Problem set 2

1. Prove that in the multiplication table of a group, every element appears exactly ones in each row and each column.

2. The points A_1, \ldots, A_n form a regular polygon, inscribed in a circle with the center O. A point X lies on the same circle. Prove that the images of the point X under the symmetries with axes OA_1, OA_2, \ldots, OA_n form a regular polygon.

3. Consider a regular polygon with vertices A_1, A_2, \ldots, A_n and center O. Prove that
 \[\overrightarrow{OA_1} + \overrightarrow{OA_2} + \ldots + \overrightarrow{OA_n} = 0. \]

4. Lagrange theorem. Let G be a group of finite order. Prove that for every $g \in G$ we have
 \[g^{|G|} = 1. \]

5. The Inclusion-Exclusion Principle
 Consider N objects and some list P_1, P_2, \ldots, P_n of their properties. Let N_i be the number of objects satisfying P_i, N_{ij}, the number of objects satisfying P_i and P_j, and so on. Prove that the number of objects satisfying none of these properties is equal to
 \[N - \sum N_i + \sum_{i_1 < i_2} N_{i_1i_2} - \sum_{i_1 < i_2 < i_3} N_{i_1i_2i_3} + \ldots + (-1)^n N_{123\ldots n}. \]

6. Prove that if we remove two opposite corners from the chessboard, the board cannot be covered by dominoes (Each domino covers two neighboring cells of the chessboard.)

7. Chess Town
 (a) Consider an $m \times n$ rectangular grid: the Chess Town. It consists of mn districts, divided by $n - 1$ horizontal and $m - 1$ vertical streets. What is the number of distinct shortest path on the grid, leading from the bottom left corner to the top right one?
 (b) What is the number of ways to draw a shortest path from the bottom left corner to the top right one lying below the diagonal connecting these corners? The path intersects the diagonal in two corner squares only.

8. Prove that a bounded figure in \mathbb{R}^2 cannot have more than one center of symmetry.

9. Prove in different ways that
 \[\sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1}. \]