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A brief review of basic concepts and folklore in shear turbulence.

1 Reynolds decomposition

Experimental measurements show that turbulent flows can be decomposed into well-defined
averages plus fluctuations, v = v̄ + v′. This is nicely illustrated in the Turbulence film
available online at http://web.mit.edu/hml/ncfmf.html that was already mentioned in
Lecture 1.

In experiments, the average v̄ is often taken to be a time average since it is easier to
measure the velocity at the same point for long times, while in theory it is usually an
ensemble average — an average over many realizations of the same flow. For numerical
simulations and mathematical analysis in simple geometries such as channels and pipes, the
average is most easily defined as an average over the homogeneous or periodic directions.

Given a velocity field v(x, y, z, t) we define a mean velocity for a shear flow with laminar
flow U(y)x̂ by averaging over the directions (x, z) perpendicular to the shear direction y,

v̄ = lim
Lx,Lz→∞

1
LxLz

∫ Lz/2

−Lz/2

∫ Lx/2

−Lx/2
v(x, y, z, t)dxdz = U(y, t)x̂. (1)

The mean velocity is in the x direction because of incompressibility and the boundary
conditions. In a pipe, the average would be over the streamwise and azimuthal (spanwise)
direction and the mean would depend only on the radial distance to the pipe axis, and
(possibly) time. Now we apply this averaging to the incompressible Navier-Stokes equations,

∂v
∂t

+ v · ∇v = −∇p+ ν∇2v , ∇ · v = 0. (2)

Using the incompressibility condition ∇ · v = 0 we can rewrite the momentum equation in
conservative form,

∂v
∂t

+∇ · (vv) = −∇p+ ν∇2v. (3)

We split the flow into a mean part and a fluctuation,

v = U(y, t)x̂ + v′ (4)
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Averaging the Navier-Stokes equations (3) over x and z yields the mean flow equation

∂U

∂t
+
∂uv

∂y
= −dP0

dx
+ ν

∂2U

∂y2
, (5)

where v′ = (u, v, w) in cartesian coordinates and the overline () denotes the average over x
and z. To arrive at this mean flow equation, we used the divergence theorem and the fact
that v′ = 0. The mean pressure gradient ∂P/∂x = dP0/dx is not zero in pressure-driven
channel and pipe flows where the pressure has the form P = P0(x) + p(r, t) with dP0/dx a
fixed constant and p(r, t) is the flow induced pressure required to maintain incompressibility.
For fixed flux, as in the Mullin pipe flow experiments [11], the mean pressure gradient can
fluctuate in time to maintain the total mass flux.

For sufficiently large domains and sufficiently large Reynolds number, the flow in a pipe
or channel is statistically steady, so the mean values are independent of t.1 For statistically
steady flow, the mean flow equation (5) reduces to

duv

dy
= −dP0

dx
+ ν

d2U

dy2
. (6)

Integrating (6) from the bottom wall at y = −h to the top wall at y = h gives 0 =
−2hdP0

dx + ν dU
dy

∣∣∣
h
− ν dU

dy

∣∣∣
−h

since u = v = 0 at the walls, leading to

−dP0

dx
=
τw
h

(7)

where τw = ν dU/dy
∣∣
−h = −ν dU/dy

∣∣
h

is the shear stress on the bottom wall and top wall,
by symmetry.

Plane Couette flow is driven by moving walls situated at y = ±h with velocities v = ±U x̂
and there is no imposed pressure gradient. Integrating equation (6) with dP0/dx = 0 from
the bottom wall where u = v = 0 to y gives

ν
dU

dy
− uv = τw, (8)

where τw = ν dU/dy|h is the stress on the bottom wall. Equation (8) states that the mean
stress on the fluid layer below y is constant across the channel in Couette flow. The first
term on the left hand-side of (8), ν dU/dy, is the mean viscous stress from the fluid above
level y onto the fluid layer below y. The second term, −uv, is the Reynolds stress that
arises from the net vertical transport of streamwise momentum by the fluctuations, again
from the fluid above y into the fluid layer below y. The two stresses add up to a constant
total stress for Couette flow, τw. Note that these are all kinematic stresses, stress divided
by fluid density ρ, so the actual total stress is ρτw.

1This is a reasonable assumption, verified experimentally and numerically. However, our recent discoveries
of time-periodic solutions in plane Couette flow [4], [7], [15] show that is is possible to have time-dependent
averages, in general.
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2 Laminar and Inertial Scalings of the Drag τw

First we look at Couette flow, as described by equation (8). We try to find appropriate
scalings for the two terms on the left hand side using the obvious scalings for velocity and
length, U and h, the half-wall velocity difference and the half-channel height, respectively.
We can scale the viscous and Reynolds stress terms in (8) as

ν
dU

dy
∼ νU

h
, −uv ∼ U2, (9)

away from the walls, yielding the total stress as

τw ∼
νU

h
+ U2 =

νU

h

(
1 +

Uh

ν

)
=
νU

h
(1 +R) (10)

where R = Uh/ν is the Reynolds number for Couette flow. This correctly suggests that for
R� 1, the viscous stress νdU/dy dominates and we have laminar scaling

τw ∼
νU

h
⇒ τw

U2
∼ 1
R
, (11)

where τw/U2 is a friction factor, as in the Moody diagram of Lecture 1. For R � 1, the
Reynolds stress −uv dominates and we have inertial scaling

τw ∼ U2 ⇒ τw
U2
∼ 1. (12)

This corresponds to the R� 1 portion of the Moody diagram labeled ‘complete turbulence,’
where the friction factor τw/U2 is roughly independent of Reynolds number R and would
correspond to drag being dominated by the Reynolds stress −uv scaling as U2.

Next we look at the scalings for channel flow. Now our equation is (6) with (7),

ν
d2U

dy2
− duv

dy
= −τw

h
. (13)

This equation states that the mean force on a fluid layer between y and y+dy is a negative
constant in channel flow to balance the positive pressure force −dP0/dx = τw/h. Scaling
(13) as in (9)

ν
d2U

dy2
∼ −νU

h2
,

duv

dy
∼ U2

h
, (14)

away from the walls, yields

τw
h
∼ ν U

h2
+
U2

h
∼ ν U

h2
(1 +R) . (15)

This leads to the same results as in Couette flow, namely that the drag at the wall τw has
the laminar scaling τw ∼ νU/h, corresponding to a friction factor τw/U2 ∼ 1/R for low R
(11) and the inertial scaling τw ∼ U2 for large R (12). The drag at the wall is the pressure
gradient times the half-height, τw = −h dP0/dx, as derived in (7).
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3 Energy Dissipation Rate E = τwU/h

We now look at the the Kinetic Energy (KE) budget for the total flow (mean plus fluctua-
tion). The KE equation is obtained by the scalar product between the velocity v and the
NS equation (2), yielding

∂

∂t

(
1
2
|v|2

)
+ v · ∇

(
1
2
|v|2

)
+ v · ∇p = −dP0

dx
x̂ · v + ν v · ∇2v. (16)

Equation (16) is then averaged over the whole domain V , that is V −1
∫
V (· · · )dV as a

limit process in the homogeneous directions x and z, as in (1), or with periodic boundary
conditions as in numerical simulations. The advection and flow-induced pressure terms
vanish upon integration since ∇ · v = 0 implies that v · ∇(∗) = ∇ · (v(∗)), then the integral
of these divergences become surface integrals, by the divergence theorem, and the boundary
integrals vanish because of no flow through the walls and/or periodic boundary conditions.
The viscous term v · ∇2v = ∇2|v|2/2 − ∇v : ∇vT where A : B ≡ AijBji = trace(A ·B),
so ∇v : ∇vT = (∂ivj)(∂ivj) ≡ |∇v|2 ≥ 0 is positive definite.

For channel flow in statistically steady state, we obtain

−dP0

dx

1
V

∫
V

x̂ · vdV︸ ︷︷ ︸
energy input rate

=
ν

V

∫
V
|∇v|2dV︸ ︷︷ ︸

energy dissipation rate

= E ≥ 0, (17)

since v = 0 at the walls. This relation can be written
τw
h
U = E (18)

where τw/h = −dP0/dx, from (7), is the force per unit mass with τw the stress at the wall,
U = V −1

∫
V x̂ ·v dV is the bulk velocity and E is the energy dissipation rate per unit mass.

For plane Couette flow driven by the motion of the walls, with dP0/dx = 0, the viscous
term v · ∇2v = ∇2|v|2/2−∇v : ∇vT provides both the energy input and output. The KE
equation reads

ν

V

∫
V
∇ · ∇

(
1
2
|v|2

)
dV =

ν

V

∫
V
|∇v|2dV ≥ 0. (19)

The divergence theorem applied to the left hand side yields

ν

V

∫
V
∇ · ∇

(
|v|2

2

)
dV =

ν

V

∫
y=h

ŷ · ∇
(
|v|2

2

)
dA− ν

V

∫
y=−h

ŷ · ∇
(
|v|2

2

)
dA

=
ν

V

∫
y=h

u
∂u

∂y
dA− ν

V

∫
y=−h

u
∂u

∂y
dA =

τw
h
U

(20)

since u = U on the top wall at y = h and u = −U at y = −h with v = w = 0 on both walls,
and τw = νA−1

∫
y=−h

∂u
∂y dA = νA−1

∫
y=h

∂u
∂y dA is the mean stress on the bottom wall with

surface area A, equal to the mean stress from the top wall onto the fluid and V = 2Ah.
These surface integrals may have to be interpreted as limits as A → ∞, as in (1). Using
(20), the KE equation for Couette flow (19) can also be written in the compact form (18),

τw
h
U = E (21)
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but this U is the half wall velocity difference in plane Couette flow, instead of the bulk
velocity in (18), and h is the half channel height in both cases.

The energy input/dissipation balance (18), (21), for pipe, channel and plane Couette
flow, shows that there is a direct relationship between the scaling of the wall stress τw
(the drag) and the scaling of the energy dissipation rate E . For laminar scaling (11), (15)
for ‘small’ Reynolds number R = Uh/ν (meaning smaller than a few 100’s for the typical
definitions of R in shear flows)

τw ∼
νU

h
⇔ E ∼ νU

2

h2
, (22)

while the inertial scaling (12), (15) for large R = Uh/ν,

τw ∼ U2 ⇔ E ∼ U3

h
. (23)

The remarkable fact about the inertial scaling (23) is that the wall stress

τw = ν
dU

dy

∣∣∣∣
wall

(24)

which is necessarily transmitted from the fluid to the wall by viscosity, and the energy
dissipation rate (17), (29)

E = ν
〈
|∇v|2

〉
= 2 ν 〈S : S〉, (25)

where the brackets 〈 〉 denote volume average, which also arises from viscosity, would both
be independent of ν for sufficiently large R according to (23). This requires boundary
layers of thickness ∼ ν/U on average, much smaller than a stagnation point boundary layer
thickness ∼

√
ν/S, where S is a strain rate. The

√
ν/S boundary layer is to satisfy no-slip

at y = 0 for the outer stagnation point flow v = (Sx,−Sy, 0) in incompressible flow (e.g.
[1, §2.5]). It is not clear if and how one can obtain a ν/U boundary layer on a smooth wall
in incompressible flow.

Note on the energy dissipation rate

The expression for the energy dissipation rate E in (17) is not correct in general. The viscous
term ν∇2v in the Navier-Stokes equation (2) arises from the divergence of the stress tensor
T = ν(∇v +∇vT ) = 2νS, where S is the strain rate tensor, then ∇ · T = ν∇2v because
∇ · (∇v)T = ∇(∇ · v) = 0, since ∇ · v = 0. In the kinetic energy equation, then,

ν v · ∇2v = ν∇ · ((∇v) · v)− ν∇v : ∇vT (26)

is equal to
v · (∇ ·T) = ∇ · (T · v)−T : S, (27)

where symmetry of the stress tensor T = TT has been used in (27) to obtain T : ∇vT =
Tij∂ivj = Tij(∂ivj + ∂jvi)/2 = TijSji = T : S. Integration over the domain shows that
the second form (27) yields the proper energy input rate on the boundaries, since, by the
divergence theorem ∫

V
∇ · (T · v) dV =

∫
∂V

f · v dS (28)
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where f = n·T is the stress on the surface boundary ∂V of the volume V , with unit outward
normal n, by definition of the stress tensor T. Hence the energy dissipation rate per unit
mass arises from the 2nd term on the right hand side of (27)

E =
1
V

∫
V

T : S dV =
1
V

∫
V

2ν S : S dV ≥ 0, (29)

not from the 2nd term of (26), ν∇v : ∇vT .
Subtracting (26) from (27) and canceling out factors of ν shows that the expressions

∇v : ∇vT and 2 S : S differ by a divergence,

2 S : S = ∇v : ∇vT +∇ · (v · ∇v). (30)

The divergence term on the right hand side integrates to∫
V
∇ · (v · ∇v)dV =

∫
∂V

v · (∇v) · n dS (31)

and that boundary term vanishes for periodic boundary conditions, or for v = 0 on ∂V ,
or for flat boundaries for which n is constant so (∇v) · n = ∇(v · n) and there is no flow
through the walls, v · n = 0, so v · (∇v) · n = v · ∇(v · n) = 0 on ∂V .

Thus, the expressions (17) and (29) for E are equal for pipe and plane channel and
Couette flows, but they differ for cylindrical Couette flow, for instance. The difference is
most striking for rigid body rotation for which v = (−Ωy,Ωx, 0) and ∇v : ∇vT = 2Ω2 but
2 S : S = 0.

4 Kolmogorov spectrum and Energy cascade

The study of turbulence spawned a new branch in the 1930’s when researchers went be-
yond the study of mean flows U(y) and started focusing on the turbulent fluctuations.
Experiments measured two-point correlations 〈v(r′)v(r)〉, where the average denoted by
the brackets 〈 〉 is typically a time average in practice or an ensemble average in theory.
G.I. Taylor introduced the concept of homogeneous turbulence where those time or ensem-
ble averages are assumed to depend only on the two-point separation s = r′ − r but not on
location, e.g.

〈v(r′)v(r)〉 = R(s), (32)

that is 〈vi(r′)vj(r)〉 = Rij(s) in cartesian index notation. The possible time dependence of
these correlations will be kept implicit in this section. For fully developed turbulent flow
in a pipe or channel at sufficiently high Reynolds number, the turbulence is observed to
be homogeneous in the azimuthal (or spanwise) and streamwise directions, sufficiently far
from the entrance and exit to the pipe, and from the sides in channels. The statistics are
strongly dependent on the distance to the wall, near the walls, but become approximately
homogeneous sufficiently far from the wall. Sufficiently far is best measured in wall units
(typically denoted with a ‘+’ and sometimes called ‘plus-units’)

δ+ =
ν
√
τw

(33)
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where τw = ν dU/dy|w is the (kinematic) stress at the wall (24) which has units of velocity
squared. For laminar scaling (11),

τw ∼ ν
U

h
⇒ δ+ ∼

√
νh

U
, (34)

but for inertial scaling (12), the wall unit would be much smaller

τw ∼ U2 ⇒ δ+ ∼ ν

U
. (35)

In practice, ‘sufficiently far’ means distances from the wall greater than about 50 δ+.
The theory of homogeneous turbulence, where the statistics are invariant under transla-

tions, quickly specialized to the study of isotropic turbulence where the statistics are also
independent of rotations and reflections. For the two-point correlation (32), that involves
vector quantities v and introduces the special direction s = r′ − r, this implies

〈v(r′)v(r)〉 = u2
rms

(
F (s) ŝŝ +G(s) (I− ŝŝ)

)
(36)

in dyadic notation, where s is the magnitude and ŝ the direction of s = s ŝ and I is the
identity tensor, or

〈vi(r′)vj(r)〉 = u2
rms

(
F (s)

sisj
s2

+G(s)
(
δij −

sisj
s2

))
(37)

in cartesian index notation, where δij is the Kronecker delta and si are the cartesian com-
ponents of s = r′ − r. The root mean square velocity is u2

rms = 〈v · v〉/3. Equation (36)
≡ (37), says that the correlation depends only on the distance s between the two points
and whether the velocity components are parallel or perpendicular to s. Incompressibility,
∇ · v = 0 applied to (36), (37), yields

s
dF

ds
+ 2(F −G) = 0 (38)

relating G(s) to F (s), so the two-point velocity correlation tensor (32) is fully determined
by the longitudinal auto-correlation function,

F (s) ≡ 〈u1(r + se1)u1(r)〉
u2
rms

(39)

in homogeneous isotropic turbulence. The reader should consult the books by Pope [13] or
Sagaut and Cambon [14] for further information about homogeneous turbulence.

In homogeneous isotropic turbulence, the flow is assumed to take place in an infinite
3D euclidean space, maintained by a statistically steady and isotropic force but there are
no mean flows, no walls and no drag. Thus the relationship (18), between the wall drag τw
and the energy dissipation rate E is lost, although there is of course a similar relationship
involving energy input by the statistically homogeneous, isotropic force.

In the Kolmogorov theory of isotropic turbulence, the energy dissipation rate E is the
dominant quantity, it is the energy cascade rate, with energy input at the forcing scale `I
cascading to ever smaller scales by nonlinear distortion down to sufficiently small scales
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where the energy is finally dissipated by viscosity. Kolmogorov estimated those small dissi-
pation length scales by dimensional analysis based on E that has units L2T−3 and viscosity
ν with units L2T−1, so the Kolmogorov dissipation length scale, is

`K ∼
(
ν3

E

)1/4

. (40)

Dissipation on those scales would be achieved by turbulent velocity fluctuations of magni-
tude

uK ∼ (νE)1/4 , (41)

with

E ∼ ν
u2
K

`2K
∼ u3

rms

`I
(42)

independent of ν, where 3u2
rms = 〈v · v〉 and `I is the energy input scale.

Kolmogorov’s theory also predicts a scaling for the Energy spectrum

E(k) ∼ E2/3 k−5/3 (43)

where
∫∞
0 E(k)dk = 〈v · v〉/2 = 3u2

rms/2 and E(k)dk is the energy per unit mass in the
wavenumber band [k, k + dk]. In isotropic turbulence, the energy spectrum E(k) fully
determines the Fourier transform Φij(k) of the two point correlation tensor Rij(s) defined
in (32)

Φij(k) =
E(k)
4πk2

(
δij −

kikj
k2

)
(44)

where
Φij(k) ≡ 1

(2π)3

∫
R3

Rij(s) e−ik·sdVs (45)

Rij(s) =
∫

R3

Φij(k) eik·sdVk (46)

with dVs the volume element for s ∈ R3 and dVk the volume element for k ∈ R3, so
dVs = ds1ds2ds3 and dVk = dk1dk2dk3 in cartesian coordinates and k = |k|. The energy
spectrum E(k) can be related to F (s), the longitudinal auto-correlation (39), although the
relationship is non-trivial

u2
rmsF (s) = 2

∫ ∞
0

E(k)
(

sin(ks)
(ks)3

− cos(ks)
(ks)2

)
dk. (47)

A simpler relationship can be derived from (37), (44) and (46)

Rii(s) = u2
rms (F (s) + 2G(s)) = 2

∫
R3

E(k)
4πk2

eik·sdVk = 2
∫ ∞

0
E(k)

sin(ks)
ks

dk. (48)

The Kolmogorov spectrum (43) occurs in the inertial range `I � k−1 � `K where the
wavelengths k−1 are much smaller than the energy input scale `I but much larger than the
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Kolmogorov dissipation scale `K . Defining the Reynolds number for homogeneous isotropic
turbulence as

R =
urms `I
ν

=
E1/3`

4/3
I

ν
. (49)

Using (40) then gives
`I
`K

=
E1/4`I
ν3/4

≡ R3/4. (50)

providing a rule of thumb, first proposed by S.A. Orszag, that the numerical resolution
scales like N ∼ R9/4 for direct numerical simulation of 3D isotropic turbulence, where N is
the total number of Fourier modes (or grid points) required to resolve the turbulent flow.
A sketch of the energy spectrum with the inertial range (43) and the dissipation range for
k & (`K)−1 is shown in figure 1.

Since E is assumed to be independent of ν for sufficiently large Reynolds numbers, with
E ∼ u3

rms/`I , eqn. (42) as in the inertial scaling (23), the Kolmogorov dissipation length
(40) scales like ν3/4, smaller than the classic

√
ν boundary layer scaling, but larger than the

inertial boundary layer scaling ν/U in turbulent channels and pipes (35). Thus, although
the inertial scaling E ∼ U3/h in channels and pipes (23) and the Kolmogorov scaling
E ∼ u3

rms/`I are similar, there is a noteworthy difference between the two: the Kolmogorov
scaling is achieved by small dissipation scales ∼ ν3/4 throughout the volume of fluid, while
the inertial scaling in shear flows over smooth walls requires small boundary layers ∼ ν/U
to transfer the momentum between the fluid and the walls, so τw = ν dU/dy|w ∼ U2, and
would achieve ν-independent E through dissipation in those small boundary layers.

The Kolmogorov picture of turbulence is a cascade of energy to smaller and smaller
scales, from the energy input scale `I down to the Kolmogorov dissipation scale ∼ ν3/4,
together with a decoherence of the motions at different scales so that small scales are nearly
isotropic. In contrast, the inertial scaling (23) in shear flows appears to call for a coherent
transport of momentum over the height of the channel, from one wall to the other wall in
plane Couette flow for instance, transporting U over distance h to sustain boundary layers of
thickness ∼ ν/U , on average. It is also known that in turbulent shear flows, the turbulence
energy input occurs at small scales near the wall, not on the large scale of the channel.

5 Turbulent Kinetic Energy

In section 3, we derived a basic relation between the drag τw and the total energy dissipation
rate E . Here, we derive an equation for the fluctuations from the mean flow in turbulent
channel flows. We return to the Reynolds decomposition v = v̄ + v′ with v = U(y, t)x̂
in channels (4) and v′ = (u, v, w) in cartesian coordinates. Substituting v = U(y, t)x̂ + v′

in the Navier-Stokes equations (3) and subtracting the mean flow equation (5) yields the
equation for the turbulent fluctuations

∂v′

∂t
+ U

∂v′

∂x
+ v

∂U

∂y
x̂ +∇ · (v′v′)− ∂uv

∂y
x̂ = −∇p′ + ν∇2v′, (51)

where U and uv are functions of y and t in general. Dotting this equation (51) with v′ and
averaging over the whole volume using the divergence theorem, incompressibility ∇ ·v′ = 0
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Figure 1: Sketch of the Turbulent Kinetic Energy spectrum E(k) where k is wavenumber
and E(k)dk is the kinetic energy in the wavenumber band [k, k + dk], according to the
Kolmogorov scaling theory. Energy enters the flow at low wavenumbers (large scales) and
cascades through the inertial range (43) to the dissipation scales (40) where it is dissipated.

and the boundary conditions, yields the kinetic energy of the fluctuations

d

dt

〈
|v′|2

2

〉
=
〈

(−uv)
∂U

∂y

〉
︸ ︷︷ ︸
Production

− ν
〈
|∇v′|2

〉︸ ︷︷ ︸
Dissipation≥ 0

(52)

where the brackets 〈· · · 〉 ≡ V −1
∫
V · · · dV denote a volume average, |∇v′|2 = ∂iuj∂iuj in

cartesian index notation (but recall (30) in general), and the v′ · x̂ ∂yuv = u ∂yuv term
vanishes upon averaging over horizontal planes since ū = 0. This fluctuating kinetic en-
ergy equation should be contrasted with the mean kinetic energy equation obtained by
multiplying the mean flow equation (5) by U and averaging over the volume to obtain

d

dt

〈
U

2

2

〉
=
τw
h
U −

〈
(−uv)

∂U

∂y

〉
− ν

〈(
∂U

∂y

)2
〉

(53)

where τwU/h arises as in section 3 and U is the bulk velocity in channel flow, but the half
wall velocity difference in plane Couette flow, in either case τwU/h is the energy input per
unit mass from the pressure gradient or the wall drag. Evidently, the ‘production’ term in
(52) appears with the opposite sign in the mean flow kinetic energy (53) and is a transfer
term extracting energy from the mean flow U to feed the fluctuations v′. Adding up (52)
and (53) leads back to the total kinetic energy equation of section 3, that reduces to (18),
(21) for statistically steady flow. For statistically steady state, the fluctuation kinetic energy
equation (52) becomes

1
2h

∫ h

−h
(−uv)

dU

dy
dy = ν

〈
|∇v′|2

〉
≥ 0. (54)
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where the brackets 〈· · · 〉 denote a volume average and the overline (· · · ) denotes a horizontal
average. This equation states that (−uv) and dU/dy must have the same sign, on average,
in order to sustain the turbulent fluctuations.

6 Upper bound on drag and dissipation

Malkus [10] proposed a theory of turbulent convection and of shear turbulence where he
invoked concepts of marginal stability, existence of a smallest scale and maximization of
heat flux or momentum transport. This led Howard [5, 6] and Busse [2] to derive bounds
on heat flux in convection and momentum transport in shear flow.

For plane Couette flow, the idea is to look for the field v′ = (u, v, w) that maximizes the
drag τw (8) for a given U subject to various constraints including the boundary conditions
U = ±U and v′ = 0 at y = ±h, incompressibility ∇ · v′ = 0 and the fluctuation energy
equation (54). The expression (8) for the total stress,

τw = ν
dU

dy
− uv (55)

can be averaged over the fluid layer −h ≤ y ≤ h to obtain

τw =
νU

h
− 〈uv〉 (56)

since U(y = ±h) = ±U and τw is constant, and where the brackets 〈· · · 〉 denote a volume
average. While νdU/dy and −uv in (8) are functions of y that add up to the drag τw,
equation (56) expresses the drag as a the laminar value νU/h plus a nonlinear, turbulent
contribution −〈uv〉. Normalizing (56) by U2 yields

τw
U2

=
1
R
− 〈uv〉

U2
(57)

showing the 1/R scaling of the friction factor τw/U2 (recall the Moody diagram of Lecture
1) in laminar flow where 〈uv〉 = 0.

Eliminating τw between (55) and (56) gives νdU/dy = νU/h+ uv − 〈uv〉 which we can
then use to eliminate the mean shear dU/dy in the fluctuation energy equation (54) to
obtain the constraint

−〈uv〉U
h

+
1
ν

(
〈uv〉2 − 〈uv2〉

)
= ν

〈
|∇v′|2

〉
(58)

since 〈uv〉 = 〈uv〉. The 1/ν term on the left hand side is negative definite and can be written
〈uv〉2 −

〈
uv2
〉

= −
〈
(uv − 〈uv〉)2

〉
, thus (58) shows that we need 〈uv〉 < 0 to sustain turbu-

lent fluctuations. In the standard non-dimensionalization of velocities by U and lengths by
h, the energy constraint (58) reads

−〈uv〉 = R
〈

(uv − 〈uv〉)2
〉

+
1
R

〈
|∇v′|2

〉
≥ 0 (59)

with the Reynolds number R = Uh/ν. The upper bound problem is then to find the
field v′ = (u, v, w), with ∇ · v′ = 0 and v′ = 0 on the boundaries, that maximizes −〈uv〉
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subject to the energy constraint (59) for fixed Reynolds number R. Busse [2] uses a different
convention and normalization and actually solves for the minimum Reynolds number for
a given momentum transport µ ≡ −〈uv〉 ≥ 0. Busse argues that the optimum solution is
streamwise x independent and solves the problem approximately using so-called ‘multi-α
solutions’ that provide the interesting multi-scale optimum field shown in figure 2.

Doering and Constantin [3] have developed a different ‘background flow’ approach to
bounds on flow quantities and Kerswell [8] has shown the relationship between the Howard-
Busse and the Doering-Constantin approaches. Plasting and Kerswell [12] obtain the bound

τw
h
U = E < 0.034

U3

h
(60)

for plane Couette flow in the limit R = Uh/ν → ∞, where U is the half wall velocity
difference and h is the half distance between the walls.

7 Mean flow phenomenology

We now consider some features of a fully turbulent (i.e. R well above transition) shear flow
near a solid boundary. The following arguments are discussed in Kundu and Cohen [9, p.
570] and Pope [13, Chap. 7]. We consider the case where the boundary roughness is small,
so it does not affect the flow. In this section we think of y as the distance to the (bottom)
wall, not to the centerline as earlier in these notes.

Prandtl (1925) proposed that at sufficiently large Reynolds number R = Uh/ν � 1, in
a region sufficiently close to the wall y � h, the mean velocity profile U(y) should have a
universal form, independent of h. This is in the spirit of the inertial scaling discussed earlier.
Indeed, the drag at the wall τw = νdU/dy|wall is a function of the bulk or wall velocity U ,
the half channel height h and the kinematic viscosity ν, in general, but in non-dimensional
form this reads

τw = U2f(R) (61)

for some function f(R) where R = Uh/ν is the Reynolds number. This should be obvious
enough but follows more generally from the ‘Buckingham Pi theorem’. Recall that the plot
of τw/U2 as a function of R is the Moody diagram shown for pipe flow in lecture 1. The
assumption of inertial scaling is that f(R) → constant as R → ∞, an asymptotic regime
labeled ‘complete turbulence’ on the Moody diagram. This is equivalent to saying that for
sufficiently large R, the drag at the wall τw is independent of the size of the channel h,
which then implies that it is also independent of ν and can only be proportional to U2, by
dimensional analysis. It is also equivalent to making the assumption that τw is independent
of ν as R→∞, in which case it is also independent of h by dimensional analysis.

The equation for the mean flow in plane Couette (8) can be written

dU

dy
=
u2
τ

ν
+
uv

ν
(62)

where it will be convenient to write the drag as τw = u2
τ . In channel flow, integrating (6)

over y with (7) gives
dU

dy
=
u2
τ

ν

(
1− y

h

)
+
uv

ν
. (63)
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Figure 2: Qualitative sketch of the boundary-layer region of the vector field yielding maxi-
mum transport of momentum, from Busse [2]. The streamlines depict the fiuctuation field
v′ = (u, v, w) and show that 〈uv〉 < 0 with u > 0 when v < 0 and u < 0 when v > 0.
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Recall that we have shifted the y coordinate so that the bottom wall is at y = 0 and the
channel centerline is at y = h for the purpose of this section, with U(0) = 0 and U(2h) = 2U
in plane Couette flow. From the boundary condition and incompressibility, ∇ · v′ = 0, we
have u, v, ∂v/∂y → 0 as y → 0 and dU/dy → u2

τ/ν as y → 0 so U ∼ u2
τy/ν in both Couette

and channel flow. This suggests introducing the friction velocity uτ (often written u∗) and
the ‘wall unit’ δ+,

uτ ≡
√
τw, δ+ ≡ ν

uτ
, (64)

so that in wall units the asymptotic relation U ∼ u2
τy/ν as y → 0 simply reads

U
+ ∼ y+ (65)

where U+ = U/uτ and y+ = y/δ+ = yuτ/ν. Experiments and simulations show that (65)
holds in 0 ≤ y+ . 5, a region that is called the viscous sublayer. The friction Reynolds
number is then defined as

Rτ =
uτh

ν
=

h

δ+
, (66)

and the channel centerline in wall units is at y+ = Rτ . In laminar flow, τw ∼ νU/h so
Rτ ∼

√
R for ‘low’ R but the inertial scaling τw ∼ U2 gives Rτ ∼ R for large R. Pope [13,

p. 279] gives the approximation Rτ ≈ 0.09R0.88 for turbulent channel flow, but see also (78)
and (80) below, for a linear relationship up to a log correction.

These considerations suggest that it may be more appropriate to use uτ as the character-
istic velocity for the mean profile U(y) instead of the bulk or wall velocity U and δ+ = ν/uτ
as the length scale instead of h. So the mean profile U(y) depends on uτ , h, ν and y but
by dimensional analysis (and the Pi theorem if necessary) we can write in full generality

dU

dy
=
u2
τ

ν
f(y+, Rτ ) (67)

for some function f(·, ·) such that limy+→0 f(y+, Rτ ) = 1, for any Rτ , as follows from (62)
and (63). Note that y/h = y+/Rτ . Prandtl’s law of the wall postulates that

lim
Rτ→∞
y+ fixed

f
(
y+, Rτ

)
= Φ(y+), (68)

and therefore
dU

dy
≈ u2

τ

ν
Φ(y+), (69)

for arbitrary but fixed y+ as Rτ → ∞, i.e. for y � h with Rτ � 1. Equation (69) can be
written dU

+
/dy+ ≈ Φ(y+) and there is indeed good experimental and numerical evidence

that the mean profile scales in wall units, that is, mean profiles corresponding to different
Rτ will ‘collapse’ onto one another when plotted in wall units, U+(y+).

The law of the wall (69) implies that U(y) is independent of h for y/h → 0. The von
Karman log law can then be derived by assuming further that dU/dy is also independent of
ν for sufficiently large y+, this would require both δ+ � y � h, and require Rτ = h/δ+ � 1.
Recall that in the inertial scaling τw ∼ U2 is independent of both h and ν. For dU/dy in
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(69) to be independent of ν requires Φ(y+) ∼ 1/y+ giving dU/dy ∼ uτ/y. This is equivalent
to dU+

/dy+ ∼ 1/y+ and yields

U
+ ≈ 1

κ
ln(y+) + C, (70)

where κ is known as the von Karman constant. Experiments and simulations show that
κ ≈ 0.41 and C ≈ 5.2 and the log law (70) holds approximatively in 30 δ+ . y . 0.3h. The
region 5 . y+ . 30 where the mean velocity profile transitions from the viscous behavior
U

+ ∼ y+ (65) to the log law (70) is called the buffer region.
Von Karman (1930) derived the log law using unsatisfying mixing length arguments and

2D flow considerations, instead of the reasoning presented above. Millikan (1938) provided
a more satisfying asymptotic ‘overlap’ argument (see e.g. [9]) that matches Prandtl’s law
of the wall for y � h to the velocity defect law that applies for y � δ+. Prandtl’s law of
the wall (69) can be written

U(y) ∼ uτ F (y+), (71)

or U+∼ F (y+) where U+ = U/uτ , with F (y+) ∼ y+ as y+ → 0 (65) and dF/dy+ = Φ(y+).
This law applies for y � h and Rτ � 1. There is a similar velocity defect law that would
apply for y � δ+ = ν/uτ . By dimensional analysis, we can write

U(y)− UC = uτ g(η,Rτ ) (72)

for some function g(·, ·), where U c is the centerline velocity and η ≡ y/h with y = 0 at the
wall to the channel center at y = h. The velocity defect law states that the velocity defect,
U(y)− UC , depends only on uτ and η = y/h but not ν

U(y)− UC ∼ uτ G(η) (73)

for Rτ →∞ with η = y/h = y+/Rτ fixed but arbitrary. In the overlap region, δ+ � y � h,
both equations (71) and (73) should hold and

dU

dy
∼ u2

τ

ν

dF

dy+
, (74)

dU

dy
∼ uτ

h

dG

dη
. (75)

Multiplying both equations by y/uτ yields

y+ dF

dy+
∼ ηdG

dη
(76)

since y+ = yuτ/ν and η = y/h. Considering Rτ →∞ with y+ fixed but arbitrary gives

y+ dF

dy+
∼ lim

η→0

(
η
dG

dη

)
≡ 1
κ

(77)

where κ is the von Karman constant and this yields the log law (70).
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Figure 3: Sketch of the ‘Law of the Wall’ with its viscous sublayer U+ ∼ y+ for y+ . 5 and
the log region U

+ ∼ κ−1 ln y+ + C for 30 . y+ . 0.3Rτ .

The von Karman log law (70) is a good approximation to the mean velocity in most of
the channel except for a small viscous region with y+ . 30, i.e. y . 30ν/uτ and a small
deviation near the center of the channel. It can therefore be used to derive an approximation
to the friction factor τw/U2 = f(R) for large R. Integrating the log law (70) from y+ ≈ 30
to the centerline at y+ = Rτ � 1 and dividing by the half size of the channel in wall units,
Rτ , gives the bulk velocity U as

U

uτ
=

R

Rτ
≈ 1
Rτ

∫ Rτ

30

(
ln y+

κ
+ C

)
dy+ ≈ lnRτ

κ
, (78)

for Rτ � 1. Defining uτ/U =
√
λ where λ = τw/U

2 is a friction factor, equation (78) gives

1√
λ

=
R

Rτ
≈ 2.44 lnRτ = 2.44 ln

(
R
√
λ
)

(79)

for 1/κ ≈ 2.44, for channel flow. The friction factor is often defined as 2τw/U2 in the
literature, so watch out for factors of 2. In any case, the friction factor would not be quite
R independent as R → ∞ and there would be a relatively small log correction to that
inertial scaling.

For plane Couette flow, we could simply evaluate (70) at the centerline y = h so y+ = Rτ
where U = U (since U(0) = 0 and U(2h) = 2U in the convention of this section) to obtain

U
√
τw
≡ U

uτ
≡ R

Rτ
≈ 1
κ

lnRτ + C (80)

and therefore
τwU

h
= E ≈ 1

(5.2 + 2.44 lnRτ )2
U3

h
, (81)
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using C ≈ 5.2 and κ ≈ 0.41. Again, there would be a log correction to the inertial scaling.
A good engineer would adjust all the constants to fit the data as well as possible, but our
purpose here was only to give a brief introduction to turbulence folklore.
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