples of fields:

(1) Number fields (every number field is a field)

(2) R(x), the set of “rational functions”

(3) For prime p, Z/pZ is a field, denoted by Fp.

Exercise 2.5.3. If F = Fp and V is a k-dimensional vector space over F , then |V | = pk.

Axiom (c) (“no zero divisors”)

(∀α, β ∈ F )(αβ = 0⇐⇒ α = 0 or β = 0)

Exercise 2.5.4. Prove that Axiom (c) holds in every field.

Exercise 2.5.5. Show that Axiom (c) fails in Z/6Z. So Z/6Z is not a field.

Exercise 2.5.6. If F is finite and satisfies all field axioms except possibly (b5), then (b5)⇐⇒
(c). In other words, if F is a finite commutative ring, |F | > 2 and F has no zero divisors, then
F is a field. Note: (c) does not necessarily imply (b5) if F is infinite: Z is a counterexample.

Theorem 2.5.7. Z/mZ is a field ⇐⇒ m is prime.
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Proof:

(1) If m is composite, i.e., m = ab where a, b > 1, then Z/mZ is not a field: it violates axiom
(c) because ab = 0.

(2) Z/pZ is finite, thus need to show that it satisfies axiom (c): This follows from the prime
property: if p is a prime and p | ab then p | a or p | b.

2.6 The “Number Theory” of Polynomials

Definition 2.6.1. Let F be a field. F [x] denotes the set of all univariate polynomials with
coefficients in F .

Definition 2.6.2. Let f, g ∈ F[x]. We say f divides g if (∃h)(fh = g). Notation: f | g.

Exercise 2.6.3 (Division Theorem). For all f, g ∈ F [x]), if g 6= 0, then
(∃! q, r ∈ F [x])(f = gq + r) and deg(r) < deg(g)).

Notation 2.6.4. F× = F \ {0}.

Definition 2.6.5. f ∈ F [x] is a unit if (∀g ∈ F [x])(f | g).

Exercise 2.6.6. f is a unit ⇐⇒ f | 1⇐⇒ f is a nonzero constant, i.e., f ∈ F×.

Definition 2.6.7. For f, g, h ∈ F [x], f is a greatest common divisor (g.c.d. ) of g and h if

(1) f | g and f |h.

(2) (∀e ∈ F [x])( if e | g and e |h then e | f).

Exercise 2.6.8. (1) (∀f, g ∈ F [x])(∃d ∈ F [x])(d is a g.c.d. of f and g).

(2) d is unique up to multiplication by a unit.

(3) (∃u, v ∈ F [x])(d = fu+ gv).

Exercise 2.6.9. g.c.d. (fg, fh) = fd, where d = g.c.d. (g, h).

Definition 2.6.10. f is irreducible over F if

(1) deg(f) ≥ 1 and

(2) (∀g, h ∈ F[x])(f = gh⇒ deg(f) = 0 or deg(g) = 0).

Remark 2.6.11. If deg(f) = 1, then f is irreducible because degree is additive.

Exercise 2.6.12 (Prime property). If f is irreducible and f | gh then f | g or f |h. (Hint:
Exercise 2.6.9.)
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Exercise 2.6.13 (Unique factorization). Every polynomial over F can be uniquely written
as a product of irreducible polynomials.

Exercise 2.6.14. (∀α)(x− α) | (f(x)− f(α)). Hint: If f(x) = xn, then

xn − αn = (x− α)(xn−1 + αxn−2 + ...+ αn−1).

Corollary 2.6.15. α is a root of f iff (x− α) | f(x).

Theorem 2.6.16 (Fundamental Theorem of Algebra). If f ∈ C[x] and deg(f) ≥ 1 then
(∃α ∈ C)(f(α) = 0).

Exercise 2.6.17. Over C a polynomial is irreducible iff it is of degree 1. Hint: Follows from
the FTA and Corollary 2.6.15 that lets you pull out root factors (x− α).

Exercise 2.6.18. f(x) = ax2 + bx+ c, a 6= 0, is irreducible over R iff b2 − 4ac < 0.

Remark 2.6.19. An odd degree polynomial over R always has a real root.

Exercise 2.6.20. If f ∈ R[x], and z ∈ C, then f(z̄) = f(z).

Consequence: If z is a root of f ∈ R[x] then so is z̄.

Theorem 2.6.21. Over R, all irreducible polynomials have deg ≤ 2.

Proof: Suppose f ∈ R[x], deg(f) ≥ 3. We want to show that f is not irreducible over R.

(1) If f has a real root α, then (x− α) | f .

(2) Otherwise by FTA f has a complex root z which is not real, so that z 6= z̄. Thus
(x− z)(x− z̄) = x2 − 2ax+ a2 + b2 divides f , where z = a+ bi.

Definition 2.6.22. f(x) = a0 + a1x + · · · + anx
n ∈ Z[x] is a primitive polynomial if

g.c.d. (a0, . . . , an) = 1.

Examples of primitive polynomials: xn − 2; 15x2 + 10x + 6. Note that in the second
example, every pair of coefficients has a nontrivial common divisor, but the three coefficients
together don’t.

Exercise 2.6.23 (No zero divisors). For any field F , if f, g ∈ F [x] then fg = 0⇐⇒ f = 0 or
g = 0.

Exercise 2.6.24 (Gauss Lemma #1). If f, g are primitive polynomials, then so is fg. (Hint:
use the preceding exercise.)

Exercise 2.6.25 (Gauss Lemma #2). If f = gh, f ∈ Z[x], g, h ∈ Q[x] then ∃α ∈ Q such
that αg ∈ Z[x] and h

α ∈ Z[x]. So if f ∈ Z[x] factors nontrivially over Q then it factors
nontrivially over Z.
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Exercise 2.6.26 (Rational Root Theorem). Let f(x) = a0 +a1x+ · · ·+anx
n with ai ∈ Z,

and α = r
s ∈ Q with g.c.d. (r, s) = 1. If f(α) = 0, then r | a0 and s | an.

Theorem 2.6.27 (Schönemann-Eisenstein Criterion). Let f ∈ Z[x], f(x) = a0 + a1x +
· · ·+ anx

n. Assume there exists a prime p such that

(a) p - an.

(b) p | a0, . . . , an.

(c) p2 - a0.

Then f is irreducible over Q.

Exercise 2.6.28. Prove the Schönemann-Eisenstein Criterion. Hint: use unique factorization
in Fp[x] (Exercise 2.6.13).

Exercise 2.6.29. If a1, . . . , an are distinct integers, then
n∏
i=1

(x− ai)− 1 is irreducible over Q.

Exercise 2.6.30. If a1, . . . , an are distinct integers, then
n∏
i=1

(x− ai)2 + 1 is irreducible over

Q.

Exercise 2.6.31. (∀n)(xn − 2 is irreducible over Q).

Exercise 2.6.32. Let p be a prime. Show that Φp(x) := xp−1
x−1 = 1+x+· · ·+xp−1 is irreducible.

(Hint: use Schönemann-Eisenstein.)

Definition 2.6.33. The formal derivative of f(x) = a0 + a1x+ · · ·+ anx
n ∈ F [x] (over any

field F ) is defined as f ′(x) = a1 + 2a2x+ · · ·+ nanx
n−1.

Exercise 2.6.34 (Linearity of differentiation). (f + g)′ = f ′ + g′.

Exercise 2.6.35 (Product rule). (αf)′ = αf ′, and (fg)′ = f ′g + fg′.

Exercise 2.6.36 (Chain Rule). If h(x) = f(g(x)), then h′(x) = f ′(g(x))g′(x).

Exercise 2.6.37. α ∈ F is a multiple root of f ⇐⇒ f(α) = f ′(α) = 0.

Exercise 2.6.38. f ∈ C[x] has no multiple roots ⇐⇒ g.c.d. (f, f ′) = 1.

Exercise 2.6.39. Prove that the polynomial xn + x+ 1 has no multiple roots in C for n > 2.
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2.7 Cyclotomic Polynomials

Definition 2.7.1. The n-th cyclotomic polynomial is Φn(x) =
∏

(x − ζ), where ζ ranges
over the primitive n-th roots of unity.

Remark 2.7.2. deg Φn(x) = ϕ(n).

Φ1(x) = x− 1

Φ2(x) = x+ 1

Φ3(x) = x2 + x+ 1

Φ4(x) = x2 + 1

Φ5(x) = x4 + x3 + x2 + x+ 1

Φ6(x) = x2 − x+ 1

Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1

Φ8(x) = x4 + 1

Exercise 2.7.3. xn − 1 =
∏

d |n,1≤d≤n

Φn(x).

Exercise 2.7.4. Show that Φn(x) ∈ Z[x].

Exercise 2.7.5. Show that for primes p, q, Φp(x) = xp−1
x−1 , Φpk(x) = xpk−1

xpk−1−1
, and Φpq(x) =

(xpq−1)(x−1)
(xp−1)(xq−1) .

Theorem 2.7.6. ∗ Φn(x) is irreducible over Q. (We proved this when n is prime, Exercise
2.6.32.)

2.8 Minimal Polynomials

Definition 2.8.1. α ∈ C is algebraic if (∃f)(f ∈ Q[x], f 6= 0, f(α) = 0). Numbers that are
not algebraic are called transcendental numbers.

Exercise 2.8.2. (a) Prove that every rational number is algebraic.

(b) Prove:
√

2, 1+
√

5
2 (the golden ratio), 3

√
2, 1/(

√
2 +
√

3) are algebraic.

(c) Prove: there are only countably many algebraic numbers. So “almost all” real numbers
are transcendental.
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Very difficult proofs show that e, π, ln 2 are transcendental numbers. It is an open question
whether or not e +π is transcendental; in fact, it is not even known whether or not e +π is
irrational.

Definition 2.8.3. A monic polynomial is a polynomial with leading coefficient 1.

Definition 2.8.4. The minimal polynomial of an algebraic number α is a monic polynomial
mα(x) ∈ Q[x] such that

mα(α) = 0 (1)

and mα(x) has minimal degree, among polynomials satisfying (1).

Exercise 2.8.5. (∀f ∈ Q[x])(f(α) = 0⇐⇒ mα | f).

Exercise 2.8.6. The minimal polynomial is unique.

Exercise 2.8.7. mα(x) is irreducible. In fact, for a monic polynomial f , we have f = mα ⇐⇒
f(α) = 0 and f is irreducible.

Definition 2.8.8 (degree of an algebraic number). deg(α) = deg(mα).

Exercise 2.8.9. Prove:

(a) deg( n
√

2) = n.

(b) If ζ is a primitive n-th root of unity then deg(ζ) = ϕ(n). (This is equivalent to Exercise
2.3.10.)

(c) deg(
√

2 +
√

3) = 4.

Definition 2.8.10. The algebraic conjugates of α are the roots of mα.

Exercise 2.8.11. Find the algebraic conjugates of the numbers listed in Ex. 2.8.9.

Exercise 2.8.12. If deg(α) = n then the set

Q[α] := {a0 + a1α+ · · ·+ an−1α
n−1 | ai ∈ Q}

is a field.

Exercise 2.8.13. Prove: dimQ Q[α] = deg(α).

Exercise 2.8.14. Let F be a subfield of the field G. Generalize the definitions above by
replacing Q by F and C by G. So you will have defined degF (α) for α ∈ G.

Exercise 2.8.15. Prove:

(a) degQ[
√

2](
√

3) = 2

(b) degQ[
√

2](
3
√

2) = 3

Exercise 2.8.16. Prove: if F ⊂ K ⊂ L are fields then dimF L = (dimK L)(dimF K).

Exercise 2.8.17. Prove: the algebraic numbers form a subfield of C.
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