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0.1 Introduction

Brownian motion was discovered by the botanist Robert Brown in 1827. While studying
pollen grains suspended in water under a microscope, Brown observed that particles ejected
from the pollen grains executed a jittery motion. After he replaced the pollen grains by
inorganic matter, he was able to rule out that the motion was life-related, although its
origin was yet to be explained.

In 1905, Einstein[5] explained Brownian motion as the result of bombardment of fluid
molecules on the suspended particle. There are two main parts to his paper. First, he finds
the following relation of the diffusion coefficient to other physical quantities:

D =
kBT

6πηa
=
kBT

ζ
,

where D is diffusion coefficient, kB is Boltzmann’s constant, a is radius of the particle, η
is the dynamic viscosity, and ζ = 6πηa is the Stokes drag, which was first calculated by
Stokes. Then, Einstein related the diffusion coefficient to the mean square displacement of
the particle, 〈x2〉 = 2Dt, where D is diffusion coefficient. Specifically, Einstein found that
the density of the Brownian particles f(x, t) satisfies the heat equation

∂f

∂t
= D

∂2f

∂x2
,

and after solving the heat equation, he got that the mean square displacement is propor-
tional to time. However, Einstein also noticed when time is short (in ballistic time regime),
the mean square displacement should be different, since during very short times individual
particles become significant.

In 1908, Langevin[12] used another point of view, he assumed the particles satisfy the
Newtonian equation:

m
dv(t)
dt

= −ζv(t) + X ,

where ζ = 6πµa is the Stokes drag and X is a random force describing the bombardment
by fluid particles. Using this equation, with the assumption that 〈X(t)x(t)〉 = 0, x(t) being
the position of particle, Langevin was able to derive the same relation that Einstein derived,
i.e.

〈x2〉 =
2kBT
ζ

t .

This is valid when t is large, but when t is small, a particle’s inertia becomes signifi-
cant. In this inertia dominated regime, termed the ballistic regime, the particle’s motion
is highly correlated. Langevin’s approach also applies to the ballistic regime. In the clas-
sical Langevin theory, it is assumed that the autocorrelation function of the random force
satisfies

〈X(t1)X(t2)〉 = 2ζkBTδ(t1 − t2) .

This means that the random force acting on the Brownian particle is memoryless. From
the Langevin equation, it can be shown that the velocity autocorrelation function has
exponentially decay,

Φ(t) := 〈v(t0)v(t0 + t)〉 = 〈v(t0)2〉e−
ζt
m .
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However, in the 1960s, the famous ”tails” of the velocity autocorrelation function were
discovered[14]. It was experimentally obeserved that the velocity autocorrelation does not
exponential decay, but rather has an algebraic decay. Then, Langevin’s approach was
generalized to give a more accurate description. Instead of using the δ correlated random
force, it was figured out that one should include the memory effect of the fluid.

The long time behavior of velocity autocorrelation function (VACF) and mean square
displacement (MSD) have been observed by both experiment and computer simulation for
many years. The ballistic regime (where the inertia of Brownian particle will dominate) is
hard to observe in experiments, since it requires the position detector equipment to have
extraordinary spatial and temporal resolution. Only very recently has Brownian motion in
the ballistic regime been observed[9], and the experiment showed excellent agreement with
theoretical predictions[4].

There are two main steps that have been taken to derive the VACF and MSD. A deter-
ministic part where one calculates the response function ζ(ω) corresponding to a specific fre-
quency. This step is done by solving the linearized Navier-Stokes equations analytically. The
second step is a statistical part, where one uses the fluctuation-dissipation theorem to relate
correlation functions to the corresponding response functions. The fluctuation-dissipation
theorem is a main tool in statistical mechanics to predict behavior of non-equilibrium ther-
modynamic systems, as widely observed in nature: for example, the Brownian motion seen
in the irregular oscillation of a suspended mirror, the thermal noise in resistor, etc.

An important theorem of Nyquist was the first theorem in this area to be proved (to my
knowledge). The idea was discovered by J. Johnson and then proved by H. Nyquist. For
any network, the square of the voltage during the frequency range (ν, ν + dν) is given by:

E2
ν dν = 4RνkBT dν

where Eν is the electromotive force and Rν is the real part of the impedance of the network.
Using this result, Nyquist proved the following formula that was given in Johnson’s paper:

I2 =
2
π
kBT

∫ ∞
0

R(ω)|Y (ω)| dω

where Y (ω) is the transfer admittance of any network from the member in which electro-
motive force in question originates to a member in which the resulting current is measured.

For Brownian motion, the random impact of surrounding molecules has two kinds of
effects: first, the molecules act as a random force and second, they give rise to the frictional
force. This means the frictional force and random force must be related. This is the essence
of the so-called fluctuation-dissipation theorem, which in formulas is given by

ζ(ω) =
1

kBT

∫ ∞
0
〈X(t0)X(t0 + t)〉eiωt dt (0.1.1)

µ(ω) =
1

kBT

∫ ∞
0
〈v(t0)v(t0 + t)〉eiωt dt , (0.1.2)

where ζ(ω) is the response function or friction constant for particular fluid system and µ(ω),
the admittance, is given by

µ(ω) =
1

ζ(ω)− imω
.
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If we let s = −iω, then above formulas are just Laplace transformations. Thus, if we
want to calculate the autocorrelation function for Brownian particles, we can first calculate
the friction constant of the corresponding system, and then use the fluctuation-dissipation
theorem to get the final result.

There are several papers[7, 11] that describe the fluctuation-dissipation theorem. Given
this theorem, we only need to calculate the response function by solving Navier-Stokes
equations. Many people contributed to this area to develop a general theory. The case
where Brownian particles are in a viscous, compressible fluid filling the whole of space R3

has been thoroughly solved[3],[17]. In [4] and [15], the asymptotic behavior of the velocity
autocorrelation function(VACF), mean square displacement(MSD), etc. up to higher orders
have also been calculated. In this paper, we consider the effect of a plane boundary, i.e.,
where the fluid occupies only half space, and compute the velocity autocorrelation function
for this case.

0.2 Behavior of Brownian particles in different time regimes

The behavior of the VACF and the MSD are different in the different time regimes. On the
very short time scale, the inertia of the Brownian particle dominates, while on the longer
time scale, the hydrodynamical memory effect plays an important role. There are several
characteristic times: tp = m/ζ, tν = a2/ν, and tc = a/c, where m is the mass, a is the
radius of the Brownian particle, ζ = 6πηa is again the Stokes drag, and c is the speed of
sound in the fluid. The case t < tp is the ballistic regime, where as noted above, the inertia
of the particle is significant. The case t � tp is the diffusive time regime. When t ' tν
hydrodynamical effects need to be taken into account, and when t < tc one must consider
compressibility of the fluid. The two graphs of Figs. 1 and 2 show experiment data from [9].
The first graph is the MSD vs. time, while the second one is the VACF vs. time. Evidently,
the experiment data fits the theory[4] very well. It worth noting that the model of [4] only
considers incompressible fluid dynamics. So if we want to test the behavior of Brownian
particle into the compressible regime, we need to both enhance the accuracy of the detector
into the nanosecond regime but alter the theory as well.

The mean square displacement in the ballistic regime is given by 〈x2〉 = t2kBT/m
∗.

Here m∗ = m + 1
2M is the virtual mass of the body and M = ρf4πa3/3 is the mass

of the displaced fluid. In ballistic time regime, the velocity autocorrelation function is
given by 〈v2〉 = kBT/m

∗, a result that seems inconsistent with the equipartition theorem
m〈v2〉 = kBT when t → 0. This discrepancy is explained as the effect of compressibility.
When t is smaller than the characteristic time t ≤ tc = a/c, the fluid cannot be regarded
as incompressible and, in this case, the particle is decoupled from fluid and the effective
mass is m. In Zwanzig and Bixon’s paper[18], they describe the decrease from kBT/m to
kBT/m

∗.

0.3 Brownian Motion in whole space R3

We consider a spherical particle oscillating in a fluid with velocity uω = ue−iωt. To find the
mean square displacement and autocorrelation function, we first to calculate the force F(ω)
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Figure 1: The mean square displacement (MSD) vs. time from the experiments of Ref. [9]

Figure 2: The velocity autocorrellation function (VACF) vs. time from the experiments of
Ref. [9]
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of the fluid acting on the sphere as F(ω) = −ζ(ω)uω. This is done by solving the linearized
Navier-Stokes equations. After we obtain the solution, we use the fluctuation-dissipation
theorem to find the MSD and the VACF of the particle. We first consider the case where
the fluid fills all of R3, and then use the result to find an approximate solution when the
fluid is bounded by a plane and occupies half space.

To solve the NS equations in domain R3, we can fix the sphere to the origin for simplicity.
Then, in this frame, the velocity field of the fluid ṽ changes with time, and satisfies the
non-slip boundary condition at the surface of the sphere, i.e., ṽ = 0 on the sphere and
ṽ = −ue−iωt at infinity. Next we decompose the velocity field as ṽ = v − ue−iωt, where v
does not oscillate with time, and apply the boundary condition v = ue−iωt at the sphere
boundary (non-slip) and v = ue−iωt at infinity. For fluid motion v satisfies the following
Navier-Stokes (NS) equations:

ρ

(
∂v
∂t

+ (v · ∇)v
)

= −∇p+ η∇2v +
(η

3
+ µ

)
∇(∇ · v) (0.3.1)

∂ρ

∂t
+∇ · (ρv) = 0 , (0.3.2)

with boundary condition v = ue−iωt at the sphere and v = 0 at infinity. For Brownian
motion, the Reynolds is number is very small, so we can consider the linearized NS equations
instead

ρ0
∂v
∂t

= −∇p+ η∇2v +
(η

3
+ µ

)
∇(∇ · v) (0.3.3)

∂ρ

∂t
= −ρ0∇ · v , (0.3.4)

with the same boundary conditions as above. After solving these equations, we can calculate
the drag of the fluid acting on the sphere for arbitrary motion by Fourier decomposing as

v(t) =
∫ ∞
−∞

uωe−iωt dω and F(t) =
∫ ∞
−∞

Fωe−iωt dω .

Because of the linearity assumption, the Fourier component of force is proportional to
Fourier component of velocity, Fω = −ζ(ω)uω. This means we can find the drag for
arbitrary motion if we know each Fourier component.

Now suppose v(x, y, z, t) = vω(x, y, z)e−iωt. To avoid clutter in what follows, we denote
vω by v, and similarly for other quantities. Thus we have

−iωρ0v = −∇p+ η∇2v + (
1
3
η + µ)∇(∇ · v) (0.3.5)

−iωρ = −ρ0∇ · v , (0.3.6)

with the pressure and density related by ∇P = C2∇ρ. Combining (0.3.5) and (0.3.6) gives

ω2v + C2
l ∇∇ · v − C2

t∇×∇× v = 0 , (0.3.7)

where C2
l = C2 − iωνl, C2

t = −iωνt, and νt = η/ρ0, νl = (4η/3 + µ)/ρ0. The boundary
conditions are now given by v = u at the sphere and v = 0 at infinity, where ue−iωt is the
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velocity of the sphere in lab frame. Next we decompose as v = ∇φ +∇ ×A, and obtain
the following equations:

∇2φ+ β2φ = 0 and ∇×∇×A− α2A = 0 , (0.3.8)

where α2 = iωρ0/η, β2 = ω2/C2
l , and boundary condition ∇φ+∇×A = u on the sphere.

The exact solution of this problem is given in [3]:

vr =
[
2A
(
− 1
r3

+
iα

r2

)
eiαr +B

(
− 2
r3

+
2iβ
r2

+
β2

r

)
eiβr

]
u cos θ (0.3.9)

vθ =
[
A

(
− 1
r3

+
iα

r2
+
α2

r

)
eiαr +B

(
− 1
r3

+
iβ

r2

)
eiβr

]
u sin θ (0.3.10)

where x = iαa, y = iβa, ∆ = 2x2(3− 3y + y2) + y2(3− 3x+ x2),

P =
3
∆

(3− 3y + y2) , Q = − 3
∆

(3− 3x+ x2)

and
A = Pa3e−iαa , B = Qa3e−iβa .

The force of fluid acting on the sphere is given by integrating as follows:

F =
∮
da
[
− p cos θ + 2ηerr cos θ − 2ηerθ sin θ + (µ− 2η/3) (∇ · v) cos θ

]
=

∮
da
[
(µ− 2η/3 + iC2ρ0/ω)(∇ · v) cos θ + 2ηerr cos θ − 2ηerθ sin θ

]
= 4πηax2u

[
(1− y)Q+ 2(x− 1)P

]
/3 .

0.4 Brownian Motion in the Half Space R+ × R2

Now we suppose the sphere is moving in a fluid that occupies a region bounded by a plane.
The perpendicular distance from the center of the sphere to the plane is given by l and the
radius of the sphere is given by a. We assume the velocity of sphere is given by ue−iωt,
as before, and again use the frame of sphere instead of the lab frame, i.e., we let sphere
be fixed and the fluid have velocity ṽ. Then again we decompose as ṽ = v − ue−iωt. The
linearized Navier-Stokes equations are the same as Eqs. (0.3.3) and (0.3.4) that we used for
the R3 case, with boundary condition v = ue−iωt at the sphere and v = 0 at the plane and
at infinity.

If the sphere oscillates in an arbitrary direction, we lose symmetry, and the problem
becomes hard to solve. So we first consider the case where sphere oscillates perpendicular
to the plane. It seems that the most appropriate coordinate system to use to solve the
above equations with the sphere-plane boundary conditions is the bipolar coordinate system.
Actually, Brenner and several other authors [10],[2],[8] used bipolar coordinate to solve for
the drag force when a sphere is approaching a plane. For their problem this was equivalent
to solving a Laplace-type equation in bipolar coordinates. In our case, for simplicity, we
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consider an incompressible fluid, so we can use a Stokes stream function Ψ. Defining the
Laplace-type operator L2 as

L2 =
sin2 θ

r

{
∂

∂ξ

(
1
r

∂

∂ξ

)
+

∂

∂θ

(
1
r

∂

∂θ

)}
,

where (ξ, θ) are the bipolar coordinates with

r :=
c sin θ

cosh ξ − cos θ
,

and (0,±c) being the foci of the bipolar coordinate system. For our problem the stream
function satisfies

L4Ψ + α2L2Ψ = 0 ,

where α2 = iωρ0/η. Defining Π = L2Ψ, we see Π satisfies a Helmholtz equation of the form

L2Π + α2Π = 0 .

If we let Π = f ·
√
r, then we can simplify this equation as follows:

∂2f

∂ξ2
+
∂2f

∂θ2
− 3

4 sin2 θ
f +

α2r2

sin2 θ
f = 0 .

Unfortunately, in bipolar coordinate this kind of Helmholtz equation is not separable[13].
So instead, we resort to approximation.

Our approximation is based on the image method[8]. We first use this method to obtain
an approximate solution and then use the fluctuation-dissipation theorem to calculate the
VACF for the Brownian particle. As we will see later on, we don’t need to restrict to
the incompressible case or to perpendicular oscillation. However, the image method of
approximation makes the velocity field only satisfy the Neumann boundary condition at
the plane. So we have to assume slip boundary condition on the plane instead of the more
physical no-slip boundary condition. Using the image method, we can find approximate
solution up to some order of a

l , which will be a good approximation if the distance of the
sphere to the plane l is much larger than radius of the sphere a. Suppose the vector field
that satisfies equations (0.3.9) and (0.3.10) is v1, and v2 is the image velocity field of v1

obtained by reflecting through the plane (imagining the plane as a mirror). Then, suppose
v3 is the velocity field satisfy v3 = −v2 at the sphere and vanishing at infinity, v4 is image
velocity field of v3, etc. We suppose that v = v1+v2+. . . would be the actual solution (with
Neumann boundary condition). However, even with this assumption the vi, i = 3, 5, . . . are
not easy to obtain. So, instead we seek v3 = −v2(2l, γ) at the sphere, where γ depends on
the direction of oscillation of the sphere. Solving for v3 is the same as solving for v1, so
this simplifies matters. Finally, we suppose that summation of vi will converge to actual
solution, but this eventually needs to be shown.

In the following, we only consider v = v1 + v2 + v3 + v4, which will be a good approx-
imation up to order O(a/l) or O((a/l)3), depending on whether the frequency is high or
low. Let Fi be the drag force of vi acting on sphere, and suppose the angle between the
normal component of plane and the velocity of sphere is γ. We calculate the drag force of
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v in two cases: first, when the sphere oscillates perpendicular to the plane surface of fluid,
i.e., γ = 0, and then when the sphere oscillates parallel to the plane, when γ = π/2. The
general case is a linear combination of the two. Notice that |F2|/|F3| = O(a/l) and F4 is
even smaller than F2; therefore, we can just consider the contributions of F1 and F3, i.e.,

F ' F1 + F3 .

The drag force F1 was given in the previous section as

F1 = −ζ(ω)u

where
ζ(ω) := −4πηax2

[
(1− y)Q+ 2(x− 1)P

]
/3 .

So, to next order
F ' F1 + F3 = −ζ(ω)u + ζ(ω)v2(2l, γ) .

When the sphere is moving perpendicular to plane

v2(2l, 0) = −vr(2l, 0)
u
|u|

,

while when the sphere is moving parallel to plane

v2(2l, π/2) = vθ(2l, π/2)
u
|u|

.

For the case of arbitrary motion, supposing the angle between normal component of plane
and the velocity of sphere is γ, we obtain

v2(2l, γ) = −n vr(2l, 0)u cos γ + t vθ(2l, π/2)u sin γ ,

where n and t are unit vectors normal and tangent to the plane, respectively.
Although in principle, we can use the fluctuation-dissipation theorem to find the VACF,

the complicated formula of the response function ζ makes it hard to find exact an expression
for the VACF. So, we simplify the response function by considering high frequency and low
frequency regimes. Let s = −iω. Define tν = a2ρ0/η, tν′ = a2ρ0/(4η/3 + µ), tc = a/C
to be three characteristic time scales. In order for

√
s to make sense, we place a branch

cut along negative real axis, making the square root well defined. Below we make several
simplifications, the reasons for which will become clear later.

Low Frequency Case, s << 1 :

x2 = −α2a2 = stν , x = −
√
stν

y2 =
s2t2c

1 + s
(
tc
tν′

)
tc
' s2t2c (1− s (tc/tν′) tc) ⇒ y ' −tcs

4 = 2x2(3− 3y + y2) + y2(3− 3x+ x2) ' 6stν
P ' (3 + 3stc + s2t2c)/2stν , Q ' −(3 + 3

√
stν + stν)/2stν
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ζ(s) ' 6πηa(1 +
√
stν)

vr(2θ, 0) '
[
− 2P

(2l)3
a3eiα(2l−a) − 2Q

(2l)3
a3eiβ(2l−a)

]
u

' −2
8

(a
l

)3
[(

3
2stν

+
3tc
2tν

)
−
(

3
2stν

+
3

2
√
stν

)]
u

' 3
8

(a
l

)3 u√
stν

vθ(2θ, π/2) '
[
− P

(2l)3 a
3eiα(2l−a) − Q

(2l)3 a
3eiβ(2l−a)

]
u

' 3
16

(a
l

)3 u√
stν

.

High Frequency Case, s >> 1 :

x = −
√
s tν , y ' −

√
stν′ , ∆ ' 3stνstν′

P ' 3s−3/2

tν
√
tν′

+
s−1

tν
, Q ' −3 s−3/2

tν′
√
tν
− s−1

tν′

ζ(s) ' 2ζ
[
(tν/tν′ + 2) + (

√
tν/tν′ + 2)

√
stν

]
/9

vr(2l, 0) '
[
−1

2

(a
l

)2
e−
√
stν2l/a 1√

stν
+
a

2l
e−
√
stν′2l/a

]
u

vθ(2l,
π

2
) '

[
− a

2l
e−
√
stν2l/a +

1
4

(a
l

)2
e−
√
stν′ 2l

a
1√
stν′

]
u .

Now we use the above expressions to calculate the velocity autocorrelation function,
which is given by

Φ(t) = 〈vi(0)vi(t)〉 =
kBT

π

∫ ∞
−∞

dωe−iωtRe
1

−iωm+ (1 + c)ζ(ω)
(0.4.1)

=
kBT

2πi

∫ ε+i∞

ε−i∞
ds est

1
sm+ (1 + c)ζ(s)

, (0.4.2)

where s = −iω and c is a correction term that depends on γ.
Let us first calculate the velocity autocorrelation in the low frequency case, s << 1,

without the plane (c = 0), which will we will use to compare with the plane case. We
obtain

Φ(t)
kBT

' L−1

(
1

6πηa+ 6πηa
√
tνs

)
(0.4.3)

=
1

6πηa
√
tν
L−1

(
1√

s+ 1/
√
tν

)
. (0.4.4)
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From any table of inverse Laplace transforms, we obtain

L−1

(
1√
s+ a

)
=

1√
πt
− aea2terfc(a

√
t) (0.4.5)

where the erfc function is defined by

erfc(x) =
e−x

2

x
√
π

∞∑
n=0

(−1)n
(2n− 1)!!

(2x2)n
. (0.4.6)

From (0.4.5) we find for the case without the plane, that the asymptotic behavior of velocity
autocorrelation as t→∞ is given by

Φ(t) =
kBT

6πηa
√
tν

tν
2
√
π
t−

3
2 =

kBT

ζ

√
tν

2
√
π
t−

3
2 , (0.4.7)

where ζ := 6πηa, for simplicity.
Now, when the fluid is bounded by the plane, I couldn’t find a formula in any Laplace

inverse transformation table. Thus, we needed to directly calculate it. The following formula
will be useful for the case s << 1. Suppose R(

√
s) = a0 + a1

√
s+ a2s+ a3s

3/2. When t is
large, we obtain

Φ(t) =
kBT

2πi

∫ ε+i∞

ε−i∞
ds est

√
s

R(
√
s)

= − kBT

2a0
√
π
t−3/2 . (0.4.8)

The above follows because

Φ(t) =
kBT

2πi

∫ ε+i∞

ε−i∞
ds est

√
s

R(
√
s)

' −kBT
2πi

∫ ∞
0
dr

[
e−tr
√
ri

R(
√
ri)

+
e−tr
√
ri

R(−
√
ri)

]
= −2kBT

π

∫ ∞
0
d(s/
√
t)

e−s
2
s2/t(a0 − a2s

2/t)
(a0 − a2s2/t)2 + (a3s3/t3/2 − a1s/

√
t)2

' −2kBT
πa0

t−3/2

∫ ∞
0
ds e−s

2
s2

= − kBT

2a0
√
π
t−3/2 .

We can switch the order of the limit and the integration in above calculation as long as
a0 6= 0 and a0/a2 6= a1/a3. The physics of the problem indicates that Φ should approach
zero when t → ∞, which means the poles of above integrand are located in the region
Re(s) < 0. These poles will contribute to exponential decay to Φ(t), which is much smaller
than the contribution from the branch point s = 0, which gives algebraic decay. Thus, if
we want to know the long time behavior of Φ(t), we can assume s << 1 to simplify our
calculation, because the contributions from a1, a2, a3 are much smaller than that from a0.

When a0 = 0, which corresponds to no plane case (l =∞), we cannot switch the order
of limit and integration. We should first set a0 = 0 in the integral, then take limit in t,
giving

Φ(t) =
kBT

2
√
π

a2

a2
1

t−
3
2 . (0.4.9)
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Notice, by plugging in the ai, this gives the same formula as we derived above, Φ(t) =
kBT
√
tν t
−3/2/(2ζ

√
π).

Now, consider the long time behavior of Φ(t) when there is a plane and γ = 0, i.e., the
sphere is moving perpendicular to the plane. Again letting ζ = 6πηa, we have

Φ(t) = kBTL−1

(
1

ms+ ζ
[√
stν + (1− 3(a/l)3/8)− 3(a/l)3/(8

√
stν)

])

=
kBT

2πi

∫
Γ
ds

ets
√
s

ms3/2 + ζ
√
tνs+ ζ [1− 3(a/l)3/8]

√
s− 3ζ(a/l)3/(8

√
tν)

,

where Γ is a contour from −∞ to 0 and 0 to −∞ and a0 = −3ζ(a/l)3/(8
√
tν). So, when

t→∞ we obtain

Φ(t) =
4kBT

√
tν

3
√
πζ

(a
l

)−3
t−

3
2 . (0.4.10)

For γ = π
2 , i.e., when the sphere is moving parallel to the plane, a0 = 3ζ(a/l)3/(16

√
tν) and

Φ(t) = −8kBT
√
tν

3
√
πζ

(a
l

)−3
t−

3
2 . (0.4.11)

For general case, u = u[n cos γ + t sin γ] and

F = −u ζ(ω) [n (1 + vr(2l, 0)) cos γ + t (1− vθ(2l, π/2)) sin γ ] .

Notice, for general case, the direction of F is no longer parallel to the direction of u. So
must first specify a direction, then calculate correlation function along that direction.

For the short time behavior of Φ(t), we can perform calculations similar to those above
to find the approximate behavior. The branch point s = 0 contributes b0

√
t, while the

poles contribute
∑

i bie
tpi , where pi denotes the locations of the poles of R(

√
s). So, Φ(t) =

b0
√
t+
∑

i bie
tpi. To find exact values of bi and pi is very tedious, which we do not do here.

For the future work, the most natural goal would be to find the exact solution for the
linearized Navier-Stokes equation, at least for the case γ = 0. But, this is a difficult problem
due to the non-separability of Helmholtz equation in bipolar coordinate. If we try to use
another coordinate system, for example spherical coordinates, to find the coefficients of the
eigenfunctions that match the boundary condition at the sphere, then matching at the plane
will not be likely possible. So, instead of finding an exact solution, it is reasonable to seek
a better approximate solution than that provided by the image method.
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