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Abstract

We investigate the limitations of various MHD models that include electron inertia
by considering expansion in terms of non-dimensional parameters, and by classifying
those that have energy conservation. It is revealed that a correction term in the mo-
mentum equation, which is usually neglected, is needed to conserve the total energy.
In order to investigate the effect of this correction term, a modified Grad-Shafranov
equation is obtained in the “straight torus,” i.e., where toroidal curvature is neglected,
for the cases when the plasma has constant density or is barotropic. In the case with
toroidal curvature, some conditions on the magnetic field in a torus are needed even if
the plasma has constant density.

1 Introduction

The usual ideal magnetohydrodynamic (MHD) model is often used in various fields, for
instance, in astrophysics, nuclear fusion and geophysics. Of course, as with all models,
ideal MHD has some limitations, such as in a specific regions where magnetic reconnec-
tion takes place, which is considered to have an important role in energy transfer. Other
effects can also be important and the MHD model may breakdown for other reasons. Con-
sequently, many researchers have considered other MHD models (usually called extended
MHD) and investigated their properties both analytically and numerically. However dif-
ferent researchers have used different extended MHD models [1, 3, 4, 10], and the relation
and limitation between these models seems to be unknown. For all of these models the
difference only exists in the generalized Ohm’s law, with the momentum equation being the
same as the usual MHD model.

Here we first classify models with electron inertial in terms of energy conservation; we
find which models have an energy conservation law. Next, to investigate the effect of electron
inertia, we try to generalize the Grad-Shafranov equation, which describes the equilibrium
state with no flow and axisymmetry in a torus [5, 6]. Finally, we introduce some equilibrium
states with flow in an incompressible plasma.
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This report is organized as follows. In Section 2 we discuss the limitations of some
inertial MHD models and investigate their energy conservation. In Section 3, we classify
some inertial MHD models in terms of energy conservation. In Section 4 we try to modify the
Grad-Shafranov equation to include the effect of electron inertia term and in Section 5 we
introduce some equilibrium states with constant density and with flow. Finally, Conclusions
and discussions are given in Section 6.

2 Limitation and Energy Conservation of Inertial MHD Model

In this section we derive the asymptotically consistent inertial MHD (IMHD) model from
a complete one-fluid model. We consider an electron-ion plasma that is completely ionized.
The one-fluid model has been derived from kinetic theory (see e.g. [3, 2]) of charged particles,
that is, a plasma. We begin with the model of Lüst [8] who derived the continuity equation,
the momentum equation, and the generalized Ohm’s law for the one-fluid model.

Using the fact that the electron mass is much lighter than the ion mass and assuming
the plasma is quasi-neutral, we obtain the continuity equation, the momentum equation,
and the generalized Ohm’s law as follows:

0 =
∂ρ

∂t
+∇ · (ρV ),

ρ

(
∂V

∂t
+ (V · ∇)V

)
= −∇p+ j ×B − me

e
(j · ∇)

j

en
,

E + V ×B =
1
σ

j +
1
en

(j ×B −∇pe)

+
me

e2n

[
∂j

∂t
+∇ · (V j + jV )

]
− me

e2n
(j · ∇)

j

en
,

where ρ is the density of plasma, V the bulk velocity, p the pressure, j the current density,
B the magnetic field, me the electron mass, e the elementary charge, n the number density
of each species of charged particles, E the electric field, σ the conductivity, and pe the
electron pressure. Note that the momentum equation is equivalent to the summation of the
momentum equations of the electron and ion species, and the generalized Ohm’s law is the
difference. Ohm’s law can be viewed as representing the momentum equation of electron.

The last term on the right-hand-side of the momentum equation exists due to the elec-
tron inertia. We call the second term on the left-hand-side of the generalized Ohm’s law
the “nonlinear term,” the first term on the right-hand-side the “collision term,” the second
term the “Hall term,” and the third and fourth terms will be called the “electron inertia
terms.” To compare the size of these terms, we use the following characteristic numbers:

Rem ≡
Nonlinear term
Collision term

= σµ0UL,

CH ≡
Hall term

Collision term
=
σB

en
,

CI ≡
Electron inertia term

Collision term
=
σme

e2nτ
,
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where U , L, B, and τ are the characteristic velocity scale, length scale, magnitude of
magnetic field, and time scale of current change, respectively. The number Rem is called
the magnetic Reynolds number.

In this report we focus on the situation where the electron inertia term is much larger
than the collision term and the Hall term; however, the nonlinear term is still considered
to be large enough to be comparable with the electron inertia term, that is,

Rem � 1, CI � 1,
CI
CH
� 1.

Since the last relation is equivalent to

CI
CH

=
me

eB

1
τ

=
1

ΩGeτ
,

where ΩGe is the electron gyro-frequency, this relation can be interpreted as saying that the
characteristic time scale of the current change is much shorter than the gyro-period of the
electron.

Finally, we obtain the IMHD model given by the following equations:

0 =
∂ρ

∂t
+∇ · (ρV ), (1)

ρ

(
∂V

∂t
+ (V · ∇)V

)
= −∇p+ j ×B − ε me

e
(j · ∇)

j

en
, (2)

E + V ×B = ε
me

e2n

[
∂j

∂t
+∇ · (V j + jV )

]
− δ me

e2n
(j · ∇)

j

en
, (3)

0 =
∂S

∂t
+ (V · ∇)S, (4)

where S is the entropy of the plasma and the last equation means the plasma is adiabatic.
We have inserted book keeping parameters ε and δ to label terms, yet both of these have
value unity. The above equations are to be solved with the pre-Maxwell’s equations,

∇ ·E = 0,
∇ ·B = 0,

∇×E = −∂B

∂t
,

∇×B = µ0j.

Note that because of quasi-neutrality, the current density is solenoidal, that is,

∇ · j = 0.

Next, let us consider the energy of this IMHD model. Taking the dot product of V and
the momentum equation, the dot product of j and the generalized Ohm’s law, and from
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the pre-Maxwell equations, we obtain the following energy relation:

0 =
∂

∂t

(
1
2
ρ|V |2 + ρU + ε

me

e2n

|j|2

2
+
|B|2

2µ0

)
+∇ ·

[(
1
2
ρ|V |2 + p+ ρU + ε

me

e2n

|j|2

2

)
V

+ε
me

e2n
(V · j)j − δ me

2e3n2
|j|2j +

E ×B

µ0

]
.

Because of the electron inertia the term
me

e2n

|j|2

2
is included in the energy density term.

Note that, from the generalized Ohm’s law, E includes the time derivative term ε
me

e2n

∂j

∂t
,

so the above formulation is not in the usual conservation form.1 However, upon integrating
the above energy relation over the whole domain V with appropriate boundary conditions,
it is revealed that the total energy H, which is defined as

H ≡
∫
V

(
1
2
ρ|V |2 + ρU + ε

me

e2n

|j|2

2
+
|B|2

2µ0

)
dr,

is conserved.

3 Classification of Inertial MHD Model in terms of Energy
Conservation

In this section we consider the classification of some IMHD models in terms of the energy
conservation. In order to classify these models, we label the different epsilon term the
different epsilon as is shown in the following arguments.

First, we consider the compressible IMHD model which is governed by pre-Maxwell’s
1When we solve the governing equations (1)–(4) with the full Maxwell’s equations, we obtain the following

energy relation:

0 =
∂

∂t

„
1

2
ρ|V |2 + ρU + ε

me

e2n

|j|2

2
+
|B|2

2µ0
+

1

2
ε0|E|2

«
+∇ ·

»„
1

2
ρ|V |2 + p+ ρU + ε

me

e2n

|j|2

2

«
V

+ε
me

e2n
(V · j)j − δ me

2e3n2
|j|2j +

E ×B

µ0

–
,

and this relation is of the usual conservation form.
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equations and by the following equations:

0 =
∂ρ

∂t
+∇ · (ρV ),

ρ

(
∂V

∂t
+ (V · ∇)V

)
= −∇p+ j ×B − εEOM

me

e
(j · ∇)

j

en
,

E + V ×B = εt
me

e2n

∂j

∂t
+ εad

me

e2n
(V · ∇)j + εcp

me

e2n
j(∇ · V )

+ εM
me

e2n
(j · ∇)V − δ me

e2n
(j · ∇)

j

en
,

0 =
∂S

∂t
+ (V · ∇)S,

where S is the entropy and δ, εt (time derivative), εad (advection), εcp (compressible), εM
(related to EOM), εEOM (in EOM) are labels of these terms. In this system, the energy
conservation is as follows:

∂

∂t

(
1
2
ρ|V |2 + ρU + εt

me

e2n

|j|2

2
+
|B|2

2µ0

)
+∇ ·

[(
1
2
ρ|V |2 + p+ ρU + εad

me

e2n

|j|2

2

)
V

+εM
me

e2n
(V · j)j − δ me

e3n2

|j|2

2
j +

E ×B

µ0

]
= (εt − εad)

me

e2n

|j|2

2
∇ · (nV )

n
+ (εad − εcp)

me

e2n
|j|2(∇ · V )

+ (εM − εEOM)
me

e
V ·

{
(j · ∇)

j

en

}
.

Then, since the εt term have to exist in this model because when deriving the IMHD model
we evaluate the electron inertia term using the characteristic time scale of current change,
we find that the total energy is conserved only when all the epsilon terms exist or εt, εad

and εcp exist. Therefore we conclude that the epsilon term in the momentum equation is
very important to conserve the total energy in IMHD model.

Secondly, we consider the incompressible IMHD model which is governed by pre-Maxwell’s
equations and by the following equations:

ρ = ρ0 = const. ⇔ n = n0 = const.,

ρ0

(
∂V

∂t
+ (V · ∇)V

)
= −∇p+ j ×B − εEOM

me

e2n0
(j · ∇)j,

E + V ×B = εt
me

e2n0

∂j

∂t
+ εad

me

e2n0
(V · ∇)j

+ εM
me

e2n0
(j · ∇)V − δ me

e3n2
0

(j · ∇)j.

Note that εcp do not exist in the above equations because of the incompressibility. In this
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system, the energy conservation is as follows;

∂

∂t

(
1
2
ρ0|V |2 + εt

me

e2n0

|j|2

2
+
|B|2

2µ0

)
+∇ ·

[(
1
2
ρ0|V |2 + p+ εad

me

e2n0

|j|2

2

)
V

+εM
me

e2n0
(V · j)j − δ me

e3n2
0

|j|2

2
j +

E ×B

µ0

]
= (εM − εEOM)

me

e2n0
V · {(j · ∇)j} .

Then it is revealed that total energy is conserved when εM = εEOM = 0 or 1, and there are
no other constraints against εt and εad.

εt εad εcp εM Ohm’s law E + V ×B = εEOM Conserved?

Compressible plasma
1 1 1 1 me

e2n

„
∂j

∂t
+∇ · (V j + jV )

«
1 OK!

1 1 1 me

e2n

„
∂j

∂t
+∇ · (V j)

«
OK!

1 me

e2n

∂j

∂t

me

e2n

|j|2

2

∇ · (nV )

n

1 1 me

e2n

„
∂j

∂t
+ (V · ∇)j

«
me

e2n
|j|2(∇ · V )

1 1 1 1 me

e2n

„
∂j

∂t
+∇ · (V j + jV )

«
me

e
V ·


(j · ∇)

j

en

ff

Incompressible plasma

1 − me

e2n0

∂j

∂t
OK!

1 1 − me

e2n0

„
∂j

∂t
+ (V · ∇)j

«
OK!

1 1 − 1 me

e2n0

„
∂j

∂t
+∇ · (V j + jV )

«
1 OK!

1 1 − 1 me

e2n0

„
∂j

∂t
+∇ · (V j + jV )

«
me

e2n0
V · {(j · ∇)j}

Table 1: Classification of some IMHD models in terms of energy conservation. The epsilons
in the generalized Ohm’s law are listed from the first to fourth columns, and the generalized
Ohm’s law is described in the fifth column. The epsilon in the momentum equation are
listed in the sixth column. When the total energy is conserved “OK!” is written in the
last column, otherwise the remaining terms are written in the last column. Note that in a
incompressible plasma, there is no εcp term in the generalized Ohm’s law, then we write −
in the third column in a incompressible plasma.

We summarize the classification of some IMHD models in terms of the energy conser-
vation in Table 1.
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4 Equilibrium States with No Flow – Grad-Shafranov Equa-
tion

In the previous section we find that εEOM term is very important to conserve the energy
in the MHD model. Then in this section, to investigate the effect of this term, we try to
modify the Grad-Shafranov (GS) equation ([5],[6]) which can be derived from the (ideal)
MHD model and describe the equilibrium state with no flow in a torus and with toroidal
axisymmetry, for example, the axisymmetric toroidal plasma in a tokamak.

4.1 Modified Grad-Shafranov Equation in a “Straight Torus” with Con-
stant Density

Let us consider the Grad-Shafranov equation of plasma with constant density in a “straight
torus,” which means a torus with no curvature, that is, a cylinder. We assume that the
plasma is steady and z-independent, where z means the axis of the cylinder. Then, using
the cylindrical coordinate (r, θ, z), the magnetic field can be described as

B = Bzez + ez ×∇ψ,

and the current density is

j =
1
µ0
∇×B =

1
µ0

[
ez(∇2

⊥ψ)− ez × (∇⊥Bz)
]
,

where Bz and ψ are both z-independent and

∇⊥ ≡ er
∂

∂r
+ eθ

1
r

∂

∂θ
,

∇2
⊥ ≡

1
r

∂

∂r

(
r
∂

∂r

)
+

1
r2

∂2

∂θ2
,

and er, eθ are the unit vector toward the radial and polar angle direction, respectively.
Then the governing equations can be simplified to the following equations:

0 = −∇p+ j ×B − ε me

e2n0
(j · ∇)j, (5)

0 = ∇×E = −δ me

e3n2
0

∇× [(j · ∇)j], (6)

where p is also z-independent.
First we focus on the momentum equation (5). Considering the z component of the

momentum equation, we obtain

0 =
{
ψ − ε̃∇2

⊥ψ, Bz
}
,

where ε̃ ≡ εme/(µ0e
2n0) and

{f, g} ≡ ez · (∇⊥f ×∇⊥g),
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where f and g are both z-independent 2 . Then we obtain the first constraint, that is,

ψ − ε̃∇2
⊥ψ ≡ L(Bz), (7)

where L is an arbitrary function of Bz.
Taking the dot product of j and the momentum equation, we obtain

0 =
{
µ0p+ ε̃

(∇2
⊥ψ)2

2
+ ε̃
|∇⊥Bz|2

2
, Bz

}
,

⇔ M(Bz) ≡ µ0p+ ε̃
(∇2
⊥ψ)2

2
+ ε̃
|∇⊥Bz|2

2
, (8)

where M(Bz) is an arbitrary function of Bz, and this is the second constraint.
Taking the dot product of ∇⊥ψ and the momentum equation and substituting the above

two constraints (7) and (8), we obtain the third constraint described as

0 =
dM

dBz
+

dL

dBz
(∇2
⊥ψ) +Bz − ε̃(∇2

⊥Bz). (9)

Considering ε → 0, the first constraint (7) means Bz is a function of ψ, that is, Bz ≡
F (ψ), then the second constraint means p is also a function of ψ, and the third constraint
becomes

∇2
⊥ψ = −µ0

dp

dψ
− F dF

dψ
, (10)

which is the incompressible Grad-Shafranov equation in a “straight torus.”
Next we consider the constraint from the δ term (6) with the above three constraints

with finite ε. After some calculations, we obtain the following equation from (6):

0 = − dL

dBz
∇⊥ψ ×∇⊥Bz +∇× (∇⊥ψ ×∇⊥Bz),

then we find that

∇⊥ψ ×∇⊥Bz ≡ 0, ⇔ Bz ≡ F (ψ), (11)

where F is an arbitrary function of ψ, and this is the fourth constraint.
¿From the first constraint (7) and the fourth one (11), ∇2

⊥ψ is also a function of ψ. Then
|∇⊥ψ|2 is also a function of ψ because of the relation that ∇2

⊥Bz = F ′′|∇⊥ψ|2 + F ′∇2
⊥ψ

with the third constraint (9) and the fact that ∇2
⊥ψ is a function of ψ. So we define

|∇⊥ψ|2 ≡ K(ψ).

Then, considering the second constraint (8) with the relation that |∇⊥Bz|2 = F ′2|∇⊥ψ|2,
it is revealed that p is also a function of ψ.

2If {f, g} = 0, f is an arbitrary function of g, or g is an arbitrary function of f .
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Finally, after some calculations, we obtain the following equation from the third con-
straint (9):

∇2
⊥ψ = − 1

1− ε̃F ′2
(µ0p

′ + FF ′)− ε̃F ′2

1− ε̃F ′2
K ′

2
, (12)

where prime means the derivative of ψ, and this is the modified incompressible Grad-
Shafranov equation in a “straight torus.” Note that when ε → 0, the above equation
becomes the (usual) incompressible Grad-Shafranov equation in a “straight torus” already
shown in (10).

4.2 Modified Grad-Shafranov Equation in a “Straight Torus”

Next, let us consider the Grad-Shafranov equation of compressible plasma in a “straight
torus.” Then the governing equations are

0 = − 1
men
∇p+

1
men

j ×B − ε
(

j

en
· ∇
)

j

en
, (13)

0 = ∇×E = −δme

e
∇×

[(
j

en
· ∇
)

j

en

]
. (14)

We assume p, n, Bz and ψ are all z-independent. Comparing the z component of
momentum equation, we obtain the first constraint:{

Bz, ψ − ε
me

µ0e2
∇2
⊥ψ

n

}
= 0, ⇔ ψ − ε me

µ0e2
∇2
⊥ψ

n
≡ L(Bz). (15)

Taking the dot product of j and the momentum equation (13), we obtain

0 =
1
n

[Bz, µ0p] +
[
Bz, ε

me

µ0e2
(∇2
⊥ψ)2

2n2
+ ε

me

µ0e2
|∇⊥Bz|2

2n2

]
, (16)

and taking the dot product of ∇⊥ψ and the momentum equation (13), we obtain

0 = −∇⊥ψ · ∇⊥(µ0p)− (∇2
⊥ψ)|∇⊥ψ|2 −∇⊥ψ · ∇⊥

(
B2
z

2

)
− ε me

µ0e2
∇⊥ψ
n
· ∇⊥

(
|∇⊥Bz|2

2

)
+ ε

me

µ0e2
(∇2
⊥Bz)
n

∇⊥ψ · ∇⊥Bz

+ ε
me

µ0e2
1
n2

[Bz, n] · [Bz, ψ], (17)

where we use the first constraint (15).
Next we focus on the constraint of δ term (14), and we can define the potential Φ as

the following relation:(
j

en
· ∇
)

j

en
=

1
µ2

0

1
e2n2

[
∇⊥

(
|∇⊥Bz|2

2

)
− (∇2

⊥Bz)∇⊥Bz

− 1
n
{Bz, n} ez × (∇⊥Bz)

]
+

1
µ2

0

1
e2n

{
∇2
⊥ψ

n
,Bz

}
ez,

≡ ∇Φ = ∇⊥Φ +
∂Φ
∂z

ez.
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Then, since n, Bz and ψ are all z-independent, it is revealed that

∂

∂z
(∇⊥Φ) = 0, and

∂

∂z

(
∂Φ
∂z

)
= 0,

therefore we obtain

C =
∂Φ
∂z

=
1
µ2

0

1
e2n

{
∇2
⊥ψ

n
,Bz

}
,

where C is a constant. Using the constraint (15), the above equation becomes

C =
1
εµ0

1
n
{ψ,Bz} .

Multiplying nB2
z by the above equation and integrating in the whole area S perpendicular

to the z-axis,

C

∫
S
nB2

zdS =
1
εµ0

∫
S
B2
z {ψ,Bz} dS

=
1
εµ0

∫
S
ψ
{
Bz, B

2
z

}
dS = 0,

where we use Bz = 0 on the boundary ∂S. Since n is positive and B2
z 6= 0 in some region

in the area S, the constant C must be 0. This fact means that the potential Φ is also
z-independent, that is,

∂Φ
∂z

= 0, ⇔
{
∇2
⊥ψ

n
,Bz

}
= 0,

then it is revealed that ∇2
⊥ψ/n is an arbitrary function of Bz. Considering this fact with

the first constraint (15), we find that ψ is a function of Bz, that is,

Bz ≡ F (ψ). (18)

In this case, (16) becomes

0 =
1
n

[ψ, µ0p] + [ψ, εµ0meΦ] =
1
n

[ψ, µ0p] +
[
ψ, ε

me

µ0e2
F ′2

2n2
|∇⊥ψ|2

]
, (19)

and (17) becomes

0 = −∇⊥ψ ·
∇⊥(µ0p)

n
− FF ′ |∇⊥ψ|

2

n

−
(

1− ε me

µ0e2
F ′2

2n

)
∇2
⊥ψ

n
|∇⊥ψ|2 − ε

me

µ0e2
F ′2

2n2
∇⊥ψ · ∇⊥(|∇⊥ψ|2)

= −∇⊥ψ ·
∇⊥(µ0p)

n
− FF ′ |∇⊥ψ|

2

n
−
∇2
⊥ψ

n
|∇⊥ψ|2 − εµ0me∇⊥ψ · ∇⊥Φ. (20)
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Let us consider the situation that the plasma is barotropic, that is, p = p(n). We define
the function P as

∇⊥P ≡
1

n(p)
∇⊥p.

¿From (19), we obtain the following constraint:

P + εmeΦ ≡ P̃ (ψ),

where P̃ is an arbitrary function of ψ. Since ∇2
⊥ψ/n is a function of Bz, and Bz is a function

of ψ, that is, ∇2
⊥ψ/n ≡ G(ψ) where G is a function of ψ. And so (20) becomes

0 = −µ0P̃
′ − FF ′

n
−G,

where prime means the derivative of ψ. Therefore we find that n is also a function of ψ.
¿From (19), it is revealed that |∇⊥ψ|2 is a function of ψ, that is, |∇⊥ψ|2 ≡ K(ψ), where
K is a function of ψ. Finally, after some calculations for (20), we obtain the following
equation:

∇2
⊥ψ = − 1

1− ε me

µ0e2n
F ′2

(
µ0p
′ + FF ′

)
−

ε
me

µ0e2n
F ′2

1− ε me

µ0e2n
F ′2

K ′

2
, (21)

where prime means the derivative of ψ, and this is the modified Grad-Shafranov equation
in a “straight torus.” This includes the modified Grad-Shafranov equation with constant
density in a “straight torus” which is described as (12).

4.3 Modified Grad-Shafranov Equation in a Torus with Constant Density

Thirdly, let us consider the Grad-Shafranov equation of plasma with constant density in a
torus. We assume that the plasma is steady and φ-independent, where we use the cylindrical
coordinate (R,φ, Z) and φ means the azimuth. In this case the magnetic field can be
described as

B = Bφeφ +
1
R

eφ ×∇⊥ψ,

where Bφ and ψ are both φ-independent. The current density can be described as

j =
1
µ0

[
1
R

(∆∗ψ)eφ +
1
R
∇⊥(RBφ)× eφ

]
,

where ∇⊥ and ∆∗ are defined as

∇⊥ ≡ eR
∂

∂R
+ eZ

∂

∂Z
,

∆∗ ≡ R ∂

∂R

(
1
R

∂

∂R

)
+

∂2

∂Z2
,

11



and eR, eZ are the unit vector toward the radial and height direction, respectively. The
governing equations are as follows:

0 = −∇p+ j ×B − ε me

e2n0
(j · ∇)j, (22)

0 = ∇×E = −δ me

e3n2
0

∇× [(j · ∇)j]. (23)

First we focus on the momentum equation (22). Comparing the φ component of this
equation, we obtain the first constraint as follows:

ψ − ε̃∆∗ψ ≡ L(RBφ), (24)

where L is an arbitrary function of RBφ and

ε̃ ≡ ε me

µ0e2n0
.

Taking the dot product of j and the momentum equation, we also obtain the second con-
straint, that is,

M(RBφ) ≡ µ0p+ ε̃
(∆∗ψ)2

2R2
+ ε̃
|∇⊥(RBφ)|2

2R2
, (25)

where M is an arbitrary function of RBφ. Finally, taking the dot product of ∇⊥ψ and
the momentum equation and using the first and second constraints, we obtain the third
constraint which is described as

0 = R2 dM

d(RBφ)
+

dL

d(RBφ)
∆∗ψ − ε̃∆∗(RBφ) +RBφ. (26)

When ε→ 0, using (24)– (26), we can obtain the (usual) Grad-Shafranov equation which
is described as

∆∗ψ = −µ0R
2p′ − FF ′,

where p ≡ p(ψ) and RBφ ≡ F (ψ), and prime means the derivative of ψ.
Next we consider the constraint of (23). This equation means

∇Φ ≡ (j · ∇)j

= ∇⊥
[
|∇⊥(RBφ)|2

2µ2
0R

2
+

(∆∗ψ)2

2µ2
0R

2
− M

µ2
0ε̃

]
+

1
µ2

0ε̃

1
R2

[−(∆∗ψ)∇⊥ψ −RBφ∇⊥(RBφ) +∇⊥ψ ×∇⊥(RBφ)] .

Therefore, we find

∂

∂φ
∇⊥Φ =

∂

φ

∂Φ
∂φ

= 0, ⇔ ∂Φ
∂φ

= C,

where C is a constant.
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If C = 0, that is, Φ is also φ-independent, then we find RBφ ≡ F (ψ) where F is an
arbitrary function of ψ. Then, from the first constraint (24) ∆∗ψ ≡ N(ψ) where N is an
arbitrary function of ψ.

0 = ∇×∇Φ =
1
µ2

0ε̃

2
R3

(
N + FF ′

)
eR ×∇⊥ψ,

therefore we find that

N + FF ′ = 0, or ψ = ψ(R). (27)

Especially the second situation that ψ is only a function of R and independent of Z may
be unrealistic. Further analyses are needed.

If C 6= 0, the potential Φ becomes a multivalued function, so this means the domain
must not be simply connected space. This situation is satisfied in a tokamak. Further
analyses are also needed.

4.4 Summary of Modified Grad-Shafranov equation in IMHD model

Straight torus Torus
3 constraints (7)– (9) 3 constraints (24)– (26)

Plasma with are obtained. are obtained.
constant density Modified GS (12) Only the condition (27) is

is obtained. obtained if ∂Φ/∂φ = 0.
1 constraints (15) and 2 (weak) ??

Compressible constraints (16), (17) are obtained.
plasma If barotropic, modified GS (21) ???

is obtained.

Table 2: Summary of the constraints of the equilibrium states with no flow in a “straight
torus” and a torus and the modified Grad-Shafranov (GS) equations. The upper row in
each situation shows the result with considering only ε term in the momentum equation,
while the lower row shows the result with considering both ε and δ terms. At compressible
plasma in a “straight torus,” “weak constraints” mean that these constraints are not the
form that some values are purely the functions of another values but are simply the written
formulation. We could not obtain any efficient conditions for compressible plasma in a torus
and so ‘??’ is written in the above table.

In Table 2, we summarize the constrains of the equilibrium states with no flow in a
“straight torus” or a torus and the modified Grad-Shafranov equation obtained in the
previous sections.

In “straight tori,” the modified Grad-Shafranov equations are obtained with the as-
sumption that the plasma is barotropic. In torus, however, because of its curvature, useful
equations could not be obtained and only some conditions are obtained even if the plasma
has constant density. In compressible plasma in torus, there were no efficient results ob-
tained. The physical interpretation of this effect of its curvature is a future work and further
analyses are needed.
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5 Incompressible Equilibrium States with Flow

In this section we introduce some equilibrium states in an incompressible plasma with flow,
but further analyses are future works.

The governing equations are as follows:

ρ = ρ0 = const. ⇔ n = n0 = const., (28)

0 = −∇p+ j ×B − ε me

e2n0
(j · ∇)j − ρ0(V · ∇)V , (29)

∇Φ = E = −V ×B + ε
me

e2n0
[(V · ∇)j + (j · ∇)V ]− δ me

e3n2
0

(j · ∇)j, (30)

because the plasma is incompressible and

0 =
∂B

∂t
= −∇×E ⇔ E ≡ ∇Φ.

5.1 The Situation V ∝ j

We assume

V = C
j

en
,

then the governing equations (28)– (30) become as follows;

0 = −∇p+ j ×B −
(
C2 ρ0

e2n2
0

+ ε
me

e2n0

)
(j · ∇)j,

0 = ∇Φ +
C

en
j ×B −

(
2Cε

me

e3n2
0

− δ me

e3n2
0

)
(j · ∇)j.

If

2Cε
me

e3n2
0

− δ me

e3n2
0

=
C

en

(
C2 ρ0

e2n2
0

+ ε
me

e2n0

)
and we define Φ as Φ ≡ −Cp/(en0), the two equations are equivalent. Indeed, if δ = 0,

C = ±
√
ε

me

e2n0ρ0
= ±

√
ε

me

mi +me
,

and the governing equation becomes

0 = −∇p+ j ×B − 2ε
me

mi +me
(j · ∇)j,

where ∇×B = µ0j. Studying the physical meaning of the value of C is a future work.
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5.2 Beltrami – “Jeltrami” Flow

In this section we consider the Beltrami – “Jeltrami” flow, which means the velocity and
current density satisfy the following equations:

∇× V = λV ,

∇× j = µj,

where λ and µ are some functions in general. In this case the magnetic field satisfies the
following equation:

B =
µ0

µ
j +∇χ,

where χ is an arbitrary harmonic function because B is solenoidal. Then the governing
equations (28)– (30) become as follows:

∇p̃ = j ×∇χ,

∇Φ̃ = −V ×∇χ+
µ0

µ

[
1 +

(
me

µ0e2n0

)
µ(µ− λ)

]
j × V ,

where p̃ and Φ̃ are defined as

p̃ ≡ p+ ρ0
|V |2

2
+ ε

me

e2n0

|j|2

2
,

Φ̃ ≡ Φ + ε
me

e2n0
(V · j) + δ

me

e3n2
0

|j|2

2
.

For simplicity, if µ, λ and χ satisfy the following relations,

µ = λ, and χ ≡ 0,

the governing equations becomes

∇p̃ = 0,

∇Φ̃ =
µ0

µ
j × V .

6 Conclusions and Discussions

We have investigated limitations of IMHD model by introducing some non-dimensional
parameters and classify IMHD models according to whether or not they conserve energy.

It is revealed that the correction term
me

e
(j · ∇)

j

en
in the momentum equation, which is

usually neglected, is needed to conserve the total energy.
In order to investigate the effect of this correction term, we attempted to modify the

Grad-Shafranov equation, which describes the equilibrium state in a torus with no flow,
and obtain a modified Grad-Shafranov equation in a “straight torus” when the plasma is
barotropic (the density being a function of the pressure). However, we were only ablte to
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do this with some conditions on the magnetic field in a torus due to its curvature. The
physical interpretation of this effect of curvature will be addressed in future work and further
analyses are needed.

We also introduced some equilibrium states with constant density and with flow. One
has V proportional to j and another was the Beltrami–”Jeltrami” flow. Concrete analyses
of these will also be considered in future work.

The dispersion relation of the Alfven wave in usual MHD model is ω/k = VA cos θ, where
ω is the frequency, k the wavenumber, VA ≡

√
B2

0/(µ0ρ0) the speed of Alfven wave (B0 is
the magnitude of magnetic field and ρ0 the density), and θ is the angle between the uniform
magnetic field and the wavevector. On the other hand, the dispersion relation of the IMHD
model is ω/k = VA cos θ/

√
1 + d2

ek
2, where d2

e ≡ me/(µ0e
2n0) (me is the electron mass, e

the elementary charge and n0 the number density) [9]. Therefore, higher wavenumber waves
propagate more slowly in IMHD model than in usual MHD model. The same tendency can
be found in the fast and slow magnetosonic waves. These facts suggest that the stability
of some states can be changed by the effect of electron inertia, and this is this will also be
considered in future work.
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