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The present investigation is concerned with the role of bottom slope in the stability prop-
erties of two-dimensional disturbances in sheared two-layer immiscible fluids with stepwise
densities. A linear analysis of normal mode instability of the interface in an inclined closed
tube is carried out using full Navier-Stokes equation using Chebyshev-tau method. It has
been observed that Reynolds number and the tilt angle both have destabilizing effect on
the interface eigenvalue problem of Orr-Sommerfeld equation. As a special example, Stokes
flow is proven to be stable for any angles. A weakly nonlinear model equation, which is
Kuramoto-Sivashinsky type, for the interface is given using multi-scale method, and the
long wave dispersion relation gives a sufficient condition for triggering the instability.

1 Introduction

When two fluids of different physical properties are superposed one over the other and are
moving with a relative horizontal velocity, the instability occurs at the interface. Two-layer
fluids are ubiquitous in both ocean and atmosphere such as the exchange of Atlantic Ocean
water with the saltier Mediterranean Sea water through the Strait of Gibralta, light water
entering the ocean space from a suddenly broken dam, rapid melting of continental ice,
mixing of clouds and etc. The seminal paper on experimental results for two-layer fluid
was carried out by Thorpe (1968,1971) for the continuously stratified mixing fluids with
acceleration share profile called Kelvin-Helmholtz instability, which revealed the relation-
ship between the lab experiment and the real instability and turbulence in the ocean and
atmosphere.

Theoretical approaches for layered viscous channel flow often consider the stability of
a basic flow to normal mode type disturbances. The first theoretical study appears to
have been a paper by Yih (1967) who discussed the linear stability of two-layer Couette
and plane Poiseuille flows using a long-wave approach. He showed that both viscosity and
density stratification can generate an interfacial instability, recognized as Kelvin-Helmholtz
instability which was also called the interfacial mode, at any Reynolds number. A different,
shear type instability mechanism has been found by Hooper & Boyd (1983) occurring pri-
marily for short waves at small Reynolds number. The stability properties at intermediate
wavelengths are complicated by mode crossings. Accurate numerical stability studies for the
two-layer Orr-Sommerfeld equations (linearized Navier-Stokes) can be implemented recently
since the Chebyshev-tau method was developed by Dongarra et al (1996) and Boomkamp
et al (1997). There is a large number of literature in both mixing layers and immiscible
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fluids for plane channel flows, reader is referred to Hooper & Grimshaw (1985), Yiantsios
& Higgins (1988), Pozrikidis (1997), Yecko et al (2002), Bague et al (2010), Bassom et al
(2010), Mählmann & Papageorgiou (2010) and the references therein.

Since the instability between two fluids is generated by unbalanced pressure resulting
from the perturbation of the velocity shear flow, the combination of external forcing and
topographic features, such as sloping bottom, on a two-layer baroclinic flow results in various
types of instabilities at the interface. The first paper for viscous fluid moving down an
inclined plane was proposed by Yin (1963), which firstly clarified the boundary conditions on
the free surface of one layer fluid. Kao (1965) gave the linear analysis for two-layer Poiseuille
flow with a sloping bottom in the presence of both interface and free surface using long wave
approximation. More recently, Defina et al (1999) considered the viscous effect in an inclined
tube for the fluid with continuously stratified density, and Negretti (2008) presented more
numerical results for an inclined stratified shear flow under Boussinesq assumption. On the
experimental side, besides Thorpe’s famous work in 70’s, Fouli & Zhu (2011) performed
a new experiment to understand the generation conditions and development of Kelvin-
Helmholtz instabilities in two-layer exchange flows downslope of a bottom sill. The low
frequency oscillation were observed to led to the development of large-scale downslope waves
that caused significant interfacial entrainment.

Reduced potential models for those fluids which the vorticity is identically zero, and the
velocity is thus given by the gradient of a harmonic potential, have also been developed
to study the interface stability problem in multi-layer fluids. Purely inviscid potential flow
is the simplest nonlinear model, and the vortex sheet method or called boundary integral
method is a successful numerical method to simulate the Kelvin-Helmohltz instability (see
[14] and the references therein). There are two theories of potential flow of a viscous fluid:
viscous potential flow and the dissipation method. In the viscous potential theory, the
effects of viscosity on the normal stress are not neglected but the effect of shear stresses
are neglected, in other words, the governing equation is Laplace while the viscosity enters
through normal stress balance and tangential stresses are not considered on the interface.
On the other hand, the dissipative method is a famous theory which was first introduced
by Stokes in his study of the decay waves, which based on the basic fact that the viscous
stresses of the irrotational flow are self-equilibrated and do not give rise to forces in the
equations but they do work and give rise to energy and dissipation. In a recent paper, Kim
et al (2011) used the linearized versions of these models to the research of Kelvin-Helmohltz
instability.

This work concerns two-layer immiscible fluids in an inclined closed tube and has been
extended Thorpe’s classic work to the viscous and non-mixing case. The aim of the present
linear stability study is to examine the influence of a bottom slope on the stability of the
interface under the action of a shear advection. The bottom slope has destabilizing effect
of buoyancy at the interface and adds an additional acceleration term which results in a
parabola base shear flow. It is much natural than the plane channel flow which needs extra
force to maintain the base shear and more realistic in the case of oil & water interface. The
primary problem to which we shall address the following analysis is the investigation of the
static stability of the interface y=0 in the tilt coordinates between two parallel shear flows
U1,2(y) of a light viscous incompressible fluid in y>0 and a heavy one in y<0 when this
interface is subjected to the small periodic perturbation.

2



Figure 1: Schematic sketch in tilt coordinates of two-layer viscous fluids with parabolic shear flow.

The rest of the paper is organized as follows. In Sec. II the base shear flow is calculated
and the governing equations and the connecting boundary conditions on the interface for the
perturbed system are presented. In Sec. III, the Chebyshev-tau method is applied to solve
the eigenvalue problem for two-layer Orr-Sommerfeld systems. The results for both Stokes
flow and general case are discussed for the additional effect of changing the density ratio,
tilt angle, surface tension and Reynolds number. In Sec. IV, a weakly nonlinear PDE model
for the long wave perturbation is derived via multi-scale method, and a sufficient condition
for generating instability is also obtained automatically. Finally, Sec. V summarizes the
results and includes conclusion.

2 Formulation

2.1 Governing equation

The flow is assumed to be viscous, incompressible fluids at uniform depth inclined tube at
an angle θ in a gravitational field with the coordinate axes x−y as shown in Fig.1 with origin
at the interface. The upper layer is a fluid of density ρ1 and the lower layer is of density ρ2

with ρ2 > ρ1. The governing Navier-Stokes equations (NSE) in the tilt coordinates read

∂ũi
∂t

+ ũi
∂ũi
∂x

+ ṽi
∂ũi
∂y

= − 1
ρi

∂P̃i
∂x

+ g sin θ +
µi
ρi
∇2ũi (1)

∂ṽi
∂t

+ ũi
∂ṽi
∂x

+ ṽi
∂ṽi
∂y

= − 1
ρi

∂P̃i
∂y
− g cos θ +

µi
ρi
∇2ṽi (2)

∂ũi
∂x

+
∂ṽi
∂y

= 0 (3)
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where i = 1, 2 denotes two different fluids. ũ, ṽ are the velocities in x and y directions
respectively, P̃ is the pressure and µi represents the dynamic viscosity. For the closed tube,
the base shear flow profiles take the form

ũ1 =
(1− γ)g

1 +m2 + 14m
ρ2

µ2
sin θ

[7 +m

2
y2 − 4Hy +

1−m
2

H2
]

(4)

ũ2 =
(1− γ)g

1 +m2 + 14m
ρ2

µ2
sin θ

[
− 7m+ 1

2
y2 − 4mHy +

1−m
2

H2
]

(5)

where m , µ1

µ2
is the dynamic viscosity ratio, and γ , ρ1

ρ2
is the density ratio. In the mean

time ṽ1 = ṽ2 = 0. Defining g′ , ρ2−ρ1
ρ2

g = (1 − γ)g as the reduced gravity, then we can
define the typical velocity scale as

U ,
g′

1 +m2 + 14m
ρ2

µ2
sin θ (6)

Introducing dimensionless variables that are constructed using the velocity scale, U, and
the length scale, H, we find that the problem is characterized by the Reynolds number,
Ri, the Froude number, F, the surface tension parameter, S. More precisely, rescaling the
system by(

ũi, ṽi
)

= U
(
u′i, v

′
i

)
,
(
x, y
)

= H
(
x′, y′

)
, P̃i = ρiU

2P ′i , t =
H

U
t′ (7)

With a little abuse of notation, we still use (t,x,y) as the time and space coordinates for
simplicity, then the governing equations are of the form

∂u′i
∂t

+ u′i
∂u′i
∂x

+ v′i
∂u′i
∂y

= −∂P
′
i

∂x
+

sin θ
F 2

+
1
Ri
∇2u′i (8)

∂v′i
∂t

+ u′i
∂v′i
∂x

+ v′i
∂v′i
∂y

= −∂P
′
i

∂y
− cos θ

F 2
+

1
Ri
∇2v′i (9)

∂u′i
∂x

+
∂v′i
∂y

= 0 (10)

Here Ri = ρiHU
µi

is Reynolds number, F = U
(gH)1/2 is Froude number, and for later use, the

dimenionless surface tension is defined as S = σ
ρ2HU2 , where σ is the coefficient of surface

tension (assumed constant). Furthermore, we have

R2

F 2
=
ρ2HU

µ2
· gH
U2

=
1 +m2 + 14m

1− γ
1

sin θ
(11)

R2S =
ρ2HU

µ2
· σ

ρ2HU2
=

(1 +m2 + 14m)σ
ρ2g′H2 sin θ

(12)

Finally, we can rewrite the base shear flow as

U1 =
ũ1

U
=

7 +m

2
y2 − 4y +

1−m
2

(13)

U2 =
ũ2

U
= −7m+ 1

2
y2 − 4my +

1−m
2

(14)

4



2.2 Linearization

Assuming small perturbations from the basic flow in the form,

u′i = Ui(y) + ui, v′i = vi, P ′i = Pi(x, y) + pi (15)

neglecting second order terms in the primed quantities, and making use of the fact that Ui
and Pi satisfy the basic flow equations, we have, upon substitution of (15) into (8)-(10), the
linearized equations governing the disturbance motion,

∂ui
∂t

+ Ui
∂ui
∂x

+DUivi = −∂pi
∂x

+
1
Ri
∇2ui (16)

∂vi
∂t

+ Ui
∂vi
∂x

= −∂pi
∂y

+
1
Ri
∇2vi (17)

∂ui
∂x

+
∂vi
∂y

= 0 (18)

where the operator D means the derivative with respect to y. No-slip and no-penetration
boundary conditions are posed on the two fixed walls for the perturbation

u1(t, x, 1) = Du1(t, x, 1) = u2(t, x,−1) = Du2(t, x,−1) = 0 (19)

Suppose the perturbation of the interface is designated as y = η(t, x), then on the interface,
the boundary conditions are as follows

• contiunity of velocity: u′1 = u′2, v′1 = v′2

• contiunity of tangential stress: µ1

(
∂v′

1
∂x + ∂u′

1
∂y

)
= µ2

(
∂v′

2
∂x + ∂u′

2
∂y

)
• contiunity of normal stress:

(
− P ′2 + 2

R2

∂v′
2

∂y

)
− γ
(
− P ′1 + 2

R1

∂v′
1

∂y

)
− S ∂

2η
∂x2 = 0

For two-dimensinal incompressible Navier-Stokes equation, it is convenient to introduce the
stream function Ψi, such that ui = ∂Ψi

∂y and vi = −∂Ψi
∂x . We now assume a sinusoidal

disturbance and write

Ψi = ψi(y)eik(x−ct) + c.c. (20)

where c.c. denotes complex conjugate. ψ(y) is the complex amplitude, k is the dimensionless
real wave number and c = cR + icI is the dimensionless complex wave speed. The real part
cR is the phase velocity of the wave, while kcI is its growth rate. More precisely, the flow
is unstable if cI > 0, stable if cI < 0 and neutrally stable when cI = 0. Substitution of
(20) into (16) and (17) yields upon elimination of pi by taking the curl, the following two
Orr-Sommerfeld equations for the two fluids(

D2 − k2
)2
ψ1 = i

kγR2

m

[
(U1 − c)(D2 − k2)−D2U1

]
ψ1 (21)

for the upper phase 0 < y < 1, and(
D2 − k2

)2
ψ2 = ikR2

[
(U2 − c)(D2 − k2)−D2U2

]
ψ2 (22)
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for the lower phase −1 < y < 0. The conditions at the interface are the continuity of the
velocity components and the balance of the stress components. Formally speaking, these
conditions must be evaluated at y = η(x, t), the location of the interface in the disturbed
situation, and not at the originally interface y = 0. This modification is taken into account
by means of a Taylor expansion in η around y = 0. The interface conditions then read
η = ψ1(0)

c−U1(0)e
ik(x−ct). Finally we can rewrite the boundary conditions in terms of ψi, k, c

and Ri correcting to the leading order in η, and the details of the derivation are presented
in appendix B.

at y = 1: ψ1 = Dψ1 = 0

at y = −1: ψ2 = Dψ2 = 0

at the interface y = 0:

• ψ1 = ψ2

•
(
Dψ1 −Dψ2

)
+
(
DU1 −DU2

) ψ1

c−U1
= 0

•
(
D2 + k2

)(
mψ1 − ψ2

)
+
(
mD2U1 −D2U2

) ψ1

c−U1
= 0

• m
(
D3−3k2D

)
ψ1−

(
D3−3k2D

)
ψ2 + ikγR2

[
(c−U1)D+DU1

]
ψ1− ikR2

[
(c−U2)D+

DU2

]
ψ2 + ikR2

[
(1− γ) cos θ

F 2 + k2S
]

ψ1

c−U1
= 0

3 Linear stability analysis

Systems (21) and (22) with corresponding boundary conditions have an infinite number
of eigenvalues and associated eigenfunctions. Since the real part of the temporal growth
rate in (20) is e−ikc; c = cR + icI ; the eigenvalue which has largest imaginary part is most
dangerous in a linear instability analysis. In order to determine the complex eigenvalue c, the
eigenfunctions ψi are approximated by the Galerkin truncation of the Chebyshev polynomial
of first kind. Then the eigenvalue problem is discretized and formed a generalized matrix
eigenvalue problem (see details in Appendix C)

A~x = cB~x (23)

where ~x = (ψ1, ψ2)>. The matrices A and B are singular because some of the boundary
and interface conditions do not contain the eigenvalue c. This singularity is handled by de-
flating the infinite eigenvalues using the standard QZ-algorithm. Grid convergence has been
checked by varying number of collocation points, and in most calculations 100 collocation
points are used. Furthermore, the implemented algorithm has been validated by against
the tow-layer plane Poiseuille flow problem in [6] which is also presented in Appendix C.
Excellent agreement was found in all cases. The linear stability study will be discussed in
the following parts of the section. For simplicity, we assume that two fluid have the same
dynamic viscosity from now on.
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3.1 Stokes flow

For an extreme example, it is interesting to study the inertialess stability and let the
Reynolds number be zero. Thus in the absence of the surface tension the linear equations,
i.e., the Orr-Sommerfeld equations can be reduced to

(
D2 − k2

)2
ψ1 = 0, 0 < y < 1(

D2 − k2
)2
ψ2 = 0, −1 < y < 0

ψ1(1) = Dψ1(1) = 0, at y = 1
ψ2(−1) = Dψ2(−1) = 0, at y = −1
ψ1 = ψ2, Dψ1 = Dψ2, at y = 0(
D2ψ1 −D2ψ2

)
c+ 16ψ1 = 0, at y = 0(

D3ψ1 −D3ψ2

)
c+ 16ik cot θψ1 = 0, at y = 0

(24)

It is easy to find the general solution for Stokes flow

ψ1 = a1e
ky + b1e

−ky + c1ye
ky + d1ye

−ky (25)
ψ2 = a2e

ky + b2e
−ky + c2ye

ky + d2ye
−ky (26)

From the boundary conditions, we once more obtain a secular equation by setting the
determinant of the coefficients of ai, bi, ci and di to zero:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ek e−k ek e−k 0 0 0 0
kek −ke−k (1 + k)ek (1− k)e−k 0 0 0 0
0 0 0 0 e−k ek −e−k −ek
0 0 0 0 ke−k −kek (1− k)e−k (1 + k)ek

1 1 0 0 −1 −1 0 0
k −k 1 1 −k k −1 −1

k2c+ 16 k2c+ 16 2kc −2kc −k2c −k2c −2kc 2kc
k3c+ iNk −k3c+ iNk 3k2c 3k2c −k3c k3c −3k2c −3k2c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

where we define N , 16 cot θ. Direct computation yields the determinant

c = iN
4k2 sinh(2k) + 4k cosh(2k) + 2 sinh(2k)− sinh(4k)− 4k − 8k3

4k2 cosh(4k)− 4k2 − 32k4
(27)

Numerical computation shows that the above expression can not be positive for all wave
number k, which implies Stokes flow is always stable for any tilt angle < π

2 . Typical
relationship between the wave number k and the growth rate is plotted when the tilt angle
is π

3 , together with numerical results using the Chebyshev-tau method and the asymptotic
expansion as k is small in Fig.2.

3.2 General case

In this part, we consider the effects of density ratio, tilt angle, Reynolds number and surface
tension on the linear stability problem for the general Orr-Sommerfeld equation. Fig.3 shows
a typical profile of the unstable eigenmode and its velocity field.
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Figure 2: Growth rate versus wave number for Stokes wave at θ = π
3 . Solid line is the theoretical

prediction, the circle ones are numerical results, and the dash line is the asymptotic expansion when
wave number k is fairly small.

Figure 3: Typical steam function of the unstable eigenvalue and its velocity vector field. On the
right hand side, the red color means the right direction vector, while the blue color represents the
left direction vector.
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Figure 4: Growth rate versus wave number k. Upper left: R2 = 200, S = 0, θ = π/3; Upper right:
R2 = 200, γ = 0.9, θ = π/3; Lower left: γ = 0.9, θ = π/3, S = 0; Lower right: R2/ sin θ = 10, γ =
0.9, S = 0.

In Fig.4, the effect density ratio, surface tension, Reynolds number and tilt angle are
plotted respectively. The upper left picture shows that the density ratio has little effect
on the stability property. We check the density ratio from 0.5 to 0.9, the basic behavior
of the growth rate curve does not change much. The upper right picture shows that the
surface tension would stabilize the system a little bit but not very significant especially
when the wave number k is very small, that is because for long wave approximation, the
surface tension is of order k4 in the Fourier space (See more details in the next section).
In the lower-half part of Fig.4, two plots show the Reynolds number and the tilt angle are
two main factors in stability analysis. Both of them have destabilizing effect. It is worth
mentioning that Reynolds number is not a good parameter in the lab, since

R2 =
ρ2HU

µ2
=

ρ2
2Hg

′

µ2
2(1 +m2 + 14m)

sin θ (28)

It is obvious that R2/ sin θ is an appropriate parameter for studying the effect of tilt angle.
In the lower right of Fig.4, we fix R2/ sin θ = 10 instead of fixing the Reynolds number.

Fig.5 plots the relationship between the tilt angle θ and R2/ sin θ, the parameter used
to replace the Reynolds number, for generating the instability. It shows that when R2/ sin θ
is rather small or big, the curve is quite smooth, but in between the points are a little bit
messy due to the modes crossings.
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Figure 5: Curve for separating stable region and unstable region. The circle ones are the numerical
results of Orr-Sommerfeld systems, two solid lines are the fitting curves using different functions:
rational function (green) and gaussian function (red).

4 Weakly nonlinear model for long wave perturbation

In this section, we use multi-scale method to establish a weakly nonlinear model for the
interface evolution in long wave perturbation setting. The ansatz for slow-varying small
amplitude perturbation is

η = εA(X,T ) (29)
Ψ1 = εΨ10(X,Y, T ) + ε2Ψ11(X,Y, T ) +O(ε3) (30)
Ψ2 = εΨ20(X,Y, T ) + ε2Ψ21(X,Y, T ) +O(ε3) (31)

with X = εx, Y = εy and T = ε2t where ε is a small parameter. Due to the expression of
η, it is convenient to rewrite Ψ10 and Ψ20 as

Ψ10(X,Y, T ) = A(X,T )φ0(Y )
Ψ20(X,Y, T ) = A(X,T )χ0(Y )

Substitution of the above expressions into perturbed full Navier-Stokes equations and cor-
responding boundary conditions, taking m = 1 and collecting terms of first order of ε,
yield 

D4φ0 = D4χ0 = 0, governing equations
φ0(1) = Dφ0(1) = 0, no-slip conditions at y = 1
χ0(−1) = Dχ0(−1) = 0, no-slip conditions at y = −1
φ0 = χ0, Dφ0 = Dχ0, at the interface y = 0
D2φ0 −D2χ0 + 16 = 0, tangential stress at y = 0
D3φ0 = D3χ0, normal stress at y = 0

(32)
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After direct calculations, the solutions of this ODE system are{
φ0 = 2y3 − 4y2 + 2y
χ0 = 2y3 + 4y2 + 2y

(33)

Then we turn to the second order of the expansion. The second order approximation is
obtained by collecting terms of order ε2, which yields the following inhomogeneous ordinary
differential system

D4Ψ11 = R1AX(U1D
2 −D2U1)φ0, governing equations

D4Ψ21 = R2AX(U2D
2 −D2U2)χ0, governing equations

Ψ11(1) = DΨ11(1) = 0, no-slip conditions at y = 1
Ψ21(−1) = DΨ21(−1) = 0, no-slip conditions at y = −1
Ψ11 = Ψ21, at the interface y = 0
DΨ11 −DΨ21 = 8A2, at the interface y = 0
D2Ψ11 = D2Ψ21, tangential stress at y = 0
D3Ψ11 −D3Ψ21 + (16AX cot θ − Sε2AXXX) = 0, normal stress at y = 0

(34)

Here the surface tension is supposed to be very large between oil and water interface, i.e.,
S = O(1/ε2). Observing the governing equations and boundary conditions carefully, we can
assume that

Ψ11 = m1(Y )AX +m2(Y )A2 +m3(Y )AXXX (35)
Ψ21 = n1(Y )AX + n2(Y )A2 + n3(Y )AXXX (36)

After a tedious computation, we substitute the solution of (34) into the kinematic boundary
condition and collect the O(ε3) terms, then obtain

AT + a1AAX + a2AXX + a3AXXXX = 0 (37)

with

a1 =
(
2D2U1 + 2Dφ0 + 2m2

)
(0) = 8

a2 = m1(0) =
1
70

(R1 +R2)− 2
3

cot θ

a3 = m3(0) =
Sε2

24

This is a typical Kuramoto-Sivashinsky equation when a2 is big than 0, and its steady
solution, properties and globally well-posedness have been studied. When a2 < 0, it becomes
diffusion equation which is globally well-posed. If neglecting the nonlinear term, using
standard Fourier analysis, the dispersion relation reads

c = i
(
a2k − a3k

3
)

(38)

substitution of the dispersion relation into the Fourier mode eik(X−cT ), one obtains the
growth rate equals e(a2k2−a3k4)T . It shows that the surface tension has stabilizing effect on
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the system. If neglecting the surface tension term, the sign of a2 determines the stability
property of the system, which gives a sufficient condition between Reynolds number and
tilt angle for generating the instability:

cot θ <
3

140
(
R1 +R2

)
(39)

5 Conclusion

By the end of the project, I hoped to have an answer, either analytic or numerical, for the
stability of the two-layer viscous fluid in an inclined closed tube subject to small perturba-
tions and find the effects of surface tension, tilt angle, Reynolds number, density ratio and
wave number in triggering the instability. For the linear stability analysis, Chebyshev-tau
method is applied to two-layer Orr-Sommerfeld equations. Tilt angle and Reynolds num-
ber both have the effect to destabilize the system, while the surface tension stabilize it.
Stokes flow is studied as an extreme example showing that it is stable for any tilt angle.
Except this, for any Reynolds number, one can find a tilt angle to generate the instability.
Furthermore, a weakly nonlinear model equation for long wave perturbation is derived and
found to be Kuramoto-Sivashinsky type. If neglecting the surface tension effects, it offers a
sufficient condition on Reynolds number and the tilt angle for generating linear instability,
which totally depends on the coefficient of AXX term.
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7 Appendix A. derivation of base shear flow

In this section the basic unperturbed flow pattern is obtained. The unperturbed flow is
parallel to the x-axis and the velocity is a function of y only. Both of the fluids have the
same depth H. The Navier-Stokes equations that govern the basic flow are

− 1
ρi

∂P̃i
∂x

+ g sin θ +
µi
ρi

∂2ũi
∂y2

= 0 (40)

− 1
ρi

∂P̃i
∂y
− g cos θ = 0 (41)

From equation (41), one obtains P̃i = −ρig cos θy+
(
function of x

)
. Since ∂2eui

∂y2
is a function

of y only, from (40) it is clear that ∂ eP1
∂x and ∂ eP2

∂x are both constants. Then the solutions for

12



ũi take the form

ũ1 = (−ρ1g

µ1
sin θ + c1)

y2

2
+ a1y + b1 (42)

ũ2 = (−ρ2g

µ2
sin θ + c2)

y2

2
+ a2y + b2 (43)

where ai, bi and ci are all constants need to be determined by the boundary conditions.
Using the boundary conditions at the interface y = 0: ũ1 = ũ2, µ1

∂eu1
∂y = µ2

∂eu2
∂y and P̃1 = P̃2,

one obtains a2 = ma1, b1 = b2 and c2 = mc1 respectively, where m = µ1

µ2
is the dynamic

viscosity ratio. For simplicity, let’s denote c1 , c, a1 , a and b1 , b. On the other hand,
because the tube is closed, then there is no flux across any place x = constant, which
implies ∫ 0

−H
ũ2dy +

∫ H

0
ũ1dy = 0

=⇒ b =
H2

12

[( γ
m

+ 1
)ρ2

µ2
g sin θ − (1 +m)c

]
− H

4
(
1−m

)
a (44)

Finally, applying the no-slip boundary conditions at the fixed walls, one obtains(
− γρ2g sin θ

mµ2
+ c
)H2

2
+ aH +

H2

12

[( γ
m

+ 1
)ρ2g sin θ

µ2
− (1 +m)c

]
− H

4
(
1−m

)
a = 0(

− ρ2g sin θ
µ2

+mc
)H2

2
− amH +

H2

12

[( γ
m

+ 1
)ρ2g sin θ

µ2
− (1 +m)c

]
− H

4
(
1−m

)
a = 0

Therefore, we solve the linear system for a and c

a =
4(γ − 1)

1 +m2 + 14m
ρ2

µ2
gH sin θ (45)

b =
(1−m)(1− γ)
1 +m2 + 14m

ρ2

µ2

gH2 sin θ
2

(46)

c =
7m+ γ +m2 + 7mγ
m(1 +m2 + 14m)

ρ2

µ2
g sin θ (47)

Finally, we get the base shear flow

ũ1 =
(1− γ)g

1 +m2 + 14m
ρ2

µ2
sin θ

[7 +m

2
y2 − 4Hy +

1−m
2

H2
]

(48)

ũ2 =
(1− γ)g

1 +m2 + 14m
ρ2

µ2
sin θ

[
− 7m+ 1

2
y2 − 4mHy +

1−m
2

H2
]

(49)

8 Appendix B. boundary conditions on the interface

In this part, we give the details of the derivation of the stress continuity on the interface in
terms of the stream functions. First of all, we know

ui =
∂Ψi

∂y
= Dψie

ik(x−ct) (50)

vi = −∂Ψi

∂x
= −ikψieik(x−ct) (51)

13



Furthermore, we assume the interface is designated as η(x, t) = η̂eik(x−ct). Following the
notation in section 2.1, the kinematic boundary condition ηt = v′1 − ηxu′1 can be linearized
as ηt = v1 − ηxU1, then one obtains

−ikcη̂ = −ikψ1 − ikη̂U1 =⇒ η̂ =
ψ1(0)

c− U1(0)
(52)

For the continuity of velocity at the interface, v′1 = v′2 is trivial, while u′1 = u′2 results in

U1 + ηDU1 + u1 + · · · = U2 + ηDU2 + u2 + · · ·

=⇒
(
Dψ1 −Dψ2

)
+
(
DU1 −DU2

) ψ1(0)
c− U1(0)

= 0 (53)

Then for the tangential stress, taking expansion about y = 0, one obtains

m
(∂v′1
∂x

+
∂u′1
∂y

)
=
∂v′2
∂x

+
∂u′2
∂y

=⇒ m
[∂v1

∂x
+
∂(u1 + U1 +DU1η + · · ·)

∂y

]
=
∂v2

∂x
+
∂(u2 + U2 +DU2η + · · ·)

∂y

=⇒
(
D2 + k2

)(
mψ1 − ψ2

)
+
(
mD2U1 −D2U2

)
η̂ = 0

=⇒
(
D2 + k2

)(
mψ1 − ψ2

)
+
(
mD2U1 −D2U2

) ψ1(0)
ω − U1(0)

= 0 (54)

For later use, we point out the following formula η̂ = ψ1(0)
c−U1(0) = − (D2+k2)(mψ1−ψ2)

mD2U1−D2U2
. In

order to obtain the normal stress formula, we need the expression of the presure. Assuming
pi = p̂ie

ik(x−ct), using equation (8), we can get

p̂i =
1

ikRi

(
D3ψi − k2Dψi

)
+ cDψi +DUiψi − UiDψi (55)

Now we can rewrite the normal stress boundary condition in a suitable form,

(
− P ′2 +

2
R2

∂v′2
∂y

)
− γ
(
− P ′1 +

2
R1

∂v′1
∂y

)
− S ∂

2η

∂x2
= 0

=⇒
(
− p2 −DP ′2η +

2
R2

∂v2

∂y
− · · ·

)
− γ
(
− p1 −DP ′1η +

2
R1

∂v1

∂y
− · · ·

)
− S ∂

2η

∂x2
= 0

=⇒
(
γp̂1 − p̂2

)
+

2ik
R2

(
mDψ1 −Dψ2

)
+
[
(1− γ)

cos θ
F 2

+ k2S
]
η̂ = 0

=⇒ m
(
D3 − 3k2D

)
ψ1 −

(
D3 − 3k2D

)
ψ2 + ikγR2

[
(c− U1)D +DU1

]
ψ1

−ikR2

[
(c− U2)D +DU2

]
ψ2 + ikR2

[
(1− γ)

cos θ
F 2

+ k2S
] ψ1

c− U1
= 0 (56)

For numerical purpose, we need rewrite the normal stress in the following way

m
(
D3 − 3k2D

)
ψ1 −

(
D3 − 3k2D

)
ψ2 + ikγR2

[
(c− U1)D +DU1

]
ψ1 − ikR2

[
(c

−U2)D +DU2

]
ψ2 − ikR2

[
(1− γ)

cos θ
F 2

+ k2S
](D2 + k2)(mψ1 − ψ2)

mD2U1 −D2U2
= 0 (57)
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9 Appendix C. numerical method

Step 1. Coordinate transformation

Chebyshev polynomials are orthogonal on the interval [−1, 1]. In order to use the Chebyshev-
tau QZ-algorithm to solve the generalized eigenvalue problem, we need transform the Orr-
Sommerfeld equations on either of the intervals [−1, 0] and [0, 1] to the interval [−1, 1] by
a change of the independent variable y. This is easily achieved by means of the linear
transformations {

z = 2y − 1 0 6 y 6 1
z = −2y − 1 −1 6 y 6 0

(58)

It is noted that z = −1 becomes the interface in both cases. Then the Orr-Sommerfeld
equations in new coordinates become(

4D2 − k2
)2
ψi − ikRi

[
Ui
(
4D2 − k2

)
− U ′′i

]
ψi =

[
− ikRi

(
4D2 − k2

)
ψi

]
c (59)

Here D presents the derivative with respect to the new variable z and ′ means the deriva-
tive w.r.t the old variable y. Furthermore, the rigid wall boundary condition in the new
coordinates become

ψ1(1) = Dψ1(1) = ψ2(1) = Dψ2(1) = 0 (60)

The interface boundary conditions are, on z = −1

ψ1 − ψ2 = 0 (61)(
2U1D − U ′1 + U ′2

)
ψ1 + 2U1Dψ2 =

(
2Dψ1 + 2Dψ2

)
c (62)(

4mD2 +mk2 −mU ′′1 + U ′′2
)
ψ1 −

(
4D2 + k2

)
ψ2 =

(
4D2 + k2

)(
mψ1 − ψ2

)
c (63)

m
(
8D3 − 6k2D

)
ψ1 +

(
8D3 − 6k2D

)
ψ2 + i

[
kγR2

(
U ′1 − 2U1D

)
ψ1

−kR2

(
2U2D + U ′2

)
ψ2 − k

(
cot θ +

k2T

sin θ

)(
4D2 + k2

)(
mψ1 − ψ2

)]
= −i

(
2kγR2Dψ1 + 2kR2Dψ2

)
c (64)

where T , σ
ρ2g′H2 is a new parameter.

Step 2. Galerkin truncation and point collocation

Approximating the eigenfunction ψ1 and ψ2 by the truncated Chebyshev expansions

ψ1(z) =
N∑
n=0

anTn(z), ψ2 =
N∑
n=0

bnTn(z) (65)

where Tn(z) is the nth order first-kind Chebyshev polynomial. The high order derivatives
of the eigenfunction can be found by differentiating the Chebyshev polynomial. Our goal
is to determine the coefficients an, bn and the eigenvalue ω. For this purpose, we need
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2(N +1) conditions. We collocate the Galerkin truncation at the extrema of the Chebyshev
polynomial

z = cos
(jπ
M

)
, j = 1 · · ·M − 1 (66)

We pick M = N − 2, thus if we evluate the Orr-Sommerfeld equation at these extrema
points, we obtain 2N − 6 linear algbraic equations. The other eight conditions come from
the corresponding boundary conditions mentioned in step 1. Therefore we complete our
system.

Step 3. Generalized eigenvalue problem

We denote

AR ,


16D4 − 8k2D2 + k4 0

BC1 ∼ 4 BC1 ∼ 4
0 16D4 − 8k2D2 + k4

BC5 ∼ 8 BC5 ∼ 8

 (67)

AI ,


−kR1

[
U1(4D2 − k2)− U ′′1

]
0

BC1 ∼ 4 BC1 ∼ 4
0 −kR2

[
U2(4D2 − k2)− U ′′2

]
BC5 ∼ 8 BC5 ∼ 8

 (68)

BR ,


0 0

BC1 ∼ 4 BC1 ∼ 4
0 0

BC5 ∼ 8 BC5 ∼ 8

 (69)

and

BR ,


−kR1(4D2 − k2) 0

BC1 ∼ 4 BC1 ∼ 4
0 −kR2(4D2 − k2)

BC5 ∼ 8 BC5 ∼ 8

 (70)

where BC1 ∼ 4 represents the boundary conditions (60), while BC5 ∼ 8 the boundary
conditions (61)-(64). We therefore can write the system of equations as a generalized
eigenvalue problem [

AR + iAI

]
x = c

[
BR + iBI

]
x (71)

where x = (a0, · · ·, aN , b0, · · ·, bN )>. Using QZ-algorithm in MATLAB, it is easy to obtain
the eigenvalues and corresponding eigenvectors.

Step 4. Validation

Two examples are presented here for the purpose of validation. The first example is the

16



−0.8 −0.6 −0.4 −0.2 0 0.2
−1

−0.8

−0.6

−0.4

−0.2

0
N = 60

−0.8 −0.6 −0.4 −0.2 0 0.2
−1

−0.8

−0.6

−0.4

−0.2

0
N = 100

Figure 6: Eigenvalues for plane Poiseuille at Raynolds number 5772. The dots are for the general
Chebyshev method and the empty circles are for Chebyshev-tau method. Left picture uses 60
collocation points and the right one uses 100 points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Figure 7: Eigenvalues for two-layer plane Poiseuille flow. Left: Re = 104, a = 1, m = 2, n = 1.2,
un = 0. Right: Re = 25, a = 1, m = 2, n = 10, un = 3

one-layer plane Poiseuille flow at Reynolds number 5772. The resulting eigenvalues using
general Chebyshev method presented in Page 150 of [17] and Chebyshev-tau method are
both plotted in Fig.6. It is clear that when collocation points are increased to 100 points,
the results for two methods coincide with each other perfectly. For our linear problem in
the paper, we use 100 points for all numerical experiments. Another numerical experiment
is carried out for the two-layer Poiseuille flow and compared with the results in [6]. In Fig.7
the plots are the eigenvalues for different height ratios and Reynolds numbers. The results
agree with the Pic.7 and Pic.9 of paper [6] very well. And numbers in the following table
show the comparison of the leading eigenmodes between the left hand-side of Fig.7 and
Pic.7 in [6].
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Model type Our codes Dongarra’s results

interface 0.00172758052977 0.00179188368
shear 0.00087962166886 0.0008778915187

References

[1] A.P. Bassom, M.G. Blyth, D.T. Papageorgiou, Nonlinear development of two-layer
Couette-Poiseuille flow in the presence of surfactant, Phys. Fluids, 22(10), 2010.

[2] P.A.M. Boomkamp, B.J. Boersma, R.H.M. Miesen, G.V. Beijnon, A chebyshev colloca-
tion method for solving two-phase flow stability problems, J. Comp. Phys., 132, 191-200,
1997.

[3] A. Bague, D. Fuster, S. Popinet, R. Scardovelli, S. Zaleski, Instability growth rate of
two-phase mixing layer from a linear eigenvalue problem and an initial-value problem,
Phys. Fluids, 22(1), 2010.

[4] C. Cenedese, J.A. Whitehead, T.A. Ascarelli, M. Ohiwa, A dense current flowing down
a sloping bottom in a rotating fluid, J. Phys. Oceanogr., 34, 188-203, 2002.

[5] A. Defina, S. Lanzoni, F.M. Susin, Stability of a stratified viscous shear flow in a title
tube, Phys. Fluids, 11(2), 1998.

[6] J.J. Dongarra, B. Straughan, D.W. Walker, Chebyshev tau-QZ algorithm methods for
calculating spectra of hydrodynamic stability problems, J. Appl. Nume. Math., 22(4),
1996.

[7] H. Fouli, D.Z. Zhu, Interfacial waves in two-layer exchange flows downslope of a bottom
sill, J. Fluid Mech., 680, 194-224, 2011.

[8] A.P. Hooper, W.G.C. Boyd, shear-flow instability at the interface between two viscous
fluids, J. Fluid Mech., 128, 507-528, 1983.

[9] A.P. Hooper, R. Grimshaw, Nonlinear instability at the interface between two viscous
fluids, Phys. Fluids, 28(1), 1985.

[10] T.W. Kao, Stability of two-layer viscous stratified flow down an inclined plane, Phys.
Fluids, 8(5), 1965.

[11] H. Kim, J.C. Padrino, D.D. Joseph, Viscous effects on Kelvin-Helmholtz instability in
a channel, J. Fluid Mech., 680, 398-416, 2011.
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