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A look at energy stability, valid for all amplitudes, and linear stability for shear flows.

1 Nonlinear stability

Associated Navier-Stokes equation:

∂tv + v · ∇v +∇P = F + ν∇2v with ∇ · v = 0 (1)

In this equation ν = R−1 is the nondimensional viscosity coefficient, where R is the Reynolds
number. Let us assume a base flow U(x, t) that is a known solution to equation (1) driven
by the body force F (e.g. an imposed pressure gradient F = −x̂ dP0/dx in channel flow,
or gravity for flow down an inclined channel) and/or the boundary conditions. Next we
perturb the flow as v = U + u where u = (u, v, w) represents the perturbation. We plug
this v into equation (1) which yields:

∂t
(
U + u

)
+ U · ∇U + u · ∇U + U · ∇u + u · ∇u +∇

(
P + p

)
= F + ν∇2

(
U + u

)
(2)

Since U is a solution of equation (1) the associated terms cancel and we get the perturbation
equation:

∂tu + U · ∇u + u · ∇U + u · ∇u +∇p = ν∇2u (3)

with the incompressible constraint ∇ · u = 0. For the domain V with fixed boundary ∂V ,
the boundary condition for u is homogeneous, namely, u

∣∣
∂V

= 0 or periodic. Note that the
decomposition v = U+u into a base flow plus a perturbation is different from the Reynolds
decomposition v = v̄ + v′ into a mean plus a fluctuation. The base flow U is a solution of
the Navier-Stokes equations and is independent of the perturbation u, but the mean flow
is v̄ is not a solution of Navier-Stokes and is coupled to the fluctuations v′ through the
Reynolds stresses.

In order to calculate the total kinetic energy of the perturbation, we multiply equation
(3) by u and integrate over the domain V∫

V
u ·
(
∂tu + U · ∇u + u · ∇U + u · ∇u +∇p− ν∇2u

)
dV = 0 (4)
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Direct computation using integration by parts and the incompressibility condition (∇·U =
0→ ∇ · u = 0) yields

d

dt

∫
V

|u|2

2
dV =

∫
V
−u · ∇U · u dV − ν

∫
V
∇u : ∇uT dV

,
∫
V
−u · S · u dV︸ ︷︷ ︸
Production

− ν

∫
V
|∇u|2 dV︸ ︷︷ ︸

Dissipation

(5)

where S is the symmetric tensor strain rate tensor defined as Sij = 1
2

(
∂iUj + ∂jUi

)
and

uiSijuj = ui(∂iUj)uj using Einstein summation and ∇u : ∇uT , (∂iuj)(∂iuj) = |∇u|2 +
|∇v|2 + |∇w|2 , |∇u|2. Since the dissipation term is always positive, if the production term
is negative or zero the the flow is absolutely stable, that is, stable to any perturbation u.

Example: Rigid body rotation is absolutely stable, since the production term is 0. In this
case

U =

0 −Ω 0
Ω 0 0
0 0 0

xy
z

⇒ ∇U =

 0 Ω 0
−Ω 0 0
0 0 0


Sij =

1
2
(
∂iUj + ∂jUi

)
⇒ S =

0 0 0
0 0 0
0 0 0

 . (6)

Definition (growth rate): We can think of the right hand side of (5) normalized by 2E ,∫
V |u|

2dV as a growth rate since if the perturbation had the form u , eλtû(x), as would
be the case for time independent U in the linear limit, we would have |u|2 = exp(2σt)|û|2
and (2E)−1dE/dt = σ = <(λ), so σ, the real part of λ, is called the growth rate. We have
−u ·S ·u 6 λmaxu ·u where λmax is the largest eigenvalue of the real and symmetric (−S).
Manipulating the right hand side of equation (5) gives

σ ,

∫
V −u · S · udV∫

V |u|2dV
−
ν
∫
V |∇u|2dV∫
V |u|2dV

6
λmax

∫
V |u|

2dV∫
V |u|2dV

−
ν
∫
V |∇u|2dV∫
V |u|2dV

6 λmax (7)

and this provides a simple upper bound on the growth rate of any instability.

Theorem (Serrin 1959): For any steady solution U there exists a critical Reynolds number
Re1 > 0 such that for any flow with Re 6 Re1, the system is absolutely stable. See [2,
§53.1] or [1, §9.6].

Next let’s turn to shear base flows, i.e. U = U(y)x̂ and

S =

 0 U ′

2 0
U ′

2 0 0
0 0 0

 , where U ′ ,
dU

dy
(8)
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The corresponding kinetic energy takes the form

d

dt

∫
V

|u|2

2
dV =

∫
V
−uvdU

dy
dV − ν

∫
V
|∇u|2dV (9)

that is very similar to the fluctuation energy equation derived in lecture 2, but again the
production term there involved the mean shear rate dU/dy that depends on the Reynolds
stress uv, while here we have the base shear rate dU/dy that is independent of uv. For
shear flows, the growth rate σ < max(U ′/2) (assuming U ′ ≥ 0) and this maximum would
require very large Reynolds numbers ν = 1/R → 0 and u = −v with w = 0, localized near
the max of U ′. In the case of nondimensional Couette flow U(y) = y, the energy equation
reads

d

dt

∫
V

|u|2

2
dV =

∫
V
−uv dV − ν

∫
V
|∇u|2dV (10)

From this equation it can be seen that −uv > 0 occurring somewhere in the domain V is
a necessary condition for instability. Turning to the energy stability of shear flows, if we
define the critical value νE

νE , max

∫
V
−uvdU

dy
dV

ν

∫
V
|∇u|2dV

(11)

it directly follows that

d

dt

∫
V

|u|2

2
dV 6 (νE − ν)

∫
V
|∇u|2dV. (12)

The inequality (12) shows that the perturbation is stable if νE < ν ⇔ R < 1/νE , RE .
This is a sufficient condition for stability and is known as the absolute stability threshold.
Therefore an argument for absolute stability turns into an optimization problem (11) with
the constraints ∇ · u = 0 and u

∣∣
∂V

= 0

Remark: For Couette flow, the critical Reynolds number for absolute stability is about 20.7,
see [2, §53.1].

2 Linear stability

The flow is decomposed into a base flow U and a perturbation about the base flow u

v = U + u. (13)

Plugging into the Navier-Stokes equations and neglecting the quadratic nonlinearity u · ∇u
gives

∂tu + U · ∇u + u · ∇U +∇p = ν∇2u. (14)
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The base flow is now taken to be a shear flow, U = U(y)x̂. Taking the curl of (14) and
dotting with the vertical unit vector ŷ gives

(∂t + U∂x −
1
R
∇2)η = −∂zv

dU

dy
(15)

where η = ŷ · ∇ × u is the vertical component of the vorticity and v = ŷ · u is the vertical
component of the perturbation velocity. Taking the curl of (14) twice and dotting with the
vertical unit vector gives

(∂t + U∂x −
1
R
∇2)∇2v − ∂xv

d2U

dy2
= 0. (16)

Equations (15) and (16) are known as the Squire and Orr-Sommerfeld equations, respec-
tively. Note that the v equation (16) is decoupled from the η equation (15). There are two
basic kinds of boundary conditions at the walls of the channel. One is no-slip boundary
condition u = v = w = 0 which implies there is no perturbation at the walls. In the Orr-
Sommerfeld equation this boundary condition takes the form v = 0, vy = −ux−wz = 0 and
η = uz−wx = 0. The other is ‘free slip’ boundary conditions (i.e. stress or Neumann bound-
ary conditions on the full flow) v = uy = wy = 0 which implies v = 0, ηy = uyz − wxz = 0
and vyy = −uxy − wzy = 0 at the walls of the channel. Next we turn to the Fourier anal-
ysis of the Orr-Sommerfeld system, since U = U(y) only, equations (15) and (16) admit
solutions of the form

η(x, y, z, t) = η̂(y)eλtei(αx+γz)

v(x, y, z, t) = v̂(y)eλtei(αx+γz)

where λ is a complex-valued growth rate, α and γ are the real streamwise and spanwise
wavenumbers, respectively, and η̂(y) and v̂(y) are complex functions. Plugging the above
forms of v and η into equations (15) and (16) gives[

λ+ iαU − 1
R

(D2 − k2)
]
η̂ = −iγv̂U ′ (17)[

λ+ iαU − 1
R

(D2 − k2)
]

(D2 − k2)v̂ − U ′′iαv̂ = 0 (18)

where a prime indicates a y-derivative, D = d/dy, and k2 = α2 + γ2. Equation (18) can be
simplified by multiplying through by k/α[

λ̃+ ikU − 1

R̃
(D2 − k2)

]
(D2 − k2)v̂ − U ′′ikv̂ = 0 (19)

where λ̃ = λk/α and R̃ = Rα/k.

Squire’s theorem. Equation (19) is (18) with α ≡ k and rescaled growth rate and Reynolds
number. Therefore a three dimensional perturbation with wavenumbers (α, γ) at Reynolds
number R with growth rate λ is mathematically equivalent to a two dimensional perturba-
tion with wavenumbers (k, 0) but with Reynolds number R̃ = Rα/k ≤ R and growth rate
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<(λ̃) = <(λ)k/α ≥ <(λ). In other words, for any 3D unstable mode (α, γ) there is a 2D
unstable mode (

√
α2 + γ2, 0) with larger growth rate at a lower Reynolds number. This

is Squire’s Theorem [3], [2]. Another way to derive this result, is to let αU(y) = kŨ(y) in
(19) and conclude that a 3D perturbation is equivalent to a 2D perturbation with a weaker
shear flow Ũ(y) = αU(y)/k.

Furthermore, it is easy to show that the homogeneous η equation, that is (17) with
v = 0 has only damped modes (multiply the homogeneous equation by η∗ the conjugate
of η, integrate from wall to wall and add the complex conjugate of the result to show that
λ + λ∗ = 2σ ≤ 0). This is physically obvious since (17) is an advection diffusion equation
when v = 0, in fact the decay of

∫
V η

2dV for v = 0 can be shown for the full linear PDE
(15). Thus the eigenvalue problem for (15), (16), reduces to the consideration of the Orr-
Sommerfeld equation (19) for 2D perturbations only. Note that equation (17) with v 6= 0
exhibits transient growth for 3D perturbations with ∂zv 6= 0, as discussed in lecture 1. The
physical mechanism behind this is the redistribution of streamwise velocity U(y) by the
perturbation v to create u perturbations and η = ∂zu− ∂xw.

3 Energy equation

From Squire’s theorem it suffices to consider (18) with k = α[
λ+ iαU − 1

R
(D2 − α2)

]
(D2 − α2)v̂ − U ′′iαv̂ = 0. (20)

The equation for the complex conjugate v̂∗ reads[
λ∗ − iαU − 1

R
(D2 − α2)

]
(D2 − α2)v̂∗ + U ′′iαv̂∗ = 0. (21)

since U(y), α and R are real and where λ∗ is the complex conjugate of λ. Doing the following
surgery: v̂∗ · (20) + v̂ · (21) and integrating from the bottom of the domain (y = y1) to the
top of the domain (y = y2) yields

(λ+ λ∗)
∫ y2

y1

(
|Dv|2 + α2|v|2

)
dy︸ ︷︷ ︸

kinetic energy

=
∫ y2

y1

U ′Tdy︸ ︷︷ ︸
production

− 2
R

∫ y2

y1

|φ|2dy︸ ︷︷ ︸
dissipation

. (22)

Here T , iα(v̂Dv̂∗ − v̂∗Dv̂) ≡ −α2uv, and φ , (D2 − α2)v̂ with∫ y2

y1

|φ|2dy =
∫ y2

y1

|D2v − α2v|2dy =
∫ y2

y1

(
|D2v̂|2 + 2α2|Dv̂|2 + α4|v̂|2

)
dy ≥ 0. (23)

It is noted that when doing the integration by parts, the boundary condition v̂
∣∣
∂V

= 0 is
used, and either Dv̂

∣∣
∂V

= 0 or D2v̂
∣∣
∂V

= 0 can be applied to lead the same equality (22).
In other words, (22) holds for both no-slip and free-slip boundary conditions.

5



Equation (22) is simply the version of (9) for 2D eigensolutions v = v̂(y)eλteiαx with
u = û(y)eλteiαx = (i/α)Dv̂ eλteiαx to satisfy ∂xu + ∂yv = 0 and the ‘Reynolds stress’ for
such a perturbation is

−uv = − (û∗v̂ + ûv̂∗) e2σt =
i

α
(v̂Dv̂∗ − v̂∗Dv̂) e2σt ≡ T

α2
e2σt (24)

where 2σ = λ + λ∗ and uv is the horizontal average of uv. Likewise, φ = (D2 − α2)v̂
is effectively the z component of vorticity ωz = ∂xv − ∂yu = (iαv̂ − (i/α)D2v̂) eλteiαx =
(−i/α)φ(y) eλteiαx.

For free-slip boundary conditions, v̂ = D2v̂ = 0 at the walls, we can derive a useful form
of the enstrophy equation, i.e. an equation for the integral of vorticity squared. Consider∫ y2
y1

[
(D2 − α2)v̂∗ · (20) + (D2 − α2)v̂ · (21)

]
dy = 0 to obtain

(λ+ λ∗)
∫ y2

y1

|φ|2dy = −
∫ y2

y1

U
′′′
Tdy︸ ︷︷ ︸

production

− 2
R

∫ y2

y1

[
|Dφ|2 + α2|φ|2

]
dy︸ ︷︷ ︸

dissipation≥0

(25)

It follows directly that U
′′′

= 0 implies linear stability for free-slip, that is 2σ = λ+λ∗ ≤ 0.
In other words plane Couette flow U(y) = y and plane Poiseuille flow U(y) = 1 − y2, in
−1 ≤ y ≤ 1, are linearly stable for free-slip (i.e. imposed stress) boundary conditions as
well as any combination of Couette and Poiseuille U(y) = a+ by + cy2, among other flows.
We’ll discuss this further in the next lecture.

The enstrophy equation (25) only holds under free-slip boundary condition, since v̂
∣∣
∂V

=
D2v̂

∣∣
∂V

= 0 leads to the cancelation of the boundary terms in integration by parts but a
boundary term of indefinite sign subsists for no-slip v̂ = Dv̂ = 0 at the walls. The physical
meaning of these boundary terms is that vorticity can be generated (or destroyed) at the
walls for no-slip but not for free-slip.
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