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1. (Rational functions) Prove that the rational functions {1/(x− α) : α ∈ R} are linearly
independent over R. (This will show that the space of rational functions has uncountable
dimension.) Recall that an infinite collection is linearly independent if each finite subset is
linearly independent.
Challenge: Find a basis for the space of rational functions R(x) over R.

2. (Trigonometric functions) Prove that the functions {1, cosx, cos 2x, . . . , sinx, sin 2x, . . . }
are linearly independent over R.

3. (Modular identity) Let U1 and U2 be subspaces of a vector space V . Then,

dim(U1) + dim(U2) = dim(U1 + U2) + dim(U1 ∩ U2).

4. (Matrix rank) (a) Let A be a k × ` matrix over Z. Then,

rk2(A) ≤ rkQ(A) = rkC(A),

where rk2(A) denotes the rank of A over F2. (b) Find a (0, 1)-matrix A such that
rk2(A) < rkQ(A). (c) Prove: If A is a (0, 1)-matrix then rk2(A) > log2 rkQ(A). (d) For
every r, find a (0, 1)-matrix A such that rk2(A) = r and rkQ(A) = 2r − 1.

5. (Perpendicular subspace) Let V = Fn. Let S ⊆ V be a subset. We define the set
S⊥ ≤ V as the set of all those vectors in V that are perpendicular to all vectors in S.

(a) Prove that S⊥ is a subspace.

(b) Prove: S⊥ = Span(S)⊥.

(c) Prove: if U ≤ V is a subspace, then

dim(U) + dim(U⊥) = dim(V ).

(d) Prove: (U⊥)⊥ = U.

(e) U is totally isotropic if U ≤ U⊥. Prove: if U is totally isotropic then dim(U) ≤ n/2.

(f) Prove that C2k contains a totally isotropic subspace of dimension k. Prove the same
with F2,F5,F13 in the place of C.

(g) Prove: the incidence vectors of a maximal Eventown club system form a maximal
totally isotropic subspace of Fn2 . Infer the Eventown Theorem: the number of clubs
in Eventown is ≤ 2bn/2c (See the Puzzle Problem sheet).
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(h) Prove: every maximal totally isotropic subspace of Fn2 has dimension bn/2c.
Infer that all maximal Eventown club systems are maximum

6. (a) A collineation of a finite geometry is a permutation of the set of points which preserves
collinearity (the relation of being on a line), i. e., it maps lines to lines. For the Fano plane
with seven points (otherwise known as P2F2), find the number of collineations. Also, show
that all points are equivalent, in the sense that any point may be sent to any other point
by a collineation. (In fact, this is also true of pairs of distinct points.)

(b) (Fundamental theorem of projective geometry) Suppose that (P,L) is a projec-
tive plane over the field F . If {

a1, . . . , a4

b1, . . . , b4

are 2×4 points in general position (no three out of each quadruple is on a line), then there
exists a collineation f : P → P satisfying f(ai) = bi for each i = 1, . . . , 4.

7. (One-sided invertibility) Let A ∈ Fk×`. (a) Prove: A has a right inverse iff A has full
row rank; and, A has a left inverse iff A has full column rank. (b) Find a matrix A with
multiple right inverses.

8. (Two-entry determinant) Find the n× n determinant∣∣∣∣∣∣∣∣∣
a b . . . b
b a . . . b
...

. . .
...

b b . . . a

∣∣∣∣∣∣∣∣∣
where the diagonal entries are a and the remaining entries b. Give a simple closed-form
expression.

9. (Vandermonde determinant) Show that the n× n Vandermonde determinant∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x1 x2 . . . xn
x2

1 x2
2 . . . x2

n
...

...
...

xn−1
1 xn−1

2 . . . xn−1
n

∣∣∣∣∣∣∣∣∣∣∣
=
∏
i>j

(xi − xj).

Note that the right-hand side is the product of
(
n
2

)
= n(n− 1)/2 terms.

10. (Hilbert matrix) Fix 2n-distinct numbers α1, . . . , αn and β1, . . . , βn. Then, the n × n
matrix

H =

(
1

αi − βj

)
n×n

is nonsingular.

11. (Tridiagonal determinants:)
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(a) Compute the value of the n× n tridiagonal determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0
−1 1 1 0
0 −1 1 1 0

0 −1 1 1 0
0 −1 1 1 0

. . .

0 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(b) Compute the n× n tridiagonal determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0
1 1 1 0
0 1 1 1 0

0 1 1 1 0
0 1 1 1 0

. . .

0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

12. (Bases of Fnp)

(a) Count the bases of Fnp . (Not a closed-form expression but a simple expression)

(b) Count the k-dimensional subspaces of Fnp . Denote this number by fp(n, k).

(c) Compute lim
p→1

fp(n, k). This should be a closed form expression with an intuitive

meaning.

13. (Change of basis) Let B = (b1, . . . , bn) and B′ = (b′1, . . . , b
′
n) be bases of V . For v ∈ V ,

if v =
∑n

i=1 βivi then we write [v]B = (β1, . . . , βn)T , the column vector which lists the
coordinates of v with respect to the basis B. (“T” stands for “transpose” and serves
typographic convenience here.) Prove: [v]B′ = S−1[v]B where S = [[b′1]B, . . . , [b

′
n]B] is the

“basis change matrix.”

14. (Degree of freedom in choosing a linear map) (a) Let b1, . . . , bn be a basis of V and
let w1, . . . , wn be arbitrary vectors of W .

Prove: (∃ ! ϕ : V → W ) (∀i)(ϕ(bi) = wi)

(b) Use this to give a vector-space isomorphism between Hom(V,W ) and F k×n where
k = dimW .

15. (Rotations of Conic Sections) Let f(x, y) = ax2 + bxy + cy2. Rotate the (x, y)-plane
by an angle θ and get new coordinates (x′, y′). This induces a linear tranformation on the
space of all such polynomials. Write the matrix of this linear transformation with respect
to the basis (x2, xy, y2).
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16. (Correspondence between the action of a linear map and matrix multiplication)
Let V,W,Z be vector spaces over Let ϕ : V → W be a linear map, E a basis of V , Φ a
basis of W , and v ∈ V .

Show that [ϕ]E,Φ[v]E = [ϕ(v)]Φ.

17. (a) Let A,B ∈ F k×n. Prove: if (∀x ∈ F n)(Ax = Bx) then A = B.

(b) (Correspondence between composition of linear maps and matrix multipli-
cation) Let V,W,Z be vector spaces over F with bases Ξ,Φ,Ψ. Let ϕ : V → W and
ψ : W → Z be linear maps. Prove:

[ψφ]Ξ,Ψ = [ψ]Φ,Ψ[φ]Ξ,Φ.

(c) Let ρθ denote the rotation of the plane by θ about the origin. Recall that the matrix
of this transformation with respect to an orthonormal basis (a pair of perpendicular unit

vectors) is [ρθ] =

[
cos θ − sin θ
sin θ cos θ

]
. Use this matrix to infer the addition rules for the

trigonometric functions.

18. (Change of bases) Let ϕ : V → W be a linear map, E a basis of V and Φ a basis of W .
Let E ′ = (e′1, . . . , e

′
n) and Φ′ = (f ′1, . . . , f

′
k) be new bases for V and W , respectively.

Define A = [ϕ]E,Φ and A′ = [ϕ]E′,Φ′ , S = [[e′1]E, . . . , [e
′
n]E], T = [[f ′1]Φ, . . . , [f

′
k]Φ].

Show that A′ = T−1AS.

19. (a) Let A ∈ F k×n and B ∈ F n×k. Prove: Tr(AB) = Tr(BA). (b) Prove: similar matrices
have the same trace. (A,B ∈Mn(F ) are similar if (∃S ∈Mn(F ))(B = S−1AS).)

20. (Determinant is multiplicative) If A,B ∈Mn(F ), then det(AB) = det(A) det(B).

21. (Powers of a Matrix) (a) Let A =

[
1 1
1 0

]
. What is An? (Experiment, observe pattern,

prove.) (b) Let B =

[
1 1
0 1

]
. What is Bn?

22. (Fibonacci-type sequences)

Let RZ = { functions Z → R} = {a = (. . . , a−2, a−1, a0, a1, a2, . . .)|ai ∈ R} be the space of
doubly infinite sequences.

We say that a ∈ RZ is a Fibonacci-type sequence if (∀n ∈ Z) (an = an−1 + an−2). We
denote the set of Fibonacci-type sequences by Fib. Let Fn denote the n-th Fibonacci
number: F0 = 0, F1 = 1, (Fn : n ∈ Z) ∈ Fib.

(a) Prove: Fib ≤ RZ (subspace); dim Fib = 2. Prove that the Fibonacci sequence {Fn}
and the shifted Fibonacci sequence {Fn+1} form a basis of Fib.

(b) Find a basis of Fib consisting of geometric progressions un = qn1 and vn = qn2 . Deter-
mine q1, q2.
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(c) (Explicit formula for the Fibonacci numbers) Prove: Fn = αqn1 +βqn2 . Determine
α, β.

23. (Shift operator) Let us define σ : RZ → RZ by σ : {an} 7→ {an+1}.

(a) Find all eigenvectors of σ.

(b) Notice that Fib is invariant under σ. Let σ′ denote the restriction of σ to Fib; so
this is a linear transformation of Fib. Describe the matrix of σ′ (a 2× 2 matrix) with
respect to the basis given in item (a) of the preceding problem.

(b) Find a basis of Fib consisting of eigenvectors of σ′. Describe the matrix of σ′ in this
basis.

24. rk(A) is the size of the largest non-singular (square) matrix

25. Prove that the volume of the n-dim parallelpiped spanned by the basis a1, . . . , an ∈ Rn
satisfies

Vol(a1, . . . , an) = | det(a1, . . . , an)|.

(Use only that volume is additive, translation invariant and satisfies that if a1, . . . , an are
orthogonal then Vol =

∏n
i= ‖ai‖.)

26. An eigenbasis for A ∈ Mn(F ) is a basis of F n that consists of eigenvectors of A. Find
the eigenvalues and an eigenbasis of the rotation matrix ρθ (Ex. 17 (c)) over C. (Reward
problem!)

27. (a) A ∈Mn(F ) has an eigenbasis ⇐⇒ A is similar to a diagonal matrix D.

(b) Ther diagonal entries of D are the eigenvalues of A.

28. The Cayley-Hamilton Theorem says that if fA(λ) is the characteristic polynomial of
the matrix A ∈Mn(F ) then fA(A) = 0.

(a) Verify the Cayley-Hamilton Theorem for 2× 2 matrices.

(b) Verify the Cayley-Hamilton Theorem for diagonal matrices.

29. Find an n× n matrix B of rank n− 1 with fB(λ) = λn.

30. A ∈Mn(F ) is non-singular ⇐⇒ λ = 0 is not an eigenvalue.

31. (Complex matrices)

(a) Prove that every matrix A ∈Mn(C) is similar to a triangular matrix over C.

(b) Show that the same is true over any algebraically closed field.

(c) Show that the same is true over any splitting field of the characteristic polynomial
of A. (F is a splitting field for the polynomial f if f can be written as a product of
linear factors over F .)
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32. (Eigenvectors to distinct eigenvalues) Suppose that v1, . . . , vk are eigenvectors of
ϕ : V → V corresponding to distinct eigenvalues. Show that v1, . . . , vk are linearly in-
dependent.

33. (Eigenvalue multiplicity) Let A ∈Mn(F ) and λ ∈ F . The geometric multiplicity of the
eigenvalue λ is the dimension of the eigensubspace Uλ = Ker(λI − A). (This dimension is
zero exactly if λ is not an eigenvalue.) The algebraic multiplicity of λ is the largest k such
that (x − λ)k divides the characteristic polynomial fA(x) = det(xI − A). Prove that the
geometric multiplicity of an eigenvalue is less than or equal to its algebraic multiplicity.

34. (Symmetric polynomial in eigenvalues) Suppose A is a matrix with with characteristic
polynomial fA(x) = (x− λ1) . . . (x− λn) (so the λi are the eigenvalues). Let σk denote the
kth elementary symmetric polynomial. Show that

σk(λ1, . . . , λn) =
∑
(n

k)

det(k × k symmetric minor).

In particular,
∑
λi = Tr(A) and

∏
λi = det(A).

35. (!!!) Find the characterisitc polynomial and find all eigenvectors of the ‘all-ones’ matrix

J =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 .

36. Let A =

[
1 2
1 2

]
and B =

[
3 0
0 0

]
. Verify, using the definition of similarity, that these two

matrices are similar: find C such that B = C−1AC.

37. Prove: similar matrices have the same characteristic polynomial: if A ∼ B then fA(x) =
fB(x) where fA(x) = det(xI − A).

38. (a) Prove that A1 =

[
1 1
0 1

]
and A2 =

[
1 0
0 1

]
are not similar. (b) Prove that B1 =

[
1 1
0 2

]
and B2 =

[
1 0
0 2

]
are similar. The proofs should not involve any calculation.

39. (a) Prove that A =

[
1 1
1 0

]
is diagonalizable. Find the diagonal matrix similar to A. (b)

Prove that B =

[
1 1
0 1

]
is not diagonalizable.

40. (Irreducible charcateristic polynomial) Let A ∈ Mn(Z). Prove: if the characteristic
polynomial fA(x) is irreducible over Q then A is diagonalizable over C.
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41. (Circulant determinants) Fix an n-tuple (a0, . . . , an−1) ∈ Cn. Define the circulant
matrix as

C(a0, . . . , an−1) =


a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2

an−2 an−1 a0 · · · an−3
...

...
...

. . .
...

a1 a2 a3 · · · a0

 .

Let ω = cos(2π
n

) + i sin(2π
n

) and set f(x) = a0 + a1x+ · · ·+ an−1x
n−1. Show that

det(C(a0, . . . , a1)) =
n−1∏
j=0

f(ωj).

Hint: Find an eigenbasis shared by all circulant matrices. To do this, let P = C(0, 1, 0, . . . , 0).
Note that P k = C(b0, . . . , bn−1) where bj = δjk; in particular, P n = I. Find an eigenbasis
for P ; show that the eigenvalues of P are the n-th roots of unity; then use the equa-
tion f(P ) = C(a0, . . . , an−1) to compute the eigenvalues of C(a0, . . . , an−1) (show that the
eigenbasis of P is also an eigenbasis of f(P )).

42. If A and B are symmetric matrices (i. e., A = AT and B = BT ), then show that (a) AB is
not necessarily symmetric, but (b) An is symmetric for any positive integer n.

43. If U ≤ R[x] and U is invariant under the linear map d/dx then (∃k ∈ N ∪ {∞}) (U is the
set of all polynomials of degree < k).

44. Prove: a matrix A ∈Mn(F ) is diagonalizable if and only if F n is the sum of the eigensub-
spaces of A.

45. A1, . . . , Am are n× n matrices that are diagonalizable over F and they pairwise commute.
Show that they have a common eigenbasis. - Use the following fact: if ϕ : V → V is a
linear transformation which has an eigenbasis and U ≤ V is a ϕ-invariant subspace (i. e.,
(∀u ∈ U)(ϕ(u) ∈ U)) then the restriction of ϕ to U also has an eigenbasis.

46. Prove:

(a) If A,B ∈Mn(C), then AB −BA 6= I.

(b) The same is not true over all fields. Find a counterexample over Fp for every prime p.

47. Consider the linear transformations defined on C[x] by

A : f 7→ df

dx
, B : f 7→ x · f.

What is AB −BA?

48. If the Cayley-Hamilton theorem is true for A and A ∼ B, then it is true for B.
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49. Suppose A1, A2, . . . ∈ Mn(C) such that lim
k→∞

Ak = B. Assume that (∀k)( C-H is true for

Ak). Prove: C-H is true for B.

50. If A has n distinct eigenvalues in F , then A is diagonalizable.

51. Among the triangular matrices over C, the diagonalizable ones are everywhere dense.

52. Combine the preceding statements to a proof that the C-H Theorem is true for all complex
matrices.

53. (a) Let f(x1, . . . , xm) ∈ Z[x1, . . . , xm] and suppose f is identically zero. (Ex: x2−y2− (x+
y)(x − y) = 0) Then f is identically zero over any field. (b) Infer that C-H is true over
every field.

54. Let A ∈Mn(C).

(a) Define eA ∈Mn(C).

(b) Prove that eA+B is not always equal to eAeB.

(c) eA+B = eAeB does hold under a natural condition on A,B. What is it?

(d) Compute
d

dt
eAt

?
= A · eAt

(e) Define cos(A), sin(A). Comment on cos(A+B) =?

55. Let B ∈Mn(R). Prove: the columns of B are orthonormal if and only if its rows are, i. e.,
BTB = I ⇔ BBT = I.

56. If C = (c1, . . . , cn) is an orthonormal basis for Rn, then ϕ : Rn → Rn is an orthogonal
transformation if and only if [ϕ]C is an orthogonal matrix.

57. (Similar Matrices) Consider the following three matrices.

A =

 0 1 1
0 0 1
0 0 0

 B =

 0 1 0
0 0 1
0 0 0

 C =

 0 1 1
0 0 0
0 0 0


Compute the characteristic polynomial and eigenvalues of each matrix, together with the
algebraic and geometric multiplicity of each eigenvalue. Which among the matrices A,B,C
are similar?

58. (Diagonalizable matrices) Show that a matrix A ∈Mn(F) is diagonalizable iff

(a) The characteristic polynomial fA splits over F, and
(b) Fn =

∑
λ Uλ.

Here Uλ denotes the eigenspace corresponding to the eigenvalue λ, i. e., Uλ = ker(λI −A).

59. (Invariant subspaces) Let V be a vector space. If φ : V → V is a linear map then a
subspace U is invariant under φ if φ(U) ⊆ U . Show that if every subspace of V is invariant
under φ then φ = λ · I is a scalar multiple of the identity map.
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60. (Primitive roots of unity) Let ω = cos(2π
6

) + i sin(2π
6

) be a primitive sixth root of unity.
Given f ∈ Q[x] show that f(ω) = 0 iff the polynomial x2 − x+ 1 divides f .

61. (Minimal polynomials) Let α be an algebraic number. Let mα ∈ Q[x] be a monic
polynomial such that

(a) mα(α) = 0
(b) If f ∈ Q[x] satisfies f(α) = 0 then deg(mα) ≤ deg(f).

Show that

(i) The polynomial mα is irreducible over Q.
(ii) If f ∈ Q[x] satisfies f(α) = 0 then mα|f .
(iii) The polynomial mα is unique.

62. (Minimal polynomials for matrices) Let A ∈ Mn(F). A monic polynomial mA ∈ F[x]
is called a minimal polynomial of A if

(a) mA(A) = 0
(b) If f ∈ F[x] satisfies f(A) = 0 then deg(mA) ≤ deg(f).

Show that

(i) For f ∈ F[x], f(A) = 0 iff mA | f . In particular, mA | fA.
(ii) The polynomial mA is unique.
(iii) If A = diag(λ1, . . . , λn) then mA(x) =

∏′(x− λi) where the product is
taken over distinct eigenvalues λi (so mA has no multiple roots).

(iv) The roots of mA are exactly the eigenvalues of A.
(v) The matrix A is diagonalizable iff mA splits over F and mA has no multiple roots.

63. (Orthogonal polynomials) Given an interval I ⊆ R a density function is a positive
real-valued function ρ : I → (0,∞) satisfying∫

I

x2nρ(x)dx <∞

for each n. Given a density function ρ define an inner product on R[x] by the rule

〈f, g〉 =

∫
I

f(x)g(x)ρ(x)dx.

Show that with respect to this inner product there exists an orthogonal basis {fn} of R[x]
such that deg(fn) = n; and fn is unique up to scalar multiples.

64. (Examples to research)
(a) Chebyshev polynomials: Take I = (−1, 1) in the above. Then, the normalized basis

of R[x] corresponding to ρ(x) = 1/
√

1− x2 and ρ(x) =
√

1− x2 are the Chebyshev
polynomials of first and second kind, respectively.

(b) Hermite polynomials: Take I = R in the above. Then, the normalized basis of R[x]

corresponding to ρ(x) = e−x
2/2 are the Hermite polynomials.
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65. (Trigonometric functions) Show that the trigonometric functions {1, cos(nx), sin(nx)}∞n=1

are pairwise orthogonal with respect to the inner product

〈f, g〉 =
1

2π

∫ π

−π
fgdx.

This will in particular prove that they are linearly independent.

66. (Cauchy-Schwarz) Let (V, 〈, 〉) be a Euclidean space. Then, for each v, w ∈ V ,

|〈v, w〉| ≤ ‖v‖ ‖w‖ .

67. (Gram-Schmidt orthogonalization) Given vectors v1, v2, . . . ∈ V let b1, b2, . . . ∈ V
denote the corresponding vectors obtained via the Gram-Schmidt process. This means
that for all n,

(i) vn − bn ∈ Span(v1, . . . , vn−1), and

(ii) 〈bi, bn〉 = 0 for all i < n.

Show that

(a) Span(v1, . . . , vn) = Span(b1, . . . , bn) for each n.
(b) The vector bn = 0 iff Span(v1, . . . , vn−1) = Span(v1, . . . , vn).

68. (Symmetric/Orthogonal operators) Let ϕ, ψ : V → V be linear transformations of a
Euclidean space V . Recall that ϕ is a symmetric transformation if
(∀x, y ∈ V )(〈x, ϕ(y)〉 = 〈ϕ(x), y〉); and ψ is an orthogonal transformation if
(∀x, y ∈ V )(〈ψ(x), ψ(y)〉 = 〈x, y〉). Let B be an orthonormal basis (ONB) of V . Then,

(a) ϕ is symmetric iff the matrix [ϕ]B is a symmetric matrix.
(b) ψ is orthogonal iff [ϕ]B is an orthogonal matrix.

69. (A calculus lemma) Consider the real function

f(t) =
at2 + bt+ c

dt2 + e

where a, b, c, d, e ∈ R and e 6= 0. Show that if f(t) attains its macximum value at t = 0
(i. e., f(0) ≥ f(t) for all t) then b = 0.

70. (Orthogonal complement) Let U ≤ V be a subspace of a Euclidean space V . Then,

(a) dim(U) + dim(U⊥) = dim(V )
(b) U + U⊥ = V .

Recall that (a) was proven previously in class in a different context (standard dot product
over any field F ). Part (b) is false in that context.
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71. (Rayleigh quotient) Let ϕ be a symmetric transformation of the Euclidean space V .
Define the Rayleigh quotient

Rϕ(x) =
〈x, ϕ(x)〉
〈x, x〉

for x ∈ V , x 6= 0. It follows from the Spectral Theorem that all the n eigenvalues of ϕ are
real. Denote them by λ1 ≥ λ2 ≥ . . . ≥ λn. Show that

(a) λ1 = maxRϕ(x)

(b) λn = minRϕ(x)

(c) (Courant-Fischer) λi = max
U≤V

dim(U)=i

min
x∈U
x 6=0

Rϕ(x).

72. (Interlacing theorem) Let A = At be a symmetric n × n real matrix with eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn. Let B denote the symmetric (n − 1) × (n − 1) matrix obtained by
deleting the ith row and the ith column from A. Let µ1 ≥ µ2 ≥ . . . ≥ µn−1 denote the
eigenvalues of B. Prove that

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . ≥ λn−1 ≥ µn−1 ≥ λn.

73. (Adjacency matrix) Let G = (V,E) be an undirected graph. The adjacency matrix of
G is the symmetric matrix A = (aij) where

aij =

{
1 i ∼ j
0 i � j.

If the eigenvalues of A are λ1 ≥ . . . ≥ λn prove that

(a) (∀i)(|λi| ≤ maxv∈V deg(v))

(b) λ1 ≥ 1
n

∑
v∈V deg(v) = average degree

(c) If G is connected then λn = −λ1 iff G is bipartite.

74. (Orthogonal polynomials) Suppose that f1, f2, f3, . . . form a sequence of orthogonal
polynomials with respect to a density function ρ such that (∀n)(deg(fn) = n). Then,

(a) The roots of fn are real for each n.

(b) (Interlacing) The roots of fn−1 interlace the roots of fn.

75. Let f(x) = a0 + a1x + . . . + anx
n ∈ Z[x] such that ana0 6= 0. Let r = p

q
∈ Q, with

gcd(p, q) = 1 such that f(r) = 0. Prove that p | a0 and q | an.

76. Let f(x) = a0 +a1x+ . . .+anx
n and g(x) = an+an−1x+ . . .+a0x

n, with ai ∈ F , a0an 6= 0.

(a) If α ∈ F is a root of f , find a root of g.

(b) If α1, . . . , αn are all the roots of f (counting multiplicities), find all the roots of g.
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77. Let A ∈ Mn(R) be an orthogonal matrix. Let λ ∈ C be a (complex!) eigenvalue of A.
Show that |λ| = 1.

78. (Fisher inequality) Let

H =


a1 b b · · · b
b a2 b · · · b
b b a3 · · · b
...

...
...

. . .
...

b b b · · · an

 .

(a) Compute det(H). Your answer should be a product of very simple expressions. Com-
pare your result with the case when a1 = · · · = an (done in class).

(b) Prove that if a1, . . . , an > b ≥ 0, then H is positive definite.

79. (Finding quadratic forms) Find n× n symmetric real matrices A,B such that

(a) A is positive definite but some of its entries are negative, and

(b) B is indefinite but all its entries are positive.

80. (Secret sharing II) We discussed in class how to share a secret number x ∈ {0, . . . , p−1}
among n committee members such that any k members together can compute the secret
but no k − 1 of them will have any clue (Puzzle Problem 70). We solved this in class for
the case when p > n. Now suppose the president wants only to share the outcome of a coin
flip. How is this possible?

81. (Hermitian inner product) Let V be a complex vector space with Hermitian inner
product 〈, 〉. Show that 〈0, v〉 = 〈v, 0〉 = 0 for all v in V using the axioms of sesquilinearity.

In the next several exercises, V is a finite-dimensional complex vector space with Hermitian
inner product 〈, 〉.

82. (Gram-Schmidt) Show that V has an orthonormal basis, and, that any orthonormal set
{v1, . . . , vk} can be extended to an orthonormal basis.

83. (Unitary transformation) We say that the linear transformation ϕ : V → V is unitary
if (∀x, y ∈ V )(〈ϕ(x), ϕ(y)〉 = 〈x, y〉). Prove that all eigenvalues of a unitary transformation
have unit absolute value.

84. (Self-adjoint transformation) We say that the linear transformation ϕ : V → V is self-
adjoint if (∀x, y ∈ V )(〈x, ϕ(y)〉 = 〈ϕ(x), y〉). Prove that all eigenvalues of a self-adjoint
transformation are real.

85. (Spectral theorem) Let ϕ : V → V be a self-adjoint transformation. Prove that there
exists an orthonormal eigenbasis of V corresponding to real eigenvalues.

12



86. (Adjoint) Show that for all ϕ : V → V there exists unique ψ : V → V such that

〈x, ϕ(y)〉 = 〈ψ(x), y〉

for each x, y in V . The adjoint ψ is denoted ϕ∗. Prove that for all ϕ1, ϕ2 : V → V and for
all λ ∈ C,

(a) (ϕ1ϕ2)∗ = ϕ∗2ϕ
∗
1

(b) (ϕ1 + ϕ2)∗ = ϕ∗1 + ϕ∗2

(c) (λϕ)∗ = λ̄ϕ∗

(d) ϕ is self-adjoint iff ϕ = ϕ∗.

(e) ϕ is unitary iff ϕ∗ = ϕ−1.

87. (Matrix adjoint) For a complex matrix A, the matrix A∗ is the conjugate-transpose of
A. Let ϕ : V → V be a linear map. Then, with respect to an orthonormal basis B, show
that

[ϕ∗]B = [ϕ]∗B.

88. (Upper-triangularity via unitary transformation) Let A ∈ Mn(C). Then, there
exists a unitary matrix C such that C−1AC is upper-triangular. Equivalently, given ϕ :
V → V there exists an orthonormal basis B such that [ϕ]B is upper-triangular.

89. (Orthogonal complement) If U ≤ V is a subspace,

(a) Define U⊥.

(b) Prove that dim(U) + dim(U⊥) = dim(V ).

(c) Prove that U + U⊥ = V .

90. (Normal, upper-triangular matrices) A matrix A ∈ Mn(C) is normal if AA∗ = A∗A.
Prove that A is normal and upper-triangular iff A is diagonal.

91. (Normality under unitary similarity) Prove that if A is normal and A ∼U B then B
is normal, where A ∼U B denotes that A is similar to B via a unitary transformation, i. e.,
that B = C−1AC for some unitary matrix C.

92. (Normal vs. self-adjoint/unitary) A linear map ϕ : V → V is normal if ϕϕ∗ = ϕ∗ϕ.
Prove that if ϕ is normal then,

(a) ϕ = ϕ∗ iff the eigenvalues of ϕ are real.

(b) ϕ∗ = ϕ−1 iff the eigenvalues of ϕ have norm one.

(This ends the sequence of exercises about Hermitian spaces.)
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93. (Lovász-reduced basis) Let (a1, . . . , an) be a basis of Rn. Let (b1, . . . , bn) denote the
orthogonalized basis obtained via the Gram-Schmidt process. Then,

b1 = a1

b2 = a2 + µ2,1b1

b3 = a3 + µ3,2b2 + µ3,1b1
...

bn = an +
∑n−1

i=1 µn,ibi

for µi,j ∈ R. The basis (a1, . . . , an) is Lovász reduced if

(a) |µi,j| ≤ 1
2

for all i, j.

(b) ‖bi+1‖ ≥ 1√
2
· ‖bi‖ for each 1 ≤ i ≤ n− 1.

Prove that if (a) is violated then elementary row operations ai 7→ ai + kaj for k ∈ Z and
j < i can be used to eliminate this violation. Note that these operations do not alter the
corresponding orthogonal basis (b1, . . . , bn); nor do they change the lattice L :=

∑n
i=1 Zai.

94. (Lovász’s lattice reduction algorithm) The purpose of this algorithm is to convert
a basis (a1, . . . , an) of Rn into a Lovász-reduced basis (a′1, . . . , a

′
n) without changing the

lattice L generated by the basis: L =
∑n

i=1 Zai =
∑n

i=1 Za′i.
The algorithm proceeds in phases:

while (a1, . . . , an) not Lovász-reduced

(A) if (a) is violated, fix it as described in the preceding exercise

(B) else find i such that (b) is violated by bi−1 and bi; swap ai−1 and ai

return (a1, . . . , an)

Prove:

(i) The algorithm terminates in a finite number of phases.

(ii) If all coordinates of the input basis are integers, the algorithm terminates in a polyno-
mial number of phases (polynomial in the bit-length of the input).

Hint: Find a potential function P : { bases of Rn} → R (assign a real number to each
basis of Rn; remember that a basis is an ordered list, rathar than a set, of vectors, so the
value of P may change when we permute the basis) such that

(1) P is always positive

(2) line (A) of the algorithm does not affect P

(3) each execution of line (B) of the algorithm reduces the value of P at least by a constant
factor c < 1

(4) if all basis vectors are integral then P ≥ 1
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(5) in any case, P satisfies a positive lower bound that only depends on the lattice L and
not on the particular Z-basis of L.

95. (Deciding positive definiteness) Let A ∈Mn(R) be a symmetric real matrix.

(a) Show that if A is positive definite, then every symmetric minor of A has positive
determinant. (A k × k symmetric minor is the submatrix located at the intersection
of k rows and the corresponding k columns; so a symmetric minor of a symmetric
matrix is symmetric.)

This condition is necessary and sufficient for positive definiteness; but in fact much
less already suffices, as the next question shows.

(b) Show that if every corner minor of A has positive determinant then A is positive
definite. (A corner minor is a minor corresponding to rows 1, . . . , k and columns
1, . . . , k.)

96. (Inequality between the arithmetic and quadratic means) Given ai ≥ 0, show that

a1 + · · ·+ an
n

≤
√
a2

1 + · · ·+ a2
n

n
.

97. Let the n vertices of the graph G have degrees d1, . . . , dn. Let λ be the largest eigenvalue
of the adjacency matrix of G. We have shown that λ is not less than the arithmetic mean
of the di. Show that in fact λ is not less than the quadratic mean of the di:

λ ≥
√
d2

1 + · · ·+ d2
n

n
.

98. Calculate the largest eigenvalue of the adjacency matrix of the “star graph” K1,n−1 (a tree
with one vertex adjacent to all other vertices). Compare your result with the bound from
the preceding exercise.
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