Problem session

$$
\frac{\text { Problem Session }}{\operatorname{rask}(A)=\max } \text { \# of } \mathrm{sh} \text {. indep. columns. }
$$

$$
=\operatorname{dom} \operatorname{Col}(A)
$$

$$
\operatorname{Col}(A)=\operatorname{Span}\left\{a_{1}, \ldots, a_{n}\right\}
$$

$$
A=\left[\begin{array}{cccc}
1 & 1 & & 1 \\
a_{1} & a_{2} & \cdots & a_{n} \\
1 & 1 & 1
\end{array}\right]
$$

$$
A\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+\cdots+x_{n} \overrightarrow{a_{n}}
$$

$$
A\left[\begin{array}{cccc}
1 & 1 & & 1 \\
b_{1} & b_{2} & \cdots & b_{k} \\
1 & 1 & & 1
\end{array}\right]=\left[\begin{array}{lll}
A \vec{b}_{1} & A \overrightarrow{b_{2}} & \cdots
\end{array}\right]
$$

If $A \in \mathbb{R}^{k \times l}$ and $B \in \mathbb{R}^{l \times m}$, then $\operatorname{rank}(A B) \leq \operatorname{mon}\{\operatorname{rak}(A), \operatorname{rank}(B)\}$.
$A=\{a$, maximal lin shelep.columes of

$$
\begin{aligned}
& \overrightarrow{b_{i}}=\left[\begin{array}{c}
b_{i} \\
\vdots
\end{array}\right] \quad A \vec{b}_{i}=b_{i 1} \vec{a}_{1}+\cdots+b_{i l} \overrightarrow{a_{l}}
\end{aligned}
$$

$$
\begin{aligned}
& A^{*}=\left\{a_{1}{ }^{\prime}, \ldots, a^{\prime} r\right\} \\
& c^{*}=\left\{c_{1}{ }^{\prime}, \ldots, c_{s}^{\prime}\right\}
\end{aligned}
$$

ck $A=\left|A^{*}\right| \quad$ ok $A B=\left|C^{*}\right|$
of $A B$
$(\forall i)\left(C_{i} \in \operatorname{spon} A^{*}\right) \rightarrow$ columns, are linn. combs.
of A
(from above)

By $1^{\text {st }}$ mirade..

$$
\begin{aligned}
& s \leq r \\
& \Rightarrow r k A B \leq-k A .
\end{aligned}
$$

Is there a faster way to do the other half?
we know that $(A B)^{\top}=B^{\top} A^{\top}$, so

$$
\begin{aligned}
& r k(A B)=r k\left((A B)^{\top}\right)=-{ }^{\downarrow}\left(B^{\top} A^{\top}\right) \leq r k\left(B^{\top}\right)=r k(B) \\
& 2^{\text {nev }} \text { Mivade } \\
& \begin{array}{cc}
\text { pst pot } & \uparrow \\
\text { of poof } & \text { blade } \\
\text { ind }
\end{array}
\end{aligned}
$$

$\sin a$ $r_{k}(A B) \leq r k(A)$ and $r k(A B) \leq r k(B)$, $\operatorname{rk}(A B) \leq \min \{r k(A),-k(B)\}$.

Find $A \in M_{2}(\mathbb{R})$ s.t. $A \neq 0$ bct $A^{2}=0$.

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \\
& A^{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

If $A \in \mathbb{R}^{l \times k}$ and $B \in M_{k}(\mathbb{R})$ is nonsinguten \downarrow $(\operatorname{det}(B) \neq 0)$
then $\operatorname{rark}(A B)=\operatorname{rank}(A)$.
$\left(\begin{array}{c}\text { rows } \\ \text { colums s }\end{array}\right\}$ of B

$$
A B \in \mathbb{R}^{e \times k}
$$

$\left.\begin{array}{l}\operatorname{dim}\left\{A^{\top} x: x \in \mathbb{R}^{e}\right\} \\ \operatorname{dim}\left\{B^{\top} A^{\top} x: x \in \mathbb{R}^{e}\right\}\end{array}\right\}$

$$
r k\left(B^{\top} A^{\top}\right)=r k\left(A^{\top}\right)
$$

π

$$
\operatorname{col-sp(A^{\top })\longrightarrow c_{0}-sp(B^{\top }A^{\top })} \text { (wTs: bij.)} \text { isomerphisus }
$$

$y \longmapsto B^{\top} y \quad$ injectily: $B^{\top} x=B^{\top} y$
sugbetivity: imeose. opecaties (take transpose again)

$$
\begin{gathered}
B^{\top}(x-y)=0 \\
x-y=0 \Rightarrow x-y
\end{gathered}
$$

Another approach:
we know $\operatorname{rank}(A B) \leq \operatorname{rack}(A)$ from precursors problem L exists $b / c \quad B$ nossingler

$$
\begin{aligned}
& A=(A B) B^{-1} \\
& \operatorname{rark}(A) \leq \min \left\{\operatorname{rank}(A B), \operatorname{rank}\left(B^{-1}\right)\right\}
\end{aligned}
$$

$$
\begin{array}{r}
\therefore \operatorname{rank}(A) \leq \operatorname{rank}(A B) \quad \text { ard } \\
\operatorname{rank}(A)=\operatorname{rank}(A B) .
\end{array}
$$

Let $\left(v_{1}, \ldots, v_{k}\right) \in \mathbb{R}^{n}$. Apply elementary operations to these to get $\left(v_{1}{ }^{\prime}, \ldots, v_{k}{ }^{\prime}\right) \in \mathbb{R}^{n}$.
Then $\operatorname{dim} \operatorname{span}\left(v, \ldots, v_{k}\right)=\operatorname{dim} \operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$
Elementary operation: (i, j, λ) mems

$$
v_{e}^{\prime}= \begin{cases}v_{l} & \ell \neq i \\ v_{i}-\lambda v_{j} & \ell=j\end{cases}
$$

Proof Pick a basis W^{v} from among for $\operatorname{span}\left(v_{1}, \ldots, w_{k}\right)$

$$
\begin{aligned}
& v_{1}, \ldots, v_{k}: \\
& w=w_{1}, w_{2}, \ldots, w_{n} .
\end{aligned}
$$

cheek case where $v_{j} \in W$. (If $\sim_{i} \notin W$, will not change span be not a Mo vi basis vector.)

$$
\alpha_{1} w_{1}+\underset{\uparrow}{w_{0} v_{i}}+\alpha_{n} w_{n}+\lambda v_{j}=v_{i}
$$

If w, \ldots, w_{n} is $l I \rightarrow$ basis and
$w, \ldots, w_{n}, v_{i}-\lambda v_{j}$ is LI \rightarrow boas...?

$$
\hat{y_{0} v_{i}}
$$

Proof.

$$
\begin{aligned}
& \text { of } \quad w \in \operatorname{Span}\left(v_{1}{ }^{\prime}, \ldots, v_{k}{ }^{\prime}\right) \\
& w=\alpha_{i} v_{1}+\cdots+\alpha_{i}\left(v_{i}-\lambda v_{j}\right)+\cdots \alpha_{k} v_{k}
\end{aligned}
$$

(In comb. of nomad $v_{i} s \Rightarrow \omega \in \operatorname{Spa}\left(v_{1}, \ldots, v_{k}\right)$)

Inverse r of elementary operation is demented operation \Rightarrow mate symmetric argument in other direction $u /$ inverse to show

$$
\begin{aligned}
& w \in \operatorname{Span}\left(v_{1}^{\prime}, \ldots . v_{k}^{\prime}\right) \Rightarrow w \in \operatorname{Span}\left(v_{1}, \ldots, v_{k}\right), \\
& \operatorname{Span}\left(v_{1}, \ldots v_{k}^{\prime}\right)
\end{aligned}
$$

Thus, $\operatorname{span}\left(v, \ldots, v_{k}\right)=\operatorname{span}\left(v_{1}, \ldots v_{k}{ }^{\prime}\right)$ and if follows that
$\operatorname{dim} \operatorname{span}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{dim} \operatorname{spar}\left(v_{1}, \ldots v_{k}{ }^{\prime}\right)$.

Elementary column operations do rot change the column rank.
Elementary row operations do not change the column rank.
(Prove wo 2 ned Mirach.)

If the column rank of A is l, then \exists \& linearly independent columns

$$
a, \ldots, a l .
$$

Apply sore row operation.
It wald be nice if the same columns were linearly independut postintronsformation.
uTS: $a_{1}{ }^{\prime}, \ldots, a_{l}^{\prime}$ are linearly independent

$$
a_{1}^{\prime}=\left(\begin{array}{c}
a_{1}, \ldots, a_{l} \\
a_{11} \\
a_{i 1}-\lambda a_{j 1} \\
\vdots \\
a_{n 1}
\end{array}\right) \begin{gathered}
\alpha_{1} a_{1}^{\prime}+\cdots \rightarrow \alpha_{e} a_{l}^{\prime}=0, \\
\alpha_{1}\left(\begin{array}{c}
a_{11} \\
\vdots \\
a_{i 1}-\lambda_{j 1} \\
\vdots \\
a_{n 1}
\end{array}\right)+\cdots+\alpha_{l}\left(\begin{array}{c}
a_{1 l} \\
a_{i l}-\lambda a_{j e} \\
\vdots \\
\alpha_{n e}
\end{array}\right)=0
\end{gathered}
$$

Assume linear dependence at least one of α_{i} nonzero.

Take $i^{\text {th }}$ and $j^{- \text {th }}$ rows.

$$
\begin{aligned}
& \alpha_{1}\left(a_{j 1}-\lambda a_{j 1}\right)+\cdots+\alpha_{l}\left(a_{i l}-\lambda a_{j l}\right)=0 \\
& \lambda\left(\begin{array}{l}
\left.\alpha_{1}\left(a_{j 1}\right)+\cdots+\alpha_{l}\left(a_{j l}\right)=0\right)
\end{array}\right.
\end{aligned}
$$

$$
\alpha_{1}\left(a_{i 1}\right)+\cdots+\alpha_{l}\left(a_{0 l}\right)=0
$$

The same set of copfticiats makes all the otter rows 0 as nell so

$$
a_{1} \overrightarrow{a_{1}}+\alpha_{2} \overrightarrow{a_{2}}+\ldots+\alpha e \overrightarrow{a_{l}}=0
$$

coeffarats nontrivid \Rightarrow orighal columns lon.

Contrapositive \Rightarrow lin index $a_{1}, \ldots, a_{e} \Rightarrow$ in index. dep.

$$
a_{1}^{\prime}, \ldots, a_{e}^{\prime}
$$

Row ops. dory decrease column rate.
land increase either \Rightarrow inverse is a row op. and wald deverse.) \Rightarrow don't change them D

If $\varphi, v \rightarrow w$ is a linear mop, then

$$
\varphi\left(O_{v}\right)=O_{w}
$$

Contra $\varphi(\mathrm{COv}) \neq 0 \mathrm{w} \Rightarrow \varphi$ nonlinear.
$\exists w \in w$ sit $w \neq 0$ and $\varphi(a)=w$

$$
\begin{aligned}
& 2 \varphi(o v)=2 w \neq w \\
& 2 \varphi(o v) \neq \varphi\left(2-o_{v}\right)=w
\end{aligned}
$$

$\therefore \varphi$ nat linear
If $\varphi, \psi \in \operatorname{Hom}(v, w)$, then $\varphi+\psi \in \operatorname{Hom}(v, w)$.

Example. G_{2}
π_{1} : prog' onto x-axis
π_{2} : prog. onto y-axis.

$\pi_{1}+\pi_{2}=$ identity map.
In higher dimensions \Rightarrow poo. onto $x y$-plane
$\operatorname{rot}_{\theta}=$ rotation by θ (counterclockutse) abut origh.
when is rot o not liker?
\rightarrow not abat origin.
Why is rotation about origh linear?

If rotate parallelogram, get a parallelogram.

Now ignore $\theta=k \pi \quad$ if $k \in \mathbb{Z}$.

$$
\left\{f_{1}, f_{2}\right\}
$$

er

$$
[\cot \theta]_{e}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right][\cot \theta]_{f}=?
$$

$$
\begin{aligned}
& \operatorname{rot}_{\theta}(h)=\operatorname{rot}_{\theta}\left(e_{1}\right)=\underline{\underline{f_{2}}} \\
& \operatorname{rot}_{\theta}\left(f_{2}\right)=\operatorname{rot}_{\theta}\left(\operatorname{rot} \theta\left(e_{1}\right)\right)=\operatorname{rot}_{2 \theta}\left(e_{1}\right) \\
& f_{2} \longmapsto \cos 2 \theta e_{1}+\sin 2 \theta e_{2} \\
&=\cos 2 \theta f_{1}
\end{aligned}
$$

wont to find e_{2} in tomes of f_{1} and B_{2},

$$
\begin{aligned}
& \text { want to find } c_{2} \\
& \binom{0}{1}=\left(\begin{array}{cc}
\cos (90-\theta) & -\sin (90-\theta) \\
\sin (90-\theta) & \cos (90-\theta)
\end{array}\right)\binom{\sin \theta}{\cos \theta} \\
& = \\
& f_{2} \longmapsto\left(\begin{array}{cc}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta
\end{array}\right)\binom{\sin \theta}{\cos \theta} \\
& \\
& {\left[\begin{array}{cc}
0 & \cos (2 \theta) f+\sin (2 \theta) M f_{2} \\
1 & \sin 2 \theta \frac{M}{l}
\end{array}\right]}
\end{aligned}
$$

A mare geometric approach..

$$
\begin{aligned}
f_{3} & =\overrightarrow{O B}+\overrightarrow{B C} \\
\overrightarrow{O B} & =2 \cos \theta f_{2} \\
\overrightarrow{B C} & =-f_{1}
\end{aligned}
$$

$$
f_{2}=\operatorname{rot}_{\theta}\left(f_{1}\right)
$$

$$
\begin{aligned}
& f_{2}=\operatorname{rot}_{\theta}\left(f_{1}\right) \\
& f_{3}=\operatorname{rot}_{\theta}\left(f_{2}\right)
\end{aligned} \quad\left[\begin{array}{cc}
0 & -1 \\
1 & 2 \cos \theta
\end{array}\right]
$$

Lecture
Coordinatization

$$
[v]_{\underline{e}}=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right] \in \mathbb{R}^{n} .
$$

$V \quad$ basis $\left(e_{1}, \ldots, e_{n}\right)=\underline{e}$
$N \in N \quad V=\sum \alpha_{i} e_{i}$

$$
v \longmapsto[\omega]_{\underline{e}}
$$

linear bijection
\therefore If $\operatorname{dim} V=n$
then $V \cong \mathbb{R}^{n}$.
$V \longmapsto \mathbb{R}^{n}$
isomerphism
$\varphi: \quad v \rightarrow w$

$$
\begin{aligned}
& \varphi: v \rightarrow w \\
& \underline{e}=\left(e_{1}, . ., e_{n}\right) \quad \text { and } \quad f=\left(f, \ldots, f_{k}\right)
\end{aligned}
$$

$$
[\varphi]_{e, E} \in \mathbb{R}^{k \times n}
$$

$j^{\text {-th }}$ column of $[\varphi]_{\underline{e}, i f}$ is $\left[\varphi\left(e_{j}\right)\right]_{\underline{f}}$.
 \uparrow

$$
\varphi \longmapsto[\varphi]_{\underline{e}, f} \in \mathbb{R}_{k \times n}^{k \times n}
$$

$$
\operatorname{Hom}(V, w) \longmapsto \mathbb{R}^{k \times n}
$$

$R^{k \times n}$ forms a vector space $\rightarrow 0$ maths, add + scaler multiply.
Lek $(\varphi+\psi)(v)=\varphi(v)+\psi(v)$

$$
(\forall v \in v)^{P} \lambda(\varphi(v))=\varphi(\lambda v)
$$

Forms a vector space as nell.

Claim: $\operatorname{Hom}(V, w) \mapsto \mathbb{R}^{k \times n}$ is an isomorphism of vector spaces by
(1) observing that this correspondence is hear
(2) bijection.

Thu (from yesterday.)
$\left(\forall\right.$ basis e_{4}, \ldots, e_{n} of $\left.v\right)$
$\left.\left(\forall w_{1}, \ldots, w_{n} \in W\right)(\exists!\varphi: V \rightarrow w)(\forall j)\left(\varphi e_{i}\right)=w_{i}\right)$

e_{1}

extends uniquely to a hear mop. \Rightarrow these bast's vector mappings form bij. if finer mops.

Uniqueness: given the images of e_{0}, \ldots, e_{n}. we knew the image of any $v \in V$.

$$
\text { if } v \in V, v=\sum \alpha_{i} e_{1}^{\prime}
$$

If

$$
\text { If }(\exists \varphi)\left(\forall_{i}^{-}\right)\left(\varphi\left(e_{i}^{-}\right)=w i_{i}^{-}\right)
$$

(from basis)

$$
\varphi(v)=\varphi\left(\sum \alpha_{i} e_{i}\right)=\sum \alpha_{i} \varphi\left(e_{i}\right)=\sum \alpha_{i} w_{i} .
$$

lin. mop. propetres.

Existence
De hive $\varphi=v \rightarrow w$ by setting

$$
\begin{aligned}
& \text { Define } \left.\varphi=v \rightarrow w \text { by son } \quad \varphi(v)=\sum \alpha_{i} w_{i}\right) \\
& (\forall v \in v)\left(\text { if } v=\sum \alpha_{i} e_{i}\right. \text { then }
\end{aligned}
$$

NTS: this $V \rightarrow w$ map is leer.
$\therefore \exists$ bijection

$$
\begin{aligned}
& \exists \text { bijection } \\
& \left.\operatorname{Hom}(v, w) \rightarrow w^{\left\{e_{1}, \ldots, e_{n}\right\}}\right\}
\end{aligned}
$$

Notation: If A, B are sets then

$$
B^{A}=\{f: A \rightarrow B\}
$$

If A, B finite, then

$$
\left|B^{A}\right|=|B|^{|A|}
$$

for each pt in A, $|B|$ choices.-

$$
\mathbb{R}^{\mathbb{R}}: \mathbb{R} \rightarrow \mathbb{R}
$$

\mathbb{R}^{N} : sequences: $N \rightarrow \mathbb{R}$ (function)

$$
\begin{aligned}
& \mathbb{R}^{n}=\mathbb{R}^{[n]} \ni\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
a(1) \\
\vdots \\
a(n)
\end{array}\right] \\
& \text { Bijection: } \operatorname{Hom}(v, w) \rightarrow w^{\left\{e_{1}, \ldots, e n\right\}} \rightarrow \mathbb{R}^{k \times n}
\end{aligned}
$$

image of
f (coordimatization) e_{1}, \ldots en in columns \rightarrow vectors on W,

Ex. $\operatorname{rot}_{\theta} \mapsto \underbrace{\square}_{\uparrow} \mapsto \underset{\sim}{\square} \mapsto\left[\begin{array}{ll}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

$$
\stackrel{i}{2}_{e_{1}}
$$

$\operatorname{rot}_{\theta}\left(e_{1}\right) \quad r o t\left(e_{2}\right)$ coardinatization.
(vectors in
columns)

$$
\therefore \operatorname{Hom}(V, w) \cong \mathbb{R}^{k \times n} \quad \begin{aligned}
& k=\operatorname{dim} w \\
& n=\operatorname{dim} V .
\end{aligned}
$$

Not canonical. depend on choice of basis. what happens if you change the basis?

$$
\frac{e^{\text {what }}}{\left(e_{1}, \ldots, e_{n}\right)} \frac{e^{\prime}}{n}=\left(e_{n}^{\prime}, \ldots, \underline{e}_{n}^{\prime}\right)
$$

$$
[v]_{\text {old }} \cdots ?[v]_{\text {new }}
$$

By $\operatorname{Hhm} .\left(\exists!\underset{\substack{\text { iqmen }}}{ } \quad(\forall: V \rightarrow V)(\forall i)\left(\sigma l e_{i}\right)=e_{i}^{\prime}\right)$.

$$
\text { Let }[v]_{\text {old }}=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right] \text { and }[v]_{\text {new }}=\left[\begin{array}{c}
\alpha_{1} \\
i \\
\alpha_{n},
\end{array}\right] \text {. }
$$

$$
\begin{gathered}
v=\sum \alpha_{i} e_{i} \\
\sigma(v)=\sum \alpha_{i} \sigma(e \delta)=\sum \alpha_{i} e_{\delta}^{\prime} \\
\underline{x}=[v]_{\text {old }}=[\sigma(v)]_{\text {new }}=[\sigma]_{\text {new }}[v]_{\text {new }} \\
o x^{\prime}=[v]_{\text {new }}=[\sigma]_{\text {new }}^{-1}[v]_{\text {old }}
\end{gathered}
$$

$$
S=\left[\underline{e}^{\prime}\right]_{\underline{e}}=[\sigma]_{\mathrm{old}}
$$

$$
=\left[\left[e_{1}^{\prime}\right]_{\text {old }}, . .,\left[e^{\prime} n\right]_{\text {old }}\right]
$$

"basis change moths"
(DO) $[\sigma]_{\text {new }}=[\sigma]_{\text {old. }}$.
$x^{\prime}=S^{-1} \underline{x}$ whee S is the basis change mathis.

Ex. What if $e_{i}^{\prime}=$ Led?

$$
\sigma: \underline{e} \rightarrow \underline{e}^{\prime} \quad \tau: \underline{f} \rightarrow \underline{f}^{\prime}
$$

The.

$$
A^{1}=T^{-1} A S
$$

$$
[\sigma]=S \quad[\tau]: T
$$

Basis change for in. transformations:

$$
A^{\prime}=S^{-1} A S
$$

Let $A, B \in M_{n}(\mathbb{R})$.
A is similar to $B(A \sim B)$ if $\exists S, S^{-1} \in M_{n}(\mathbb{R})$ st.

$$
B=S^{-1} A S .
$$

$$
\begin{aligned}
& N=\sum \alpha_{i} e_{i} \\
& =\sum \alpha_{i}^{\prime} c_{i}^{\prime} \\
& e_{i}^{\prime}=2 e_{i} \text { so } \alpha_{i}^{\prime}=\frac{\alpha_{i}}{2} \text {. } \\
& \varphi: \stackrel{n}{\sim} \rightarrow \stackrel{k}{w} . \\
& \text { Suppose } A=[\varphi]_{\text {ald }}=[\varphi]_{\text {s, E. }} \text {. } \\
& \begin{array}{ll}
e, & \underline{f} \\
\underline{e}^{\prime} & \underline{f}^{\prime}
\end{array} \\
& A^{\prime}=[\varphi]_{\text {yew }}=[\varphi]_{\underline{e}^{\prime}, \underline{E}^{\prime}}
\end{aligned}
$$

HW If $A \sim B$, then $f_{A}=f_{B}$.
(characteristic polynomials are equal)
(Similar matrices have the save eigenvalues.)

Def. A is diagonalizable if

$$
A \sim\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{n}
\end{array}\right)
$$

HWW Find a non-diegonalizable 2×2 mathis that has a real eigenvalue.

Hew Find a 2×2 real matrix with no real eigenvalues.
HW Find the complex roots of the characteristic polynomial of the rotation matrix

$$
R_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

HW Prove, A is diagonalizable \Leftrightarrow A has on eigenbasis.

HW Given $a, b, c \in \mathbb{R}$, prove $\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$ is diag nadizable.

Problems from previous lectures clue next wed:
Reminder:

- Chromatic polynomial problem - see website
- If $A \in \mathbb{R}^{k \times e}$, then $\quad r_{k}\left(A^{\top} A\right)=r k(A) \cdot l$
- If $G \not \supset k_{3}$ (triangle-free), then $\chi(G)=O(\sqrt{n})$, i.e. $(\exists c)(\forall$ sufficiently large $n \longrightarrow x(G) \leq c \sqrt{n})$ estimate implied estimate constant
- Suppose ve have

$$
\begin{aligned}
& \text { Suppose } \\
& A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{m} \text { e } M_{n}(\mathbb{R}) \\
& \text { shh } A_{i} B_{j}=B_{j} A_{i} \Leftrightarrow i \neq j
\end{aligned}
$$

Prove: $m \leq n^{2}$.
(Hint: Show A_{1}, \ldots, A_{m} are linearly independent)

