If $u \subseteq v=\mathbb{F}^{n}$, then $\operatorname{dim} u+\operatorname{dim} u^{\perp}=n$.
"Fix a orthonormal busts..." - why cant you do this?
Might not be able to normalize a vector (dividing by char)
Build a matrix whose berrel is U^{\perp}.

Basis of u : e_{1}, \ldots, e_{j}
projection matrix (A)
If \hat{T} is all 0 , then $\underline{x} \perp \cup$.
theorem... $\left(\underline{x} \perp \underline{e}_{i} \forall i\right)$,
Use rank - nullity
so u^{\perp} is beer A.
$\operatorname{dim} U=\operatorname{din} \sin A$
dims $U^{\perp}=\operatorname{dim}$ per A so $\operatorname{dim} U+\operatorname{dim} U^{\perp}=n$.

For all $A \in \mathbb{Z}^{k_{x} \ell}$ and any prime p,

$$
\begin{aligned}
& r k_{p}(A) \leq r k_{0}(A) \text {. } \\
& A=\left(\begin{array}{ll}
(& \\
&
\end{array}\right) \\
& \operatorname{det} \neq k p \\
& \neq 0 \\
& \text { in } \mathbb{F}_{0}, \operatorname{det}_{\boldsymbol{r}} \neq 0 \\
& \text { kkk nosing per submatix }
\end{aligned}
$$

If we knar v_{1}, \ldots, v_{n} ae lin. index in \mathbb{F}_{p} and linearly dependent in \mathbb{Q},

$$
0=\sum_{i=1}^{n} \frac{r_{i}}{s_{i}} v_{i}
$$

Multiply both sides by max $\left\{s_{i} \mid i \in \operatorname{mn}\right]!\cdots$ $0=\sum^{n} \frac{s_{\text {max }}!}{s i} \rightarrow$ take $\operatorname{gcd}\left(\left.\frac{s_{\text {max }}!}{s_{i}} r_{i} \right\rvert\, i \in[n]\right)$ after factoring at ged, $\in \mathbb{Z}$ so not a shored facial combers in $F_{P} P$. $口$

Find $r k_{2}\left(J_{n}-I_{n}\right)$.
$J_{n}=(1)_{n \times n}$

$$
I_{n}=\left(\begin{array}{llll}
1 & & & \\
& 1 & & 0 \\
& & 1 & \\
& 0 & & 1
\end{array}\right)
$$

$$
|r k(A)-r k(B)| \leq
$$

$$
r_{2}(A+B)
$$

$$
n-1 \leqslant r k\left(J_{n}-I_{n}\right)
$$

$n-1 \equiv 0(\bmod 2)$ if n is add,
so $r_{2}\left(J_{n}-I_{n}\right)$
$\equiv 1(\bmod 2)$ if n is even, so

$$
\begin{aligned}
& \text { even, so } \\
& \operatorname{rm}_{2}\left(J_{n}-I_{n}\right)=n .
\end{aligned}
$$

Assume cols u_{1}, \ldots, u_{n} are linearly dependent Then $\exists i$ st

$$
u_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{n} a_{j} u_{j} \text { whee } a_{j} \in\{0,1\}
$$

lwhor let $i=1$.)

$$
u_{1}=u_{2} a_{2}+\ldots+\operatorname{tn} a_{n} \text { whee } a_{i} \in\left\{0_{1} 1\right\} \text {. }
$$

from $1^{\text {st }}$ row 1

$$
\text { rom } 1 \frac{\text { sr }}{}=a_{2} \cdot 1+a_{3}-1+\cdots+a_{n}-1=a_{2}+\cdots+a_{n}
$$

all other rows.

$$
\begin{aligned}
& \text { all other rows } \\
& 1=a_{2} \cdot 1+a_{3} \cdot 1+\cdots+a_{i} \cdot \text { ot } \cdot+a_{n} \cdot 1
\end{aligned}
$$

subtract ...

$$
a_{i}=1 \quad \forall i
$$

But if even, then sun of odd $\#$ of I's is odd, so contradiction $0=1 \ldots$ con

$$
=r k\left(\begin{array}{cccc}
-1 & 1 & & 0 \\
0 & - & \ddots & 0 \\
1 & & \ddots & 1 \\
\vdots & & \ddots & 1 \\
0 & - & 0 & n-1
\end{array}\right)
$$

If n is add, last col all O... $r h=n-1$.

If n is even, fIll rok: n.

Subtuching the identity redras all eigenvalues by 1 :

$$
\operatorname{det}(t I-A)=f_{A}
$$

$$
\begin{aligned}
& \operatorname{det}(t I-A)=\operatorname{det}(t I-(A-I))=\operatorname{det}((t+1) I-A) . \\
& J_{A-I}-I_{n} \rightarrow(-1, \ldots,-
\end{aligned}
$$

For J_{n} over $\mathbb{R}: \quad J_{n}-I_{n} \rightarrow(-1, \ldots,-1, n-1)$

$$
J_{n} \rightarrow(\underbrace{0, \cdots, 0, n)}_{n-1 \leftharpoonup} \text { by rank onculizy. }
$$

$$
J_{n}-I_{n}:(1,1, \ldots, 1, n-1)
$$

If n is add, eigenvalues.
$\left(\begin{array}{c}1 \\ 1 \\ \vdots\end{array}\right)$-eigenvector for $\lambda=0$ in $\mathbb{F}_{2}{ }^{n}$.
By rakk-mulin, \quad rem $\left(J_{n}-Z_{n}\right)=n-1$

$$
\begin{aligned}
f_{J_{n}} & =t^{n-1}(t-n) \quad(\text { over } \mathbb{R}) \\
& =t^{n}-n t^{n-1}
\end{aligned}
$$

we get char pay to be same mod 2 (arithectre operations prosened)

For even values of n, J_{n} is not diagenartrable over \mathbb{F}_{2}.
For odd values of n, J_{n} is diagonatizable. $\begin{aligned} \operatorname{det}\left(\begin{array}{ccc}0 & & 1 \\ 0 & 1 & 1 \\ 1 & \ddots & 0\end{array}\right) & =(0+(n-1) 1)(0-1)^{n-1} \\ & =(n-1)(1)^{n-1}=n-1\end{aligned}$

Lecture
Euclidean Space: V - vector space over \mathbb{R} with pos. def symretive inner prod ed.

$$
\|v\|=\sqrt{\langle v, v\rangle} \quad v \perp w:\langle v, w\rangle=0 \text {. }
$$

e_{1}, \ldots, e_{k} is an orthonormal system if $\left.c e_{i,} e_{j}\right\rangle=\delta_{i j}$. (kronecker δ) \quad) always lin. indep.

ONB - orthonormal basis.
Thy. If dim V is finite (or countable),
then V has an ONB.
Proof Take a basis, orthogonalize it (Gram Schmidt), normalize it.
Thy. If $\operatorname{dim} V$ is finite (or cantable), then every orthonormal system on be completed to an orthonormal basis.
Proof Take orthonarded system, complete to basis, orthogeralize and normalre.

in indef.

$$
\underbrace{e_{1}, \ldots, e_{k}}_{\substack{\text { on } \\
\text { system }}}, \left.\underbrace{v_{1}, \ldots, v_{n}}_{\text {basis }} \rightarrow \begin{gathered}
\text { orth. } \\
\downarrow
\end{gathered} \right\rvert\,(G S)
$$

Throw at Os - how do ne knar this is suffice?

First n inputs spar same os first n atpets $\forall n . \sim$ so $\mathrm{mil}^{\text {ll }}$ form basis if considering all.

Consider Eudiden spaess $\left(V,<\ldots>_{V}\right)$ and

$$
(w,<\ldots>w)
$$

An isometry of Eudidean spaces is an isomorphism $\quad f: V \rightarrow w$ s.t

$$
(\forall x, y \in v)(\underbrace{\left.\langle x, y\rangle v=\langle f(x), f(y)\rangle_{w}\right)}_{\text {somorphism }} \text {. }
$$

preserves shner product
V, W are isometre if thece exists an Bometry $\quad V \rightarrow W$.
Thm If $\operatorname{dim} V=n$ then V is isometire to R^{n} wrt sterdorel det produet

Proof pich an ONB in $V: e_{1}, \ldots, e_{n}$, and let $f_{1, \ldots}, \ldots n$ be the stendord basis of \mathbb{R}^{n}. f_{1}, \ldots, f_{n} is $O N$ urt. standord dot produch $\underline{x} \in V \quad \underline{x}=\sum \alpha_{i} e_{i} \quad \underline{x} \longmapsto\left[\begin{array}{c}\alpha_{1} \\ \vdots \\ \alpha_{n}\end{array}\right] \in \mathbb{R}^{n}$

$$
\varphi(x)=[x]_{\underline{e}}=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]
$$

$\varphi: V \rightarrow \mathbb{R}^{n}$ isomophism
NTS: φ presenes inner produet, i.e.

$$
\begin{aligned}
& (\forall x, y \in V)\left(\langle x, y\rangle=[x]_{\underline{e}}^{\top}[y]_{\underline{e}}\right) \\
& \underline{x}=\sum \alpha_{i} e_{i} \quad\langle\underline{x}, y\rangle=\left\langle\sum \alpha_{i} e_{i}, \sum \beta_{j} e_{j}\right\rangle \\
& y=\sum \beta_{j} e_{j} \rightarrow \sum_{i} \sum_{j} \alpha_{i} \beta_{j} \underbrace{\left\langle e_{i}, e_{j}\right\rangle}_{\delta_{i j}} \\
& \text { by } \\
& \text { bilineerty } \\
& =\sum_{i=1}^{n} \alpha_{i \beta j} \\
& =\left[\begin{array}{lll}
i=1 \\
\alpha_{1} & \cdots & \alpha_{n}
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{n}
\end{array}\right] \\
& =[x]_{\underline{e}}^{\top}[y]_{e}^{e}
\end{aligned}
$$

Coudly - Schworz:

$$
1<x, y>1-\leqslant\left\|_{x}\right\| \cdot \| y{ }^{\prime \prime}
$$

Clains.
equiv. to triongle inequality: $\|v+v\| \leq\|u l l+\| v n$.

Cauchy - Schwartz $\Rightarrow \Delta$ ineq.
NTS: $\|u+v\|^{2} \leqslant\|u\|^{2}+\|v\|^{2}+2-\|u\|-\|v\|^{2}$

$$
\begin{aligned}
& \langle u, u\rangle+\langle v, v\rangle \\
& +\langle v, v\rangle+\langle v, v\rangle \\
& \langle u, v\rangle=\| u u^{2} \\
& \langle v, v\rangle=\|v\|^{2} \\
& \langle u, v\rangle=\langle v, u\rangle
\end{aligned}
$$

All steps
reversible (wo absolute
value), so $\uparrow \downarrow$.
Note: $\mid\langle x, y\rangle 1 \leq\|x\|$. $11 y \|$ equal

$$
\langle x \cdot y\rangle \leq\|x\| \cdot\|y\|
$$

by Cauchy -
Schworz.

$$
\begin{aligned}
& \qquad \\
&=\langle-x, y\rangle \leq\|-x\| \cdot\left\|_{y}\right\| \\
&=\left\|x_{x}\right\| \cdot \|_{y} h
\end{aligned}
$$

\square
\therefore To prove $C-S$, it sufores to prove Δ-iveq
V is Eudiden space.

NTS: $n \underline{x}+y^{\|}\| \|^{n} n+\pi_{y} n$
Let $u=\operatorname{span}(x, y)$
$\operatorname{dim} u \leqslant 2$ (by 1 st mavade?
$\therefore u$ is isomatir to $\mathbb{R}^{k}, k \leq 2$.
U isometrically embeds in the plare, but A-ineq. holds in plare, so Δ-ineq carries over byy ibametry.

Cor. If $f, g \in \underset{\sim}{C}[0,1]$,
contimous freatios
ther $\left(\int_{0}^{1} f-g \cdot w d t\right)^{2} \leq \int_{0}^{1} f^{2} w-\int_{0}^{1} g^{2}-w$.
(w is veight funer)

In Eudidean space:

$$
\text { distance }(x, y):=11 x-y^{4}
$$

(DO) This satisfies the Triangle Inequality. angle $x, y \neq 0$

\[

\]

Solve this for θ : possible?
Yes, by Cauchy - Schwartz, $|\langle x, y\rangle| \leq n \times 11-1 h y n$,
So $\frac{\langle x, y\rangle}{\|x\| \cdot n y \|} \in[-1,1]$.
(wAl gie unique son between 0 and π.)
Car. Law of Sines and Law of Cosines holds in any Eudidean spaces.
U. $v \in \mathbb{R}^{2} \quad$ paralllogram spanved by

$\underline{U}, \underline{v}$

$$
\operatorname{Para}(\underline{u}, \underline{v})=\{\alpha \underline{u}+\beta v \mid 0 \leq o r, \beta \leq 1\}
$$

(D0) If $u, v \in \mathbb{Z}^{2}$, shen $\operatorname{arca}(\operatorname{Para}(\underline{u}, v)) \in \mathbb{Z}$.
(D0) If $u, \underline{w}, \underline{\mathbb{Z}^{3}}$, then
$\operatorname{vol}(\operatorname{Para}(\underline{w}, \underline{w})) \in \mathbb{Z}$. (Parallelepiped)
If $\underline{u}, \underline{v} \in \mathbb{Z}^{3}$, then $\operatorname{area}(\operatorname{Pora}(\underline{v}, \underline{v})) \in \mathbb{Z}$?
Na
$\underline{u} \in \mathbb{Z}^{2} \Rightarrow$ lengh (u) $\in \mathbb{Z}$

$$
\begin{aligned}
\text { lengtes of u} & =\sqrt{3^{2}+2^{2}} \\
& =\sqrt{r 3}
\end{aligned}
$$

(DO) If $u, \underline{v} \mathbb{Z}^{3}$, then $\operatorname{area}(\operatorname{Para}(x, \underline{u}))$ is squt- of an integen

If $u_{1}, \ldots, u_{n} \in \mathbb{Z}^{n}$ is a basis of \mathbb{R}^{n}, then $\operatorname{val}_{n}\left(\operatorname{Para}\left(u, \ldots u_{n}\right)\right) \in \mathbb{Z}$.
If $u_{1}, \ldots, v_{k} \in \mathbb{Z}^{n}$ are lin. indep,
then $\operatorname{vol}_{k}\left(\operatorname{Para}\left(u, \ldots, u_{n}\right)\right)$ is sqrt of an int
\mathbb{R}^{2}

Claim. area $= \pm$ det. (deperds on clocknise

$$
\begin{aligned}
& \text { or conterclockurse) } \\
& s \underbrace{\} S_{2}} \quad\left(\begin{array}{cc}
r_{1} & 0 \\
0 & s_{2}
\end{array}\right) \quad \text { or LHR/RHR in 3-D. }
\end{aligned}
$$

C det $\eta=r_{1} s_{2}=$ orea red
But this culting and pasting deesnt chonge det (collow ops), so \pm det $=$ area.

The $\operatorname{Vol}_{n}\left(v_{1}, \ldots, v_{n}\right)= \pm \operatorname{det}$.
(If in. dep., vol is 0 and dat is 0 .)
This settle full-ronk ?'s. what abut the others?
k-dim volume in n-dim Euclidean $\operatorname{space}(k \leq n)$
(1) If $v_{1}, \ldots, v_{k} \in V$ orthogonal, then

$$
\begin{aligned}
& v_{1}, \ldots, v_{k} \in V \text { orthogonal, } k \underbrace{k}_{\text {brick }} \underbrace{\operatorname{para}\left(v, \ldots, v_{k}\right.}_{i=1}))=\prod_{i} l
\end{aligned}
$$

(2) Vol. is additive: If $A, B \leq U \leq v$, with $\operatorname{dim} U=k$, and $A \cap B=\varnothing$ then

$$
\operatorname{Vol}_{k}(A \cup B)=\operatorname{Vol}_{k}(A)+\operatorname{Vol}_{k}(B)
$$

Def If $V_{1}, \ldots, v_{k} \in V$, where V is a Eudideen (any din),
the Gram matrix of $v, \ldots, v k$ is

$$
G\left(v_{1}, \ldots, v_{k}\right)=\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{k \times k}
$$

This matrix is symmetric ble inner product is.
(DO) G is positive semidehinite.
(D) G is nonsinglor $\Leftrightarrow v_{1}, \cdots, v_{k}$ are lin. indep.
ie. $\operatorname{det} G \neq 0$
Gram deternshant / Grampian
(DO) In fuet, $\quad r_{k}\left(G\left(v_{1}, \ldots, v_{k}\right)\right)=r_{k}\left(v, \ldots, v_{k}\right)$.
If $V=\mathbb{R}^{n}$ nt stendarel dot product:

$$
A=\left(\begin{array}{ccc}
1 & & 1 \\
v_{1} & \ldots & v_{k} \\
1 & & 1
\end{array}\right)_{n \times k}
$$

then $G\left(v_{1}, \ldots, v_{k}\right)=A^{\top} A$.
We had Exercise: over $\mathbb{R}, \operatorname{rk}\left(A^{\top} A\right)=\operatorname{rk}(A)$. \square
(DO) Give simpler proof of \uparrow via

$$
\begin{aligned}
& \text { Give simpler prot } \\
& \text { re }\left(G\left(v_{1}, \ldots, v k\right)\right)=v_{k}\left(v_{1}, \ldots, v_{k}\right) \\
& v_{b} \in v(
\end{aligned}
$$

(D0) The. If $v_{1}, v_{2}, \ldots v_{k} \in \vee$ (Euclidean space),

$$
\operatorname{Vol}_{k}\left(v, \ldots, V_{k}\right)=\underbrace{\sqrt{\operatorname{det}\left(G\left(v, \ldots, v_{n}\right)\right)}}_{\text {Gramion - integer }}
$$

If $G k$-regear of gish ≥ 5 then $n \geq k^{2}+1$. (HW for today).
Take a vertex ar (root).

$$
1+k+k(k-1)
$$

$$
=k^{2}+1
$$

3 -cycles
\therefore must hove at least

$$
b^{2}+1
$$ pelias.

Is three bard tight?
Case of equality. -
works for

$$
k=7 \quad n=7^{2}+1=50
$$

Hofframer-Singteton graph
$k=57$ wats?
(Petersen)
The If
Does not wort for $k=4,5,6$. $n=k^{2}+1$ then
Proof tomorrow! $\rightarrow k=\{1,2,3,7,57\}$.

