REU 2010 - Apprentice program

Linear Algebra Exercises

Instructor: László Babai e-mail: laci@cs.uchicago.edu
Compiled by Daniel Studenmund, Ben Fehrman, Laurie Field, Daniele Rosso, Katherine
Turner, and the instuctor
Last updated Fri July 23, 8:30pm

1. (Rational functions) Prove that the rational functions $\{1 /(x-\alpha): \alpha \in \mathbb{R}\}$ are linearly independent over \mathbb{R}. (This will show that the space of rational functions has uncountable dimension.) Recall that an infinite collection is linearly independent if each finite subset is linearly independent.
Challenge: Find a basis for the space of rational functions $\mathbb{R}(x)$ over \mathbb{R}.
2. (Trigonometric functions) Prove that the functions $\{1, \cos x, \cos 2 x, \ldots, \sin x, \sin 2 x, \ldots\}$ are linearly independent over \mathbb{R}.
3. (Modular identity) Let U_{1} and U_{2} be subspaces of a vector space V. Then,

$$
\operatorname{dim}\left(U_{1}\right)+\operatorname{dim}\left(U_{2}\right)=\operatorname{dim}\left(U_{1}+U_{2}\right)+\operatorname{dim}\left(U_{1} \cap U_{2}\right) .
$$

4. (Matrix rank) (a) Let A be a $k \times \ell$ matrix over \mathbb{Z}. Then,

$$
\operatorname{rk}_{2}(A) \leq \operatorname{rk}_{\mathbb{Q}}(A)=\operatorname{rk}_{\mathbb{C}}(A)
$$

where $\mathrm{rk}_{2}(A)$ denotes the rank of A over \mathbb{F}_{2}. (b) Find a $(0,1)$-matrix A such that $\operatorname{rk}_{2}(A)<\operatorname{rk}_{\mathbb{Q}}(A)$. (c) Prove: If A is a $(0,1)$-matrix then $\mathrm{rk}_{2}(A)>\log _{2} \mathrm{rk}_{\mathbb{Q}}(A)$. (d) For every r, find a $(0,1)$-matrix A such that $\operatorname{rk}_{2}(A)=r$ and $\operatorname{rk}_{\mathbb{Q}}(A)=2^{r}-1$.
5. (Perpendicular subspace) Let $V=\mathbb{F}^{n}$. Let $S \subseteq V$ be a subset. We define the set $S^{\perp} \leq V$ as the set of all those vectors in V that are perpendicular to all vectors in S.
(a) Prove that S^{\perp} is a subspace.
(b) Prove: $S^{\perp}=\operatorname{Span}(S)^{\perp}$.
(c) Prove: if $U \leq V$ is a subspace, then

$$
\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)=\operatorname{dim}(V) .
$$

(d) Prove: $\left(U^{\perp}\right)^{\perp}=U$.
(e) U is totally isotropic if $U \leq U^{\perp}$. Prove: if U is totally isotropic then $\operatorname{dim}(U) \leq n / 2$.
(f) Prove that $\mathbb{C}^{2 k}$ contains a totally isotropic subspace of dimension k. Prove the same with $\mathbb{F}_{2}, \mathbb{F}_{5}, \mathbb{F}_{13}$ in the place of \mathbb{C}.
(g) Prove: the incidence vectors of a maximal Eventown club system form a maximal totally isotropic subspace of \mathbb{F}_{2}^{n}. Infer the Eventown Theorem: the number of clubs in Eventown is $\leq 2^{\lfloor n / 2\rfloor}$ (See the Puzzle Problem sheet).
(h) Prove: every maximal totally isotropic subspace of \mathbb{F}_{2}^{n} has dimension $\lfloor n / 2\rfloor$. Infer that all maximal Eventown club systems are maximum
6. (a) A collineation of a finite geometry is a permutation of the set of points which preserves collinearity (the relation of being on a line), i. e., it maps lines to lines. For the Fano plane with seven points (otherwise known as $\mathbb{P}^{2} \mathbb{F}_{2}$), find the number of collineations. Also, show that all points are equivalent, in the sense that any point may be sent to any other point by a collineation. (In fact, this is also true of pairs of distinct points.)
(b) (Fundamental theorem of projective geometry) Suppose that (P, L) is a projective plane over the field F. If

$$
\left\{\begin{array}{l}
a_{1}, \ldots, a_{4} \\
b_{1}, \ldots, b_{4}
\end{array}\right.
$$

are 2×4 points in general position (no three out of each quadruple is on a line), then there exists a collineation $f: P \rightarrow P$ satisfying $f\left(a_{i}\right)=b_{i}$ for each $i=1, \ldots, 4$.
7. (One-sided invertibility) Let $A \in \mathbb{F}^{k \times \ell}$. (a) Prove: A has a right inverse iff A has full row rank; and, A has a left inverse iff A has full column rank. (b) Find a matrix A with multiple right inverses.
8. (Two-entry determinant) Find the $n \times n$ determinant

$$
\left|\begin{array}{cccc}
a & b & \ldots & b \\
b & a & \ldots & b \\
\vdots & & \ddots & \vdots \\
b & b & \ldots & a
\end{array}\right|
$$

where the diagonal entries are a and the remaining entries b. Give a simple closed-form expression.
9. (Vandermonde determinant) Show that the $n \times n$ Vandermonde determinant

$$
\left|\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & \ldots & x_{n}^{2} \\
\vdots & \vdots & & \vdots \\
x_{1}^{n-1} & x_{2}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right|=\prod_{i>j}\left(x_{i}-x_{j}\right) .
$$

Note that the right-hand side is the product of $\binom{n}{2}=n(n-1) / 2$ terms.
10. (Hilbert matrix) Fix $2 n$-distinct numbers $\alpha_{1}, \ldots, \alpha_{n}$ and $\beta_{1}, \ldots, \beta_{n}$. Then, the $n \times n$ matrix

$$
H=\left(\frac{1}{\alpha_{i}-\beta_{j}}\right)_{n \times n}
$$

is nonsingular.

11. (Tridiagonal determinants:)

(a) Compute the value of the $n \times n$ tridiagonal determinant

$$
\left|\begin{array}{cccccccc}
1 & 1 & 0 & & & & & \\
-1 & 1 & 1 & 0 & & & & \\
0 & -1 & 1 & 1 & 0 & & & \\
& 0 & -1 & 1 & 1 & 0 & & \\
& & 0 & -1 & 1 & 1 & 0 & \\
& & & & & \ddots & & \\
& & & & & 0 & -1 & 1
\end{array}\right| .
$$

(b) Compute the $n \times n$ tridiagonal determinant

$$
\left|\begin{array}{ccccccc}
1 & 1 & 0 & & & & \\
1 & 1 & 1 & 0 & & & \\
\\
0 & 1 & 1 & 1 & 0 & & \\
& 0 & 1 & 1 & 1 & 0 & \\
& & 0 & 1 & 1 & 1 & 0 \\
& & & & & \ddots & \\
& & & & & 0 & 1
\end{array}\right|
$$

12. (Bases of \mathbb{F}_{p}^{n})
(a) Count the bases of \mathbb{F}_{p}^{n}. (Not a closed-form expression but a simple expression)
(b) Count the k-dimensional subspaces of \mathbb{F}_{p}^{n}. Denote this number by $f_{p}(n, k)$.
(c) Compute $\lim _{p \rightarrow 1} f_{p}(n, k)$. This should be a closed form expression with an intuitive meaning.
13. (Change of basis) Let $B=\left(b_{1}, \ldots, b_{n}\right)$ and $B^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right)$ be bases of V. For $v \in V$, if $v=\sum_{i=1}^{n} \beta_{i} v_{i}$ then we write $[v]_{B}=\left(\beta_{1}, \ldots, \beta_{n}\right)^{T}$, the column vector which lists the coordinates of v with respect to the basis B. (" T " stands for "transpose" and serves typographic convenience here.) Prove: $[v]_{B^{\prime}}=S^{-1}[v]_{B}$ where $S=\left[\left[b_{1}^{\prime}\right]_{B}, \ldots,\left[b_{n}^{\prime}\right]_{B}\right]$ is the "basis change matrix."
14. (Degree of freedom in choosing a linear map) (a) Let b_{1}, \ldots, b_{n} be a basis of V and let w_{1}, \ldots, w_{n} be arbitrary vectors of W.
Prove: $(\exists!\quad \varphi: V \rightarrow W)(\forall i)\left(\varphi\left(b_{i}\right)=w_{i}\right)$
(b) Use this to give a vector-space isomorphism between $\operatorname{Hom}(V, W)$ and $F^{k \times n}$ where $k=\operatorname{dim} W$.
15. (Rotations of Conic Sections) Let $f(x, y)=a x^{2}+b x y+c y^{2}$. Rotate the (x, y)-plane by an angle θ and get new coordinates $\left(x^{\prime}, y^{\prime}\right)$. This induces a linear tranformation on the space of all such polynomials. Write the matrix of this linear transformation with respect to the basis $\left(x^{2}, x y, y^{2}\right)$.
16. (Correspondence between the action of a linear map and matrix multiplication) Let V, W, Z be vector spaces over Let $\varphi: V \rightarrow W$ be a linear map, E a basis of V, Φ a basis of W, and $v \in V$.
Show that $[\varphi]_{E, \Phi}[v]_{E}=[\varphi(v)]_{\Phi}$.
17. (a) Let $A, B \in F^{k \times n}$. Prove: if $\left(\forall x \in F^{n}\right)(A x=B x)$ then $A=B$.
(b) (Correspondence between composition of linear maps and matrix multiplication) Let V, W, Z be vector spaces over F with bases Ξ, Φ, Ψ. Let $\varphi: V \rightarrow W$ and $\psi: W \rightarrow Z$ be linear maps. Prove:

$$
[\psi \phi]_{\Xi, \Psi}=[\psi]_{\Phi, \Psi}[\phi]_{\Xi, \Phi} .
$$

(c) Let ρ_{θ} denote the rotation of the plane by θ about the origin. Recall that the matrix of this transformation with respect to an orthonormal basis (a pair of perpendicular unit vectors) is $\left[\rho_{\theta}\right]=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$. Use this matrix to infer the addition rules for the trigonometric functions.
18. (Change of bases) Let $\varphi: V \rightarrow W$ be a linear map, E a basis of V and Φ a basis of W. Let $E^{\prime}=\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)$ and $\Phi^{\prime}=\left(f_{1}^{\prime}, \ldots, f_{k}^{\prime}\right)$ be new bases for V and W, respectively.
Define $A=[\varphi]_{E, \Phi}$ and $A^{\prime}=[\varphi]_{E^{\prime}, \Phi^{\prime}}, S=\left[\left[e_{1}^{\prime}\right]_{E}, \ldots,\left[e_{n}^{\prime}\right]_{E}\right], T=\left[\left[f_{1}^{\prime}\right]_{\Phi}, \ldots,\left[f_{k}^{\prime}\right]_{\Phi}\right]$.
Show that $A^{\prime}=T^{-1} A S$.
19. (a) Let $A \in F^{k \times n}$ and $B \in F^{n \times k}$. Prove: $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$. (b) Prove: similar matrices have the same trace. $\left(A, B \in M_{n}(F)\right.$ are similar if $\left(\exists S \in M_{n}(F)\right)\left(B=S^{-1} A S\right)$.)
20. (Determinant is multiplicative) If $A, B \in M_{n}(F)$, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
21. (Powers of a Matrix) (a) Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. What is A^{n} ? (Experiment, observe pattern, prove.) (b) Let $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. What is B^{n} ?

22. (Fibonacci-type sequences)

Let $\mathbb{R}^{\mathbb{Z}}=\{$ functions $\mathbb{Z} \rightarrow \mathbb{R}\}=\left\{\underline{a}=\left(\ldots, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, \ldots\right) \mid a_{i} \in \mathbb{R}\right\}$ be the space of doubly infinite sequences.
We say that $\underline{a} \in \mathbb{R}^{\mathbb{Z}}$ is a Fibonacci-type sequence if $(\forall n \in \mathbb{Z})\left(a_{n}=a_{n-1}+a_{n-2}\right)$. We denote the set of Fibonacci-type sequences by Fib. Let F_{n} denote the n-th Fibonacci number: $F_{0}=0, F_{1}=1,\left(F_{n}: n \in \mathbb{Z}\right) \in \operatorname{Fib}$.
(a) Prove: Fib $\leq \mathbb{R}^{\mathbb{Z}}$ (subspace); $\operatorname{dim} \operatorname{Fib}=2$. Prove that the Fibonacci sequence $\left\{F_{n}\right\}$ and the shifted Fibonacci sequence $\left\{F_{n+1}\right\}$ form a basis of Fib.
(b) Find a basis of Fib consisting of geometric progressions $u_{n}=q_{1}^{n}$ and $v_{n}=q_{2}^{n}$. Determine q_{1}, q_{2}.
(c) (Explicit formula for the Fibonacci numbers) Prove: $F_{n}=\alpha q_{1}^{n}+\beta q_{2}^{n}$. Determine α, β.
23. (Shift operator) Let us define $\sigma: \mathbb{R}^{\mathbb{Z}} \rightarrow \mathbb{R}^{\mathbb{Z}}$ by $\sigma:\left\{a_{n}\right\} \mapsto\left\{a_{n+1}\right\}$.
(a) Find all eigenvectors of σ.
(b) Notice that Fib is invariant under σ. Let σ^{\prime} denote the restriction of σ to Fib; so this is a linear transformation of Fib. Describe the matrix of σ^{\prime} (a 2×2 matrix) with respect to the basis given in item (a) of the preceding problem.
(b) Find a basis of Fib consisting of eigenvectors of σ^{\prime}. Describe the matrix of σ^{\prime} in this basis.
24. $\operatorname{rk}(A)$ is the size of the largest non-singular (square) matrix
25. Prove that the volume of the n-dim parallelpiped spanned by the basis $a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}$ satisfies

$$
\operatorname{Vol}\left(a_{1}, \ldots, a_{n}\right)=\left|\operatorname{det}\left(a_{1}, \ldots, a_{n}\right)\right|
$$

(Use only that volume is additive, translation invariant and satisfies that if a_{1}, \ldots, a_{n} are orthogonal then $\mathrm{Vol}=\prod_{i=}^{n}\left\|a_{i}\right\|$. .)
26. An eigenbasis for $A \in M_{n}(F)$ is a basis of F^{n} that consists of eigenvectors of A. Find the eigenvalues and an eigenbasis of the rotation matrix ρ_{θ} (Ex. 17 (c)) over \mathbb{C}. (Reward problem!)
27. (a) $A \in M_{n}(F)$ has an eigenbasis $\Longleftrightarrow A$ is similar to a diagonal matrix D.
(b) Ther diagonal entries of D are the eigenvalues of A.
28. The Cayley-Hamilton Theorem says that if $f_{A}(\lambda)$ is the characteristic polynomial of the matrix $A \in M_{n}(F)$ then $f_{A}(A)=0$.
(a) Verify the Cayley-Hamilton Theorem for 2×2 matrices.
(b) Verify the Cayley-Hamilton Theorem for diagonal matrices.
29. Find an $n \times n$ matrix B of rank $n-1$ with $f_{B}(\lambda)=\lambda^{n}$.
30. $A \in M_{n}(F)$ is non-singular $\Longleftrightarrow \lambda=0$ is not an eigenvalue.

31. (Complex matrices)

(a) Prove that every matrix $A \in M_{n}(\mathbb{C})$ is similar to a triangular matrix over \mathbb{C}.
(b) Show that the same is true over any algebraically closed field.
(c) Show that the same is true over any splitting field of the characteristic polynomial of A. (F is a splitting field for the polynomial f if f can be written as a product of linear factors over F.)
32. (Eigenvectors to distinct eigenvalues) Suppose that v_{1}, \ldots, v_{k} are eigenvectors of $\varphi: V \rightarrow V$ corresponding to distinct eigenvalues. Show that v_{1}, \ldots, v_{k} are linearly independent.
33. (Eigenvalue multiplicity) Let $A \in M_{n}(F)$ and $\lambda \in F$. The geometric multiplicity of the eigenvalue λ is the dimension of the eigensubspace $U_{\lambda}=\operatorname{Ker}(\lambda I-A)$. (This dimension is zero exactly if λ is not an eigenvalue.) The algebraic multiplicity of λ is the largest k such that $(x-\lambda)^{k}$ divides the characteristic polynomial $f_{A}(x)=\operatorname{det}(x I-A)$. Prove that the geometric multiplicity of an eigenvalue is less than or equal to its algebraic multiplicity.
34. (Symmetric polynomial in eigenvalues) Suppose A is a matrix with with characteristic polynomial $f_{A}(x)=\left(x-\lambda_{1}\right) \ldots\left(x-\lambda_{n}\right)$ (so the λ_{i} are the eigenvalues). Let σ_{k} denote the $k^{\text {th }}$ elementary symmetric polynomial. Show that

$$
\sigma_{k}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\sum_{\substack{n \\ k}} \operatorname{det}(k \times k \text { symmetric minor }) .
$$

In particular, $\sum \lambda_{i}=\operatorname{Tr}(A)$ and $\prod \lambda_{i}=\operatorname{det}(A)$.
35. (!!!) Find the characterisitc polynomial and find all eigenvectors of the 'all-ones' matrix

$$
J=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right]
$$

36. Let $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 0 \\ 0 & 0\end{array}\right]$. Verify, using the definition of similarity, that these two matrices are similar: find C such that $B=C^{-1} A C$.
37. Prove: similar matrices have the same characteristic polynomial: if $A \sim B$ then $f_{A}(x)=$ $f_{B}(x)$ where $f_{A}(x)=\operatorname{det}(x I-A)$.
38. (a) Prove that $A_{1}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $A_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are not similar. (b) Prove that $B_{1}=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$ and $B_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ are similar. The proofs should not involve any calculation.
39. (a) Prove that $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ is diagonalizable. Find the diagonal matrix similar to A. Prove that $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is not diagonalizable.
40. (Irreducible charcateristic polynomial) Let $A \in M_{n}(\mathbb{Z})$. Prove: if the characteristic polynomial $f_{A}(x)$ is irreducible over \mathbb{Q} then A is diagonalizable over \mathbb{C}.
41. (Circulant determinants) Fix an n-tuple $\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{C}^{n}$. Define the circulant matrix as

$$
C\left(a_{0}, \ldots, a_{n-1}\right)=\left(\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{n-1} \\
a_{n-1} & a_{0} & a_{1} & \cdots & a_{n-2} \\
a_{n-2} & a_{n-1} & a_{0} & \cdots & a_{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{1} & a_{2} & a_{3} & \cdots & a_{0}
\end{array}\right)
$$

Let $\omega=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)$ and set $f(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$. Show that

$$
\operatorname{det}\left(C\left(a_{0}, \ldots, a_{1}\right)\right)=\prod_{j=0}^{n-1} f\left(\omega^{j}\right)
$$

Hint: Find an eigenbasis shared by all circulant matrices. To do this, let $P=C(0,1,0, \ldots, 0)$. Note that $P^{k}=C\left(b_{0}, \ldots, b_{n-1}\right)$ where $b_{j}=\delta_{j k}$; in particular, $P^{n}=I$. Find an eigenbasis for P; show that the eigenvalues of P are the n-th roots of unity; then use the equation $f(P)=C\left(a_{0}, \ldots, a_{n-1}\right)$ to compute the eigenvalues of $C\left(a_{0}, \ldots, a_{n-1}\right)$ (show that the eigenbasis of P is also an eigenbasis of $f(P)$).
42. If A and B are symmetric matrices (i. e., $A=A^{T}$ and $B=B^{T}$), then show that (a) $A B$ is not necessarily symmetric, but (b) A^{n} is symmetric for any positive integer n.
43. If $U \leq \mathbb{R}[x]$ and U is invariant under the linear map $d / d x$ then $(\exists k \in \mathbb{N} \cup\{\infty\}$) (U is the set of all polynomials of degree $<k$).
44. Prove: a matrix $A \in M_{n}(F)$ is diagonalizable if and only if F^{n} is the sum of the eigensubspaces of A.
45. A_{1}, \ldots, A_{m} are $n \times n$ matrices that are diagonalizable over F and they pairwise commute. Show that they have a common eigenbasis. - Use the following fact: if $\varphi: V \rightarrow V$ is a linear transformation which has an eigenbasis and $U \leq V$ is a φ-invariant subspace (i. e., $(\forall u \in U)(\varphi(u) \in U))$ then the restriction of φ to U also has an eigenbasis.
46. Prove:
(a) If $A, B \in M_{n}(\mathbb{C})$, then $A B-B A \neq I$.
(b) The same is not true over all fields. Find a counterexample over \mathbb{F}_{p} for every prime p.
47. Consider the linear transformations defined on $\mathbb{C}[x]$ by

$$
A: f \mapsto \frac{d f}{d x}, \quad B: f \mapsto x \cdot f
$$

What is $A B-B A$?
48. If the Cayley-Hamilton theorem is true for A and $A \sim B$, then it is true for B.
49. Suppose $A_{1}, A_{2}, \ldots \in M_{n}(\mathbb{C})$ such that $\lim _{k \rightarrow \infty} A_{k}=B$. Assume that $(\forall k)$ (C-H is true for $\left.A_{k}\right)$. Prove: C-H is true for B.
50. If A has n distinct eigenvalues in F, then A is diagonalizable.
51. Among the triangular matrices over \mathbb{C}, the diagonalizable ones are everywhere dense.
52. Combine the preceding statements to a proof that the C-H Theorem is true for all complex matrices.
53. (a) Let $f\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]$ and suppose f is identically zero. (Ex: $x^{2}-y^{2}-(x+$ $y)(x-y)=0$) Then f is identically zero over any field. (b) Infer that C-H is true over every field.
54. Let $A \in M_{n}(\mathbb{C})$.
(a) Define $\mathrm{e}^{A} \in M_{n}(\mathbb{C})$.
(b) Prove that e^{A+B} is not always equal to $\mathrm{e}^{A} \mathrm{e}^{B}$.
(c) $\mathrm{e}^{A+B}=\mathrm{e}^{A} \mathrm{e}^{B}$ does hold under a natural condition on A, B. What is it?
(d) Compute $\frac{d}{d t} \mathrm{e}^{A t} \stackrel{?}{=} A \cdot \mathrm{e}^{A t}$
(e) Define $\cos (A), \sin (A)$. Comment on $\cos (A+B)=$?
55. Let $B \in M_{n}(\mathbb{R})$. Prove: the columns of B are orthonormal if and only if its rows are, i.e., $B^{T} B=I \Leftrightarrow B B^{T}=I$.
56. If $C=\left(c_{1}, \ldots, c_{n}\right)$ is an orthonormal basis for \mathbb{R}^{n}, then $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an orthogonal transformation if and only if $[\varphi]_{C}$ is an orthogonal matrix.
57. (Similar Matrices) Consider the following three matrices.

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad B=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad C=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Compute the characteristic polynomial and eigenvalues of each matrix, together with the algebraic and geometric multiplicity of each eigenvalue. Which among the matrices A, B, C are similar?
58. (Diagonalizable matrices) Show that a matrix $A \in M_{n}(\mathbb{F})$ is diagonalizable iff
(a) The characteristic polynomial f_{A} splits over \mathbb{F}, and
(b) $\mathbb{F}^{n}=\sum_{\lambda} U_{\lambda}$.

Here U_{λ} denotes the eigenspace corresponding to the eigenvalue λ, i. e., $U_{\lambda}=\operatorname{ker}(\lambda I-A)$.
59. (Invariant subspaces) Let V be a vector space. If $\phi: V \rightarrow V$ is a linear map then a subspace U is invariant under ϕ if $\phi(U) \subseteq U$. Show that if every subspace of V is invariant under ϕ then $\phi=\lambda \cdot \mathbf{I}$ is a scalar multiple of the identity map.
60. (Primitive roots of unity) Let $\omega=\cos \left(\frac{2 \pi}{6}\right)+i \sin \left(\frac{2 \pi}{6}\right)$ be a primitive sixth root of unity. Given $f \in \mathbb{Q}[x]$ show that $f(\omega)=0$ iff the polynomial $x^{2}-x+1$ divides f.
61. (Minimal polynomials) Let α be an algebraic number. Let $m_{\alpha} \in \mathbb{Q}[x]$ be a monic polynomial such that
(a) $m_{\alpha}(\alpha)=0$
(b) If $f \in \mathbb{Q}[x]$ satisfies $f(\alpha)=0$ then $\operatorname{deg}\left(m_{\alpha}\right) \leq \operatorname{deg}(f)$.

Show that
(i) The polynomial m_{α} is irreducible over \mathbb{Q}.
(ii) If $f \in \mathbb{Q}[x]$ satisfies $f(\alpha)=0$ then $m_{\alpha} \mid f$.
(iii) The polynomial m_{α} is unique.
62. (Minimal polynomials for matrices) Let $A \in M_{n}(\mathbb{F})$. A monic polynomial $m_{A} \in \mathbb{F}[x]$ is called a minimal polynomial of A if
(a) $m_{A}(A)=0$
(b) If $f \in \mathbb{F}[x]$ satisfies $f(A)=0$ then $\operatorname{deg}\left(m_{A}\right) \leq \operatorname{deg}(f)$.

Show that
(i) For $f \in \mathbb{F}[x], f(A)=0$ iff $m_{A} \mid f$. In particular, $m_{A} \mid f_{A}$.
(ii) The polynomial m_{A} is unique.
(iii) If $A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ then $m_{A}(x)=\Pi^{\prime}\left(x-\lambda_{i}\right)$ where the product is taken over distinct eigenvalues λ_{i} (so m_{A} has no multiple roots).
(iv) The roots of m_{A} are exactly the eigenvalues of A.
(v) The matrix A is diagonalizable iff m_{A} splits over \mathbb{F} and m_{A} has no multiple roots.
63. (Orthogonal polynomials) Given an interval $I \subseteq \mathbb{R}$ a density function is a positive real-valued function $\rho: I \rightarrow(0, \infty)$ satisfying

$$
\int_{I} x^{2 n} \rho(x) d x<\infty
$$

for each n. Given a density function ρ define an inner product on $\mathbb{R}[x]$ by the rule

$$
\langle f, g\rangle=\int_{I} f(x) g(x) \rho(x) d x
$$

Show that with respect to this inner product there exists an orthogonal basis $\left\{f_{n}\right\}$ of $\mathbb{R}[x]$ such that $\operatorname{deg}\left(f_{n}\right)=n$; and f_{n} is unique up to scalar multiples.
64. (Examples to research)
(a) Chebyshev polynomials: Take $I=(-1,1)$ in the above. Then, the normalized basis of $\mathbb{R}[x]$ corresponding to $\rho(x)=1 / \sqrt{1-x^{2}}$ and $\rho(x)=\sqrt{1-x^{2}}$ are the Chebyshev polynomials of first and second kind, respectively.
(b) Hermite polynomials: Take $I=\mathbb{R}$ in the above. Then, the normalized basis of $\mathbb{R}[x]$ corresponding to $\rho(x)=\mathrm{e}^{-x^{2} / 2}$ are the Hermite polynomials.
65. (Trigonometric functions) Show that the trigonometric functions $\{1, \cos (n x), \sin (n x)\}_{n=1}^{\infty}$ are pairwise orthogonal with respect to the inner product

$$
\langle f, g\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f g d x .
$$

This will in particular prove that they are linearly independent.
66. (Cauchy-Schwarz) Let $(V,\langle\rangle$,$) be a Euclidean space. Then, for each v, w \in V$,

$$
|\langle v, w\rangle| \leq\|v\|\|w\| .
$$

67. (Gram-Schmidt orthogonalization) Given vectors $v_{1}, v_{2}, \ldots \in V$ let $b_{1}, b_{2}, \ldots \in V$ denote the corresponding vectors obtained via the Gram-Schmidt process. This means that for all n,
(i) $v_{n}-b_{n} \in \operatorname{Span}\left(v_{1}, \ldots, v_{n-1}\right)$, and
(ii) $\left\langle b_{i}, b_{n}\right\rangle=0$ for all $i<n$.

Show that
(a) $\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{Span}\left(b_{1}, \ldots, b_{n}\right)$ for each n.
(b) The vector $b_{n}=0$ iff $\operatorname{Span}\left(v_{1}, \ldots, v_{n-1}\right)=\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)$.
68. (Symmetric/Orthogonal operators) Let $\varphi, \psi: V \rightarrow V$ be linear transformations of a Euclidean space V. Recall that φ is a symmetric transformation if $(\forall x, y \in V)(\langle x, \varphi(y)\rangle=\langle\varphi(x), y\rangle)$; and ψ is an orthogonal transformation if $(\forall x, y \in V)(\langle\psi(x), \psi(y)\rangle=\langle x, y\rangle)$. Let \mathbf{B} be an orthonormal basis (ONB) of V. Then,
(a) φ is symmetric iff the matrix $[\varphi]_{\mathrm{B}}$ is a symmetric matrix.
(b) ψ is orthogonal iff $[\varphi]_{\boldsymbol{B}}$ is an orthogonal matrix.
69. (A calculus lemma) Consider the real function

$$
f(t)=\frac{a t^{2}+b t+c}{d t^{2}+e}
$$

where $a, b, c, d, e \in \mathbb{R}$ and $e \neq 0$. Show that if $f(t)$ attains its macximum value at $t=0$ (i. e., $f(0) \geq f(t)$ for all t) then $b=0$.
70. (Orthogonal complement) Let $U \leq V$ be a subspace of a Euclidean space V. Then,
(a) $\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)=\operatorname{dim}(V)$
(b) $U+U^{\perp}=V$.

Recall that (a) was proven previously in class in a different context (standard dot product over any field F). Part (b) is false in that context.
71. (Rayleigh quotient) Let φ be a symmetric transformation of the Euclidean space V. Define the Rayleigh quotient

$$
R_{\varphi}(x)=\frac{\langle x, \varphi(x)\rangle}{\langle x, x\rangle}
$$

for $x \in V, x \neq 0$. It follows from the Spectral Theorem that all the n eigenvalues of φ are real. Denote them by $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$. Show that
(a) $\lambda_{1}=\max R_{\varphi}(x)$
(b) $\lambda_{n}=\min R_{\varphi}(x)$
(c) (Courant-Fischer) $\lambda_{i}=\max _{\substack{U \leq V \\ \operatorname{dim}(U)=i=i \\ x \neq 0}} \min _{\substack{x \in 0}} R_{\varphi}(x)$.
72. (Interlacing theorem) Let $A=A^{t}$ be a symmetric $n \times n$ real matrix with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$. Let B denote the symmetric $(n-1) \times(n-1)$ matrix obtained by deleting the $i^{\text {th }}$ row and the $i^{\text {th }}$ column from A. Let $\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{n-1}$ denote the eigenvalues of B. Prove that

$$
\lambda_{1} \geq \mu_{1} \geq \lambda_{2} \geq \mu_{2} \geq \ldots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_{n} .
$$

73. (Adjacency matrix) Let $G=(V, E)$ be an undirected graph. The adjacency matrix of G is the symmetric matrix $A=\left(a_{i j}\right)$ where

$$
a_{i j}= \begin{cases}1 & i \sim j \\ 0 & i \nsim j .\end{cases}
$$

If the eigenvalues of A are $\lambda_{1} \geq \ldots \geq \lambda_{n}$ prove that
(a) $(\forall i)\left(\left|\lambda_{i}\right| \leq \max _{v \in V} \operatorname{deg}(v)\right)$
(b) $\lambda_{1} \geq \frac{1}{n} \sum_{v \in V} \operatorname{deg}(v)=$ average degree
(c) If G is connected then $\lambda_{n}=-\lambda_{1}$ iff G is bipartite.
74. (Orthogonal polynomials) Suppose that $f_{1}, f_{2}, f_{3}, \ldots$ form a sequence of orthogonal polynomials with respect to a density function ρ such that $(\forall n)\left(\operatorname{deg}\left(f_{n}\right)=n\right)$. Then,
(a) The roots of f_{n} are real for each n.
(b) (Interlacing) The roots of f_{n-1} interlace the roots of f_{n}.
75. Let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n} \in \mathbb{Z}[x]$ such that $a_{n} a_{0} \neq 0$. Let $r=\frac{p}{q} \in \mathbb{Q}$, with $\operatorname{gcd}(p, q)=1$ such that $f(r)=0$. Prove that $p \mid a_{0}$ and $q \mid a_{n}$.
76. Let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ and $g(x)=a_{n}+a_{n-1} x+\ldots+a_{0} x^{n}$, with $a_{i} \in F, a_{0} a_{n} \neq 0$.
(a) If $\alpha \in F$ is a root of f, find a root of g.
(b) If $\alpha_{1}, \ldots, \alpha_{n}$ are all the roots of f (counting multiplicities), find all the roots of g.
77. Let $A \in M_{n}(\mathbb{R})$ be an orthogonal matrix. Let $\lambda \in \mathbb{C}$ be a (complex!) eigenvalue of A. Show that $|\lambda|=1$.
78. (Fisher inequality) Let

$$
H=\left[\begin{array}{ccccc}
a_{1} & b & b & \cdots & b \\
b & a_{2} & b & \cdots & b \\
b & b & a_{3} & \cdots & b \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
b & b & b & \cdots & a_{n}
\end{array}\right]
$$

(a) Compute $\operatorname{det}(H)$. Your answer should be a product of very simple expressions. Compare your result with the case when $a_{1}=\cdots=a_{n}$ (done in class).
(b) Prove that if $a_{1}, \ldots, a_{n}>b \geq 0$, then H is positive definite.
79. (Finding quadratic forms) Find $n \times n$ symmetric real matrices A, B such that
(a) A is positive definite but some of its entries are negative, and
(b) B is indefinite but all its entries are positive.
80. (Secret sharing II) We discussed in class how to share a secret number $x \in\{0, \ldots, p-1\}$ among n committee members such that any k members together can compute the secret but no $k-1$ of them will have any clue (Puzzle Problem 70). We solved this in class for the case when $p>n$. Now suppose the president wants only to share the outcome of a coin flip. How is this possible?
81. (Hermitian inner product) Let V be a complex vector space with Hermitian inner product \langle,$\rangle . Show that \langle 0, v\rangle=\langle v, 0\rangle=0$ for all v in V using the axioms of sesquilinearity.

In the next several exercises, V is a finite-dimensional complex vector space with Hermitian inner product \langle,$\rangle .$
82. (Gram-Schmidt) Show that V has an orthonormal basis, and, that any orthonormal set $\left\{v_{1}, \ldots, v_{k}\right\}$ can be extended to an orthonormal basis.
83. (Unitary transformation) We say that the linear transformation $\varphi: V \rightarrow V$ is unitary if $(\forall x, y \in V)(\langle\varphi(x), \varphi(y)\rangle=\langle x, y\rangle)$. Prove that all eigenvalues of a unitary transformation have unit absolute value.
84. (Self-adjoint transformation) We say that the linear transformation $\varphi: V \rightarrow V$ is selfadjoint if $(\forall x, y \in V)(\langle x, \varphi(y)\rangle=\langle\varphi(x), y\rangle)$. Prove that all eigenvalues of a self-adjoint transformation are real.
85. (Spectral theorem) Let $\varphi: V \rightarrow V$ be a self-adjoint transformation. Prove that there exists an orthonormal eigenbasis of V corresponding to real eigenvalues.
86. (Adjoint) Show that for all $\varphi: V \rightarrow V$ there exists unique $\psi: V \rightarrow V$ such that

$$
\langle x, \varphi(y)\rangle=\langle\psi(x), y\rangle
$$

for each x, y in V. The adjoint ψ is denoted φ^{*}. Prove that for all $\varphi_{1}, \varphi_{2}: V \rightarrow V$ and for all $\lambda \in \mathbb{C}$,
(a) $\left(\varphi_{1} \varphi_{2}\right)^{*}=\varphi_{2}^{*} \varphi_{1}^{*}$
(b) $\left(\varphi_{1}+\varphi_{2}\right)^{*}=\varphi_{1}^{*}+\varphi_{2}^{*}$
(c) $(\lambda \varphi)^{*}=\bar{\lambda} \varphi^{*}$
(d) φ is self-adjoint iff $\varphi=\varphi^{*}$.
(e) φ is unitary iff $\varphi^{*}=\varphi^{-1}$.
87. (Matrix adjoint) For a complex matrix A, the matrix A^{*} is the conjugate-transpose of A. Let $\varphi: V \rightarrow V$ be a linear map. Then, with respect to an orthonormal basis \mathbf{B}, show that

$$
\left[\varphi^{*}\right]_{\mathbf{B}}=[\varphi]_{\mathbf{B}}^{*} .
$$

88. (Upper-triangularity via unitary transformation) Let $A \in M_{n}(\mathbb{C})$. Then, there exists a unitary matrix C such that $C^{-1} A C$ is upper-triangular. Equivalently, given φ : $V \rightarrow V$ there exists an orthonormal basis \mathbf{B} such that $[\varphi]_{\mathbf{B}}$ is upper-triangular.
89. (Orthogonal complement) If $U \leq V$ is a subspace,
(a) Define U^{\perp}.
(b) Prove that $\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)=\operatorname{dim}(V)$.
(c) Prove that $U+U^{\perp}=V$.
90. (Normal, upper-triangular matrices) A matrix $A \in M_{n}(\mathbb{C})$ is normal if $A A^{*}=A^{*} A$. Prove that A is normal and upper-triangular iff A is diagonal.
91. (Normality under unitary similarity) Prove that if A is normal and $A \sim_{\mathbf{U}} B$ then B is normal, where $A \sim_{\mathbf{U}} B$ denotes that A is similar to B via a unitary transformation, i. e., that $B=C^{-1} A C$ for some unitary matrix C.
92. (Normal vs. self-adjoint/unitary) A linear map $\varphi: V \rightarrow V$ is normal if $\varphi \varphi^{*}=\varphi^{*} \varphi$. Prove that if φ is normal then,
(a) $\varphi=\varphi^{*}$ iff the eigenvalues of φ are real.
(b) $\varphi^{*}=\varphi^{-1}$ iff the eigenvalues of φ have norm one.
(This ends the sequence of exercises about Hermitian spaces.)
93. (Lovász-reduced basis) Let $\left(a_{1}, \ldots, a_{n}\right)$ be a basis of \mathbb{R}^{n}. Let $\left(b_{1}, \ldots, b_{n}\right)$ denote the orthogonalized basis obtained via the Gram-Schmidt process. Then,

$$
\begin{aligned}
& b_{1}=a_{1} \\
& b_{2}=a_{2}+\mu_{2,1} b_{1} \\
& b_{3}=a_{3}+\mu_{3,2} b_{2}+\mu_{3,1} b_{1} \\
& \vdots \\
& b_{n}=a_{n}+\sum_{i=1}^{n-1} \mu_{n, i} b_{i}
\end{aligned}
$$

for $\mu_{i, j} \in \mathbb{R}$. The basis $\left(a_{1}, \ldots, a_{n}\right)$ is Lovász reduced if
(a) $\left|\mu_{i, j}\right| \leq \frac{1}{2}$ for all i, j.
(b) $\left\|b_{i+1}\right\| \geq \frac{1}{\sqrt{2}} \cdot\left\|b_{i}\right\|$ for each $1 \leq i \leq n-1$.

Prove that if (a) is violated then elementary row operations $a_{i} \mapsto a_{i}+k a_{j}$ for $k \in \mathbb{Z}$ and $j<i$ can be used to eliminate this violation. Note that these operations do not alter the corresponding orthogonal basis $\left(b_{1}, \ldots, b_{n}\right)$; nor do they change the lattice $L:=\sum_{i=1}^{n} \mathbb{Z} a_{i}$.
94. (Lovász's lattice reduction algorithm) The purpose of this algorithm is to convert a basis $\left(a_{1}, \ldots, a_{n}\right)$ of \mathbb{R}^{n} into a Lovász-reduced basis $\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$ without changing the lattice L generated by the basis: $L=\sum_{i=1}^{n} \mathbb{Z} a_{i}=\sum_{i=1}^{n} \mathbb{Z} a_{i}^{\prime}$.
The algorithm proceeds in phases:
while $\left(a_{1}, \ldots, a_{n}\right)$ not Lovász-reduced
(A) if (a) is violated, fix it as described in the preceding exercise
(B) else find i such that (b) is violated by b_{i-1} and b_{i}; swap a_{i-1} and a_{i}
return $\left(a_{1}, \ldots, a_{n}\right)$
Prove:
(i) The algorithm terminates in a finite number of phases.
(ii) If all coordinates of the input basis are integers, the algorithm terminates in a polynomial number of phases (polynomial in the bit-length of the input).
Hint: Find a potential function $P:\left\{\right.$ bases of $\left.\mathbb{R}^{n}\right\} \rightarrow \mathbb{R}$ (assign a real number to each basis of \mathbb{R}^{n}; remember that a basis is an ordered list, rathar than a set, of vectors, so the value of P may change when we permute the basis) such that
(1) P is always positive
(2) line (A) of the algorithm does not affect P
(3) each execution of line (B) of the algorithm reduces the value of P at least by a constant factor $c<1$
(4) if all basis vectors are integral then $P \geq 1$
(5) in any case, P satisfies a positive lower bound that only depends on the lattice L and not on the particular \mathbb{Z}-basis of L.
95. (Deciding positive definiteness) Let $A \in M_{n}(\mathbb{R})$ be a symmetric real matrix.
(a) Show that if A is positive definite, then every symmetric minor of A has positive determinant. (A $k \times k$ symmetric minor is the submatrix located at the intersection of k rows and the corresponding k columns; so a symmetric minor of a symmetric matrix is symmetric.)
This condition is necessary and sufficient for positive definiteness; but in fact much less already suffices, as the next question shows.
(b) Show that if every corner minor of A has positive determinant then A is positive definite. (A corner minor is a minor corresponding to rows $1, \ldots, k$ and columns $1, \ldots, k$.)
96. (Inequality between the arithmetic and quadratic means) Given $a_{i} \geq 0$, show that

$$
\frac{a_{1}+\cdots+a_{n}}{n} \leq \sqrt{\frac{a_{1}^{2}+\cdots+a_{n}^{2}}{n}}
$$

97. Let the n vertices of the graph G have degrees d_{1}, \ldots, d_{n}. Let λ be the largest eigenvalue of the adjacency matrix of G. We have shown that λ is not less than the arithmetic mean of the d_{i}. Show that in fact λ is not less than the quadratic mean of the d_{i} :

$$
\lambda \geq \sqrt{\frac{d_{1}^{2}+\cdots+d_{n}^{2}}{n}}
$$

98. Calculate the largest eigenvalue of the adjacency matrix of the "star graph" $K_{1, n-1}$ (a tree with one vertex adjacent to all other vertices). Compare your result with the bound from the preceding exercise.
