REU 2010 - Apprentice program

Linear Algebra Exercises Instructor: László Babai e-mail: laci@cs.uchicago.edu Compiled by Daniel Studenmund, Ben Fehrman, Laurie Field, Daniele Rosso, Katherine Turner, and the instuctor Last updated Fri July 23, 8:30pm

1. (Rational functions) Prove that the rational functions $\{1/(x - \alpha) : \alpha \in \mathbb{R}\}$ are linearly independent over \mathbb{R} . (This will show that the space of rational functions has uncountable dimension.) Recall that an infinite collection is linearly independent if each finite subset is linearly independent.

Challenge: Find a basis for the space of rational functions $\mathbb{R}(x)$ over \mathbb{R} .

- 2. (Trigonometric functions) Prove that the functions $\{1, \cos x, \cos 2x, \ldots, \sin x, \sin 2x, \ldots\}$ are linearly independent over \mathbb{R} .
- 3. (Modular identity) Let U_1 and U_2 be subspaces of a vector space V. Then,

$$\dim(U_1) + \dim(U_2) = \dim(U_1 + U_2) + \dim(U_1 \cap U_2).$$

4. (Matrix rank) (a) Let A be a $k \times \ell$ matrix over \mathbb{Z} . Then,

$$\operatorname{rk}_2(A) \le \operatorname{rk}_{\mathbb{Q}}(A) = \operatorname{rk}_{\mathbb{C}}(A),$$

where $\operatorname{rk}_2(A)$ denotes the rank of A over \mathbb{F}_2 . (b) Find a (0, 1)-matrix A such that $\operatorname{rk}_2(A) < \operatorname{rk}_{\mathbb{Q}}(A)$. (c) Prove: If A is a (0, 1)-matrix then $\operatorname{rk}_2(A) > \log_2 \operatorname{rk}_{\mathbb{Q}}(A)$. (d) For every r, find a (0, 1)-matrix A such that $\operatorname{rk}_2(A) = r$ and $\operatorname{rk}_{\mathbb{Q}}(A) = 2^r - 1$.

- 5. (Perpendicular subspace) Let $V = \mathbb{F}^n$. Let $S \subseteq V$ be a subset. We define the set $S^{\perp} \leq V$ as the set of all those vectors in V that are perpendicular to all vectors in S.
 - (a) Prove that S^{\perp} is a subspace.
 - (b) Prove: $S^{\perp} = \operatorname{Span}(S)^{\perp}$.
 - (c) Prove: if $U \leq V$ is a subspace, then

$$\dim(U) + \dim(U^{\perp}) = \dim(V).$$

- (d) Prove: $(U^{\perp})^{\perp} = U$.
- (e) U is totally isotropic if $U \leq U^{\perp}$. Prove: if U is totally isotropic then dim $(U) \leq n/2$.
- (f) Prove that \mathbb{C}^{2k} contains a totally isotropic subspace of dimension k. Prove the same with $\mathbb{F}_2, \mathbb{F}_5, \mathbb{F}_{13}$ in the place of \mathbb{C} .
- (g) Prove: the incidence vectors of a maximal Eventown club system form a maximal totally isotropic subspace of \mathbb{F}_2^n . Infer the Eventown Theorem: the number of clubs in Eventown is $\leq 2^{\lfloor n/2 \rfloor}$ (See the Puzzle Problem sheet).

- (h) Prove: every maximal totally isotropic subspace of \mathbb{F}_2^n has dimension $\lfloor n/2 \rfloor$. Infer that all maximal Eventown club systems are maximum
- 6. (a) A collineation of a finite geometry is a permutation of the set of points which preserves collinearity (the relation of being on a line), i. e., it maps lines to lines. For the Fano plane with seven points (otherwise known as $\mathbb{P}^2\mathbb{F}_2$), find the number of collineations. Also, show that all points are equivalent, in the sense that any point may be sent to any other point by a collineation. (In fact, this is also true of pairs of distinct points.)

(b) (Fundamental theorem of projective geometry) Suppose that (P, L) is a projective plane over the field F. If

$$\left\{\begin{array}{c}a_1,\ldots,a_4\\b_1,\ldots,b_4\end{array}\right.$$

are 2×4 points in general position (no three out of each quadruple is on a line), then there exists a collineation $f: P \to P$ satisfying $f(a_i) = b_i$ for each i = 1, ..., 4.

- 7. (One-sided invertibility) Let $A \in \mathbb{F}^{k \times \ell}$. (a) Prove: A has a right inverse iff A has full row rank; and, A has a left inverse iff A has full column rank. (b) Find a matrix A with multiple right inverses.
- 8. (Two-entry determinant) Find the $n \times n$ determinant

where the diagonal entries are a and the remaining entries b. Give a simple closed-form expression.

9. (Vandermonde determinant) Show that the $n \times n$ Vandermonde determinant

$$\begin{vmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ x_1^2 & x_2^2 & \dots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \end{vmatrix} = \prod_{i>j} (x_i - x_j).$$

Note that the right-hand side is the product of $\binom{n}{2} = n(n-1)/2$ terms.

10. (Hilbert matrix) Fix 2*n*-distinct numbers $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n . Then, the $n \times n$ matrix

$$H = \left(\frac{1}{\alpha_i - \beta_j}\right)_{n \times n}$$

is nonsingular.

11. (Tridiagonal determinants:)

(a) Compute the value of the $n \times n$ tridiagonal determinant

(b) Compute the $n \times n$ tridiagonal determinant

12. (Bases of \mathbb{F}_p^n)

- (a) Count the bases of \mathbb{F}_p^n . (Not a closed-form expression but a simple expression)
- (b) Count the k-dimensional subspaces of \mathbb{F}_p^n . Denote this number by $f_p(n,k)$.
- (c) Compute $\lim_{p\to 1} f_p(n,k)$. This should be a closed form expression with an intuitive meaning.
- 13. (Change of basis) Let $B = (b_1, \ldots, b_n)$ and $B' = (b'_1, \ldots, b'_n)$ be bases of V. For $v \in V$, if $v = \sum_{i=1}^n \beta_i v_i$ then we write $[v]_B = (\beta_1, \ldots, \beta_n)^T$, the column vector which lists the coordinates of v with respect to the basis B. ("T" stands for "transpose" and serves typographic convenience here.) Prove: $[v]_{B'} = S^{-1}[v]_B$ where $S = [[b'_1]_B, \ldots, [b'_n]_B]$ is the "basis change matrix."
- 14. (Degree of freedom in choosing a linear map) (a) Let b_1, \ldots, b_n be a basis of V and let w_1, \ldots, w_n be arbitrary vectors of W.

Prove: $(\exists ! \varphi : V \to W) (\forall i) (\varphi(b_i) = w_i)$

(b) Use this to give a vector-space isomorphism between $\operatorname{Hom}(V, W)$ and $F^{k \times n}$ where $k = \dim W$.

15. (Rotations of Conic Sections) Let $f(x, y) = ax^2 + bxy + cy^2$. Rotate the (x, y)-plane by an angle θ and get new coordinates (x', y'). This induces a linear transformation on the space of all such polynomials. Write the matrix of this linear transformation with respect to the basis (x^2, xy, y^2) . 16. (Correspondence between the action of a linear map and matrix multiplication) Let V, W, Z be vector spaces over Let $\varphi : V \to W$ be a linear map, E a basis of V, Φ a basis of W, and $v \in V$.

Show that $[\varphi]_{E,\Phi}[v]_E = [\varphi(v)]_{\Phi}$.

17. (a) Let $A, B \in F^{k \times n}$. Prove: if $(\forall x \in F^n)(Ax = Bx)$ then A = B.

(b) (Correspondence between composition of linear maps and matrix multiplication) Let V, W, Z be vector spaces over F with bases Ξ, Φ, Ψ . Let $\varphi : V \to W$ and $\psi : W \to Z$ be linear maps. Prove:

$$[\psi\phi]_{\Xi,\Psi} = [\psi]_{\Phi,\Psi}[\phi]_{\Xi,\Phi}.$$

(c) Let ρ_{θ} denote the rotation of the plane by θ about the origin. Recall that the matrix of this transformation with respect to an orthonormal basis (a pair of perpendicular unit vectors) is $[\rho_{\theta}] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. Use this matrix to infer the addition rules for the trigonometric functions.

- 18. (Change of bases) Let $\varphi : V \to W$ be a linear map, E a basis of V and Φ a basis of W. Let $E' = (e'_1, \ldots, e'_n)$ and $\Phi' = (f'_1, \ldots, f'_k)$ be new bases for V and W, respectively. Define $A = [\varphi]_{E,\Phi}$ and $A' = [\varphi]_{E',\Phi'}$, $S = [[e'_1]_E, \ldots, [e'_n]_E]$, $T = [[f'_1]_{\Phi}, \ldots, [f'_k]_{\Phi}]$. Show that $A' = T^{-1}AS$.
- 19. (a) Let $A \in F^{k \times n}$ and $B \in F^{n \times k}$. Prove: $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$. (b) Prove: similar matrices have the same trace. $(A, B \in M_n(F))$ are similar if $(\exists S \in M_n(F))(B = S^{-1}AS)$.)
- 20. (Determinant is multiplicative) If $A, B \in M_n(F)$, then det(AB) = det(A) det(B).

21. (Powers of a Matrix) (a) Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. What is A^n ? (Experiment, observe pattern, prove.) (b) Let $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. What is B^n ?

22. (Fibonacci-type sequences)

Let $\mathbb{R}^{\mathbb{Z}} = \{ \text{ functions } \mathbb{Z} \to \mathbb{R} \} = \{ \underline{a} = (\dots, a_{-2}, a_{-1}, a_0, a_1, a_2, \dots) | a_i \in \mathbb{R} \}$ be the space of doubly infinite sequences.

We say that $\underline{a} \in \mathbb{R}^{\mathbb{Z}}$ is a Fibonacci-type sequence if $(\forall n \in \mathbb{Z}) (a_n = a_{n-1} + a_{n-2})$. We denote the set of Fibonacci-type sequences by Fib. Let F_n denote the *n*-th Fibonacci number: $F_0 = 0, F_1 = 1, (F_n : n \in \mathbb{Z}) \in \text{Fib}$.

- (a) Prove: Fib $\leq \mathbb{R}^{\mathbb{Z}}$ (subspace); dim Fib = 2. Prove that the Fibonacci sequence $\{F_n\}$ and the shifted Fibonacci sequence $\{F_{n+1}\}$ form a basis of Fib.
- (b) Find a basis of Fib consisting of geometric progressions $u_n = q_1^n$ and $v_n = q_2^n$. Determine q_1, q_2 .

(c) **(Explicit formula for the Fibonacci numbers)** Prove: $F_n = \alpha q_1^n + \beta q_2^n$. Determine α, β .

23. (Shift operator) Let us define $\sigma : \mathbb{R}^{\mathbb{Z}} \to \mathbb{R}^{\mathbb{Z}}$ by $\sigma : \{a_n\} \mapsto \{a_{n+1}\}.$

- (a) Find all eigenvectors of σ .
- (b) Notice that Fib is invariant under σ . Let σ' denote the restriction of σ to Fib; so this is a linear transformation of Fib. Describe the matrix of σ' (a 2 × 2 matrix) with respect to the basis given in item (a) of the preceding problem.
- (b) Find a basis of Fib consisting of eigenvectors of σ' . Describe the matrix of σ' in this basis.
- 24. rk(A) is the size of the largest non-singular (square) matrix
- 25. Prove that the volume of the *n*-dim parallelpiped spanned by the basis $a_1, \ldots, a_n \in \mathbb{R}^n$ satisfies

$$\operatorname{Vol}(a_1,\ldots,a_n) = |\det(a_1,\ldots,a_n)|.$$

(Use only that volume is additive, translation invariant and satisfies that if a_1, \ldots, a_n are orthogonal then $\text{Vol} = \prod_{i=1}^n ||a_i||$.)

- 26. An *eigenbasis* for $A \in M_n(F)$ is a basis of F^n that consists of eigenvectors of A. Find the eigenvalues and an eigenbasis of the rotation matrix ρ_{θ} (Ex. 17 (c)) over \mathbb{C} . (Reward problem!)
- 27. (a) $A \in M_n(F)$ has an eigenbasis $\iff A$ is similar to a diagonal matrix D.
 - (b) Ther diagonal entries of D are the eigenvalues of A.
- 28. The **Cayley-Hamilton Theorem** says that if $f_A(\lambda)$ is the characteristic polynomial of the matrix $A \in M_n(F)$ then $f_A(A) = 0$.
 - (a) Verify the Cayley-Hamilton Theorem for 2×2 matrices.
 - (b) Verify the Cayley-Hamilton Theorem for diagonal matrices.
- 29. Find an $n \times n$ matrix B of rank n-1 with $f_B(\lambda) = \lambda^n$.
- 30. $A \in M_n(F)$ is non-singular $\iff \lambda = 0$ is not an eigenvalue.
- 31. (Complex matrices)
 - (a) Prove that every matrix $A \in M_n(\mathbb{C})$ is similar to a triangular matrix over \mathbb{C} .
 - (b) Show that the same is true over any algebraically closed field.
 - (c) Show that the same is true over any splitting field of the characteristic polynomial of A. (F is a splitting field for the polynomial f if f can be written as a product of linear factors over F.)

- 32. (Eigenvectors to distinct eigenvalues) Suppose that v_1, \ldots, v_k are eigenvectors of $\varphi : V \to V$ corresponding to distinct eigenvalues. Show that v_1, \ldots, v_k are linearly independent.
- 33. (Eigenvalue multiplicity) Let $A \in M_n(F)$ and $\lambda \in F$. The geometric multiplicity of the eigenvalue λ is the dimension of the eigensubspace $U_{\lambda} = \text{Ker}(\lambda I A)$. (This dimension is zero exactly if λ is not an eigenvalue.) The algebraic multiplicity of λ is the largest k such that $(x \lambda)^k$ divides the characteristic polynomial $f_A(x) = \det(xI A)$. Prove that the geometric multiplicity of an eigenvalue is less than or equal to its algebraic multiplicity.
- 34. (Symmetric polynomial in eigenvalues) Suppose A is a matrix with with characteristic polynomial $f_A(x) = (x \lambda_1) \dots (x \lambda_n)$ (so the λ_i are the eigenvalues). Let σ_k denote the k^{th} elementary symmetric polynomial. Show that

$$\sigma_k(\lambda_1,\ldots,\lambda_n) = \sum_{\binom{n}{k}} \det(k \times k \text{ symmetric minor}).$$

In particular, $\sum \lambda_i = \text{Tr}(A)$ and $\prod \lambda_i = \det(A)$.

35. (!!!) Find the characterisite polynomial and find all eigenvectors of the 'all-ones' matrix

$$J = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}.$$

- 36. Let $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}$. Verify, using the definition of similarity, that these two matrices are similar: find C such that $B = C^{-1}AC$.
- 37. Prove: similar matrices have the same characteristic polynomial: if $A \sim B$ then $f_A(x) = f_B(x)$ where $f_A(x) = \det(xI A)$.
- 38. (a) Prove that $A_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are not similar. (b) Prove that $B_1 = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$ and $B_2 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ are similar. The proofs should not involve any calculation.
- 39. (a) Prove that $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ is diagonalizable. Find the diagonal matrix similar to A. (b) Prove that $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is not diagonalizable.
- 40. (Irreducible charcateristic polynomial) Let $A \in M_n(\mathbb{Z})$. Prove: if the characteristic polynomial $f_A(x)$ is irreducible over \mathbb{Q} then A is diagonalizable over \mathbb{C} .

41. (Circulant determinants) Fix an *n*-tuple $(a_0, \ldots, a_{n-1}) \in \mathbb{C}^n$. Define the *circulant* matrix as

$$C(a_0, \dots, a_{n-1}) = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_0 & a_1 & \cdots & a_{n-2} \\ a_{n-2} & a_{n-1} & a_0 & \cdots & a_{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_0 \end{pmatrix}.$$

Let $\omega = \cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n})$ and set $f(x) = a_0 + a_1x + \dots + a_{n-1}x^{n-1}$. Show that

$$\det(C(a_0,\ldots,a_1)) = \prod_{j=0}^{n-1} f(\omega^j)$$

Hint: Find an eigenbasis shared by all circulant matrices. To do this, let P = C(0, 1, 0, ..., 0). Note that $P^k = C(b_0, ..., b_{n-1})$ where $b_j = \delta_{jk}$; in particular, $P^n = I$. Find an eigenbasis for P; show that the eigenvalues of P are the *n*-th roots of unity; then use the equation $f(P) = C(a_0, ..., a_{n-1})$ to compute the eigenvalues of $C(a_0, ..., a_{n-1})$ (show that the eigenbasis of P is also an eigenbasis of f(P)).

- 42. If A and B are symmetric matrices (i. e., $A = A^T$ and $B = B^T$), then show that (a) AB is not necessarily symmetric, but (b) A^n is symmetric for any positive integer n.
- 43. If $U \leq \mathbb{R}[x]$ and U is invariant under the linear map d/dx then $(\exists k \in \mathbb{N} \cup \{\infty\})$ (U is the set of all polynomials of degree < k).
- 44. Prove: a matrix $A \in M_n(F)$ is diagonalizable if and only if F^n is the sum of the eigensubspaces of A.
- 45. A_1, \ldots, A_m are $n \times n$ matrices that are diagonalizable over F and they pairwise commute. Show that they have a common eigenbasis. - Use the following fact: if $\varphi : V \to V$ is a linear transformation which has an eigenbasis and $U \leq V$ is a φ -invariant subspace (i. e., $(\forall u \in U)(\varphi(u) \in U))$ then the restriction of φ to U also has an eigenbasis.
- 46. Prove:
 - (a) If $A, B \in M_n(\mathbb{C})$, then $AB BA \neq I$.
 - (b) The same is not true over all fields. Find a counterexample over \mathbb{F}_p for every prime p.
- 47. Consider the linear transformations defined on $\mathbb{C}[x]$ by

$$A: f \mapsto \frac{df}{dx}, \qquad B: f \mapsto x \cdot f.$$

What is AB - BA?

48. If the Cayley-Hamilton theorem is true for A and $A \sim B$, then it is true for B.

- 49. Suppose $A_1, A_2, \ldots \in M_n(\mathbb{C})$ such that $\lim_{k \to \infty} A_k = B$. Assume that $(\forall k)$ (C-H is true for A_k). Prove: C-H is true for B.
- 50. If A has n distinct eigenvalues in F, then A is diagonalizable.
- 51. Among the triangular matrices over \mathbb{C} , the diagonalizable ones are everywhere dense.
- 52. Combine the preceding statements to a proof that the C-H Theorem is true for all complex matrices.
- 53. (a) Let $f(x_1, \ldots, x_m) \in \mathbb{Z}[x_1, \ldots, x_m]$ and suppose f is identically zero. (Ex: $x^2 y^2 (x + y)(x y) = 0$) Then f is identically zero over any field. (b) Infer that C-H is true over every field.
- 54. Let $A \in M_n(\mathbb{C})$.
 - (a) Define $e^A \in M_n(\mathbb{C})$.
 - (b) Prove that e^{A+B} is not always equal to $e^A e^B$.
 - (c) $e^{A+B} = e^A e^B$ does hold under a natural condition on A, B. What is it?
 - (d) Compute $\frac{d}{dt} e^{At} \stackrel{?}{=} A \cdot e^{At}$
 - (e) Define $\cos(A)$, $\sin(A)$. Comment on $\cos(A + B) = ?$
- 55. Let $B \in M_n(\mathbb{R})$. Prove: the columns of B are orthonormal if and only if its rows are, i.e., $B^T B = I \Leftrightarrow BB^T = I$.
- 56. If $C = (c_1, \ldots, c_n)$ is an orthonormal basis for \mathbb{R}^n , then $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ is an orthogonal transformation if and only if $[\varphi]_C$ is an orthogonal matrix.
- 57. (Similar Matrices) Consider the following three matrices.

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Compute the characteristic polynomial and eigenvalues of each matrix, together with the algebraic and geometric multiplicity of each eigenvalue. Which among the matrices A, B, C are similar?

58. (Diagonalizable matrices) Show that a matrix $A \in M_n(\mathbb{F})$ is diagonalizable iff

(a) The characteristic polynomial
$$f_A$$
 splits over \mathbb{F} , and
(b) $\mathbb{F}^n = \sum_{\lambda} U_{\lambda}$.

Here U_{λ} denotes the eigenspace corresponding to the eigenvalue λ , i. e., $U_{\lambda} = \ker(\lambda I - A)$.

59. (Invariant subspaces) Let V be a vector space. If $\phi : V \to V$ is a linear map then a subspace U is *invariant* under ϕ if $\phi(U) \subseteq U$. Show that if every subspace of V is invariant under ϕ then $\phi = \lambda \cdot \mathbf{I}$ is a scalar multiple of the identity map.

- 60. (Primitive roots of unity) Let $\omega = \cos(\frac{2\pi}{6}) + i\sin(\frac{2\pi}{6})$ be a primitive sixth root of unity. Given $f \in \mathbb{Q}[x]$ show that $f(\omega) = 0$ iff the polynomial $x^2 - x + 1$ divides f.
- 61. (Minimal polynomials) Let α be an algebraic number. Let $m_{\alpha} \in \mathbb{Q}[x]$ be a monic polynomial such that

(a)
$$m_{\alpha}(\alpha) = 0$$

(b) If $f \in \mathbb{Q}[x]$ satisfies $f(\alpha) = 0$ then $\deg(m_{\alpha}) \leq \deg(f)$.

Show that

- (i) The polynomial m_{α} is irreducible over \mathbb{Q} . (ii) If $f \in \mathbb{Q}[x]$ satisfies $f(\alpha) = 0$ then $m_{\alpha}|f$. (iii) The polynomial m_{α} is unique.
- 62. (Minimal polynomials for matrices) Let $A \in M_n(\mathbb{F})$. A monic polynomial $m_A \in \mathbb{F}[x]$ is called a *minimal polynomial of* A if

(a)
$$m_A(A) = 0$$

(b) If $f \in \mathbb{F}[x]$ satisfies $f(A) = 0$ then $\deg(m_A) \leq \deg(f)$.

Show that

- (i) For $f \in \mathbb{F}[x]$, f(A) = 0 iff $m_A \mid f$. In particular, $m_A \mid f_A$.
- (ii) The polynomial m_A is unique.
- (iii) If $A = \text{diag}(\lambda_1, \ldots, \lambda_n)$ then $m_A(x) = \prod'(x \lambda_i)$ where the product is taken over distinct eigenvalues λ_i (so m_A has no multiple roots).
- (iv) The roots of m_A are exactly the eigenvalues of A.
- (v) The matrix A is diagonalizable iff m_A splits over \mathbb{F} and m_A has no multiple roots.
- 63. (Orthogonal polynomials) Given an interval $I \subseteq \mathbb{R}$ a density function is a positive real-valued function $\rho: I \to (0, \infty)$ satisfying

$$\int_{I} x^{2n} \rho(x) dx < \infty$$

for each n. Given a density function ρ define an inner product on $\mathbb{R}[x]$ by the rule

$$\langle f,g \rangle = \int_{I} f(x)g(x)\rho(x)dx$$

Show that with respect to this inner product there exists an orthogonal basis $\{f_n\}$ of $\mathbb{R}[x]$ such that $\deg(f_n) = n$; and f_n is unique up to scalar multiples.

64. (Examples to research)

- (a) **Chebyshev polynomials:** Take I = (-1, 1) in the above. Then, the normalized basis of $\mathbb{R}[x]$ corresponding to $\rho(x) = 1/\sqrt{1-x^2}$ and $\rho(x) = \sqrt{1-x^2}$ are the Chebyshev polynomials of first and second kind, respectively.
- (b) Hermite polynomials: Take $I = \mathbb{R}$ in the above. Then, the normalized basis of $\mathbb{R}[x]$ corresponding to $\rho(x) = e^{-x^2/2}$ are the Hermite polynomials.

65. (Trigonometric functions) Show that the trigonometric functions $\{1, \cos(nx), \sin(nx)\}_{n=1}^{\infty}$ are pairwise orthogonal with respect to the inner product

$$\langle f,g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} fg dx.$$

This will in particular prove that they are linearly independent.

66. (Cauchy-Schwarz) Let (V, \langle, \rangle) be a Euclidean space. Then, for each $v, w \in V$,

$$|\langle v, w \rangle| \le \|v\| \|w\|.$$

- 67. (Gram-Schmidt orthogonalization) Given vectors $v_1, v_2, \ldots \in V$ let $b_1, b_2, \ldots \in V$ denote the corresponding vectors obtained via the Gram-Schmidt process. This means that for all n,
 - (i) $v_n b_n \in \text{Span}(v_1, ..., v_{n-1})$, and
 - (ii) $\langle b_i, b_n \rangle = 0$ for all i < n.

Show that

(a) $\operatorname{Span}(v_1, \ldots, v_n) = \operatorname{Span}(b_1, \ldots, b_n)$ for each n. (b) The vector $b_n = 0$ iff $\operatorname{Span}(v_1, \ldots, v_{n-1}) = \operatorname{Span}(v_1, \ldots, v_n)$.

68. (Symmetric/Orthogonal operators) Let $\varphi, \psi : V \to V$ be linear transformations of a Euclidean space V. Recall that φ is a symmetric transformation if $(\forall x, y \in V)(\langle x, \varphi(y) \rangle = \langle \varphi(x), y \rangle)$; and ψ is an orthogonal transformation if $(\forall x, y \in V)(\langle \psi(x), \psi(y) \rangle = \langle x, y \rangle)$. Let **B** be an orthonormal basis (ONB) of V. Then,

(a) φ is symmetric iff the matrix $[\varphi]_{\mathbf{B}}$ is a symmetric matrix.

(b) ψ is orthogonal iff $[\varphi]_{\mathbf{B}}$ is an orthogonal matrix.

69. (A calculus lemma) Consider the real function

$$f(t) = \frac{at^2 + bt + c}{dt^2 + e}$$

where $a, b, c, d, e \in \mathbb{R}$ and $e \neq 0$. Show that if f(t) attains its maximum value at t = 0 (i. e., $f(0) \geq f(t)$ for all t) then b = 0.

70. (Orthogonal complement) Let $U \leq V$ be a subspace of a Euclidean space V. Then,

(a)
$$\dim(U) + \dim(U^{\perp}) = \dim(V)$$

(b) $U + U^{\perp} = V$.

Recall that (a) was proven previously in class in a different context (standard dot product over any field F). Part (b) is false in that context.

71. (Rayleigh quotient) Let φ be a symmetric transformation of the Euclidean space V. Define the Rayleigh quotient

$$R_{\varphi}(x) = \frac{\langle x, \varphi(x) \rangle}{\langle x, x \rangle}$$

for $x \in V$, $x \neq 0$. It follows from the Spectral Theorem that all the *n* eigenvalues of φ are real. Denote them by $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$. Show that

- (a) $\lambda_1 = \max R_{\varphi}(x)$
- (b) $\lambda_n = \min R_{\varphi}(x)$
- (c) (Courant-Fischer) $\lambda_i = \max_{\substack{U \leq V \\ \dim(U) = i}} \min_{\substack{x \in U \\ x \neq 0}} R_{\varphi}(x).$
- 72. (Interlacing theorem) Let $A = A^t$ be a symmetric $n \times n$ real matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$. Let *B* denote the symmetric $(n-1) \times (n-1)$ matrix obtained by deleting the i^{th} row and the i^{th} column from *A*. Let $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_{n-1}$ denote the eigenvalues of *B*. Prove that

$$\lambda_1 \ge \mu_1 \ge \lambda_2 \ge \mu_2 \ge \ldots \ge \lambda_{n-1} \ge \mu_{n-1} \ge \lambda_n.$$

73. (Adjacency matrix) Let G = (V, E) be an undirected graph. The adjacency matrix of G is the symmetric matrix $A = (a_{ij})$ where

$$a_{ij} = \begin{cases} 1 & i \sim j \\ 0 & i \nsim j \end{cases}$$

If the eigenvalues of A are $\lambda_1 \geq \ldots \geq \lambda_n$ prove that

- (a) $(\forall i)(|\lambda_i| \le \max_{v \in V} \deg(v))$
- (b) $\lambda_1 \ge \frac{1}{n} \sum_{v \in V} \deg(v) = \text{average degree}$
- (c) If G is connected then $\lambda_n = -\lambda_1$ iff G is bipartite.
- 74. (Orthogonal polynomials) Suppose that f_1, f_2, f_3, \ldots form a sequence of orthogonal polynomials with respect to a density function ρ such that $(\forall n)(\deg(f_n) = n)$. Then,
 - (a) The roots of f_n are real for each n.
 - (b) (Interlacing) The roots of f_{n-1} interlace the roots of f_n .
- 75. Let $f(x) = a_0 + a_1 x + \ldots + a_n x^n \in \mathbb{Z}[x]$ such that $a_n a_0 \neq 0$. Let $r = \frac{p}{q} \in \mathbb{Q}$, with gcd(p,q) = 1 such that f(r) = 0. Prove that $p \mid a_0$ and $q \mid a_n$.
- 76. Let $f(x) = a_0 + a_1 x + \ldots + a_n x^n$ and $g(x) = a_n + a_{n-1} x + \ldots + a_0 x^n$, with $a_i \in F$, $a_0 a_n \neq 0$.
 - (a) If $\alpha \in F$ is a root of f, find a root of g.
 - (b) If $\alpha_1, \ldots, \alpha_n$ are all the roots of f (counting multiplicities), find all the roots of g.

- 77. Let $A \in M_n(\mathbb{R})$ be an orthogonal matrix. Let $\lambda \in \mathbb{C}$ be a (complex!) eigenvalue of A. Show that $|\lambda| = 1$.
- 78. (Fisher inequality) Let

$$H = \begin{bmatrix} a_1 & b & b & \cdots & b \\ b & a_2 & b & \cdots & b \\ b & b & a_3 & \cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b & b & b & \cdots & a_n \end{bmatrix}.$$

- (a) Compute det(H). Your answer should be a product of very simple expressions. Compare your result with the case when $a_1 = \cdots = a_n$ (done in class).
- (b) Prove that if $a_1, \ldots, a_n > b \ge 0$, then H is positive definite.
- 79. (Finding quadratic forms) Find $n \times n$ symmetric real matrices A, B such that
 - (a) A is positive definite but some of its entries are negative, and
 - (b) B is indefinite but all its entries are positive.
- 80. (Secret sharing II) We discussed in class how to share a secret number $x \in \{0, ..., p-1\}$ among *n* committee members such that any *k* members together can compute the secret but no k 1 of them will have any clue (Puzzle Problem 70). We solved this in class for the case when p > n. Now suppose the president wants only to share the outcome of a coin flip. How is this possible?
- 81. (Hermitian inner product) Let V be a complex vector space with Hermitian inner product \langle , \rangle . Show that $\langle 0, v \rangle = \langle v, 0 \rangle = 0$ for all v in V using the axioms of sesquilinearity.

In the next several exercises, V is a finite-dimensional complex vector space with Hermitian inner product \langle, \rangle .

- 82. (Gram-Schmidt) Show that V has an orthonormal basis, and, that any orthonormal set $\{v_1, \ldots, v_k\}$ can be extended to an orthonormal basis.
- 83. (Unitary transformation) We say that the linear transformation $\varphi : V \to V$ is unitary if $(\forall x, y \in V)(\langle \varphi(x), \varphi(y) \rangle = \langle x, y \rangle)$. Prove that all eigenvalues of a unitary transformation have unit absolute value.
- 84. (Self-adjoint transformation) We say that the linear transformation $\varphi : V \to V$ is *self-adjoint* if $(\forall x, y \in V)(\langle x, \varphi(y) \rangle = \langle \varphi(x), y \rangle)$. Prove that all eigenvalues of a self-adjoint transformation are real.
- 85. (Spectral theorem) Let $\varphi : V \to V$ be a self-adjoint transformation. Prove that there exists an orthonormal eigenbasis of V corresponding to real eigenvalues.

86. (Adjoint) Show that for all $\varphi: V \to V$ there exists unique $\psi: V \to V$ such that

$$\langle x, \varphi(y) \rangle = \langle \psi(x), y \rangle$$

for each x, y in V. The *adjoint* ψ is denoted φ^* . Prove that for all $\varphi_1, \varphi_2 : V \to V$ and for all $\lambda \in \mathbb{C}$,

- (a) $(\varphi_1 \varphi_2)^* = \varphi_2^* \varphi_1^*$
- (b) $(\varphi_1 + \varphi_2)^* = \varphi_1^* + \varphi_2^*$
- (c) $(\lambda \varphi)^* = \bar{\lambda} \varphi^*$
- (d) φ is self-adjoint iff $\varphi = \varphi^*$.
- (e) φ is unitary iff $\varphi^* = \varphi^{-1}$.
- 87. (Matrix adjoint) For a complex matrix A, the matrix A^* is the conjugate-transpose of A. Let $\varphi: V \to V$ be a linear map. Then, with respect to an orthonormal basis **B**, show that

$$[\varphi^*]_{\mathbf{B}} = [\varphi]^*_{\mathbf{B}}$$

- 88. (Upper-triangularity via unitary transformation) Let $A \in M_n(\mathbb{C})$. Then, there exists a unitary matrix C such that $C^{-1}AC$ is upper-triangular. Equivalently, given $\varphi : V \to V$ there exists an orthonormal basis **B** such that $[\varphi]_{\mathbf{B}}$ is upper-triangular.
- 89. (Orthogonal complement) If $U \leq V$ is a subspace,
 - (a) Define U^{\perp} .
 - (b) Prove that $\dim(U) + \dim(U^{\perp}) = \dim(V)$.
 - (c) Prove that $U + U^{\perp} = V$.
- 90. (Normal, upper-triangular matrices) A matrix $A \in M_n(\mathbb{C})$ is normal if $AA^* = A^*A$. Prove that A is normal and upper-triangular iff A is diagonal.
- 91. (Normality under unitary similarity) Prove that if A is normal and $A \sim_{\mathbf{U}} B$ then B is normal, where $A \sim_{\mathbf{U}} B$ denotes that A is similar to B via a unitary transformation, i. e., that $B = C^{-1}AC$ for some unitary matrix C.
- 92. (Normal vs. self-adjoint/unitary) A linear map $\varphi : V \to V$ is normal if $\varphi \varphi^* = \varphi^* \varphi$. Prove that if φ is normal then,
 - (a) $\varphi = \varphi^*$ iff the eigenvalues of φ are real.
 - (b) $\varphi^* = \varphi^{-1}$ iff the eigenvalues of φ have norm one.

(This ends the sequence of exercises about Hermitian spaces.)

93. (Lovász-reduced basis) Let (a_1, \ldots, a_n) be a basis of \mathbb{R}^n . Let (b_1, \ldots, b_n) denote the orthogonalized basis obtained via the Gram-Schmidt process. Then,

$$b_{1} = a_{1}$$

$$b_{2} = a_{2} + \mu_{2,1}b_{1}$$

$$b_{3} = a_{3} + \mu_{3,2}b_{2} + \mu_{3,1}b_{1}$$

:

$$b_{n} = a_{n} + \sum_{i=1}^{n-1} \mu_{n,i}b_{i}$$

for $\mu_{i,j} \in \mathbb{R}$. The basis (a_1, \ldots, a_n) is Lovász reduced if

- (a) $|\mu_{i,j}| \leq \frac{1}{2}$ for all i, j.
- (b) $||b_{i+1}|| \ge \frac{1}{\sqrt{2}} \cdot ||b_i||$ for each $1 \le i \le n-1$.

Prove that if (a) is violated then elementary row operations $a_i \mapsto a_i + ka_j$ for $k \in \mathbb{Z}$ and j < i can be used to eliminate this violation. Note that these operations do not alter the corresponding orthogonal basis (b_1, \ldots, b_n) ; nor do they change the lattice $L := \sum_{i=1}^n \mathbb{Z}a_i$.

94. (Lovász's lattice reduction algorithm) The purpose of this algorithm is to convert a basis (a_1, \ldots, a_n) of \mathbb{R}^n into a Lovász-reduced basis (a'_1, \ldots, a'_n) without changing the lattice L generated by the basis: $L = \sum_{i=1}^n \mathbb{Z}a_i = \sum_{i=1}^n \mathbb{Z}a'_i$.

The algorithm proceeds in phases:

while (a_1, \ldots, a_n) not Lovász-reduced

- (A) **if** (a) is violated, fix it as described in the preceding exercise
- (B) else find i such that (b) is violated by b_{i-1} and b_i ; swap a_{i-1} and a_i

return (a_1,\ldots,a_n)

Prove:

(i) The algorithm terminates in a finite number of phases.

(ii) If all coordinates of the input basis are integers, the algorithm terminates in a polynomial number of phases (polynomial in the bit-length of the input).

Hint: Find a **potential** function $P : \{ \text{ bases of } \mathbb{R}^n \} \to \mathbb{R}$ (assign a real number to each basis of \mathbb{R}^n ; remember that a basis is an ordered list, rather than a set, of vectors, so the value of P may change when we permute the basis) such that

- (1) P is always positive
- (2) line (A) of the algorithm does not affect P
- (3) each execution of line (B) of the algorithm reduces the value of P at least by a constant factor c < 1
- (4) if all basis vectors are integral then $P \ge 1$

- (5) in any case, P satisfies a positive lower bound that only depends on the lattice L and not on the particular \mathbb{Z} -basis of L.
- 95. (Deciding positive definiteness) Let $A \in M_n(\mathbb{R})$ be a symmetric real matrix.
 - (a) Show that if A is positive definite, then every symmetric minor of A has positive determinant. (A $k \times k$ symmetric minor is the submatrix located at the intersection of k rows and the corresponding k columns; so a symmetric minor of a symmetric matrix is symmetric.)

This condition is necessary and sufficient for positive definiteness; but in fact much less already suffices, as the next question shows.

- (b) Show that if every corner minor of A has positive determinant then A is positive definite. (A corner minor is a minor corresponding to rows $1, \ldots, k$ and columns $1, \ldots, k$.)
- 96. (Inequality between the arithmetic and quadratic means) Given $a_i \ge 0$, show that

$$\frac{a_1 + \dots + a_n}{n} \le \sqrt{\frac{a_1^2 + \dots + a_n^2}{n}}.$$

97. Let the *n* vertices of the graph *G* have degrees d_1, \ldots, d_n . Let λ be the largest eigenvalue of the adjacency matrix of *G*. We have shown that λ is not less than the arithmetic mean of the d_i . Show that in fact λ is not less than the *quadratic* mean of the d_i :

$$\lambda \ge \sqrt{\frac{d_1^2 + \dots + d_n^2}{n}}.$$

98. Calculate the largest eigenvalue of the adjacency matrix of the "star graph" $K_{1,n-1}$ (a tree with one vertex adjacent to all other vertices). Compare your result with the bound from the preceding exercise.