Laplación:

$$
L_{G}=D_{G}-A_{G}-\text { adjacency mathix. }
$$

$$
\operatorname{diag}(\operatorname{deg}(1), \ldots, \operatorname{deg}(N))
$$

(1) $L_{G} \cdot \frac{1}{\hat{\gamma}}=\sigma$.
all is vector
In each row... $\rightarrow \quad \begin{aligned} & v_{1} \sim v_{2} \\ & v_{6}\end{aligned}$
so som of

$$
\left[\begin{array}{llllll}
3 & -1 & -1 & 0 & 0 & -1
\end{array}\right]
$$

row is 0 .
mouplying by 1

$$
\therefore 0
$$

gres sum of row
(2) L_{G} is posifive semidefunte.

$$
\begin{aligned}
& L_{G} \text { is positive semidefinke, } x^{\top} L_{G} x=\sum_{i \sim j}\left(x_{i}-x_{j}\right)^{2} \\
& \text { In po-Halor, conneetet by }
\end{aligned}
$$

Divected incldence matix $B(G)-|V| \times|E|$ matix. rours labeted by v entry $e=\left(v_{i_{1}}, v_{i_{2}}\right)$ columers labeled by E. +1 at row V_{i}, - 1 at row $V_{i z}$ o Asenhere.

NTH:
edges ($1-1$ or $-1-1$)
\Rightarrow deg of i along clogs.
$i \cdot j, i \neq j$: only -1 if corrected by same edge. (a 1 and -1 pair)

$$
\therefore B(G) B(G)^{\top}=L_{G}
$$

Now $x^{\top} B(G) B(G)^{\top} x=\left(B(G)^{\top} x\right)^{\top}\left(B(G)^{\top} x\right)$

$$
\begin{gathered}
y^{\top} y \\
B(G)^{\top} x \text { is } x_{i}-x_{j}
\end{gathered}
$$

$$
\angle \sum_{i \sim j}\left(x_{i}-x_{j}\right)^{2}
$$

in each row, where
i is the location of +1 and j is location of -1
$\therefore L_{G}$ is posidne semidefurte.
$\left(B(G)^{\top} x\right)^{\top}\left(B(G)^{\top} X\right)$ is dot product of each raw of $\left(B(G)^{\top} x\right)$ witself.

Gram Malwx

$$
\begin{aligned}
& v_{1}, \ldots, v_{k} \in V \\
& G\left(v, \ldots, v_{k}\right)=\left(\left\langle v_{i}, v_{j}\right\rangle\right)=G
\end{aligned}
$$

(i) G is positure semidefiute.

$$
M_{k \times n}=\left[\begin{array}{c}
-v_{1}- \\
-v_{2}- \\
\vdots \\
-v_{k}-
\end{array}\right] \quad \begin{aligned}
& M M^{\top}=G \\
& (\text { row-x } \text { trarspose col }= \\
& \text { mner proddt })
\end{aligned}
$$

$$
X^{\top} M M^{\top} X
$$

$\left(M^{\top} x\right)^{\top}\left(M^{\top} x\right) \rightarrow$ by save logre as last prob, positre semidetrite.
(2) nonsingular $\Leftrightarrow V_{1}, \ldots, V_{k}$ tineerly independent In $\mathbb{R}, \quad r k\left(A^{\top} A\right)=r k(A)$, so if M has $A l$ row rark, G does too. (Note if M has less cols thes rous the rans most be Lh. dep and G is singlen)

$$
\left.\left(v_{k}\right)\right)= \pm \operatorname{det}\left[\begin{array}{c}
-v_{1}- \\
-v_{2}- \\
\vdots \\
-v_{k}-
\end{array}\right]_{k \times k}
$$ where $v_{i} \in \mathbb{R}^{k}$.

$$
\begin{aligned}
\operatorname{det} G & =\operatorname{det}(M) \operatorname{det}\left(M^{\top}\right) \\
& =\operatorname{det}(M)^{2}
\end{aligned}
$$ equal dim.

we know $\operatorname{vol}_{k}(\operatorname{Para}(v, \ldots, v k))= \pm \operatorname{det} M$,

$$
\sqrt{\operatorname{det} G}
$$

what if $v_{1}, \ldots, v_{k} \in V$? (arbitral Evdiden space).
Pick ONB of $\operatorname{spon}\left(v_{1}, \ldots, N_{k}\right)$,
If sore of

$$
\widetilde{M}=\left[\begin{array}{lll}
v_{1} & \cdots & v_{k}
\end{array}\right]_{O N B}
$$

v_{1}, \ldots, v_{k}
\widetilde{M} is $k \times k$ by $1^{\text {st }}$ irade. Is $G\left(v_{1}, \ldots, v_{k}\right)=\tilde{M} \mathcal{M}^{\top}$?
Recall: $\left\langle v_{i}, v_{j}\right\rangle \quad\left(v_{i} \neq v_{j}^{-}\right)$
lin. dep, vol 0.

Call lover - dim subspaces here
$\operatorname{ONB}\left(u_{1}, \ldots, u_{k}\right)=\sum_{m=1}^{k}\left(v_{i} \cdot u_{m}\right)\left(v_{j} \cdot u_{m}\right)$

$$
\begin{aligned}
& O N B\left(u_{1}, \sum_{m=1}^{k} \alpha_{i m} \alpha_{j m}=\left[v_{i}\right]_{O N B}^{m+1} \cdot[v]\right]_{O N B} .
\end{aligned}
$$

$$
A^{*} A=I
$$

$A \in M_{n}(\mathbb{C})$
A^{*} :
$v_{\text {unitay }}$
conjugate traspose
$A \in O(n)$ othoggnal mahne

$$
\Rightarrow A \in M_{n}(\mathbb{R})
$$

$$
A^{\top} A=I
$$

x is a comples vector:

$$
A_{x}=\lambda \underline{x}
$$

$$
x \in \mathbb{C}^{n}
$$

wTs: $\quad|\lambda|=1$.

$$
\begin{aligned}
x^{*} A^{*} A x & =(A x)^{*}(A x) \\
& =(\lambda x)^{*}(\lambda x) \\
& =\lambda^{2} x^{*} x \\
& =\lambda^{2}\|x\|^{2}
\end{aligned}
$$

$$
=(\lambda x)^{*}(\lambda x) \quad x^{*} x=\|x\|^{2}
$$

b/c each entry is $\bar{x}_{i} x_{i}$
bet $x^{*} A^{*} A x=\quad\|x\|^{2}=\sum_{i}\left|x_{i}\right|^{2}$.

$$
x^{*} x=\|x\|^{2}
$$

so $\left(\left.\lambda\right|^{2}\|x\|^{2}=\|x\|^{2}\right.$

$$
\text { and }|\lambda|^{2}=1 \text { so }|\lambda|=1
$$

(Wote shee x eigenvector thet $\|x\| \neq 0)$.

Lechre.
Hermitian dot product in \mathbb{C}^{n}

$$
\begin{aligned}
\underline{x}, y & \in \mathbb{C}^{n} \\
\underline{x} \cdot \underline{y} & =\underline{x}^{*} y=\sum \overline{x_{i}} y_{0} \\
\underline{x}^{*} \cdot x & =\sum\left|x_{i}\right|^{2}>0 \text { miles } \underline{x}=0 \\
& =\|x\|^{2} \text { (definition) }
\end{aligned}
$$

Note $\|x\|^{2} \in \mathbb{R}$.
$\underline{x} \perp f$ if $\underline{x}^{*} y=0$.
Hermitian space: v over \mathbb{C} with Hermitian inner product:
positive definite sesquilinear Hermitian inner product
$A=A^{*} \rightarrow$ Hermitian matrix?
Thu All eigenvalues are real.
$f: V \times \vee \rightarrow \mathbb{C}$ is $\frac{\text { sesquilinear if }}{3 / 2}$
(1) linear in secerd varable:
(la) $f\left(x, y_{1}+y_{2}\right)=f\left(x, y_{1}\right)+f\left(x, y_{2}\right)$
(Ib) $f(x, \lambda y)=\lambda f(x, y)$
(2) $\frac{1}{2}$-lineer in first voriable
(za) $f\left(x_{1}+x_{2}, y\right)=f\left(x_{1}, y\right)+f\left(x_{2}, y\right)$
(2b) $f(\lambda x, y)=\bar{\lambda} f(x, y)$
Hermition \Rightarrow

$$
f(x, y)=\overline{f(y, x)}
$$

If f Hermition \Rightarrow quadratie fom $f(x, x)$ always real.

$$
f(x, x)=\overline{f(x, x)}
$$

Positure defrute: $f(x, x)>0$ unbes $x=0$.
Ex. $f=[0,1] \rightarrow \mathbb{C}$

$$
2 f \cdot g\rangle=\int_{0}^{1} \bar{f} \cdot g \cdot d t
$$

Unitary matrix: columns are $\xlongequal[\longrightarrow]{\text { ONE }}$ of \mathbb{C}^{n}
\longrightarrow wit Hermitian ddt pood

$$
A^{*} A=I \text {. }
$$

V, w complex Hermitian spaces. "conjugate -

$$
(\exists!)\left(\varphi^{*}: w \rightarrow V\right) \quad \begin{aligned}
& \text { Transpose" } \\
& \text { "adjoint" }
\end{aligned}=
$$

$\varphi: v \rightarrow w$

$$
\left.\varphi: v \rightarrow w \text { st }(\forall x \in v)(\forall y \in w)(\angle \varphi(x), y\rangle_{w}=\left\langle x, \varphi^{*}(y)\right\rangle_{v}\right) \text { "adjoint" }
$$

(Ohm. DO - proof sin to real.)
(D0) Cram - Schinidt for Hermitian spaces.

$$
\text { Proof }\left[\varphi^{*}\right]_{\text {ONE }}:=[\varphi]_{\text {ONB }}^{*}
$$

Ref. φ is a unitary transformation of N if Q preserves the inner product. \sim "congruences" Real Eudideen space
Q: $V \rightarrow V$ is an orthogonal transformation if If preserves the inner product

$$
\begin{aligned}
& \text { if presences the inner pie }(\forall x, y \in V)(\langle x, y\rangle=\langle\varphi(x), \varphi(y)\rangle) \text {. }
\end{aligned}
$$

bet $\left.\langle x, y\rangle=\varphi_{x}, \varphi_{y}\right\rangle=\left\langle x, \varphi^{*} \varphi y\right\rangle \quad \forall x, y$
so $\varphi^{*} \varphi=$ id (idently transformation)
$\forall x, y \quad x^{\top} A y=x^{\top} B y \Rightarrow A=B$.
DO $(\forall x, y)\left(\left\langle x, \varphi_{y}\right\rangle=\langle x, \psi y\rangle\right) \Rightarrow \varphi=\psi$.

Thus, $\varphi^{*}=\varphi^{-1}$.
(In real: $\varphi^{\top}=\varphi^{-1}$)

If $\varphi^{*}=\varphi^{-1}$ then $\forall x \quad\left\|\varphi_{x}\right\|=\left\|_{x}\right\|$, so if $\varphi_{x}=\lambda x$ then

$$
\begin{aligned}
& \text { if } \varphi_{x}=\lambda x \\
& \|x\|=\|\varphi x\|=\|\lambda\|\left\|_{x}\right\| \text { so }|\lambda|=1 .
\end{aligned}
$$

Complex Grew manx
$N, \ldots, v_{n} \in V$ (Hermitian space)

$$
G\left(v_{1}, \ldots, v_{k}\right)=\left(\left\langle v_{i}, N_{j}\right\rangle\right)_{k \times k}
$$

(DO) $G^{*}=G(G$ is Hermite $)$, positre semidefinite, nonsinglar $\Leftrightarrow N_{1}, \ldots, \sim_{k}$ in. indop.

Thu. V complex thermition space.

$$
\begin{aligned}
& \underline{e}=\left(e_{1}, \ldots, e_{n}\right) \text { oN } \\
& \Rightarrow\langle\underline{x}, y\rangle=[x]_{\underline{e}}^{*}[y]_{\underline{e}}
\end{aligned}
$$

$\Delta \in \mathbb{F}^{n} \quad b_{1}, \ldots, b_{n}$: basis of \mathbb{F}^{n}

$$
[x]_{\underline{b}}=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]
$$

$$
\underline{x}=\sum \alpha_{i} b_{i}
$$

\uparrow system of lin. equations.
\mathbb{R} or $\underset{\sim}{\mathbb{C}} \quad e_{1}, \ldots$, en $O N B$ of V Eudideen Hermitian

$$
\underline{x}=\sum_{i=1}^{n} \alpha_{i} e_{i}
$$

$\alpha_{i}=\left\langle e_{i}, x\right\rangle$ (take dot product of x may basis rectur to get that coefficient.)
coordinates int ONB
"Fourier coefficients"

$$
\alpha_{i}=\int f(x) \frac{\cos (2 x)}{\uparrow} d x
$$

OMB.

DO $f:[0,2 \pi] \rightarrow \mathbb{R}$ cont

$$
\langle f, g\rangle=\int_{0}^{2 \pi} f \cdot g d t
$$

then $1, \cos t, \sin f$, $\cos 2 t, \sin 2 t, \ldots$ we or tho geneal

Question: characterize those $\varphi: V \rightarrow V$
(V is a complex Hermitian space) for which there exists an orthonormal eigenbasis.
over \mathbb{R} ?
Suppose $A \in M_{n}(\mathbb{R})$ has on eigenbasis $e_{1}, \ldots, e_{n}-$

$$
\begin{aligned}
& A e_{i}=\lambda_{i} e_{i} \\
& \underline{x}=\sum \alpha_{i} e_{i} \\
& A \underline{x}=\sum \alpha_{i} \lambda_{i} e_{i}
\end{aligned}
$$

$$
\text { Eigensubspares } u_{\lambda}
$$

$$
u_{\lambda}=\left\{x \in \mathbb{R}^{n} \mid A \underline{x}=\lambda x\right\}
$$

If \exists eigenbasis then

$$
\mathbb{R}^{n}=\underset{\lambda}{\oplus} u_{\lambda}
$$

If $\exists \sigma 0 \mathrm{~N}$ eigenbas's then

$$
\Rightarrow u_{\lambda} \perp u_{\mu} \text { if } \lambda \neq \mu \text { are }
$$ eigenvalues.

Orthogonal projection
V is finite - dim Euclidean space.

$$
\begin{aligned}
& u \leq v \\
& u^{\perp} \oplus u=v
\end{aligned} \rightarrow \begin{aligned}
& \forall \sim \in v_{1} \\
& v=u+w
\end{aligned} \quad \text { whee } u \in u \text { and } \quad w \in u^{\perp} .
$$

Defile liver map $\pi_{u}=v \mapsto u$.

$$
u=\pi_{u}(v) . \quad(\pi u ; v \rightarrow u)
$$

cor. If $\varphi: v \rightarrow v$ symmetric (R) then $\quad \varphi=\sum_{\lambda} \lambda-a_{u_{\lambda}}$.
proof: $x=\sum_{\lambda} u_{\lambda}$ when $u_{\lambda} \in u_{\lambda} \quad \forall \lambda$.

$$
\begin{align*}
& \text { so } u_{\lambda}=\pi_{u_{\lambda}}(x) \text { b/c } \sum_{\mu \neq \lambda} u_{\mu} \perp u_{\lambda} \tag{1}\\
& \varphi x=\sum_{\lambda} \varphi\left(u_{\lambda}\right)=\sum_{\lambda} \lambda u_{\lambda}=\sum_{\lambda} \lambda \pi_{u_{\lambda}}(x)
\end{align*}
$$

This is an equivaleat form of the Spectral Thy.
If $\varphi=\varphi^{\top}$ in a finite dive Eudiden space then $V=$ direct som of orthogonal subspaces u_{i} st $\varphi=\sum \lambda_{i} \pi_{u_{i}}$.
(DO) $\pi_{u}{ }^{\perp}=\pi_{u}$.
Cor. A symmetric $(\mathbb{R}) \Leftrightarrow \exists$ ON cioprbasis.
\Rightarrow spectral Thu.
\Leftarrow what we just dill
$\pi_{u}^{2}=\pi_{u} E$ idempotent $x^{2}=x$
(00) If $u_{1} \perp u_{2}$, then $\pi_{u_{1}}, \pi_{u_{2}}=0$.

Eigenvalues of projections :

$$
\begin{array}{ll}
\text { Eigenvames } & \lambda^{2}=\lambda \\
\lambda=\{0,1\} & \lambda(\lambda-1)=0
\end{array}
$$

For complex.. the answer is nat the same
$A \in M_{n}(\mathbb{C})$
Hermition: $A^{*}=A$
Unitery: $A^{*}=A^{-1}$
Dek A is nomal if $A A^{*}=A^{*} A$.
Thm (Complex spectral Theerem)
A has an arthonarmal eigenbasi's $\Longleftrightarrow A$ is normal.
Thm $\varphi: V \rightarrow V$ (Herwition space. finite-dim) $\Rightarrow \exists \mathrm{max}$. Shach of invoriant suspaces.

$$
\begin{aligned}
& \Rightarrow \exists \max . \quad \text { कharh } \quad \operatorname{div} u_{i}=i \\
& \{0\}=u_{0}<u_{1}<\ldots<u_{n}=V \quad \forall i \in[n] \\
& \varphi\left(u_{i}\right) \subseteq u_{i} \quad \forall i \quad \text { then } A \sim \text { (r) }
\end{aligned}
$$

Eq. to saying if $A \in M_{n}(\mathbb{C})$, then $A \sim$.
i.e. $\left(\exists B \in M_{n}(\mathbb{C})\right)\left(\exists B^{-1}\right.$ and $B^{-1} A B$ is trianglan)

Thm. $\exists B \in V(n)=\{n \times n$ unitary matives $\}$
y orthonomal basis chage.
$\frac{\text { Proof }}{\text { sucha }} E_{q}$. to finding $O N B$ sit $e_{i} \in U_{i}$. basis b_{1}, \ldots, b_{n} exists \rightarrow Grom-schurdt + nornalize.
(D0) If $A \in M_{n}(\mathbb{R})$ ard all eigenvalues of A are real $\Rightarrow A \sim_{\text {otto }}$.

$$
A, B \in M_{n}(\mathbb{C})
$$

A is unitarily similar to $B \quad\left(A \sim_{\nu} B\right)$ if

$$
\begin{aligned}
A & \text { is } \\
\exists S \in U(n) \text { sit. } B & S^{-1} A S \\
& S^{*} A S
\end{aligned}
$$

(DO) If $A \sim_{u} B$ and A is normal then B is normal.
(D0) Diag. matures are naval.

$$
\begin{gathered}
D=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \\
\lambda_{n}
\end{array}\right) \\
D^{*}=\left(\begin{array}{cc}
\overline{\lambda_{1}} & 0 \\
0 & \overline{\lambda_{n}}
\end{array}\right) \\
D^{*} D=\left(\begin{array}{cc}
\left|\lambda_{1}\right|^{2} & 0 \\
0 & \ddots \\
\left.0 \lambda_{n}\right|^{2}
\end{array}\right)=D D^{*}
\end{gathered}
$$

This shews \exists ON eigerbesis \Rightarrow normal.

$$
(\Rightarrow)
$$

\Leftarrow May assume A is why?
Every complex matix is unitenty sunder to a triongeler mathx.
(D0) $U(n)$ is a gropp (dosed under mittplication t inooses)
(DO) If a triangler matrix is nomal, then it is diagerat
(Prove by induction on dim.) This shers \Leftarrow.

Specrod Thearem, restated.
If $A \in M_{n}(\mathbb{R})$ and $A=A^{\top}$ then $\exists S \in \underbrace{(n)}_{\text {orthogond }}$ s.t $S^{-1} A S$ is diagenal
(Every symmetive real matrix is orthognally sindar To a diagaral matrx-)

Singular Value Decomposition

$$
\begin{gathered}
A \in \mathbb{R}^{k \times l} \Rightarrow \\
\exists S \in O(k)
\end{gathered}
$$

$$
\sigma_{1} \geq \ldots \geq \sigma_{r}>0
$$

whee $r=\operatorname{rk}(A)$
"singer values of A^{n} -
SUD unique.

Real Eudidean spaces
DO Shaw

$$
\varphi: \underset{l}{V} \rightarrow \begin{gathered}
w \\
k
\end{gathered}
$$

$\Rightarrow \operatorname{GONB} e_{1}, \ldots, e_{k}$ in V and ONB f_{1}, \ldots, f_{l} on w and

$$
\sigma_{1} \geq \ldots \geq \sigma_{r}>0 \text { ingle }
$$

st for $1 \leq N \leq r \quad \varphi\left(e_{i}\right)=\sigma_{i} f_{i}$

$$
\varphi^{\top}\left(f_{i}^{-}\right)=\sigma_{i} e_{i}
$$

for $j>r$

$$
\begin{aligned}
\varphi\left(e_{j}\right) & =0 \\
\varphi T\left(f_{j}\right) & =0
\end{aligned}
$$

Fallows from Spectral Thu

$$
\varphi^{\top} \varphi\left(e_{i}\right)=\varphi^{\top}\left(\sigma_{i} f_{0}\right)=\sigma_{i}^{2} e_{i}
$$

$i=1, \ldots, r$ s $\quad \varphi^{\top} \varphi$ is pos. semidehate sym.

$$
\begin{aligned}
& \lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0 \\
& \lambda_{r} \geq \cdots \geq \lambda_{r}>0=\lambda_{r+1}=\cdots=\lambda_{n}
\end{aligned}
$$

so $\sigma_{i}=\sqrt{\lambda_{i}}$ for $i=1, \ldots, r$
(e_{i}) ON eigabas's of $\varphi^{\top} \varphi$ DO verily this.
$\left(f_{i}\right)$ on eigen bash's of $\varphi \varphi^{\top}$
This has many applications in modern math "netflix Problem" users $\quad A=\underset{r \text { veins }}{B} \underset{r}{C}$

n.k do
sparsely populated - Netflix wants to guess empty entries and see which mares you might ike.

Suppose there existed on ideal metros with everyone's true rating over every matrix.
How can we see this matrix with or imperfect observations?

Occam's Razer: simplicity $=$ truth
(eg. Kepler's Laws)

Note the "Netflix matrix" is low rap (relative to of entries)

- lar rank approximation

Human preferences follow law rah approx.?

$$
\begin{aligned}
& r k(A)=s \\
& r<s \\
& \hline 15 \\
& \\
& \\
& \\
& \\
& \\
& 0
\end{aligned}
$$

σ_{1}	\ddots	σ_{s}	0
0		0	

transform back closest rate r approx.

