$$\mathbb{F}^{n} \qquad \underline{x} = \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}, \quad \underline{y} = \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix} \in \mathbb{F}^{n}$$

$$x \cdot y = x^{T} y = \sum_{i} x_{i} y_{i}$$

$$\overline{x} + \overline{x} + \overline{x} + \overline{x} = 0$$
;

perpendialer

If
$$S \subseteq V$$
, $X \perp S$ if $(Y \subseteq S)(X \perp S)$

If $(Y \subseteq S)(Y \in T)$

If
$$S \in V$$
, $X \perp S$ if $(V \subseteq S)(V \notin T)(S \perp t)$
If $S, T \subseteq V$, $S \perp T$ if $(V \subseteq S)(V \notin T)(S \perp t)$

HW If
$$u \leq v = \mathbb{F}^n$$
, Her dim $u^{\perp} = n$.

Bet by the short if
$$v \neq 0$$
 but

Def $v \in V$ is isotropic if $v \neq 0$ but

F² - find isomorpho
Case
$$F = IR$$
 $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ $X \cdot X = \sum x_1^2$

Find
$$X, Y \in \mathbb{C}$$
, not both $0 \le L \times 2^2 + y^2 = 0$.

Case
$$F = F_5$$
 \longrightarrow $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ i \end{bmatrix}$

$$2^2 = -1$$

(a) Show:
$$\mathbb{F}_p^2$$
 has an isotropic vector (\mathbb{F}_p^2) (\mathbb{F}_p^2) (\mathbb{F}_p^2) (\mathbb{F}_p^2) (\mathbb{F}_p^2) (\mathbb{F}_p^2) (\mathbb{F}_p^2) (\mathbb{F}_p^2) make conject

$$V = \mathbb{F}^n \Rightarrow V^{\perp} = \{0\}$$

$$\{0\}^{\perp} = V$$

$$\emptyset^1 = \vee$$

$$\emptyset = V$$

$$S, T \subseteq V \Rightarrow (SUT)^{1} = S^{1} \cap T^{1}$$

$$S, T \subseteq V \Rightarrow (SUT)^{1} = S^{1} \cap T^{1}$$

$$S \subseteq V \Rightarrow S^{\perp} = Span(S)^{\perp}$$

totally isotropic if SIS.

S is totally isotropic (s) is

Jotally isotropic then DO) YS, TEV, if SIT, Spen(S) I Spen(T)

Let $U \leq V = ||F^{n}||_{be}$ to talky is ofropic

dim U \(\lambda \lamb

For SEV, S is totally isodopic (

S = S 1.

Proof of 7hm.

from Temma that we know

k En-k k:= dim U

n-r= dm U1 ととう

 $h \leq \lfloor \frac{n}{2} \rfloor$

[HW] For all even n, find an $\frac{n}{2}$ -dm.

totally - isotropie subspace in C1, Fs, Fz.

Project: for what parts (p,n) is thee a

totally - isotropic $\frac{n}{2}$ - dim. subspace in Fp? cannet increuse.

(n is even.)

[CH] Prove: every muximal totally - is dropic

subspace of Fz is maximum, and in fact,

has $dom = \lfloor \frac{n}{2} \rfloor$.

 $\chi = \{clhzens\}, |\chi| = n$ oddform rus: CII..., Cm SX

(1) (vi)(1cil is odd)

(2) (\fij) (|cincj| is even)

HW (Yn) (Find maximal Oddform system very fen dubs.)

If $F = F_g$ (field of order g), V rector space of dim = d over Fg,

then $|V| = g^d$ blc $V \cong \mathbb{F}_g^d$.

Eventour Rules

(0) (vij) (i+j => (i+cj)

(1) $(\forall i)(|C_i||is even)$ (2) $(\forall i,j)(|i\neq j|=> |C_i|\cap C_j|_e^{is})$ (2) $(\forall i,j)(|i\neq j|=> |C_i|\cap C_j|_e^{is})$

Week 4 - Day 5 Page 7

1HW] (for Tues.)

Prove: m £ 2

Hint: His class so for (3-4 hiers). (Hint: not aware he were
telleng about Brestom)

Oddform / Eventown

Elmyn Berlekamp - cooling theory.

DO Every maximal Evertom system is

(Allowel to use things stated but not proved.)

Vector space V over F.

bitineer form

f: VXV -> F

Theer in each variable

\{f(\underset{\underset}\psi + f(\underset{\underset}\nu) = f(\underset{\underset}\nu) + f(\underset{\underset}\nu)

 $\left(\left(f(\lambda u, \omega) = \lambda f(u, \omega)\right)\right)$

Imeer in 1st vor.

Friday, July 14, 2017

Friday, July 14, 2017 10:21 AM

$$\begin{cases}
f(u, w+z) = f(u, w) + f(u, z) \\
f(u, \lambda w) = \lambda f(u, w)
\end{cases}$$
There is a 2nd variable.

$$\frac{Ex}{f(x,y)} = F^n A \in M_n(F)$$

(1) If
$$f: \mathbb{F}^n \times \mathbb{F}^n \longrightarrow \mathbb{F}$$
, Hen

(3) $A \in M_n(\mathbb{F})$ $(f(x,y) = x^7 A y)$

Def f is symmetric if
$$f(x,y) = f(y,x)$$
.

(DO)
$$f(x,y) = x^T A + i$$
 symmetric

$$A = A^{T} (A \text{ is symmetric } A)$$

$$A = A^{T}(A \text{ is symmet})$$
 $A = A^{T}(A \text{ is symmet})$
 $A =$

[HW] (a) If
$$f$$
 is alternating, Hen $f(x,y) = -f(y,x)$.

(b)
$$f(x,y) = -f(y,x) \Rightarrow f(x,x) = 0$$
 if
 $f(x,y) = -f(y,x) \Rightarrow f(x,x) = 0$ if
 $f(x,y) = -f(y,x) \Rightarrow f(x,x) = 0$ if

Friday, July 14, 2017 10:28 AM

(c)
$$f(x,y) = -f(y,x) \neq f(x,y) = 0$$
 for F_z .

(2) in every
$$p$$

(2) in every p

(3) on a hernorthy

(4) p

(5) on a hernorthy

(6) p

(7) p

(8) p

(9) p

(1) p

(1) p

(1) p

(2) p

(3) p

(4) p

(5) p

(6) p

(7) p

(8) p

(9) p

(1) p

(1) p

(1) p

(2) p

(3) p

(4) p

(4) p

(5) p

(6) p

(7) p

(7) p

(8) p

(9) p

(1) p

(1) p

(1) p

(2) p

(3) p

(4) p

(4) p

(5) p

(6) p

(7) p

(7) p

(8) p

(9) p

(1) p

(1) p

(1) p

(1) p

(2) p

(3) p

(4) p

(4) p

(5) p

(6) p

(7) p

(7) p

(8) p

(9) p

(1) p

(1) p

(1) p

(1) p

(2) p

(3) p

(4) p

(4) p

(5) p

(6) p

(7) p

(7) p

(8) p

(8) p

(9) p

(9) p

(10) p

(11) p

(12) p

(13) p

(14) p

(15) p

(15) p

(16) p

(17) p

(17) p

(18) p

(

n times
$$(\exists \alpha \in \mathbb{F})(f = \alpha \cdot det)$$
 n -likeer form, then $(\exists \alpha \in \mathbb{F})(f = \alpha \cdot det)$

$$f: \mathbb{F}^n \to \mathbb{F}$$
 theer form \Rightarrow

$$f: \mathbb{N}$$

$$(\exists a \in \mathbb{F}^n)(\forall x, f(x) = \alpha \cdot x)$$

$$= a_1 \times_1 + \cdots + a_n \times_n.$$

$$f: \mathbb{F}^n \times \mathbb{F}^n \longrightarrow \mathbb{F}$$
 biliteer form =>
$$f: \mathbb{F}^n \times \mathbb{F}^n \longrightarrow \mathbb{F}$$
 biliteer form =>
$$f: \mathbb{F}^n \times \mathbb{F}^n \longrightarrow \mathbb{F}$$
 for some $A \in M_n(\mathbb{F})$

$$f: \mathbb{F}^n \times \mathbb{F}^n \longrightarrow \mathbb{F}$$
 for some $A \in M_n(\mathbb{F})$, $f(x,y) = x^T A y$ for $A = (a,j)$

associated with the Det A quadratic form

<u>Lilinear</u> form f is

g(x) = f(x, x)

(If f is alternating g(x) = 0.)

Thm Y gradatic form of I symmetric bitheer home of

g(x) = g(x, x)...

unless F...

f bilineer form $g_{f}(x) = f(x, x)$

f*(x,x):=f(x,x)

3(x) = \frac{\fig}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\ 95* (X)

Friday, July 14, 2017 10:52 AM
$$f(x,y) = \frac{f(x,y) + f(y,x)}{2} - symch 7$$

$$g_{\mathcal{F}}(x) = \frac{f(x,x) + f^{*}(x,x)}{2}$$
where $f(x) = \frac{f(x,x) + f^{*}(x,x)}{2}$
where $f(x) = \frac{f(x,x) + f^{*}(x,x)}{2}$

Thus,

unles s

Thin

Y quadratic form
$$g$$

Symm biliteer form g
 $f(x) = g(x, x)$
 $f(x) = g(x, x)$
 $f(x) = g(x, x)$

unless ther F = 2 - symmetre

$$g(x) = x^T A x = x^T \hat{A} x$$

$$\tilde{A} = \frac{A + A^{T}}{2}$$

$$g(x) = f(x, x) = a_{11}x_1^2 + (a_{12} + a_{21})x_1x_2 + a_{22}x_2^2$$

 $g(\underline{x}) = 1$

$$= 1 \quad \text{g(x, y)}$$

$$x, y \in \mathbb{R}$$

$$g(x,y) = ax^{2} + bxy + cy^{2}$$

$$g(x,y) = [x,y] \begin{cases} a & b/2 \\ b/2 & c \end{cases} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$g(x,y) = [x,y] \begin{cases} b/2 \\ b/2 & c \end{cases} \begin{bmatrix} x \\ y \end{bmatrix}$$

grater × = × 1 y = ×2

ellipses:

$$\chi^2 + \chi^2 = 1$$

 $5\chi^2 + \chi^2 = 1$

split mixed coeffereds $\begin{pmatrix} -x \\ -y \end{pmatrix} \neq \begin{pmatrix} x \\ y \end{pmatrix}$

(rotated)

(origin symmetry)

hyperholans; $x^{2}-y^{2}=1$

$$\frac{x^2-y^2}{2x^2-y^2}$$

emply set - bic reg. and a 0 ,

all O.

q(x, y, z) = a-x2+by2+cz2+ dxy1 exz +fyz

$$A = \begin{cases} a & d/2 & e/2 \\ d/2 & b & f/2 \\ e/2 & f/2 & C \end{cases}$$

$$g(x_{e}y, z) = 1$$

 $x^{2}y^{2}z^{2}z^{2} = 1$ - sphere
 $3x^{2} + 5y^{2} + z^{2} = 1$ - ellipsold
 $\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$
seri-axis lengths.

 $3x^2 - 5y^2 + 2^2 = 1$

hyporboloid of I sheet (2 hyperbolas, 1 empse)

formed of shought likes.

Stronght lines. 2 sheeks.

Stronght lines. 2 sheeks.

Sheeks.

Sheeks.

Sheeks.

Sheeks.

Sheeks.

roof formed this way,

St. Gregory's Chrsh - Gandhil and Paul Erdös.

Thm. If
$$A \in Mn(\mathbb{R})$$
 is a symmetric real matrix, then A has an arthonormal f ariginal and f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f and f are f and f are f are f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f are f and f are f are f and f are f and f are f are f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f a

Friday, 10/14, 2017 11:31 AM

So
$$x \cdot ed = \sum \alpha j \cdot ej \cdot ed = \alpha \cdot ed \cdot ed = \alpha \cdot d$$

So $x \cdot ed = \sum \alpha j \cdot ej \cdot ed = \alpha \cdot ed \cdot ed$

$$= \sum \lambda_i \alpha_i^2 = g(x)$$

So equation $g(x) = 1$ is agricularly

to $\sum \lambda_i \alpha_i^2 = 1$ is agricularly

to $\sum \lambda_i \alpha_i^2 = 1$ is agricularly

that is an ellipsoid $E = 1$ is a place.

This is an ellipsoid $E = 1$ is a place.

The space of the place of the pla

to ellipsoid - 3 Thus, every doject sim I axes of roteller.

Rayleigh's Principle.

A = A T & Mn (F)

 $g(x) = x^{7} A x$ TRA(x)= g(x) Nx112 | Payleigh guother.

 $(\forall \mu \neq 0) (R_A(\mu \times) = R_A(\times))$

 $(\exists x_0)(R_A(x_0) = \max_{x \neq 0} R_A(x))$

2, 2 2 2 .- 2 2n

 $\lambda_n = \min_{X \neq Q} P_A(X).$ $\lambda_1 = \max_{X \neq Q} P_A(X).$ $X \neq Q$

Rayleigh's Principle:

(HW+: g(x) = 1 can be expressed as $\sum \lambda i \alpha n^{-2} = 1$)

Det Orthonormal besis of 12°, basis 4', ..., en

s.t ei-ej= Sij. (ex. stendard bossis.)

Friday, July 14, 2017 11:47 AM

Suppose en, ..., en is one of \mathbb{R}^{1} . $\begin{bmatrix} X \end{bmatrix}_{e} = \begin{bmatrix} \alpha i \\ \vdots \\ \alpha n \end{bmatrix} = \alpha \qquad X = \sum \alpha_{i} e d$ $X = \sum \alpha$

The $x \cdot y = \alpha \cdot \beta$ if $[x]_{e^{2}} = \alpha$ and $[x]_{e^{2}} \neq \beta$ in one $[x]_{e^{2}} = \beta$

1x11 = x-x = x · x = 11 x 112 = \(\int \alpha \) = \(\int \alpha \) = \(\int \alpha \)

XIX = XIB.

In ONB $g(x) = \sum \lambda_i \alpha_i^2$ and $\|x\|^2 = \sum \alpha_i^2$.

Fischer - Corant Thom

u = spon (e, ez)

 $\min_{A} \rho_{A}(x) = \lambda_{2}$

by Rayleigh x ≠ 0 Principle Ti= max mm ULIRⁿ XGU dinzi X70

[HW] (for Thes.)

A E Mn (R) symm i ext out its row and its colomn.

BEMn-1 (P) symm

B= & A & (renewed.)

A: 2, 2 --- 2 2n

B: M, 2 -- 2 Mn-1

Eigenvalues ontrace

Thm. (Interlovency Theorem
for eigenvalues of
real matrices.)

(follows from Fischer - Conrant) IHWI A is adjacency maters of a graph G=(V, E), wh W|=n.

Eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$.

penembe: $\lambda, \leq \max$ degree

Show: $\chi_1 \ge avg$. degree = $\frac{\sum_{a \in N} deg(a)}{n} = \frac{2m}{n}$

(1 line bosed on Reyleigh's Principle).

Hint for Lemma assigned wed:

Aemn (F)

f is polynomial s.t. f(A) = 0

Suppose $f = g^{-h}$ s.t. gcd(g,h) = 1.

Here $\mathbb{F}^n = \text{Ker}(g(A)) \oplus \text{Ker}(h(A))$.

Hant: gcd is a linear combination, with

polynomials as coefficients.

* Reminde ! [HW] from wed /Thurs. leahners due