Problem set 6

1. Prove that for every two nonintersecting circles S_1 and S_2 there exists an inversion, making them concentric.

2. Consider four circles such that S_1 and S_3 intersect both S_2 and S_4. Prove that if the points of intersection of S_1 with S_2 and S_3 with S_4 lie on the same circle or line, then the points of intersection of S_1 with S_4 and S_2 with S_3 lie on the same circle or line.

3. Steiner’s Chain. Suppose that there exists a chain of circles S_1, S_2, \ldots, S_n, such that S_i is tangent to S_{i+1} (and S_n is tangent to S_1) and all S_i are tangent to the two fixed circles R_1 and R_2. Prove that there exist infinitely many such chains.

4. (a) Prove that every Möbius transformation in $PGL_2(\mathbb{C})$ has one or two fixed points. The usual formulation of this fact is that there are two fixed points counted with multiplicity.

(b) Prove that a square of a Möbius transformation $t \mapsto \frac{at + b}{ct + d}$ is the identity if and only if $a + d = 0$.

5. (a) Suppose that for a Möbius transformation $f \in PGL_2(\mathbb{C})$ there exists a point a such that $f(a) \neq a$, but $f(f(a)) = a$. Prove that f is an involution.

(b) Prove that every Möbius transformation can be presented as a composition of at most three Möbius involutions.

6. Erdős-Szekeres theorem. Prove that for any $n, m \in \mathbb{N}$, every sequence of $nm + 1$ distinct real numbers contains an increasing subsequence of length $n + 1$ or a decreasing subsequence of length $m + 1$.
