
Traversing the edge:a study of turbulent deayMatthew ChantryAdvisor: Tobias ShneiderAbstratIn this work the �edge of haos� is studied to inrease our understanding ofturbulene in shear �ows. The �edge� is a hypersurfae in phase spae whihseparates onditions whih return to the laminar state from those whih engage inturbulent dynamis. We takle the subjet of the geometry of the edge, and itsinvolvement during the return to the laminar state. Here studying plane-Couette�ow we observe the death of the self-sustaining proess during deay and identifythe proesses whih govern the deay rate. The report onludes with tests on thevalidity of edge geometry observed in low dimensional models.1 IntrodutionThe study of Newtonian �uid �ow through through a straight irular pipe was �rstarried out in the 19th entury, where Hagen [1℄ and Poiseuille [2℄ separately studied thelaminar �ow whih now arries both their names. This work was ontinued by Reynolds[3℄ who studied the transition from laminar �ow to �ow whih is both temporally andspatially disordered, alled turbulent �ow. The Reynolds number Re := UD/ν governsthis transition, where U is the mean speed, D the diameter and ν the kinemati visosity.The laminar Hagen-Poiseuille �ow is linearly stable for all values of Re, meaning thata �nite amplitude disturbane is required to generate turbulent behaviour. The energythat the disturbane requires to trigger turbulene has been studied for many years,and depend sensitively upon the shape of the disturbane and the Reynolds number.The minimum value of the Reynolds number at whih turbulene is seen varies betweenexperiments but appears to lie in the range 1750-2300. It is thought that in this range of
Re that there exists a haoti saddle responsible for the dynamis, whih may transitionto a haoti attrator for larger Re [4℄. In this regime the lifetime of turbulene an varystrongly, so mean dynamis desribed by probability funtions are used to demonstratethe behaviour. Faisst et al. [4℄ amongst others showed that probability of turbulenesurviving depends exponentially on the ratio of time, t, to a mean lifetime whih dependsupon Re. The relationship between Re and the mean lifetime is still a subjet of researh,both experimental and omputational. In that work the disussion entres around theexistene of a �nite Re for whih the probability of deay bak to the laminar state iszero.Pipe �ow is one member of a lass of shear �ows whih also inlude plane Couette�ow, Taylor-Couette �ow and boundary layer �ow. Plane Couette �ow (PCF) is the �owbetween two in�nite plates, whih are driven at onstant speed in opposite diretions.The �ow shares all of the features disussed about (although with di�erent ritial Re),but for researh has two advantages over pipe �ow. The symmetry of the system allowsthe existene of �xed points solutions, whereas the simplest struture in pipe �ow aretravelling waves. The Cartesian geometry of PCF is omputationally simpler than theylindrial oordinate system of pipe �ow. 1



The linear stability of the laminar states makes �nding new solutions to the Navier-Stokes equations hallenging, however reently new solutions have been found ([5℄, [6℄,[7℄, [8℄, [9℄, [10℄, [11℄, [12℄). These solutions are �xed points (in PCF only), travellingwaves whih are steady under a translating referene frame and periodi orbits, manyof whih exhibit symmetries. These solutions are unstable but have both stable andunstable manifolds and are therefore saddle points in phase spae. Kerswell [13℄ andothers propose that these, and more solutions form a �skeleton� for the dynamis whihan guide trajetories around the turbulent portion of phase spae.Within the last 10 years a new method has been implemented to �nd solutions inboth pipe �ow and PCF. The method, pioneered by Itano et al. [14℄, is to trak the�Edge of Chaos�, the hyper-surfae surfae whih separates separates onditions whihsimply relaminarize from those whih are subjeted to turbulene. The edge thereforeprovides a minimum on the energy required to trigger turbulene, however there is noknown method to use the edge to �nd this minimum energy point. By reduing thedynamis to only evolve along the edge, new strutures have been found in both pipe�ow and PCF ([15℄, [16℄, [17℄). By evolving along the edge only, one unstable diretionis removed, meaning solutions embedded in the edge with just one unstable diretion inthe full dynamis beome loal attrators within the dynamis of the edge. As disussedearlier, at low Reynolds number turbulene is transient and initial onditions experienesudden deay bak to the laminar state. The edge an therefore not be onsidered aboundary for the basin of attration of the laminar state, as onditions either side of theedge will deay. This therefore raises a question into the understanding of phase spaein these systems. How do initial onditions on the �turbulent side� of the edge pass bakto the laminar state and does there exist a unique point (or a small number of points)where this passing ours? In partiular geometries the edge ontains simple attratingstates, suh as �xed points or travelling waves. In some of these situations, evidenepoints to a single global attrating state in the edge, to whih all initial onditions onthe edge onverge, alled the edge state. A seondary question of this work onerns thedynamial signi�ane of this edge state during relaminarization. The point is signi�antwithin dynamis on the edge, and all initial onditions must, in some manner, pass bythis edge, therefore the edge state may be important in this relaminarization proess.We will attak this problem on two fronts. The �rst will examine the statistis ofdeay, and look for evidene of a unique �rossing� point. The seond half will look tothe results of low-dimensional models and attempt to draw parallels between these andthe full dynamis. In the next setions we will disuss the set-up used to investigatethis problem, and present some statistial work on this problem. We will then lookat previous work using low dimensional models to onsider this problem, and omparethese to the full dynamis. Finally we shall draw onlusions and disuss further workinto this problem.2 MethodsTo examine the questions onsidered above we hoose plane Couette �ow as the shear�ow for our investigation. This has been hosen for its simple geometry and the evidenefor a single �xed point attrating edge state in a partiular geometry (Shneider privateommuniation 2011). As with pipe �ow disussed above, no-slip boundary onditionsat the wall are used, with periodi boundaries in the two remaining diretions. Thelaminar �ow is linearly stable and takes the form
ū = Uy x̂, (1)where onvention ditates that x takes the diretion of the wall motion, y the wallnormal diretion and z the spanwise diretion. The DNS is arried out in a Fourier2



by Chebyshev by Fourier domain, with an adaptive 3rd order Semi-impliit BakwardsDi�erentiation timestep ode written by Gibson ([23℄ [24℄). The Reynolds number inthis system is Re := Uh/ν, where U is the wall speed, h is half the wall separation and
ν the kinemati visosity. For simpliity both U and h remain equal to one. We willstudy Reynolds numbers in the range [340, 380] where turbulene exists but turbulentlifetimes are short (order 1000 time units). The domain is [0, 4π] × [−1, 1] × [0, 2π],hosen for the existene of a single edge state, a member of the �Nagata� solution family[5℄, whih is visualised in �gure 1. We shall use the notation breaking the veloity �eld,
ū, into the laminar and perturbation parts, ū = y x̂ + u. This study will begin with astatistial investigation into deaying turbulene, where trajetories will be aligned todeay at the same point in a new time t∗ whih is de�ned for eah simulation as

t∗ := tlam − t, (2)where tlam is the time suh that
∫

V

u · u dV < 0.005. (3)This �nds the time where the �ow is su�iently lose to the laminar state to be onsid-ered as laminar. The results of this setion are not qualitatively a�eted by the preisehoie of this distane from the laminar state. For brevity we shall refer to this asthe relaminarization time. We begin by simulating a large number of DNS runs fromturbulent initial onditions until they reah the laminar state. One aligned by theirrelaminarization times we an �nd the mean and standard deviation of the L2 norm of
u, and plot this against the relaminization time. In �gure 2 we arry out this proedurefor 100 evolutions at a Reynolds number of 380. Several observations an be made fromthis �gure in answering the questions posed previously. The deay from the turbulentstate begins approximately 500 time units before relaminarization time, and before thisa statistially steady state is observed with approximately onstant variane. Duringdeay, while a derease of variane is observed, trajetories do not onverge until justprior to t∗ = 0. This simple observation suggests an answer to one of the questionspostulated above: does there exist a unique point for passing by the edge? If a uniquepoint existed, one would expet to see the trajetories onverge at an L2 norm valueassoiated with the edge (∼ 0.2). The result was robust to using a range of metristo align the deaying trajetories, inluding E3D, vortiity, and downstream vortiity.With all of these metris no patterns in the deay emerged, therefore suggesting thatthis hypothesis is false.3 Statistial analysisWe an use this approah to examine the physial properties of the �ow during deay,and on�rm the features expeted from analytial and previous omputational work. In�gure 3 we plot the mean evolution of the L2 norm of 4 physial quantities during the last1000 time units before deay, the veloity, the vortiity, the downstream vortiity andthe �3D veloity�. These �rst two are related to the energy and dissipation of the systemrespetively, and begin to deay simultaneously with similar relative gradients. TheL2 norm of the downstream vortiity provides a measure for the downstream vortiies,or rolls, whih redistribute the mean shear. This then reates downstream streaks,whih an develop instabilities. These instabilities feedbak into the rolls. This is alledthe self-sustaining proess (SSP [18℄), and plays a ruial role in the maintenane ofturbulene. Therefore if the rolls are removed then the sustaining proess is broken, andturbulent annot be maintained. The results in frame () of �gure 3 show that the L23



Figure 1: Visualization of the �xed point embedded in edge, whih is an attrator whenthe dynamis are restrited to the edge. Colours indiate downstream veloity, with red�owing into the page and blue out of the page. Arrows plot ross stream veloity �eld.
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Figure 2: L2 Norm of perturbation veloity �eld u against t∗, the time before relami-narization. Plotted are the mean ± the standard deviation of 100 turbulent evolutionsat Re = 380. Initial onditions generated from turbulene at slightly larger Re.4



norm of the downstream vortiity begins to deay at the same time as the previous twometris, however it dereases at greater relative rate. This results in no rolls existing forthe �nal 200 time units of the deay. The �nal measure onsidered is the �3D veloity�,
u
′, the part of the veloity �eld whih depends upon x.

u =
1

Lx

∫
ũ dx + u

′ (4)The quantity is dynamially important to the maintenane of turbulene, the energy inthis part of the veloity �eld we shall denote as E3D. It an be shown in shear �owsthat a 2D perturbation annot to lead to turbulene. From the view of the SSP thisquantity measures the instabilities whih omplete the proess and feedbak upon therolls. Frame (d) of �gure 3 shows the evolution of this quantity before relaminarization.The beginnings of deay are observed in line with the other 3 quantities, with deayourring at the same relative rate as downstream vortiity. Therefore we observe thatthe for the last 200 time units of deay the �ow is two-dimensional with no downstreamrolls, this leaves only downstream streaks (and a small amount of ross-stream �ow).These �ndings therefore agree with the previous work, whih suggested that downstreamrolls and 3D �ow are the �rst parts of the �ow �eld to fully deay. After these twoquantities have deayed the streak deay will govern the overall deay rate, whih weshall now study.Understanding the struture of the streaks during this deay will explain the varietyof deays rates observed, as these are the only feature remaining during the �nal partof deay. In �gure 4 frames (a) & (b) show the x-averaged1 veloity for two di�erentdeay trajetories approximately 200 time units before relaminarization. Trajetorieswere hosen for displaying slow and fast deay respetively, i.e. shallow and steep deayrates during the �nal 200 time units of deay. Beyond this hoie these trajetories aregeneri within their respetive lass (slow or fast deay). Obvious from the �gure arethe two di�erent streak strutures involved in the �ow �eld, where streaks are indiatedby waviness in the downstream veloity ontours. Frame (a) has two streaks, one fastand one slow, whereas frame (b) has four streaks with two of eah sign. The di�erentlength-sales involved with these �ow �elds explain the deay rates involved. In thisregime the di�usion operator dominates the evolution, meaning that strutures withsmall length-sales involved will deay at a faster rate ompared to those with largerlength-sales. The �ow at this stage in deay is independent of x, and all �ow-�elds havesimilar dependene upon y leaving the z struture to set this rate. To further this workwe onsider the evolution of simple strutures arrying the two and four streak pattern,members of the �Nagata� family of solutions. As previously disussed one member of thisfamily, whih has a four streak pattern (�gure 1), is the edge state in the hosen geometry.However there exists a two streak member of the family, whih also lies on the edge buthas two unstable diretions (and is therefore not an attrating struture on the edge).The x-averaged �ow �eld for these solutions are plotted in frames () and (d) of �gure4. The omparisons between the deaying �elds and solution �elds an be easily seen,but the solutions have sharper streak struture and retain downstream vortiity. Wean study the length-sales involved in these �xed points and the deaying trajetoriesby by representing the z dependene of the �ow-�eld through a Fourier deomposition.As these solutions belong to the same family, but are e�etively solutions from twodi�erent box widths their dependene on the �rst few Fourier modes di�ers. The twostreak solution ontains a large amount of energy in the �rst mode, whereas the fourstreak solution ontains none. The seond Fourier mode will be the dominant term forthe 4-streak solution, but be of lesser importane in the 2-streak solution. When thesetwo solutions are perturbed in the orret unstable diretion (to the �laminar side� of1Reall �nal deay is independent of x, therefore 2D visualization displays all �ow features.5
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Figure 3: Evolution of the mean ± standard deviation for the L2 norm of 4 �ow �eldquantities, (a) Veloity, (b) downstream vortiity, () vortiity & (d) �3D veloity�.All experiene deay approximately 500 time units before relaminarization, with fasterrelative deay rates for downstream vortiity and 3D veloity.the edge) the solutions will smoothly deay to the laminar state. The deay of thesestates, with their di�erent spanwise spetra will be a useful omparison for deayingturbulene. In �gure 5 100 deaying trajetories are plotted, alongside the deay fromthe two states disussed all at the same Reynolds number. The striking feature of this�gure is that the deay from two �xed points almost bounds the deay from turbulene.We an understand this by studying the spanwise Fourier modes during the last 200time units of deay. Those deaying at a similar rate as the two streak solution, willhave more energy in the �rst spanwise Fourier mode and little in the seond. Whereasthose deaying with the four streak solution will have little in the �rst spanwise Fouriermode and the majority in the seond. Trajetories deaying at rates between these two�extremes� will have energy in both these modes in varying proportions whih maththe deay rate. An observation to made from this �gure is that no deaying trajetoryin our sample deayed at a signi�antly greater rate than the four streak �xed point.It appears within this domain all turbulene (in this range of Reynolds number) deaysthrough a very simple streak struture. How this behaviour would hange if a widerdomain was used, or a larger Reynolds number set, remains a topi for further researh.The author suggests that if the domain was su�iently widened then turbulene woulddeay through a six streak struture, in addition to the two and four strutures. Itis not obvious that all deaying turbulene in this geometry should have streaks withsuh similar y-dependene, although the tight onstraints of the domain might again beresponsible. Studying the deay of other �xed points in this geometry would make foran interesting omparison with those disussed above. Are these two solutions speialin the way they almost bound the deay, or is this a feature of �xed points?
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Figure 4: Frames (a), (b) show x-averaged �ow �elds 200 time units before deay.Solutions seleted for demonstrating slow and fast relaminarization rates respetively.Frame (a) has two streaks, one fast at the entre of the domain, and one slow at the leftedge. Frame (b) has four streaks, two fast and two slow. To be ompared with frames() and (d) x-averaged �ow �eld for members of the Nagata solution family. Frame ()shows the longest spanwise wavelengths family member. Solution in frame (d) ontainstwo opies of the Nagata solution in spanwise diretion.4 Edge geometryThrough examining the statistis of the deay from turbulene we have gained insightinto the proesses involved, and evidene that a unique route past the edge does notexist. Beyond this fat we have learnt little about how the deaying trajetories pass theedge. In this setion we will examine this issue with the aid of low dimensional models.Attempts to study low dimensional models for shear turbulene have been used in reentyears with limited suess. Wale�e [18℄ took the ideas behind his self-sustaining proessto onstrut both eight and four mode ODE models, however these were limited byrepresenting turbulene with a �xed point. These models did show that the physialproesses behind turbulene ould be aptured in a small number of well hosen modes.Extensions to a nine mode model [19℄ and an eight mode PDE model [20℄ have madeprogress in apturing more detail but more modes makes the analysis more omplex.In order to understand the edge Lebovitz examined the edge struture in Wale�e's fourmode model [21℄. He subsequently designed a two dimensional system whih apturedthe same edge topology [22℄. It is this two dimensional system whih we will omparewith the edge struture in the full system. The equations of the system are

ẋ1 = −δx1 + x2 + x1x2 − 3x2

2

ẋ2 = −δx2 − x2

1
+ 3x1x2, (5)where δ is the ontrol parameter and surrogate for Reynolds number, whih we will �x at

0.4. For this value of δ the system has 3 �xed point solutions. One is stable and loatedat (0, 0) whih will be the surrogate for the laminar state. One is an unstable saddle,alled the lower branh (LB), whih is the surrogate for the edge state. The �nal �xed7
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tFigure 5: Coloured lines - L2 norm of the u against time for deaying trajetories. Blakhorizontal lines - indiate the value of L2 norm for the two solutions from �gure 4 (higherline - two streak solution). Blak lines - deay from �xed point solutions to the laminarstate after perturbation. All deaying lines have been aligned by deay time.point is unstable, alled the upper branh (UB) and is the surrogate for the turbulentstate. In �gure 6 the three �xed points points are plotted alongside the manifolds of theedge state and a typial deay from near the upper branh point. The stable manifoldof the edge state forms the edge in this system; near the edge state initial onditionsbelow the edge deay to the laminar state, whereas points above the edge visit an areain phase spae further from the laminar state before being attrated the laminar state.The feature aptured by this model, and Wale�e's four order model, is that while theedge goes out to in�nity in one diretion, in the other it spirals in�nitely many timesaround the upper branh point. An initial ondition near the upper branh point willspiral outwards before passing around the edge on the way to the laminar state. It isthis spiral feature that provides the route from the �turbulent� part of phase spae tothe �laminar state�.In this setion we wish to answer the following. Does a higher dimensional equivalentof this behaviour our in the full dynamis? It is obvious that we annot simply plotthe phase spae of the full dynamis, so we need a test to ompare the model with thefull dynamis. We shall introdue the test in the redued model before arrying outthe same analysis in PCF. We begin with a trajetory spiraling out from the unstableequilibrium, and selet several time points along the trajetory. At these points we shallalulate a new initial ondition
xin = λx (6)in the model for a range of λ around λ = 1, the ondition that reovers the originalpoint on the relaminarizing trajetory. For eah value of λ we will evolve the new initialondition and study the dynamis. A ondition lose to the surrogate for turbulenewill be �above� the edge, therefore there exists a λ ∈ [0, 1] for whih a new ondition lies8
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behaviour of the edge. Before we an begin this work we should onsider the methodspreviously used to study the edge. These methods have revolved around a bisetiontehnique between an original turbulent state and another whih smoothly relaminarizes.The riterion as to the turbulent or laminar evolution of the new �ow �eld are usuallyenergy or E3D thresholds, with the turbulent threshold set just below the turbulent valueof the metri. These tehniques work well for �nding the attrating objets embeddedwithin the edge, but using this de�nition the edge will not be found near the turbulentpart of phase spae. This an be ompared to using the T measure (with a short timeaverage) to de�ne the edge in the low dimensional model. If this was used, only the outerspiral of the edge would be deteted. In the two dimensional model the edge is de�nedto be the stable manifold of the edge state, whih removes the issue. In the full system,in geometries whih have a single attrating edge state, we an use the same de�nition.While the edge state may be loated using the bisetion tehnique, we suggest that theedge is de�ned as the stable manifold of the edge state. It should be noted that thisde�nition does not automatially solve the problem of traking the edge near turbulent,whih will be disussed later in this work. With this new de�nition of the edge, we anmove forward to omparing the full dynamis with the low dimensional model.The test begins with a single relaminarizing trajetory, along whih two test pointsare seleted. The �ow �elds at these points are resaled using the same methodology asbefore,
uin = λu (7)where λ = 1 reovers the original dynamis. For eah value of λ the initial ondition isgenerated, evolved for a set time, and the time average of the L2 norm of u reorded(again alled the T measure). Figure 11 shows the evolution of the L2 norm of u forthe original trajetory and resaled onditions for λ ∈ [0.8, 1.3], and in �gure 12 isplotted the T measure against λ. By hoie the original trajetory deays quikly, asdo its neighbours in λ. However for both larger and smaller values of λ the T measureinreases, indiating a rossing of the edge to turbulent dynamis on both sides of thepoint. A seond region where trajetories deay exists at λ ≃ 0.9. The main point toreeive is that there exists an edge (in this ase several piees of the edge) below therelaminarizing trajetory. The next step is to arry the proess out at a later time, theresults of whih are presented in �gures 13 & 14. A transition has ourred sine theprevious analysis, as there now exists no edge beneath the relaminarizing trajetory.Turbulent dynamis are only to be found by hoosing λ > 1.2. While the results ofonduting this test on the full dynamis are far more ompliated than those of thelow dimensional model, ertain harateristis are maintained in both situations. Earlyin the deay, part of the edge exists beneath the trajetory in phase spae. Yet later,this edge beneath is no longer present. This result is unsurprising given that by thede�nition of the edge this transition from one �side� to another has to our. Howeverthe time and manner of the transition an provide evidene as to the topology of theedge.Early in the deay the test shows the existene of an edge below the deaying traje-tory. Using the bisetion tehniques brie�y disussed earlier we an trak the dynamison this edge. Later in the deay of the original trajetory there exists only an edgeabove the deaying trajetory. Again bisetion an be used to trak the dynamis ofthis part of the edge. Figure 15 shows the evolution of these two piees of edge, theedge beneath in green and the edge above in red. The dynamis on these two pieesof edge initially move in di�erent diretions, however 200 time units later they beomeinvolved in the same dynamis whih is maintained for the rest of the time the edge isaurately traked2. This result suggests that the two piees of edge above and below2i.e. when the oloured pairs diverge. There is no evidene that if the edge was traked longer these12



the trajetory are dynamially onneted. Building on the previous result we now havea more omplete piture of the route past the edge. The transition from the trajetorylying above the edge to below it, added to the dynamial onnetion of those two pieesof edge �ts with the low dimensional piture built by the 2D model of Lebovitz. Theomplete geometry of the edge in the full dynamis is muh more ompliated than a 2Dmodel ould hope to model, as shown by the multiple layers of edge observed in �gure12. Two further details from this work also suggest agreement with the low dimensionalmodel, that the edge goes up into the turbulent part of phase spae. If we examine theloation of the transition in relative edge position of a trajetory (from above the edge tobelow the edge) under the E3D projetion of the dynamis we note that this transitionours at values of E3D assoiated with turbulent dynamis. This metri is ommonlyused to evaluation if a �ow �eld is turbulent and therefore suggests the edge also existsnear turbulene in phase spae. This laim ould be proved by developing a method totrak the edge into turbulene, however a method to perform this is not lear. The se-ond observation to be made onerns the evolution of the dynamis after the transitionin edge loation has ourred. As an be seen in �gure 15, the relaminarizing trajetorytraks the dynamis of the edge for approximately 50 time units before diverging. Thispiture is onsistently observed and helps our understanding of the manner in whihtrajetories pass by the edge. The trajetories running approximately parallel to theedge in phase spae �ts the piture produed from the low dimensional model. Noneof the results found in this work are individually onvining arguments for the spiraltopology of the edge. However together they begin to form a body of evidene whihsupports a more ompliated version of this artoon of the edge geometry. The mannerof the transition around the edge appears to agree with the piture onstruted. The
E3D projetion suggests this transition happens near turbulene, and the dynamis ofthe edge near this transition appear to be onneted. The evolution of the trajetoryas it leaves turbulene remains lose to the edge for a signi�ant amount of time (> 50time units) both before and after transition, whih again is in agreement with the lowdimensional model.5 ConlusionThe fous of this work has been understanding the role that the edge plays during deayfrom turbulene. Beginning from a hypothesis that turbulene deayed through a pointin the edge, we examined the statistis and physial proesses involved in deay. We�nished by omparing the dynamis of the edge in a low dimensional system to the fulldynamis of plane Couette �ow. There was no evidene to support the hypothesis of aunique deay point, instead what was observed was a wide variety of deay rates androutes bak to the laminar state. We statistially on�rmed ideas about the physialproesses involved during the deay. Statistially all parts of the �ow �eld begin todeay at the same point in time, but the downstream rolls and x-dependent part ofthe �ow �eld deay at a greater relative rate. The last 200 time units of deay involveonly downstream fast and slow streaks. The rate that these streaks deay is set by thehorizontal length-sales involved. The streak struture during deay is simple, involvingpredominately the �rst and seond horizontal Fourier modes. The relative energy inthese two modes sets the deay rate. To understand the geometry of the edge in thefull dynamis we ran tests to ompare this to a 2D model. This 2D model had beenseleted as the simplest model ontaining edge struture seen in several low dimensionalmodels of shear �ows. In these models the edge extended to in�nity in one diretion,but in another wrapped up in�nitely many times around a struture (in the ase ofedge dynamis would separate. 13
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the 2D model a �xed point). Comparing to this model we saw some evidene in thefull dynamis for similar, if more ompliated struture. Deaying trajetories passedaround the edge, and the parts it passed around were found to be dynamially onnetedin some ases. The value of E3D at this transition suggests that the edge passes up intophase spae. However we do not laim that this evidene proves this model to beaurate. What we have sueeded in doing, is test the validity of this model with aseries of tests, and further work is required before stronger onlusions an be made.There are several areas of this work where interesting extensions are lear. Condutingthe statistial analysis for a larger domain size would allow study of the onjetureson streak struture. Are six-streak strutures observed in larger domains during deay,and at what Reynolds numbers? Another question opened up by this work is into thesigni�ane of the loation where a deaying trajetory passes around the edge. Doesthis our at a spei� time before deay, and are there partiular harateristis of the�ow �eld as the edge is rounded?Despite having held attention of great minds sine 1883, turbulene in shear �owsis an area where real progress is urrently being made around the globe. Modern ideasand powerful omputers have enabled the disovery of new and omplex solutions, whihbear resemblane to experimental work. Progress has been made furthering our under-standing of the edge, and the role that it plays in the dynamis of turbulent shear �ows.The edge itself hanges strongly with Reynolds number, with di�erent solutions playingthe role as the edge state. The idea that the edge is wrapped and folded around theturbulent dynamis, whih a trajetory must negotiate in order to return to the laminarstate, is an idea whih requires further study before onlusions an be drawn.6 AknowledgmentsThis work was arried out thanks to my appointment as a GFD fellow at the WoodsHole Oeanographi Institute. The projet was suggested by Tobias Shneider whosupervised my work this Summer. Thanks go to John Gibson who o�ered insight andsupport with hannel�ow [24℄, and to Norm Lebovitz for his advie on low dimensionalmodels. A �nal thanks to the other GFD fellows and sta� who made this Summer veryenjoyable.Referenes[1℄ Hagen, G. H. L. 1839, Über die Bewegung des Wassers in engenzylindrishen Rohren, Poggendorfs Annal. Physik Chemie, 16.[2℄ Poiseuille, K. L. M., 1840, Reherhes experimentales sur le mouvement des liquidesdans les tubes de très petits diametres., CR Aad. Si., 11, 961.[3℄ Reynolds, O. 1883, An experimental investigation of the irumstanes whih de-termine whether the motion of water shall be diret or sinuous and of the law ofresistane in parallel hannels., Phil. Trans. R. So., 174, 935-982.[4℄ Faisst, H. & Ekhardt, B., 2004, Sensitive dependene on initial onditions in tran-sition to turbulene in pipe �ow., J. Fluid Meh., 504, 343-352.[5℄ Nagata M., 1990, Three-dimensional �nite-amplitude solutions in plane Couette�ow: bifuration from in�nity. J. Fluid Meh., 217.[6℄ Kawahara G. & Kida S., 2001, Periodi motion embedded in Plane Couette turbu-lene: regeneration yle and burst. J. Fluid Meh., 449, 291.17
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