HW If G is a k-regular grap of girt ≥ 5, then $n \geq k^{2}+1$.
(girth $=$ length of shortest syce) no aydes of $\operatorname{g} \operatorname{bth}($ tree $)=\min \varnothing=\infty$

Note: $\quad A \subseteq B \subseteq \mathbb{R}$
$\min A \geq \min B$
$\forall A \quad \min \varnothing \geq \min A$

$$
\begin{aligned}
& \geq \operatorname{mhs} A \\
& \geq \operatorname{mhh}\left\{10^{6}, 10^{6}+1\right\}
\end{aligned}
$$

So min $\phi=\infty$.
(DO $f \in \mathbb{Z}[t] \quad f(t)=a_{0}+a_{1} t+\cdots+a_{n} t^{n}$ $a_{0} \neq 0$ and $a_{n} \neq 0$.
suppose $f(\alpha)=0$ and $\alpha=\frac{r}{5}$ where
Then $s l a_{n}$ and $r l a_{0}$. $\quad \operatorname{gcd}(r, s)=1$.
\mathbb{R} real quadratic forms over \mathbb{R}^{n}.

$$
\begin{aligned}
& \underline{x} \in \mathbb{R}^{n} \quad A \in M_{n}(\mathbb{R}), \underbrace{A=A^{\top}}_{\text {symmetric }} \\
& q(x)=\underline{x}^{\top} A \underline{x}=\sum_{i, j} a_{i j} x_{i} x_{j}
\end{aligned}
$$

If $(\forall \underline{x})(q(\underline{x}) \geq 0)$ then we call q "positue semidefrite".

In this case ne also call A "positive semidetionle".

$$
\neq 0
$$

If $(\forall \underline{x})(q(\underline{x})>0)$ then re call q.A "positive definite."

If $(\forall x)(q(x) \leq 0)$ then re call q A "negate semidelinite."
If $\left(\forall \underline{x}_{n}\right)(q(\underline{x})<0)$ then re call $q \cdot A$ "negate detmite."

If q is neither positive semidelunte nor regatre surridefinte, we call q, A "indefinite".
i.e. q is indefinite if

$$
\left(\exists x, y \in \mathbb{R}^{n}\right)(q(x)>0, q(7)<0)
$$

$$
\left\|_{\underline{x}}\right\|=\sum x_{i}^{2} \quad \text { (Eudideen nom) - posilive definite. }
$$

$$
\begin{aligned}
& \|_{\underline{x}}=\sum x_{i} \\
& x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{4}^{2} \quad \text { indelinite }
\end{aligned}
$$ relatinty metric)

(DO) $A \in M_{n}(\mathbb{R})$, symmetrie.
A is positive detinite \Leftrightarrow all eigenvalues are positive.

Prook Spectral Thm. $\Rightarrow A$ has orthoncrwal eigurbasis.
$\longrightarrow e_{1}, \ldots, c_{n}$ s.t $A c_{i}=\lambda_{i} e^{\prime}$ - eigenbasis $e_{i}-e_{j}=\delta_{i j}=\left\{\begin{array}{ll}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{array}\right.$ othonomal.

$$
\underline{x}=\sum \alpha_{i} e_{i}
$$

$\underline{x}^{\top} A x=\sum \lambda_{i} \alpha_{i}{ }^{2}$ definitely be t.
If not all positie, can choose vectur s.t. ≤ 0.
pos. semidefinte $\Leftrightarrow(\forall i)\left(\lambda_{i} \geq 0\right)$
reg. def $\Leftrightarrow\left(\forall_{i}\right)\left(\lambda_{i}<0\right)$
reg. semidenarte $\Leftrightarrow(\forall i)\left(\lambda_{i} \leq 0\right)$
indehnike $(\exists i, j)\left(\lambda_{i}>0\right.$ and $\left.\lambda_{j}<0\right)$
obsevalien: If A pos. det. then $\operatorname{det} A$ is positue.
(Let is product of cigenalas -

Observation. If A is positive definite, then B is positive definite.
clams: If $y \in \mathbb{R}^{n-1}$ and $y \neq 0$ then

$$
y^{\top} B y>0 .
$$

Let $\underline{x}:=\left[\frac{y}{0}\right]^{-1}$ coordinates

$$
\underline{y}^{\top} B y=\underline{x}^{\top} A \underline{x}>0
$$

(0 does ret contribute to the som.) \square

Car. All "corner matures" (Cat off last row) last columns) are positive detinue
Cor- All comer matrieos hare posiffice determinant
Thm A pos. def \Leftrightarrow all corner matrices have positue determent 00
(Do If A pos. def, then all diagonal entices are positive $=a_{i i}>0$.
(thins:

the eigenvalues interlace.)
$\hat{i}^{\prime}{ }_{i}$ pos. def
$2^{n}-1$ possible symuatir matrices.
Cut by the, n conditions suffice.)
$-I_{2 \times 2}=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ (DO Find A st. all cover $\operatorname{det} \geq 0$ yet A is $-\sum x_{i}^{2}$ indefinite.

Question: How can we check (wrthat using eigenvalues) whether A is positive semidefinite?

Spectral Graph Theory
$G \leadsto$ adjacency matrix $A_{G}=\left(a_{i j}\right)$

$$
\begin{aligned}
& a_{i j}= \begin{cases}1 & \text { if } \quad i \sim j \quad \text { (adjacent) } \\
0 & \sigma / \omega\end{cases} \\
& a_{i i}=0 \quad \forall i \\
& \therefore \operatorname{Tr} A=0 \\
& \therefore \sum_{i} \lambda_{i}=0 \text {. } \\
& \lambda_{1} \geq \ldots \geq \lambda_{n}
\end{aligned}
$$

aug. deg $\leq \lambda_{1} \leq \max$ deg.
\therefore If G is k-regier.

$$
\lambda_{1}=k
$$

sum of $i^{\text {th }}$ row $=\operatorname{deg}$ of vertex i

Eigenvector to λ_{1} : all-ores $\left(\begin{array}{l}1 \\ \vdots \\ 1\end{array}\right)$

$$
A\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)=\left(\begin{array}{c}
\operatorname{deg}(1) \\
\vdots \\
\operatorname{deg}(n)
\end{array}\right)
$$

Complete graph

$$
\begin{aligned}
& \text { Complete graph } \\
& A_{k_{n}}=\left(\begin{array}{ccc}
0 & & 1 \\
0 & 1 \\
1 & \ddots & 0
\end{array}\right)=J_{n}-I_{n} \rightarrow \text { ideas orly. }
\end{aligned}
$$

$$
\text { gean } \operatorname{mitt} J(0)=n-1
$$

$\therefore n^{\underline{y y}}$ eigenvalue ${ }^{v}=n$ (since $\operatorname{Tr}(J)=n$) of J

$$
J: n, 0, \ldots, 0
$$

subtracting I foo a matrix redvees the eigenvalues by 1, so

$$
J-I: n-1,-1, \cdots,-1
$$

$f_{G}=f_{G_{1}} \cdot f_{G_{2}}$ so eigenvalues of G are combed eigerwahes of G_{1}, G_{2} cher poly of adj. neWt of G
Suppose G_{1}, G_{2} are k-regular then k has multiplicity ≥ 2.

(DO) Assume G is k-regular. Then components.

For k-regular graph, "as the eigenvalue gap $\lambda_{1}-\lambda_{2}=k-\lambda_{2}$ grows, the graph gets more interconnected." $\rightarrow n$ algebraic connectivity of the graph" (discovered by Mivodar Fiedler ~la70s) Mixing rate of random walks, Marker chars. Scotland Yard - British FBI (board gave)
 Every $5^{\text {th }}$ move villain surfaces probability 1 .

Then diffuses ... comerges toward uniform/ coth reappearance stationery distribution.

$$
\begin{aligned}
& \text { Laplacian of groph } \\
& L_{G}=D_{G}-A_{G} \text { whe } D_{G}=\left(\begin{array}{lll}
\operatorname{deg}^{\prime} & & 0 \\
\operatorname{dog} 2 & & \\
0 & \ddots & \operatorname{dgg}(n)
\end{array}\right) \\
& \\
& \\
&
\end{aligned}
$$

Laplacion of groph

Thim L_{G} is positre semidetinte.
Claim. $\operatorname{det}\left(L_{G}\right)=0$.
(σ is an eignmake Meigprector all-ones.)
obs.
A positio defimite maths is nonsingulor, so L_{G} is not positie dehnive.
Thm If, L_{G} has eigenalues $k_{1} \geq \cdots \geq k_{n}$, then $k_{n}=0$.
Prook Singler ard positue semidelinte. a when is mellipliary of $0>1$? Bemply graph.
isolated vehex.disconrected graph
(Do Muliptiath of $0=\#$ of conneated components.
In pothaler, $k_{n-1}>0 \Leftrightarrow G$ connected
If G is k-reguler, then
$L_{G}=k I-A_{G}$ If eigenalues of A_{G} are

$$
\begin{aligned}
& L_{G}=\underbrace{k-\lambda_{1}}_{k_{n}} \leq \underbrace{k-\lambda_{2}}_{k_{n}-1} \leq \cdots \geq \lambda_{n} \\
& 0=\underbrace{k-\lambda_{n}}_{x_{1}} .
\end{aligned}
$$

show: L_{G} is positue semidelintre.
DO

$$
\begin{aligned}
\underline{x}^{\top} L_{G \underline{x}} & =\sum_{i \sim j}\left(x_{i}-x_{j}\right)^{2} & & \underline{x} \in \mathbb{R}^{n} \\
& \geq 0 & & \underline{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
\end{aligned}
$$

Also solues multiptioty of $0=\#$ corrected comporents.

Eudidean space:
V over \mathbb{R} endowed with a positive definite inner produd::
bilinear form

$$
\begin{aligned}
\underline{x}, y \in V & \longmapsto\langle\underline{x}, \underline{y}\rangle \in \mathbb{R} \\
& \text { I angle } \underline{x}, y \text { Irangle }
\end{aligned}
$$

$$
\langle\underline{x}+\underline{y}, \underline{z}\rangle=\langle\underline{x}, \underline{z}\rangle+\langle y, \underline{z}\rangle
$$

etc.
symuratie: $\langle\underline{x}, \neq\rangle=\langle y, \underline{x}\rangle$

$$
\underline{x} \neq 0
$$

Def $x \perp \mathcal{F}$ if $\langle x, y\rangle=0$.

$$
\|\underline{x}\|=\sqrt{\langle\underline{x}, \underline{x}\rangle}
$$

(DO) Cauchy - Schworz: $\mid<x, y>l \leqslant\|x\| \cdot \| y U$
(DO) Triangle Inequality: $\|x+y\| \leq\|x\|+\|y\|$.

Standaret example: $V=\mathbb{R}^{n}$

$$
\langle x, y\rangle=\underline{x} \cdot y
$$

Gereral fom of bither foms over \mathbb{F}^{n} :

$$
\begin{aligned}
& f(x, \psi)=\underline{x}^{\top} A y, \quad A \in M_{n}(\mathbb{F}) \\
& \underbrace{f(x, y)=f(y, \underline{x})}_{f \text { symuetio }} \Leftrightarrow \underbrace{A=A^{\top}}_{A \text { sypurchie }}
\end{aligned}
$$

$f(\underline{x}, \underline{x})$ is positive deante $\Leftrightarrow A$ pos. dal (over \mathbb{R}) Gereal fams of a posithe definte inner product orer $\mathbb{R}^{n} B$ $f_{i} g \in \mathbb{R}[x]$ (real pdynourds)

$$
\langle f, g\rangle=\int_{-\infty}^{\infty} f(t) \cdot g(t)-e^{-t^{2}} d t
$$

(DO) $\langle f, g\rangle$ alweys converges.
This is positive dek

Mare geverally,

$$
\langle f \cdot g\rangle=\int f-g \cdot w(t) d t
$$

w weight fuation ≥ 0
sometives >0.
(also intgral mot carvege)

Matrices

$$
\begin{aligned}
& A, B \in M_{n}(\mathbb{R}) \\
& e_{x}: \angle A, B>=\operatorname{Tr}\left(A^{\top} B\right)
\end{aligned}
$$

(DO) pos. deh

Gram - Schanidt orthogonalization
inpt: $N_{1}, v_{2}, v_{3}, \ldots,\{$ (sequence of neators)
octpet: $b_{1}, b_{2}, b_{3}, \ldots$

$$
\text { s.f. (1) For } i \neq j \text {. } \underline{b}_{i} \perp b_{j} \text {. }
$$

(2) $b_{i}-\sim_{i} \in \operatorname{Spen}\left(v, \ldots v_{i-1}\right)$.

Thm (1) and (2) uriquely detenive the outpit

Proof Let $U_{\delta}=\operatorname{span}\left(v_{1}, \ldots v_{i}\right)$

$$
u_{0}=\operatorname{span}(\phi)=\{0\}
$$

Claim. $u_{i}=\operatorname{Spen}\left(b_{1}, \ldots, b_{i}\right)$
Suppose already $u_{i-1}=\operatorname{Span}\left(b_{1}, \ldots, b_{i-1}\right)$.
(DO) (from (2))

$v_{3}{ }^{\text {i poraluers to paper }}$ at Lp .
choose \perp to paper, $b_{1}-v_{1} \in u_{0} \Rightarrow b_{1}=N_{1}$ tip on place for b_{3}.

Now se reed to find b_{i} in the fou

$$
b_{i}=v_{i}+\sum_{j<i} \alpha_{j} b_{j}
$$

Need to find α_{j}, and reed $b_{i} \perp b_{k}$ for $k<i$.

$$
\begin{aligned}
& \left\langle b_{i}, b_{k}\right\rangle=\left\langle v_{i}, b_{k}\right\rangle+\sum_{j=1}^{i-1} a_{j}\langle\underbrace{\left\langle b_{j}, b_{k}\right\rangle}_{0 \text { unless }} \\
& p \text { ven wish }
\end{aligned}
$$

$$
\begin{aligned}
& =0 .=\left\langle v_{j}, b_{k}\right\rangle+\alpha_{k} \cdot\left\|b_{k}\right\|^{2} \\
& \alpha_{k}=-\frac{\left\langle v_{i}, b_{k}\right\rangle}{\left\|b_{k}\right\|^{2}}
\end{aligned}
$$

LOGIC
\Downarrow uniqueness

$$
a_{k}=-\frac{\left\langle v_{i}, b_{k}\right\rangle}{\left\|b_{k}\right\|^{2}}
$$

if existence (reversible)

What if $\left\|b_{k}\right\|^{2}=0$?

Then $\quad b_{k}=0$.
but then αk does nd t matter.
(choose $\alpha_{k}=75-3$ or $\alpha_{k}=0$.)
(D0) If v_{1}, v_{2}, \ldots are pairuize orthogonal. nonzero, then lin. indep
when is $b_{k}=0$?

$$
\begin{equation*}
\Leftrightarrow v_{k} \in \operatorname{Span}\left(v_{1}, \ldots, v_{k-1}\right) \tag{DO}
\end{equation*}
$$

In particular, if the v_{i} are linearly independent then none of the b_{i} are 0 . \Rightarrow bi are linearly independeh

In poriculan if v_{1}, \ldots, v_{n} is a basis then $b_{1}, \ldots b_{n}$ is also a basis. \rightarrow orthogonal

$$
\underline{v} \neq \underline{0} \Rightarrow \underline{v}^{\prime}=\frac{\underline{v}}{\|\underline{v}\|} \Rightarrow\left\|\underline{v}^{\prime}\right\|=1 .
$$

Cor. If $\operatorname{div} V$ is finite [or countable], then V has an orthonormal basis.
(Take basis \rightarrow apply Gram - Schuidt \rightarrow nomadize outputs)

Basis of $\mathbb{R}[t]: 1, t, t^{2}, \ldots$
if we have a weight hurehien $w(t)$ sit

$$
\int_{-\infty}^{\infty} z^{2 n} w(t) d t<0 \text { for every } n \text {, }
$$

we can orthogonalizee $1, t, t^{2}, \ldots$ to get a seq, of orthogonal polyp

$$
\begin{aligned}
& \text { a seq, of } \quad \text { where } \operatorname{deg} f_{i}=i . \\
& \left\langle f_{1} g\right\rangle=\int_{-\infty}^{\infty} f \cdot g \cdot \omega d t \quad(\forall i)\left(\operatorname{sper}\left(f_{0}, \ldots, f_{i}\right)=\mathbb{R}^{2 i}[t]\right)
\end{aligned}
$$

Fix weight function w.
fo. f_{1}, \ldots - sequence of orthogonal polynomials.
Thu. All roots of the f_{i} are real and the roots are interlaced.
(roots of f_{i-1} interlace roots of f_{i}).

$$
\cos (n t)=\overline{T_{n}(\cos t)} \quad(\text { polynomial of } \operatorname{dg} n)
$$

$$
\begin{array}{ll}
\cos (2 t)=2 \cos ^{2} t-1 & T_{1}(x)=x \\
T_{2}(x)=2 x^{2}-1 &
\end{array}
$$

(DO) Evaluate τ_{n} for $n=3,4,5$.
T_{n} are called the Chebyshen polynomials of the first kind.

$$
\frac{\sin (n+1) t}{\sin t}=U_{n}(\cos t)
$$

Chebysher polynomials of second kind.

$$
\begin{array}{ll}
n=0 & U_{0}(x)=1 \\
n=1 & v_{1}(x)=2 x
\end{array} \quad \sin 2 t=2 \sin t \cos t
$$

(DO) Evaluate for small n.
These polynomials are orthogonal crt.

$$
\langle f, g\rangle=\int_{-1}^{1} f \cdot g<\frac{1}{\sqrt{1-t^{2}}} d t
$$

Hermite polynomials
weight fundion: $e^{-t^{2}} e^{-t^{2} / 2}$
matching polynomials - physicists.

