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Preface

The theme for the Program in Geophysical Fluid Dynamics for the summer of 2011 was
Shear Turbulence: onset and structure. Ten days of principal lectures by Fabian Waleffe and
Rich Kerswell began the summer, and a large number of seminars on this and a variety of
other topics then continued through the eighth week. These lectures are presented in these
Proceedings and form (we believe) the most complete, connected account of this subject)

Eleven fellows from around the globe helped to record the principal lectures, and each
carried out a project of his/her own, presented in seminar during the tenth and final week.
All these lectures and projects are also presented in this Proceedings volume.

The further seminars presented throughout the summer by visitors and (in some cases)
by GFD faculty are also listed here. The popular Sears Lecture was given by L. Mahadevan.
The title was On growth and form: geometry, physics and biology. It was indeed popular,
drawing a large and enthusiastic audience.

There exists a phenomenon called “fun” (sp?). This was embodied in various social
gatherings. To name just two (there were others): the 4th of July barbecue, organized
by the fellows; and the traditional gathering, at the end of the final week, at the home of
George and Kim Veronis on Crooked Pond.

In addition there was softball. The GFD team had a winning season, the first in quite
a while!

The coorganizers want to thank Jeanne Fleming and Janet Fields, our most visible
links to WHOI, for their administrative expertise and unstinting help with the needs of the
program, the visitors, the fellows and (not least) the coorganizers.

The GFD Program acknowledges continuing support from the US National Science
Foundation through grant OCE-0824636 and the Office of Naval Research through grant
N00014-09-1-0844. The program also receives support from the Woods Hole Oceanographic
Institution. Fabian Waleffe’s work was partially supported by the US National Science
Foundation under Grant No. 0807349. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.
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Lecture 1

Shear Turbulence: Onset and
Structure
notes by Mart́ın Hoecker-Mart́ınez and Chao Ma
revised and massively expanded by FW
WHOI GFD Lecture 1, June 20, 2011

1.1 Introduction

Figure 1.1: Reynolds’ 1883 experiment, still operating at the University of Manchester, UK.
Water flows down a long pipe and ink is introduced at the pipe centerline. On the right are
the original drawings showing the dye filament in laminar flow (a), and the rapid mixing of
the dye and water when the Reynolds number is larger than about 2000 in (b). (c) shows
details of vortical structures in turbulent flow, visualized with a spark.

A classic series of educational fluid mechanics films is available online at

15
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http://web.mit.edu/hml/ncfmf.html
The film on Turbulence provides an excellent visual introduction to turbulence in shear
flows and reproduces the seminal experiments of Osborne Reynolds [24] on the transition
from laminar to turbulent flow in a pipe, illustrated in Fig. 1.1. The 2011 Annual Review
of Fluid Mechanics article by Tom Mullin [21] provides many fascinating historical details
and is also highly recommended reading.

Transition to turbulence results from the non-linearity of the governing Navier-Stokes
equations and the relevant non-dimensional quantity is the Reynolds number

R ≡ UL

ν
(1.1)

where U and L are characteristic velocity and length scales, respectively — such as the
average (or ‘bulk’) flow speed and the diameter of the pipe — and ν is the kinematic
viscosity of the fluid (e.g. ν ≈ 10−5 m2/s for air, and ν ≈ 10−6 m2/s for water). Pipe flow
will typically be in a turbulent state when the Reynolds number is larger than about 2000
and laminar below that. For flow of water (ν ≈ 10−6 m2/s), in a pipe of diameter D=10cm
= 0.1m, turbulent flow is observed for bulk velocities U greater than about a mere 2 cm/s
= 0.02 m/s.

1.1.1 Navier-Stokes equations

Although most fluids are compressible, the fundamental study of turbulence can be simpli-
fied if we consider an idealized incompressible flow. This is equivalent to assuming that the
speed of sound in our medium, c =

√
(∂P/∂ρ)S (≈ 340 m/s in air and 1500 m/s in water),

is much greater than any velocity in the fluid. The Navier-Stokes equations for constant
density fluid flow (for a derivation see for example Acheson [2, Chap. 6] or Batchelor [4,
Sect. 3.2]) are

∇ · v = 0 (1.2)

∂tv + v · ∇v +∇p = ν∇2v (1.3)

where v = v(r, t) is the fluid velocity at position r ∈ R3 at time t, ∇ is the del operator,
p = p(r, t) is the kinematic pressure (i.e. the pressure divided by the constant mass density
ρ) and ν > 0 is the kinematic viscosity and ∇2 = ∇ · ∇ is the Laplacian. The standard
boundary condition for a viscous fluid is no-slip at the wall, that is vfluid = vwall.

For incompressible flow, the pressure p is purely mechanical, not thermodynamic. The
pressure is determined by the flow and the incompressibility constraint ∇ · v = 0, and
there is no need for an equation of state. In fact, taking the divergence of (1.3) and using
∇ · v = 0, yields a Poisson equation for the pressure

∇2p = −∇ · (v · ∇v) (1.4)

where ∇ · (v · ∇v) = ∇v : ∇v = (∂ivj)(∂jvi) = SijSij −ΩijΩij in cartesian index notation,
where ∂i = ∂/∂xi and Sij = (∂ivj + ∂jvi)/2, Ωij = (∂ivj − ∂jvi)/2 are the deformation
and rotation rate tensors, respectively. Thus, the pressure gradient in (1.3) is in fact a non-
local, nonlinear term for the Navier-Stokes equations. The nonlinearity of the Navier-Stokes
equations is v · ∇v +∇p, with the pressure solving the elliptic Poisson equation (1.4).
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However, there are difficulties, misunderstandings and controversies regarding the bound-
ary conditions needed to solve the Poisson equation (1.4), as discussed in Rempfer [23]. The
dream is that the pressure boundary conditions can be decoupled from the velocity – a Neu-
mann boundary condition ∂p/∂n = 0 where n is normal to the wall, for instance – so that
one could update the velocity in time using (1.3) then update the pressure from (1.4) using
the updated velocity. Such methods are usually referred to as Pressure Poisson equation
(PPE) formulations. Such decoupling is not correct in general, and PPE formulations, as
well as the related fractional step methods, may have particular difficulties with steady, trav-
eling wave and time-periodic solutions of the Navier-Stokes equations. Such solutions are
precisely the focus of these lectures. A general approach is to enforce the incompressibility
constraint ∇ · v = 0 ab initio through a streamfunction-type (i.e. divergence-free) formu-
lation for v and eliminate the pressure by taking the curl (∇ × (·)) of the Navier-Stokes
equations (1.3) or projecting those equations onto the space of divergence-free functions.
The v, η and ‘poloidal-toroidal’ representations fall under this general category of methods.

1.1.2 Laminar pipe flow

For flow in a nominally infinitely long pipe of radius a, driven by an imposed constant
pressure gradient dp0/dx < 0 in the axial streamwise direction x, GFD fellows easily verify
that the Navier-Stokes equations (1.2), (1.3), have the parabolic solution

v =
(

1− r2

a2

)
Uc x̂ (1.5)

where r =
√
y2 + z2 is the distance to the pipe centerline, Uc is the centerline velocity, x̂

is the unit vector in the pipe direction and

dp0

dx
= −ν 4Uc

a2
. (1.6)

This is the laminar pipe flow solution, first found by Poiseuille [21] from his experimental
data. Averaging (1.5) over the pipe cross section A, yields the laminar bulk velocity

U =
1
πa2

∫
A

x̂ · v dA =
2
a2
Uc

∫ a

0
r

(
1− r2

a2

)
dr =

Uc
2

(1.7)

which is simply half the centerline velocity for laminar pipe flow. This simple relationship
is not true for turbulent pipe flow.

Defining the Reynolds number R = UD/ν in terms of the bulk velocity U and the pipe
diameter D = 2a, we can write a non-dimensional form of the relationship (1.6) between
the pressure gradient and the laminar flow velocity, with Uc = 2U from (1.7). This yields
the the friction factor

f ≡
∣∣∣∣dp0

dx

∣∣∣∣ D
1
2U

2
= 64

ν

UD
=

64
R
. (1.8)

Thus in laminar pipe flow, the friction factor f is inversely proportional to the Reynolds
number, f = 64/R. In experiments, this laminar flow regime is typically observed only for
Re . 2000. For higher Reynolds number, the friction factor transitions to a much weaker
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Figure 1.2: Moody diagram (from http://en.wikipedia.org/wiki/Moody chart) show-
ing the friction factor f as a function of Reynolds number R = UD/ν (eqn. (1.8)). Each
curve is associated with a surface roughness of the pipe. On this plot V ≡ U is the bulk ve-
locity, d ≡ D is the pipe diameter, µ = ρν is the dynamic viscosity, and ∆P/(ρl) = |dP0/dx|.
The laminar flow friction law f = 64/R is experimentally observed only for R . 2, 000, even
for smooth pipes. For R & 2000, the drag associated with turbulent flow is much larger
than it would be for laminar flow at the same Reynolds number. ‘Complete turbulence’ is
loosely defined as the region where the friction factor is independent of Reynolds number.
At R = 105, f ≈ 0.018 is about 30 times larger than the laminar value 64/R.
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dependence on Reynolds number, perhaps asymptoting to a non-zero constant as illustrated
in the Moody diagram well-known to engineers (Fig. 1.2).

However, transition is more complex than suggested by the Moody diagram. Reynolds
achieved laminar pipe flow up to R ≈ 13 000 and Pfenniger’s world record is about 100 000
[21]. Meseguer and Trefethen’s [20] numerical calculations of the Navier-Stokes equations
linearized about the laminar flow (1.5) show stability up to R = 107. Based on this exper-
imental and numerical evidence, laminar pipe flow is believed to be linearly stable for all
Reynolds numbers. However, no complete mathematical proof of linear stability is known
to date.

1.1.3 Shear flows

Pipe flow is only one example of a shear flow, that is, a flow whose velocity varies in the
direction perpendicular to the flow direction. Shear flows are a fundamental and ubiquitous
class of fluid flow owing to the viscosity of real fluids and the no-slip boundary condition.
Whenever a fluid flows by a wall, the no-slip boundary condition will lead to the generation
of shear near the wall. This is the classic Prandtl boundary layer (Fig. 1.3) that can diffuse
away from the wall temporally or spatially and even separate, shedding vortices (Fig. 1.4)
(see e.g. [2], [4] for further information about this important and complex problem) 3/1/12 11:24 AMhttp://upload.wikimedia.org/wikipedia/commons/archive/0/0e/20110711095212%21Laminar_boundary_layer_scheme.svg

Page 1 of 1

Figure 1.3: Shear flow developing spatially from viscosity and no-slip boundary condition
as a fluid flows over a semi-infinite flat plate. The velocity is strongly dependent on the
wall-normal y direction in a narrow boundary layer near the wall but only weakly dependent
on the streamwise direction x. In laminar flow, the boundary layer thickness δ scales as√
νx/U∞. (From http://en.wikipedia.org/wiki/Boundary layer)

This process of boundary layer development and possible vortex shedding occurs at the
entrance to the pipe in Reynolds’ experiment. The vortex shedding at the entrance has
a strong effect on the onset of turbulence and it is to eliminate those perturbations that
Reynolds used a funnel, as shown in Fig. 1.1. With careful control of the entrance flow
and geometry, one obtains the fully developed, steady laminar pipe flow (1.5) that can be
routinely observed up to Re ≈ 20 000.

Other canonical ‘fully developed’ shear flows are plane Poiseuille (a.k.a. channel) flow
and plane Couette flow, sketched in Fig. 1.5. Plane Poiseuille flow is the flow driven by
a pressure gradient in-between two infinitely long, parallel fixed planes and the laminar
solution is v = (1 − y2/h2)Uc x̂ where y is the wall-normal direction and the walls are
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Figure 1.4: Boundary layer separation around an airfoil. This airfoil is stalled, the lift
has collapsed, drag as increased, the flow is unsteady and turbulent behind the airfoil and
vortices are continuously shed from the top front of the airfoil.
(from http://en.wikipedia.org/wiki/Boundary layer separation).

located at y = ±h. Plane Couette flow is the flow between two infinite parallel walls and
driven by the motion of those walls in opposite directions. The laminar plane Couette flow
is v = Uwy/h x̂ where the walls are at y = ±h and move at velocities ±Uwx̂, respectively.

Plane Couette flow is linearly stable for all Reynolds numbers R > 0, as proved by
Romanov [25], but experiments and simulations show transition to turbulence for R =
Uwh/ν & 350. Contrary to its stable cylindrical cousin, plane Poiseuille flow has a linear
instability for Rc = Uch/ν > 5772, where Uc is the centerline velocity and h the half-channel
height. For plane Poiseuille flow, the bulk velocity U = 2Uc/3, so linear instability occurs for
R = UH/ν > (4/3) 5772 = 7696, based on the bulk U and the full channel height H = 2h.
This linear instability is an intriguing instability that originates from viscosity and the
no-slip boundary condition, as anticipated by Prandtl. This instability is governed by the
Orr-Sommerfeld equation and was first revealed by the pioneering analyses of Heisenberg
for channel flow in 1924 and Tollmien for the Blasius boundary layer flow in 1929 [9]. This
instability is very weak and delicate, small changes in the flow or geometry can suppress it.
In any case, transition to turbulence is observed for Rc = Uch/ν & 1500 in channel flow,
well below the linear instability threshold [19].

1.1.4 Transition threshold

If plane Couette and pipe flows are stable to infinitesimal perturbations but experiments
show transition to turbulence, this transition must result from finite amplitude effects. This
is also the case in plane Poiseuille and boundary layer flows, where transition is observed at
significantly lower Reynolds number than predicted by linear analysis, and on much faster
time scales than the slow viscous time scale of linear eigenmodes. In those cases, Morkovin
coined the term ‘bypass transition’ – transition that bypasses the linear instability process.
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Figure 1.5: Canonical shear flows: pressure driven pipe and channel flows with a parabolic
velocity profile v = (1 − y2) x̂ (left) and wall driven plane Couette flow with laminar
velocity profile v = y x̂ (right), where x̂ is the flow direction, y is the (signed) distance to
the (midplane) centerline. The walls are at y = ±1, the centerline velocity is 1 for pipes
and channels, and the wall velocities are ±1 for Couette.

Onset of turbulence is thus a Reynolds number and amplitude dependent phenomenon.
A natural question therefore is to ask whether there is a scaling relating the threshold

transition amplitude, ε say, to the Reynolds number R, perhaps a power law scaling

ε ∼ Ra (1.9)

where we expect a < 0. Surprisingly, this question does not seem to have been articulated
before Trefethen et al. in 1993 [29, TTRD hereafter]. Closely related questions, and more
specific nonlinear mechanisms, were being investigated before TTRD, but the focus was on
inviscid processes, therefore those investigations focused on the relations between time scale
and amplitude, rather than Reynolds number and amplitude. That the two questions are
closely related can be understood as follows.

Non-dimensionalizing the velocity by a characteristic velocity U , length scales by a
characteristic length L, time by L/U and kinematic pressure by U2, the Navier-Stokes
equations (1.3) have the same form but with ν replaced by 1/R

∂tv − 1
R
∇2v = −v · ∇v −∇p (1.10)

where the right hand side is a quadratic nonlinearity since ∇p projects v ·∇v onto the space
of divergence-free fields (1.4). If ε is a measure of the amplitude of v, we could estimate

∂tv ∼ ε

T
,

1
R
∇2v ∼ ε

R
, v · ∇v +∇p ∼ ε2 (1.11)

where T is a time scale to be determined. In the limit of large Reynolds number, R→∞,
an inertial, inviscid scaling for (1.10) is then

ε

T
∼ ε2 ⇒ T ∼ 1

ε
(1.12)
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suggesting that the essential time scale for a non-trivial nonlinear process would be T ∼ 1/ε.
This is much faster than the standard nonlinear time scale for nonlinear waves (e.g. Duffing
oscillator, weakly nonlinear pendulum, nonlinear Schrödinger, . . . ) where the nonlinear time
scale is T ∼ 1/ε2 � 1/ε, for small ε. The latter results from the fact that the quadratic
interaction of a ‘wave’ or Fourier mode εeikx of amplitude ε and wavenumber k, generates a
harmonic ε2ei2kx of amplitude ε2 and wavenumber 2k. That harmonic then interacts with
the complex conjugate of the fundamental wave εe−ikx to provide nonlinear feedback ε3eikx

onto the fundamental wave, but only at order ε3, not ε2. The nonlinear wave balance in
that case is not (1.12) but ε/T ∼ ε3 yielding the slow nonlinear time scale T ∼ 1/ε2 (recall
that ε is small and measures relative departure from an equilibrium).

Now if instead of R→∞ with large but finite T , we focus instead on steady as in steady
state and traveling waves, or statistically steady as in periodic or turbulent solutions, that
is T → ∞ with Re large but finite, the nonlinear balance and time scale argument (1.12)
for (1.10) now yields

ε

R
∼ ε2 ⇒ ε ∼ 1

R
(1.13)

and we interpret this as a measure of the minimum perturbation amplitude that could
balance viscous damping – a threshold amplitude. Again this is a much smaller amplitude
than the classical weakly nonlinear balance where feedback on the fundamental occurs at
order ε3 and the balance is ε/R ∼ ε3 not ε2, yielding ε ∼ 1/

√
R � 1/R.

The simple balance (1.13) thus suggest that a = −1 in (1.9), stronger than the classic
weakly nonlinear scaling that would have a = −1/2. However, while the scalings (1.12),
(1.13) certainly apply to the ‘subcritical logistic’ equation1

du

dt
= − u

R
+ u2, (1.14)

that does have the threshold amplitude u = 1/R, it remains to be shown whether they do
apply to the Navier-Stokes equations (1.10). Indeed, the brief discussion of classic weakly
nonlinear feedback occurring at the weaker ε3 instead of ε2, suggests that the scalings
(1.12) and (1.13) may not be allowed by the Navier-Stokes nonlinearity and it is necessary
to investigate explicit nonlinear mechanisms for shear flows. The linear terms also require
more investigation since they are trickier than the mere viscous damping in (1.14).

Decompose the full velocity v into a laminar flow U plus a perturbation u. Substituting
v = U+u into the Navier-Stokes equations (1.10), we obtain the equations for the solenoidal
perturbation u in the schematic form

∂u
∂t
− 1
R
∇2u = L(u) +N(u,u) (1.15)

where N(u,u) is a quadratic nonlinearity and L(u) = N(U,u) + N(u,U) is linear in u.
Pressure is once again hidden in each of those operators to project them onto the space of
solenoidal fields, so N(u,u) = −u · ∇u − ∇p. The perturbation u is solenoidal ∇ · u = 0
and satisfies homogeneous boundary conditions, u = 0 at no-slip walls since U satisfies
Uwall = vwall. Before looking into specific mechanisms and possible threshold exponent

1This ‘subcritical logistic’ equation is sometimes used to suggest that the Navier-Stokes equations could
develop a singularity for sufficiently large initial amplitudes.
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a in (1.9), we first discuss some characteristics of the linear operator L(u) for shear flows
which was ignored in the ‘fully nonlinear’ scalings (1.11) and (1.13).

1.2 Linear Theory: exponential and algebraic growth

1.2.1 Exponential growth

A linear stability analysis of the laminar flow U consists of studying the linearized equations

∂u′

∂t
− 1
R
∇2u′ = L(u′) (1.16)

which is (1.15) for u = εu′ in the limit ε → 0, the ‘infinitesimal amplitude’ limit. If this
linearized equation admits solutions that are growing for all times, then the laminar flow
U is unstable. Growing perturbations typically have the form of exponentially growing
eigenmodes of (1.16), solutions of the form u′(r, t) = eλtu(r) where λ is the temporal
eigenvalue, with <(λ) > 0 for instability, and u(r) is the eigenmode. For example, the
simple 2-by-2 model

d

dt

(
u
v

)
=

(
−k2

u/R 1
σ2 −k2

v/R

)(
u
v

)
, (1.17)

where ku, kv and σ are real and positive, has two exponential eigenmodes, one of which is
growing if R > kukv/σ.

The linear analysis of exponentially growing modes for shear flows is exceedingly delicate
and was a central problem in Applied Mathematics for many decades beginning with the
reduction of the problem to the Orr-Sommerfeld equation, derived independently by Orr
in 1907 and Sommerfeld in 1908, and followed by the intricate asymptotic analyses of that
equation by Heisenberg (1924), Tollmien (1929, 1935, 1947), Schlichting (1933), C.C. Lin
(1945, 1955, 1957, 1961) and the more rigorous and general analyses of Morawetz (1951)
and Wasow (1953), among many others. Orszag (1971) provided accurate numerical solu-
tion of the Orr-Sommerfeld equation using Chebyshev polynomials, for moderate Reynolds
number, and that work demonstrated the usefulness of spectral methods for fluid dynamics
computations.

As mentioned in sect. 1.1.3, the result of those many decades of studies is that there is
essentially no exponentially growing mode for viscous shear flows. It is proved that there
are none in plane Couette flow [25]; there is strong evidence that there are none in pipe flow
[20, 21]; there is a weak viscous growing mode in plane Poiseuille flow first identified by
Heisenberg and a similar, slightly more significant, mode for Blasius boundary layer flow,
first studied by Tollmien and Schlichting. Those weakly growing modes are called Tollmien-
Schlichting waves [9], but Heisenberg already understood in 1924 that these weakly growing
viscous linear modes did not explain the onset of turbulence in shear flows, . . . and that
may be partly why he quickly switched to developing the matrix formulation of quantum
mechanics!

1.2.2 Algebraic growth, redistribution of base flow

Thus, as an analogy to shear flows, the model problem (1.17) should have σ = 0 and be
stable for all 0 < R < ∞. Degenerate algebraic instability can occur in (1.17) when σ = 0
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and R =∞,
d

dt

(
u
v

)
=
(

0 1
0 0

)(
u
v

)
, (1.18)

the coupling matrix
(

0 1
0 0

)
is a Jordan block, it has the repeated eigenvalue λ = 0 but

more importantly it has only one eigenvector, namely (u, v) = (1, 0). Initial conditions
(u, v) = (0, 1) yield the algebraic pseudo-mode (u, v) = (t, 1) since (1.18) is simply dv/dt =
0, du/dt = v. The general solution of (1.18) for initial conditions (u, v) = (u0, v0) at t = 0
is (

u
v

)
= u0

(
1
0

)
+ v0

(
t
1

)
, (1.19)

v = v0 is constant but induces an algebraic growth u = u0 + v0t.
Such algebraic growth is generic for the inviscid linear dynamics about shear flows. To

show this, consider a general plane parallel shear flow U = U(y)x̂, where x is streamwise
and y shearwise. Substituting v = U(y)x̂ + u in (1.3) yields

∂u

∂t
+ U

∂u

∂x
+ v

dU

dy
+u · ∇u = −∂p

∂x
+

1
R
∇2u,

∂v

∂t
+ U

∂v

∂x
+u · ∇v = −∂p

∂y
+

1
R
∇2v,

∂w

∂t
+ U

∂w

∂x
+u · ∇w = −∂p

∂z
+

1
R
∇2w,

(1.20)

where U = U(y) is the laminar shear flow profile and u = (u, v, w) in cartesian coordi-
nates (x, y, z) with ∇ · u = ∂u/∂x + ∂v/∂y + ∂w/∂z = 0. For streamwise independent
perturbations, ∂/∂x = 0, and linearizing in u, (1.20) reduces to

∂u

∂t
+ v

dU

dy
=

1
R
∇2u,

∂v

∂t
=− ∂p

∂y
+

1
R
∇2v,

∂w

∂t
=− ∂p

∂z
+

1
R
∇2w,

(1.21)

and ∇ · u = 0 reduces to ∂v/∂y + ∂w/∂z = 0. Eliminating p and w, we obtain

∂u

∂t
+ v

dU

dy
=

1
R
∇2u,

∂

∂t
∇2v =

1
R
∇2∇2v,

(1.22)

where ∇2 = ∂2/∂y2 +∂2/∂z2 for streamwise independent perturbations. For planar geome-
tries, the no-slip boundary conditions u = 0 yields u = v = ∂v/∂y = 0 at the walls, the
latter following from ∂v/∂y + ∂w/∂z = 0 since w = ∂w/∂z = 0 along the walls.

For inviscid flow, R =∞, (1.22) is conceptually identical to the simple model (1.18) and
a non-zero vertical velocity will remain constant, v = v0, but induce an algebraic growth of
the streamwise velocity perturbation u

∂u

∂t
= −v0

dU

dy
⇒ u = u0 − v0

dU

dy
t. (1.23)
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This is the linearization of a simple redistribution of streamwise velocity U(y) by the shear-
wise velocity perturbation v. If, for instance, U ′ = dU/dy > 0 and v > 0, then lower velocity
U is lifted upward by the perturbation v leading to a negative streamwise velocity pertur-
bation u = −v0U

′t < 0. This simple algebraic growth was perhaps first investigated by
Benney and Lin in 1960 [7], rediscovered by Ellingsen and Palm in 1975 [10] and Gustavs-
son and Hultgren in 1980 and 1990, e.g. [12, 15, 11]. This redistribution was dubbed the
‘lift-up mechanism’ by Marten Landahl, although it is actually ‘pull-down’ when v < 0,
and ‘lift-up’ usually comes with ‘pull-down’ because of conservation of volume. This is a
trivial ‘mechanism’ yet an essential part of any instability or self-sustaining process that
redistributes background momentum to release energy from the background shear.

But linear fluid dynamics is not physical fluid dynamics. Algebraic growth for all times
cannot occur for bounded flows, even in the inviscid limit. Consider plane Couette flow
U(y) = y for −1 ≤ y ≤ 1. The largest perturbation that can be achieved is to ‘lift-up’
velocity U = −1 from the bottom wall all the way to the top wall and obtain u = −2 at
y = 1, or likewise to ‘pull-down’ velocity U = 1 from the top wall all the way to the bottom
wall, obtaining u = 2 at y = −1. Thus |u| < 2 in plane Couette and this is a strict upper
bound since v = 0 at the walls, so it is actually not possible to lift-up or pull-down all
the way from one wall to the other. In linear theory, lift-up can go on forever appearing
mathematically as algebraic growth from the linearized advection term v dU/dy, but in real
flows, lift-up does not go on forever. The term redistribution of streamwise velocity better
captures the inherent limitation of the underlying simple advection of the background shear
by the perturbation. If slow fluid is lifted up and fast fluid pulled down, then the mean
shear has been reduced. Hence, there are obvious physical limits to the algebraic growth
(1.19), (1.23), that would appear as nonlinear saturation effects in a more complete analysis.
These and other issues are discussed in [31, 32] and in section 1.3.5, briefly, system (1.18)
u̇ = v, v̇ = 0 with its algebraic growth u = v0t is merely the linearization of

d

dt

Mu
v

 =

−uvMv
0

 , (1.24)

about M = 1, u = 0, v = 0. System (1.24) does not have algebraic growth, it simply
has continual redistribution of the mean shear M into ‘streaks’ u then back to M , with
a periodic general solution M = M0 cos(v0t) − u0 sin(v0t), u = u0 cos(v0t) + M0 sin(v0t),
v = v0.

Viscous details: Stokes eigenmodes

For finite R, it is clear that (1.22) has exponentially decaying eigenmodes with u 6= 0 but
v = 0, and exponentially decaying v eigenmodes that force a transient growth of u with
ultimate exponential decay. The former are simple eigenmodes of the heat equation for u,
with even modes

u = cos
(

(2n−1)
π

2
y
)
eiγz (1.25)

and odd modes
u = sin(nπy) eiγz (1.26)
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for no-slip u = 0 at y = ±1, with n = 1, 2, . . . The latter are Stokes eigenmodes for v, i.e.
the solutions of ∇2∇2v = λ∇2v. For channel geometries with no-slip walls at y = ±1, GFD
fellows easily derive or at least verify that the Stokes eigenmodes consist of even modes

v =
(

cosh γy
cosh γ

− cosβy
cosβ

)
eiγz with γ tanh γ + β tanβ = 0 (1.27)

and odd modes

v =
(

sinh γy
sin γ

− sinβy
sinβ

)
eiγz with

γ

tanh γ
− β

tanβ
= 0 (1.28)

where γ is a spanwise z wavenumber. The hyperbolic terms satisfy ∇2v = 0 and show up
to enforce the clamped boundary conditions v = ∂v/∂y = 0 at y = ±1. The trigonometric
terms satisfy ∇2v = −(β2 + γ2) v, so these Stokes eigenmodes decay like e−(β2+γ2)t/Re

although β is different for each mode, and there is a discrete infinity of β’s for each γ. A
simple graphical analysis quickly shows that, for each γ 6= 0, the even modes (1.27) have
β = βn with (2n−1)π/2 < βn < nπ with n = 1, 2, . . . and βn ∼ nπ for n large, or γ small.
Likewise, the odd modes have nπ < βn < (2n+ 1)π/2 and βn ∼ (2n+ 1)π/2 for large n or
small γ, with n = 1, 2, . . ..

1.2.3 Transient growth, non-normal and Jordan matrices

Hence, the simple model (1.17) with σ = 0

d

dt

(
u
v

)
=

(
−k2

u/R 1
0 −k2

v/R

)(
u
v

)
, (1.29)

is almost an exact model of (1.22). For smallest viscous damping, k2
u = π2/4 + γ2 and

k2
v = β2

1 + γ2 with π/2 < β1 < π the smallest solution of γ tanh γ + β tanhβ = 0. These
smallest k2

u and k2
v correspond to the first even modes for both (1.25) and (1.27) and k2

v > k2
u.

System (1.29) does not have exponential growth and it does not have the algebraic
growth for all times of the degenerate system (1.18), it has exponential decay and possible
transient algebraic growth of u with ultimate exponential decay. The general solution of
(1.29) is (

u
v

)
= u0 e

−νk2
ut

(
1
0

)
+ v0 e

−νk2
vt

(
eδt−1
δ

1

)
, (1.30)

where ν = 1/R ≥ 0 and δ = ν(k2
v − k2

u) ≥ 0, and the limit R → ∞ is indeed (1.19). All
components of (1.30) decay exponentially, except for the forced response uf of u to v which
is such that

uf
v0

= e−νk
2
vt
eδt − 1
δ

=
e−νk

2
ut − e−νk2

vt

δ
= e−νk

2
ut

1− e−δt
δ

, (1.31)

and this forced response is bounded from below and from above by

t e−νk
2
vt ≤ uf

v0
≤ t e−νk2

ut. (1.32)
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Figure 1.6: The forced response uf/v0 in (1.31), dashed, bracketed by the Jordan block
bounds (1.32) for R = 1000 and k2

u = π2/4 + γ2 ≈ 6.4674, k2
v = β2

1 + γ2 ≈ 10.1551 for γ = 2
and β1 ≈ 2.4809 (1.27).

These bounds follow easily from 1 + x ≤ ex and 1− x ≤ e−x for all real x (here x ≡ δt) and
the equality occurs only at t = 0 if δ 6= 0 or for all t if δ = 0. These bounds are interesting
since they show that the forced response is bounded by the forced responses of the degenerate
forms of system (1.29), that is (1.29) with ku → kv or kv → ku (Fig. 1.6). When both
diagonal elements are −νk2

u or −νk2
v , system (1.29) is again a Jordan block with only one

eigenvector. The solution of those degenerate systems are (1.30) in the limit δ → 0 where
(eδt − 1)/δ → t with ku or kv in both exponentials, depending on the case.

System (1.29) is not degenerate when δ = (k2
v − k2

u)/R 6= 0, there are two eigenvectors
but those eigenvectors are almost parallel when δ � 1 and become parallel as δ → 0. That
system with δ 6= 0 is non-normal2 – its eigenvectors are not orthogonal except in the very
viscous limit R→ 0. Non-normal systems have been emphasized and studied by Trefethen
and co-workers and discussed at length by Schmid and Henningson in the context of shear
flows [26], although that focus on general non-normal operators may be unnecessarily ab-
stract for shear flows where there is a natural decoupling into exponentially decaying modes
for v with a forced response of the streamwise velocity perturbation u, as illustrated in
(1.22) and the model (1.29). The bounds (1.32) also suggests that the transient growth as-
sociated with highly non-normal matrices – matrices with almost parallel eigenvectors – are
tightly bounded by nearby degenerate systems (i.e. containing Jordan blocks) and that the
initial conditions that lead to large transient growth are simply orthogonal to the existing
incomplete set of eigenvectors. For the degenerate forms of (1.29), the only eigenvector is
(1, 0) and the initial condition giving most transient growth is (0, 1).

It is now a simple Calculus exercise to show that the forced response (1.31) starts at
uf = 0 when t = 0, grows like v0t for (k2

u+k2
v)t� R and ultimately decays like (v0/δ) e−νk

2
ut

2Normal is in the sense of orthogonal here. An orthogonal matrix has columns orthogonal to each other.
A normal matrix has eigenvectors orthogonal to each other.
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for t� 1/δ, while reaching a maximum of

max (uf ) = v0
R

k2
v

exp
(
−k2

u

ln k2
v − ln k2

u

k2
v − k2

u

)
(1.33)

at time

t∗ = R
ln k2

v − ln k2
u

k2
v − k2

u

= R
ln(k2

v/k
2
u)

k2
v − k2

u

. (1.34)

Hence, there is a maximum growth of O(v0R) for uf occurring at a time of O(R).

1.3 Transition threshold: mechanisms and scalings

1.3.1 Transient growth + nonlinear feedback and ε ∼ R−3

Our discussions in the previous sections makes clear that the ‘subcritical logistic’ model
du/dt = −u/R + u2, eqn. (1.14), is too simple for shear flows, but a more plausible model
might be

d

dt

(
u
v

)
=

(
−νk2

u 1
0 −νk2

v

)(
u
v

)
+
(

0
u2

)
. (1.35)

This is model (1.29) with ν = 1/R but with a quadratic nonlinear feedback from u onto v.
If ε is a measure of the initial v0, that is simply ε = v0 for this simple model, the transient
growth of u will lead to a maximum u ∼ v0R = εR, yielding a quadratic interaction
u2 ∼ ε2(R)2 that must balance the viscous damping v/R to reach the transition threshold.
The transition scenario is

v0 = ε −→ u ∼ εR =⇒ v ∼ u2R ∼ ε2R3 ∼ ε (1.36)

and the threshold scaling would be ε ∼ R−3 with a = −3 in (1.9). TTRD [29] and Baggett
and Trefethen [3] discuss similar simple models to illustrate ‘nonlinear recycling of [tran-
siently amplified] outputs into inputs’.

However there are at least two basic reasons why such simple models are not valid
models for Navier-Stokes. First, direct nonlinear feedback as in (1.35) is not allowed in the
Navier-Stokes equations, and many other classic nonlinear and weakly nonlinear systems, as
we already briefly discussed in section 1.1.4. Second, there is in fact virtually no ‘nonlinear
recycling of outputs into inputs’ and the primary nonlinear effect of transient growth is
actually to wipe out the background shear and saturate the growth, not regenerate ‘optimal’
disturbances. This is exactly true for the strongly amplified x-independent disturbances,
as we prove in section 1.3.5, although not exactly true for more weakly amplified oblique
disturbances, and this has led to sustained confusion among people who have been seduced
by linear non-normal operators but have shied away from detailed analysis of nonlinear
interactions. These issues are illustrated using simple models in the following.

1.3.2 Benney-Gustavsson mechanism and ε ∼ R−2

Benney and Gustavsson (1981) [6] knew that streamwise independent perturbations induce a
strong redistribution of streamwise velocity but do not trigger transition inducing nonlinear



Introduction and Overview 29

effects. They searched then for a mechanism based on a pair of oblique perturbations and
involving transient growth in the case of direct resonance – when k2

u = k2
v in (1.29) – and the

limit of high R. Later studies of linear transient growth emphasized that direct resonances
is not necessary for large growth, as discussed here in section 1.2.3 and figure 1.6. However,
oblique disturbances in shear flows travel in the streamwise x direction, that is, the diagonal
terms in (1.29) are complex in general and their imaginary parts do not scale like 1/R, then
large and distinct imaginary parts shut down the growth by phase shifting of the forcing v
and the forced u. Thus, although exact ‘direct resonance’ is not necessary for large transient
growth, it still remains that the imaginary parts of the eigenvalues for the v and η modes
of oblique disturbances must be sufficiently close to each other for growth to occur.

Let v denote the amplitude of the vertical (i.e. shearwise) y velocity for a pair of oblique
perturbations, and η represent the amplitude of the corresponding perturbation vertical
vorticity (η = ∂zu − ∂xw). The latter η substitutes for the transient amplified streamwise
velocity u in the x-independent dynamics. Benney and Gustavsson suggested the transition
scenario

v = ε −→ η ∼ εt =⇒ V,N ∼ (ε2t2) =⇒ v ∼ (ε2t2)(εt)t = ε3t4, (1.37)

in the limit of high R, where v and η are the amplitudes of ei(αx±γz) perturbations with
linear eigenstructures in y, V and N are the amplitudes of v and η for the harmonics
ei2(αx±γz) or ei2γz and ‘−→’ is the linear transient growth, the first ‘=⇒’ is the nonlinear
interactions ηη and ηη∗ and the second ‘=⇒’ is the nonlinear interactions V η and Nη. This
led them to suggest a nonlinear mechanism occurring on a time scale t ∼ 1/

√
ε, the time

scale when the nonlinear feedback on v is of the order of the original amplitude ε3t4 ∼ ε, as
laid out in (1.37).

In essence, what Benney and Gustavsson said is what we already discussed in sect.
1.1.4, for Navier-Stokes, and many other physical nonlinear systems, if a mode v linearly
creates a mode u it does not make sense to have the quadratic interaction of the latter, u2,
directly feedback onto v. For instance, if v and u correspond to ei(αx±γz) then u2 would be
associated with the harmonic ei2(αx±γz) and the latter is orthogonal to the original modes,
so we cannot have u2 forcing of v as in (1.35). However, it is possible to have feedback
at the next order of nonlinear interaction. In the context of our simple models, Benney
and Gustavsson in effect said that (1.35) cannot be a suitable model for shear flows, but a
possible model could be

d

dt

(
u
v

)
=

(
−νk2

u 1
0 −νk2

v

)(
u
v

)
+
(

0
u3

)
, (1.38)

with a cubic nonlinear feedback u3 onto v, not quadratic feedback u2. In the inviscid limit,
ν = 1/R→ 0, this model has the scalings dv/dt = u3 ∼ ε3t3, so v ∼ ε3t4 as in (1.37), while
the threshold scaling is νk2

vv = u3 = (v/(νk2
u))3 with v = ε, yielding

ε

R
∼ (εR)3 ⇔ ε ∼ R−2 (1.39)

with a = −2 in (1.9). This is weaker than ε ∼ Re−3 in (1.36) but still a very strong
mechanism, especially compared to the classic weakly nonlinear scaling of a system such as
du/dt = −u/R + u3 for which ε ∼ R−1/2. However, there is doubt as to the relevnace of
this model as discussed in the next section.
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1.3.3 Waleffe-Kim-Hamilton mechanism and ε ∼ R−3

Waleffe et al. (1991) [37] suggested that the Benney-Gustavsson mechanism might in fact
be much stronger because of several additional transient amplifications that could occur.
They considered the scenario

v = ε −→ η ∼ εt =⇒ V ∼ (ε2t2)t −→ N ∼ ε2t4 =⇒ v ∼ (ε2t4)(εt)t = ε3t6, (1.40)

with feedback thus occurring when ε ∼ ε3t6 on the time scale t ∼ ε−1/3 much faster than
the Benney-Gustavsson t ∼ ε−1/2. In essence, Waleffe et al. suggested that the dynamics
of V and N could not be neglected and that a more powerful mechanism for shear flows
might be modeled by

d

dt


U
V
u
v

 =


−νk2

U 1 0 0
0 −νk2

V 0 0
0 0 −νk2

u 1
0 0 0 −νk2

v



U
V
u
v

+


0
uu
0
uU

 . (1.41)

In this model, u and v represent the amplitudes of horizontal and vertical velocities, respec-
tively, for oblique perturbations, ei(γz±αx) modes say, while U and V represent horizontal
and vertical velocities for spanwise perturbations (x-independent), ei2γz modes. Thus u
and U in (1.41) represent the horizontal velocities associated with vertical vorticity modes
η and N in (1.40) and that scenario corresponds to (1.41) for ν = 0 and initial conditions
v = ε with u = U = V = 0.

Both v and V lead to linear transient growth of u and U respectively, both from the ‘lift-
up’ of the background laminar shear flow, showing up mathematically with the 1’s on the
off diagonal in (1.41). The quadratic interaction u2 does not feedback on v but it forces V
corresponding to an ei2γz spanwise mode, which creates a large U and finally the nonlinear
interaction uU feeds back on the original v. This yields the transition scenario

v = ε −→ u ∼ εR =⇒ V ∼ ε2R3 −→ U ∼ ε2R4 =⇒ v ∼ ε3R6 ∼ ε, (1.42)

and thus a threshold scaling ε ∼ R−3.
So, is ε ∼ Re−3, the same scaling as in the naive model (1.35), possible in shear flows?!

Waleffe et al. [37] investigated these mechanisms using careful analysis of full Navier-Stokes
simulations and showed that the nonlinear generation of V came from vv terms not uu, the
latter being essentially zero! [37, Fig. 4], thus nonlinear interactions completely bypassed the
linear transient growth of u that was occurring simultaneously. The forcing of v from uU
was not analyzed but is also believed to be insignificant at transitional Reynolds numbers.
Thus, the nonlinear forcing of v and V could be, for instance,

d

dt


U
V
u
v

 =


−νk2

U 1 0 0
0 −νk2

V 0 0
0 0 −νk2

u 1
0 0 0 −νk2

v



U
V
u
v

+


0
vv
0
vV

 . (1.43)
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with nonlinearities arising from v and V , not from the transiently amplified u and U .
Transient growth of u and U occurs in (1.43) but is not involved in transition. System
(1.43) has a threshold ε ∼ R−1 from the scenario

v = ε =⇒ V ∼ ε2R =⇒ v ∼ ε3Re2 ∼ ε. (1.44)

Keeping uU instead of vV for the v forcing would yield a threshold ε ∼ R−2, while a Uv
term would yield ε ∼ R−3/2.

These observations also negate the Benney-Gustavsson scaling (1.39) since there would
be no u3 but instead perhaps only a v3 in (1.38), leading back to the weakly nonlinear
ε ∼ R−1/2. Thus, careful analysis of numerical simulations must be made since many linear
and nonlinear processes are occurring concurrently in full numerical simulations but they
may not have cause and effect connections. The nonlinear interactions leading to transition
could completely bypass the linear transient growth.

1.3.4 Chapman’s viscous correction of the WKH mechanism

Chapman (2002) [8] — apparently unaware of earlier work3 by Waleffe, Kim and Hamilton
[37] on the Benney-Gustavsson mechanism and the self-sustaining process [13, 31, 32, 33,
34, 35]— considered transition scenarios essentially identical to that discussed in section
1.3.3. His toy model (2.6)–(2.9) which reads

d

dt


φ1

ψ1

φ2

ψ2

 =


−εc 1 0 0
0 −2εc 0 0
0 0 −δ 1
0 0 0 −2δ



φ1

ψ1

φ2

ψ2

+


0
φ2

2

0
φ1φ2

 . (1.45)

is essentially identical to model (1.41). The exact correspondence between Chapman’s (2.6–
9) and (1.41) is

(φ1, ψ1, φ2, ψ2) ≡ (U, V, u, v). (1.46)

The order of Chapman’s variables (φ, ψ) has been reversed from his (2.6)–(2.9) to match
(1.41) and the double Jordan block-like structure.

Unfortunately, Chapman uses ‘ε’ for the viscous decay rate of the streaks φ1 ≡ U , which
we call νk2

U , while we have used ε for perturbation amplitude, so we use εc for his ε to
distinguish from ours. He uses δ for our νk2

u. He assumes that k2
V = 2k2

U and k2
v = 2k2

u, but
this is inconsequential for our questions of threshold scalings and mechanisms.

Chapman correctly includes the possibility that the viscous decay rates of streamwise-
independent (his εc) and oblique modes (his δ, with 0 < εc � δ � 1) scale differently
with R, while we assumed4 in section 1.3.3 that both scale like R−1. The stronger decay
rate represented by Chapman’s δ � εc arises from the critical layer structure of oblique
eigenmodes of the linearized operators. That critical layer structure has a scale of O(R−1/3)

3An obvious failure of the JFM review process
4In the original Benney-Gustavsson and Waleffe et al. work, the focus was on nonlinear time scales in

the R→∞ limit as discussed in sections 1.1.4, 1.3.2, 1.3.3.
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thus the effective wavenumbers ku and kv for oblique linear eigenmodes in (1.41) are both
O(R1/3) and δ = νk2

u ∼ R−1R2/3 = R−1/3.
The two time scales ε−1

c and δ−1 in Chapman’s model lead to two different scenarios
with different scalings. His scenario (i) has ψ1 ≡ V transiently amplifying φ1 ≡ U to an
amplitude 1/εc ≡ R/k2

U . That in itself will not trigger transition since it is obvious in (1.41),
(1.45) that the nonlinear term vanishes identically if φ2 ≡ u = 0. The idea is that φ1 ≡ U
leads to an instability of the oblique modes φ2 ≡ u, ψ2 ≡ v. To illustrate this and obtain
the scaling we can rewrite Chapman’s (2.8), (2.9), the φ2 and ψ2 equations in (1.45), in the
matrix form

d

dt

(
φ2

ψ2

)
=
(−δ 1
φ1 −2δ

)(
φ2

ψ2

)
(1.47)

where δ > 0 and this readily suggests that if φ1 & 2δ2 there might be growth of φ2 and ψ2

that might be interpreted as an instability of the ‘streaks’ φ1 ≡ U . A streak instability is
a key part of the self-sustaining process discussed in sections 1.3.6, 1.3.7 below, and during
a decade before Chapman’s work [37, 13, 31, 32, 33, 34, 35], but what we have here is
not quite a ‘streak instability’, it is an instability of the laminar shear (the 1 in the top
right corner of the matrix in (1.47)) coupled with the streak amplitude φ1 ≡ U . A streak
instability would have φ1 ≡ U in both off-diagonal elements as in [33, eqns. (13)-(15)] and
an inviscid (δ = 0) growth rate of U , instead of

√
U ≡ √φ1 as in (1.47).

Since ψ1 amplifies φ1 to φ1 ∼ ψ1/εc, we can therefore conclude with Chapman that
something similar to a ‘streak instability’ might occur if φ1 ∼ ψ1/εc & δ2. This growth
would be on the 1/δ time scale, much faster than the slower 1/εc time scale. Scenario (i)
therefore is

ψ1 −→ φ1 ∼ 1
εc
ψ1  ψ2, φ2 =⇒ ψ1 if ψ1 & εcδ

2. (1.48)

where ‘−→’, ‘ ’ and ‘=⇒’ denote linear amplification, instability and nonlinear feedback,
respectively. If εc ∼ R−1 and δ ∼ R−1 this would yield a ψ1 ∼ R−3 threshold as in (1.42),
but if δ ∼ R−1/3 as for oblique linear modes in shear flows, then the threshold would be
ψ1 ∼ R−5/3.

Chapman’s scenario (ii) begins with the oblique rolls, ψ2 ≡ v that linearly amplify
φ2 ≡ u which quadratically forces ψ1 ≡ V that linearly amplifies φ1 ≡ U and the quadratic
interaction φ1φ2 ≡ Uu, at last, feeds back onto the original ψ2 ≡ v. But there is a catch!
now the initial transient growth of φ2 occurs (and peaks) on the faster time scale 1/δ and
ψ1 only reaches ∼ φ2/δ on that time scale. Diagrammatically,

ψ2 −→ φ2 ∼ 1
δ
ψ2 =⇒ ψ1 ∼ 1

δ
φ2

2 −→ φ1 ∼ 1
εc
ψ1 =⇒ ψ2 ∼ 1

δ
φ1φ2 (1.49)

putting it all together yields ψ2 ∼ ψ3
2/(εcδ

5) and the threshold scaling ψ2 ∼ ε
1/2
c δ5/2 [8,

Fig. 3]. For εc ∼ R−1 and δ ∼ R−1, the threshold would be ψ2 ∼ R−3 as in (1.42), but for
δ ∼ R−1/3 the threshold would be ψ2 ∼ R−4/3.

This is all very well, however a key problem is that it is built on the assumption that
the quadratic interactions uu and Uu of the transiently amplified disturbances, U ≡ φ1

and u ≡ φ2 are the dominant nonlinear interactions, as in the naive model (1.35), the
Benney-Gustavsson model (1.38) and the Waleffe, Kim & Hamilton model (1.41). Those
nonlinear terms appear to be almost non-existent according to the numerical analysis of
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[37] as discussed in the previous section, so these transition scenarios and thresholds are
likely to not be the effective scenarios for Navier-Stokes.

1.3.5 Nonlinear saturation of linear transient growth and ‘ε =∞’

Transient amplification by a factor of R only occurs for streamwise x independent pertur-
bations, ∂/∂x = 0, but nonlinear feedback does not occur for such disturbances. In fact,
x-independent perturbations form an invariant manifold for shear flows for which the lam-
inar flow is the global attractor, that is, x-independent perturbations stay x-independent
and the cross-stream velocities v, w decouple from the transiently amplified streamwise ve-
locity u, thus v, w decay viscously and u eventually returns to zero. This was proved by
Joseph and Tao in 1963 [17], see also [16]. The proof is straightforward. Consider (1.20)
with ∂/∂x = 0, then u · ∇ = v∂y + w∂z and v and w decouple from u, then multiply the
v equation by v, the w equation by w, add the resulting equations and integrate over the
cross-section. Integration by parts and the boundary conditions eliminate the advection
and pressure terms and we are left with

d

dt

∫
A

v2 + w2

2
dA = − 1

R

∫
A

(|∇v|2 + |∇w|2) dA ≤ 0 (1.50)

where A is the flow cross-section and dA is its area element. Thus v and w → 0 and in
that limit the u equation becomes a simple heat equation and u → 0 also. This is a fully
nonlinear result but only for x-independent perturbations. There is transient growth of u
but no nonlinear feedback on v.

The primary nonlinear effect, in fact, is to reduce the transient growth of u by reducing
the background shear. A model for streamwise independent perturbations in a shear flow,
more physical than (1.29), is then [31]

d

dt

SU
V

 =

−νk
2
S 0 0

0 −νk2
U 1

0 0 −νk2
V


SU
V

+

−UVSV
0

 (1.51)

for which S = U = V = 0 is the global attractor since V → 0, then U and S also → 0.
In model (1.51), V induces transient growth of U that leads to −UV < 0 that creates

S < 0 which reduces the forcing of U from V to (1 + S)V < V , but there is no transition
since there is no feedback on V . S models the perturbation of the mean shear so that
the total mean shear is M = 1 + S. The nonlinearity creates a ‘Reynolds stress’, −UV ,
that reduces the shear from 1 to M = 1 + S < 1 and the ‘lift-up’ term creating U is then
(1 + S)V = MV instead of V .

Note that the nonlinearity is energy conserving and

1
2
d

dt

(
S2 + U2 + V 2

)
= UV − ν (k2

SS
2 + k2

UU
2 + k2

V V
2
)

(1.52)
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which is entirely analogous to the perturbation energy equation in shear flows5

1
2
d

dt

∫
V
|u|2dV =

∫
V
−uvdU

dy
dV − ν

∫
V
|∇u|2dV. (1.53)

The latter is obtained by dotting the full perturbation equations (1.20) with u and integrat-
ing by parts over a volume V with periodic or vanishing perturbations on its boundary.[9,
§53]

The S equation in (1.51) is inspired by the mean flow equation, that is, let v = U(y)x̂+
u = U(y)x̂ + ū(y, t)x̂ + ũ where U(y)x̂ is the laminar flow and ū(y, t)x̂ is the average of
u over x and z with ũ the remaining fluctuating part. Averaging the x component of the
Navier-Stokes equations (1.3) yields the mean flow perturbation equation

∂tū = −∂y ũṽ + ν∂2
y ū, (1.54)

which leads to the S equation in (1.51) if we assume a reasonable shape for ũṽ, say
cos2(πy/2) with s being the amplitude of a π−1 sinπy shape for ū(y, t), for instance.

This is only a justification for the model, not a derivation, but (1.51) does capture the
‘fully nonlinear’ physics of streamwise independent shear flows. The model is in fact linear
since V is decoupled from S and U . Model (1.51) captures the full physics of redistribution
of streamwise velocity, (1 + S)V in the U equation together with −UV in the S equation,
not simply the linearized lift-up which is merely the V term in the U equation. Substituting
S = M − 1 in (1.51) yields

dM

dt
= νk2

S(1−M)− UV, dU

dt
= −νk2

UU +MV,
dV

dt
= −νk2

V V (1.55)

which is the viscous version of system (1.24).

1.3.6 SSP and ε ∼ R−3/2, R−2

Waleffe [30] proposed a different mechanism — the Self-Sustaining Process (SSP)— that
was later developed in a series of papers [37, 13, 31, 33], culminating in the construction
of ‘exact coherent states’ for the full 3D Navier-Stokes equations [34, 35, 36]. The self-
sustaining process was inspired by work of Benney (1984) [5] and experiments of Acarlar
and Smith (1987) [1]. This process can be illustrated by a low order model that begins with
the good model of x-independent dynamics (1.51), with x-independent modes S, U , V . We
know from sect. 1.3.5 that such x-independent mean flows cannot be self-sustained, so we
need an x-dependent fluctuation to obtain a self-sustaining process. Call that fluctuation
w for ‘wave’ and assume that it has a simple eiαx form in x, with w∗ the amplitude of e−iαx

since the total flow must be real. The model is [31, 32]

d

dt


S
U
V
w

 =


−νk2

S 0 0 0
0 −νk2

U 1 0
0 0 −νk2

V 0
0 0 0 −νk2

w



S
U
V
w

+


−UV

SV−ww∗
ww∗

Uw−V w

 . (1.56)

5Note that there is a sign difference between the hydrodynamics (1.22) and our models since uv < 0 from
‘lift-up’ for dU/dy > 0 but our models have UV > 0 (these U ’s are the forced response from V ). This is
only a difference in definition that can be removed by defining the flow so that dU/dy < 0 or considering
that the V in our models in fact corresponds to −V and ‘pull-down’ in the hydrodynamics.
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This is model (1.51) with an extra w equation and a series of nonlinear interactions associ-
ated with w. The model reduces to (1.51) when w = 0, i.e. when the flow is x-independent.

This model contains not just the ‘lift-up’ of background laminar shear — the ‘1’ in the
row U , column V of the matrix — but the complete redistribution of the mean shear M =
1+S by V that necessarily comes with the reduction of the mean shear M = 1+S < 1 by the
Reynolds stress −UV . This redistribution leads to the formation of large x-independent
streamwise velocity fluctuations U whose nonlinear self-interactions U2 are non-existent
(unlike models (1.35, 1.38, 1.41)) but that may be unstable to an x-dependent eiαx ‘wave’
of amplitude w. The nonlinear interaction ww∗ of that mode with its complex conjugate
e−iαx yields a negative feedback on U , since the latter provides the energy source for w,
but also a positive feedback on V . The latter comes with a negative feedback on w and the
nonlinear term is energy conserving so the energy equation for (5.32) is

1
2
d

dt

(
S2 + U2 +W 2 + w2

)
= UV − ν (k2

SS
2 + k2

UU
2 + k2

V V
2 + k2

ww
2
)

(1.57)

again entirely analogous to the hydrodynamic equivalent (1.53).
This mechanism is more complex and involves more physical steps. Models (1.35, 1.38,

1.41) are all essentially 2-steps: linear transient amplification of ε into εR followed by
quadratic interactions of the transiently amplified perturbation yielding presumed feedback
onto ε. Model (5.32) involves redistribution of mean shear and therefore ‘nonlinear’ reduc-
tion of mean shear, with exponential instability of transiently amplified fluctuations and
various quadratic interactions of the latter growing mode leading to self-sustenance. We
call it a process — the self-sustaining process — since it involves more steps.

Transition will not happen if w ≡ 0 in (5.32) since w will stay zero and the model then
reduces to (1.51) which will always decay to S = U = V = 0. The transition scenario based
on this process is not as straightforward because the w equation is linear in w and does not
directly determine its amplitude. The V , U and S equations yield, respectively,

V ∼ w2R, U ∼ (1 + S)w2R2 − w2R, S ∼ −Uw2R2. (1.58)

This mean shear reduction S < 0 must not shut down production of U , so we need (1+S)V &
w2 + U/R and substituting for S and V from (1.58) this requires w2R2 & (1 + w4R4)U to
sustain U . We also need U − V − νk2

w & 0 to sustain w and since V ∼ w2R and ν = 1/R
that requires U & (1 + w2R2)/R. Sustenance of U and w thus requires

1 + w2R2

R
. U .

w2R2

1 + w4R4
(1.59)

which, in the limits wR� 1 and wR� 1, yields

R−3/2 . w . R−3/4. (1.60)

This would suggest a threshold exponent a = −3/2 in (1.9) with the transition scenario

w ∼ R−3/2 =⇒ V ∼ R−2 −→ U ∼ R−1, S ∼ R−2  w, (1.61)

although we can also imagine the scenario

V ∼ R−2 −→ U ∼ R−1, S ∼ R−2  w ∼ R−3/2 =⇒ V ∼ R−2 (1.62)
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where w arises from an instability of U and quickly grows to w ∼ R−3/2 to sustain the
original V perturbation. This closely related scenario would have a threshold exponent
a = −2 in (1.9) as discussed in [3].

These (1.61), (1.62) are the scalings of lower branch steady states for (5.32) as given in
[33, eqn. (24)]. The upper branch steady state for (5.32) pushes against the upper bound
of (1.60) and has the scaling w ∼ R−3/4, V ∼ R−1/2, U ∼ R−1/2, (1 +S) ∼ R−1 as given in
[32, 33].

1.3.7 Derived SSP and ε ∼ R−1

Model (5.32) was first presented at a Center for Turbulence Research seminar in 1990
but did not trigger much interest among engineers heavily involved into cutting-edge high
resolution 3D numerical simulations of turbulent flows. The model did not appear in print
until 1995 [31], prompted by the publication of models similar to (1.35) in TTRD [29].
Many simple models were proposed and analyzed in the mid 1990’s [3], but few had any
direct connection with the Navier-Stokes equations. A derivation of (5.32) from the Navier-
Stokes equations was therefore attempted by Galerkin truncation as in the derivation of the
well-known Lorenz-Saltzmann model of convection and chaos.

That derivation showed that a key interaction is missing in (5.32), there should be a
−(1 + S)w ≡ −Mw term in the w equation arising from the differential advection of that
x-dependent mode by the mean shear M = 1 + S (modes A, B, C, D, E in [33, eqn. (10)]
are coupled through M). For small S this is a large extra damping for w that has a direct
impact on the transition threshold question. Thus the model should be

d

dt


S
U
V
w

 =


−νk2

S 0 0 0
0 −νk2

U 1 0
0 0 −νk2

V 0
0 0 0 −νk2

w



S
U
V
w

+


−UV+ww∗

SV−ww∗
ww∗

Uw−V w−(1 + S)w

 (1.63)

which is (5.32) with an extra +ww∗ in the S equation and an extra −(1 + S)w in the
w-equation. The energy equation is still (1.57) since we have merely added redistribution
terms that exchange energy between S and w but do not change the total energy. That last
term in the w equation now includes a linear term, −w, and it is better therefore to rewrite
the model in terms of the total mean shear M = (1 + S), instead of the perturbation from
laminar shear S, in which case (1.63) becomes

d

dt


M
U
V
w

 =


−νk2

SM

−νk2
U U

−νk2
V V

−νk2
w w

+


−UV+ww∗

MV−ww∗
ww∗

(U − V −M)w

+


νk2

S

0
0
0

 . (1.64)

The ‘1’ in row U , column V of the linear coupling matrix in (1.63) has disappeared, it has
been absorbed in the nonlinear term MV in the U equation in (6.11). The remaining matrix
is now ‘normal,’ in fact it is diagonal and has been multiplied with the state vector. The
full nonlinear term is energy conserving as in the Navier-Stokes equations, and a forcing
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has appeared to maintain the mean shear. Again, (6.11) is simply (1.63) with the change
of variable S = M − 1. The laminar solution is M = 1, U = V = w = 0. The total energy
equation reads

1
2
d

dt

(
M2 + U2 + V 2 + w2

)
= νk2

S(1−M)− ν (k2
UU

2 + k2
V V

2 + k2
ww

2
)

(1.65)

in lieu of (1.57). This energy equation shows that the total energy decays if M > 1, in other
words M < 1 for transition.

As in model (5.32), transition will not happen if w = 0 and determining the amplitude of
w requires more delicate analysis. There are several cancellations and to keep track of them
clearly it is better to label each interaction with distinct coefficients as in [33, eqn, (20)],
but here we label only the (M,w) interaction for simplicity. Let σm > 0 be the coefficient of
interaction between M and w, so ww∗ → σmww

∗ in the M equation and −Mw → −σmMw
in the w-equation. The V , U and M equations yield the scalings

V ∼ w2R, U ∼Mw2R2 − w2R, M ∼ 1 + σmw
2R− Uw2R2 (1.66)

instead of (1.58). Production of U requires MV & k2
u U/R + ww∗ and production of w

requires U & σmM+V +k2
w/R. Substituting for M and V from (1.66) into these inequalities

gives, respectively,
(1 + σmw

2R)w2R2 − w2R & (1 + w4R4)U, (1.67)

and
(1 + σmw

2R2)U & σm + σ2
mw

2R+ w2R+
1
R
. (1.68)

Eliminating U between those two inequalities gives

(1 + σmw
2R2)

(
(1 + σmw

2R)w2R2 − w2R
)
&

(1 + w4R4)
(
σm + σ2

mw
2R+ w2R+

1
R

)
, (1.69)

yielding
RX & σmR+ 1 + (σ2

m + 1)X +X2 +X3 (1.70)

where X ≡ w2R2. This is related to the fixed point equation in [33, eqn. (21)] but all
constants have been set to 1, except for σm to help keep track of cancellations that occurred
in deriving this inequality. The 1 has been kept on the right hand side of (1.70) so that
the inequality reduces to (1.59) when σm = 0. The bounds on w follow from investigating
the two extremes X � 1 and X � 1. For X � 1 and R � 1, inequality (1.70) reduces to
σm . X so the smallest X ∼ 1, not X � 1. For X � 1 the inequality reduces to X3 . RX
and since X ≡ w2R2 these two limits provide the bounds on w

R−1 . w . R−3/4, (1.71)

suggesting that a = −1 in (1.9). The transition scenario would be

w ∼ R−1 =⇒ V ∼ R−1 −→ U ∼M < 1  w (1.72)
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or
V ∼ R−1 −→ U ∼M < 1  w ∼ R−1 =⇒ V ∼ R−1 (1.73)

with w quickly growing to w ∼ R−1 from the instability of U in the latter case. In either
case, this gives ε ∼ R−1 for the transition threshold.

Again these (1.72), (1.73) are the scalings of the lower branch steady solution [33, eqn.
(23)] for model (6.11), while the upper limit of (1.71) yields the scaling of the upper branch
steady solution [32, 33], that is w ∼ R−3/4, V ∼ R−1/2, U ∼ R−1/2, M ∼ R−1.

1.3.8 Summary of transition models and threshold scalings

The transient growth models (1.35), (1.38), (1.41), (1.43), (1.45) show transition thresholds
ranging from ε ∼ R−3 to ε ∼ R−1, depending on which nonlinear interactions do or do not
actually occur. The smallest thresholds and most negative exponents correspond to models
that assume the ‘nonlinear recycling’ of transiently amplified disturbances into ‘optimal’
disturbances, but this has not been explicitly demonstrated in the Navier-Stokes equations.
On the contrary, long ago, Waleffe, Kim & Hamilton [37] presented evidence suggesting
that such nonlinear interactions are nil to negligible. Yet Chapman’s later work [8] still
assumes but does not demonstrate the predominance of those same nonlinear interactions
of transiently amplified disturbances. His threshold scaling predictions are thus wanting.

Those transient growth models (1.35), (1.38), (1.41), (1.45) are all weakly nonlinear in
the sense that the mean shear stays at its laminar value of 1 and the perturbations essentially
consist of interacting eigenmodes of the linearized Navier-Stokes equations, i.e. eigenmodes
of the Orr-Sommerfeld and Squire equations. Indeed, much of Chapman’s analysis [8, §5]
centers on estimating the eigenvalues of these linear operators in spite of the emphasis on
non-normal algebraic growth. The models (1.41), (1.45) are superficially similar to the SSP
model (6.11), they are 4th order with quadratic nonlinearity, and they assume an interaction
Uu ≡ φ1φ2 in the v equation that superficially appears to be a ‘streak instability’ when
coupled with the v term in the u equation (sect. 1.3.4). However, the models (1.41), (1.45)
are not actually models of transition since the mean shear remains at its laminar value 1
and the Uu term would be the weak nonlinear interaction of Squire modes (eigenmodes of
the vertical vorticity η equation linearized about the laminar flow) instead of a real streak
instability with its own eigenmodes.

So far, the only model that stands up to closer analysis of the Navier-Stokes nonlinear-
ities is the SSP (sect. 1.3.7) with its ε ∼ R−1 scaling. In the SSP model (6.11), the mean
shear M provides the energy source for U through V but tends to destroy w that regener-
ates V . For transition in that model, the mean shear M must be reduced from its laminar
value of 1 and the streaks U must be O(1), in that sense, it is a fully nonlinear model as
indicated by the ε ∼ R−1 threshold scaling. In the SSP, w corresponds to an eigenmode
of a spanwise varying streaky flow (U(y, z), 0, 0), not of the laminar flow [31, 33, 34, 36].
This strong nonlinearity is reflected in our model building that started from a linear system
with a Jordan block-like structure in (1.18) but ended with a system (6.11) with multiple
energy-conserving nonlinear redistribution terms where the Jordan-block structure is not
anymore a relevant point of view, it is now all about nonlinear interactions, and determi-
nation of the threshold scaling is more involved because of the stronger nonlinearity. We
have gone from a non-normal linear system to a normal nonlinear system [32].
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Finally, a point often overlooked in the discussion of transition processes is that the
very existence of a threshold is closely connected with the existence of unstable nonlinear
states. This is already clear in the subcritical logistic equation (1.14) u̇ = −u/R+u2 where
the threshold u = 1/R is an unstable steady state. In the SSP model (6.11) the threshold
is not identical to the ‘lower branch’ steady state but the transition scenario (1.72) is
closely connected to it. The existence of fully resolved 3D nonlinear lower branch steady
states with the proper scaling in plane Couette flow (fig. 1.7) indicates that the threshold
ε ∼ R−1 is indeed relevant for transition in the full Navier-Stokes equations. Indeed, all
aspects of the SSP, (1) the creation of streaks together with mean shear reduction, (2)
the streak instability and (3) the direct nonlinear feedback from that instability onto the
x-independent rolls (often called ‘streamwise rolls’), have been explicitly verified for the
fully resolved Navier-Stokes equations [33, 34, 36]. The SSP model (6.11), albeit simplistic,
faithfully captures the essence of a process that appears to be fundamental for transition
and turbulence in shear flows and that has been fully vetted through the construction of
fully resolved unstable nonlinear states in the Navier-Stokes equations, not just in low order
models (figs. 1.7,1.8).

1.4 Transition threshold: experiments

Figure 1.9 is from Hof, Juel & Mullin (2003) [14] and shows a threshold amplitude scaling
like R−1 for transition to turbulence in a pipe. The disturbance consists of one pulse of fluid
injected tangentially through 6 equispaced holes of 0.5mm in a long pipe (15.7m) with a
20mm diameter. The transition amplitude is independent of the duration ∆t of the injection
provided it is long enough, that is provided the length ` = U∆t is greater than about 3
diameters, where U is the bulk velocity. The amplitude ε = Φinj/Φpipe is measured as the
ratio of the disturbance mass flux to the pipe mass flux where Φ = velocity × area, and the
Reynolds number is based on the bulk velocity and pipe diameter. The data is very well
fitted by a power law ε ∼ R−1. Other disturbances have since been used such as normal
jets as well as fewer jets [21].

From the SSP point of view (Sect. 1.3.7), we may interpret these experiments as intro-
ducing streamwise6 rolls V , sufficiently large in scale and amplitude and sufficiently long
to develop streaks U that can be unstable. The streak instability is inflectional in nature
and requires sufficiently small streamwise wavenumbers α. In practice we expect spanwise
scales of the order of the pipe radius and streamwise scales about 2 to 3 times larger than
that as discussed in SSP papers [31, 33, 36]. However the jets obviously introduce a range
of scales from the 0.5mm holes to the pipe diameter 20mm so there is complex transient
fluid behavior.

Figure 1.10 shows more recent data in pipe flow. The Re−1 line on that plot is a fit
to various data sets (not shown) corresponding to perturbations in the form of jets (one or
more) through the pipe wall as in fig. (1.9). A second set of data is also shown for ‘push-
pull’ disturbances, where fluid is injected and sucked from two neighboring holes with no net
injected mass flux. That second set of data shows a R−1.4 scaling. That scaling is associated

6‘Streamwise rolls’ have their axis in the streamwise direction, hence they are streamwise independent.
Their wavenumber is actually spanwise.
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Figure 1.7: Scaling of 3D unstable lower branch steady solutions of the Navier-Stokes
equations in plane Couette flow (see Wang, Gibson & Waleffe [38]). The streaks U (top
green curve) are O(1), independent of R. The rolls V scale like R−1 (blue curve, 3rd from
top), the fundamental wave eiαx corresponding to w in the SSP model (6.11) scales like
R−11/12 in this norm, slightly weaker than R−1 because of a critical layer structure (red
curve, 2nd from top). The bottom two curves (purple and orange) correspond to the 2nd and
3rd x harmonics, ei2αx and ei3αx, respectively. All harmonics are negligible for R & 6 000
and the solution is continued up to R ≈ 60 000 without them. The Reynolds number is
based on the half channel height and the half wall velocity difference and this definition
yields a Reynolds number that is about 4 times smaller than the typical pipe flow Reynolds
number. In other words, this plane Couette R = 60 000 corresponds to Re ≈ 240 000 in
pipe flow.
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Figure 1.8: Visualization of the plane Couette flow lower branch steady state at R = 1386
(left) and R = 57250 (right) [38] whose scaling is shown in figure 1.7. The flow is in the
x direction (in and out of the page) and the total streamwise velocity u = x̂ · v = 1 at
y = 1 and u = −1 at y = −1. The green isosurface is u = 0 and would be a flat sheet at
y = 0 for the laminar flow but here it is warped with an O(1) deformation as a result of the
O(1) streaks U in (6.11) and the O(1) reduction of the mean shear M in (6.11). The red
isosurfaces are the level set Q = 0.6 max(Q) where 2Q = ∇2p = ΩijΩij − SijSij (see eqn.
(1.4)), a standard but crude attempt to visualize vortices. These red isosurfaces correspond
to a combination of the streamwise rolls and the fundamental wave, the 2nd and 3rd curves
from the top in fig. 1.7 and have small magnitude. Note that the two figures are almost
identical in spite of the huge difference in Reynolds number.
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Re ! 2000. The constant critical amplitude observed
reinforces that scaling of the perturbation by the mean
flow is valid.

It is clear that the two constant level thresholds in Fig. 4
cannot continue much below Re ! 2000 since experi-
mental evidence suggests that turbulent flow cannot be
maintained below this value [11,13]. It is equally unlikely
that the horizontal loci in Fig. 4 will simply come to an
end in parameter space. In this region, we observe the
transient growth of puffs which can persist for many tens
of pipe diameters. This interesting behavior will take
considerable experimental effort to resolve and is the
subject of an ongoing investigation.

An appropriate scaling of the amplitude of the pertur-
bation is the relative mass flux of the perturbation to that
in the pipe. Clearly, doing this for the two horizontal loci
in Fig. 4 will produce a proportionality of the form
O"Re#1$. We next present results from the long pipe in
Fig. 5 where we were able to test this finding over an order
of magnitude range of Re. Here we used a perturbation of
1.8 s duration and find the same O"Re#1%0:01$ scaling.
Obtaining this set of results was particularly challenging
at the higher range of Re, and they required extremely
tight control on background influences in our long pipe
facility.

Clear experimental evidence for the scaling of the
finite amplitude of perturbation required to promote
transition in Poiseuille flow has been found. The exponent
is #1 and has been uncovered using considerable care in
the design and execution of the experiment. Interestingly,
this exponent has also been found in experiments on

transition in boundary layers [21]. Moreover, it is in
agreement with recent asymptotic estimates for pipe
flow [22] where transient growth plays a role. The expo-
nent also indicates a generic transition [7] so that a
challenge to theory is to provide a more definite indicator
which will permit a distinction between competing ideas
to be made.
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has a slope of #1% 0:01.

P H Y S I C A L R E V I E W L E T T E R S week ending
12 DECEMBER 2003VOLUME 91, NUMBER 24

244502-4 244502-4

Figure 1.9: Transition threshold in pipe flow scaling as R−1, from [14].

with the development of trains of hairpin/horseshoe vortices before transition to turbulence,
in contrast to the R−1 disturbances that led to an abrupt transition. An example of the
development of hairpin vortices is shown in figure 1.11. ‘Hairpin’ and ‘horsehoe’ are used
to describe similar vortex structures. The term ‘hairpin’ is often used for small structures,
especially those observed in turbulent shear flows, and ‘horseshoe’ for larger structures,
although this is qualitative and subjective, there is no precise definition of the structures
associated with those terms.

The development of these hairpin structures is a transient effect but one should be
careful not to quickly associate it with the linear transient growth of non-normal operators.
The latter is associated in this context with the linearization of the Navier-Stokes equations
about a laminar shear flow v = U(y)x̂. The linearized equations are separable in the
cross-flow coordinates x and z and time t. The result is a set of dispersive Fourier modes,
û(y)ei(αx+γz−ωt), that are not orthogonal, but do form a complete set. Each of these modes
evolves and travels independently of the other modes and it is quite unlikely that linear
evolution of such modes captures the highly coherent development of hairpin vortices shown
in fig. 1.11. The development of hairpin vortices is undoubtedly a nonlinear process leading
to such highly coherent structures formed from the roll-up and stretching of vortex sheets.

1.4.1 Theodorsen’s horseshoes

Horseshoe vortices in turbulent shear flows were predicted in the 1950’s by Theodorsen who
suggested that they were the ‘molecules’ of [shear] turbulence [27, 28] and drew the sketch
shown in figure 1.12. He based his prediction of horseshoe vortices on an analysis of the
vorticity equation, the curl of the Navier-Stokes equations (1.3)

∂tω + v · ∇ω = ω · ∇v + ν∇2ω (1.74)

where ω = ∇× v is the curl of the velocity v, thus ∇ · ω = 0.
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Figure 6
Two sequences of 12 velocity time traces measured 2 pipe diameters downstream from the injection point for an impulsive disturbance.
The disturbances in panel a lead to transition downstream, whereas those in panel b decay within 50 pipe diameters. Figure taken with
permission from Darbyshire & Mullin (1995), copyright 1995, Cambridge University Press

mean velocity of the disturbance with the mean flow along the pipe (Draad et al. 1998, Hof et al.
2003, Peixinho & Mullin 2007). When this is used with a periodic disturbance (Draad et al. 1998),
a range of frequency-dependent relationships between threshold amplitude and Re is uncovered.
Others have suggested that the relative momentum flux is important (Eliahou et al. 1998), and
this notion has been used in the finite-amplitude scaling laws shown in Figure 7 (Peixinho &
Mullin 2007). All the results shown were obtained using impulsive disturbances that were 10 pipe
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Finite-amplitude threshold lines for different impulsive disturbances. The Re−1 scaling law was formed from
data sets taken with a range of disturbances (Hof et al. 2003, Peixinho & Mullin 2007), whereas the lower
amplitude Re−1.4 points were obtained with push-pull disturbances. The upper line is a fit to several sets of
experimental data in which impulsive disturbances are from single jets (Peixinho & Mullin 2007) and six
azimuthally configured jets (Hof et al. 2003). Figure taken from Peixinho & Mullin (2007).
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Figure 1.10: Transition threshold in pipe flow from [21, 22]. Here Re is the Reynolds number
based on bulk velocity and pipe diameter and A is the threshold amplitude defined as the
mass flux of the disturbance normalized by the mass flux in the pipe. The Re−1 line is a fit
to various data sets (not shown on this figure) corresponding to perturbations in the form
of jets (one or more) through the pipe wall [22, Fig. 3]. The lower data sets correspond
to smaller scale ‘push-pull’ disturbances, with the push-pull axis oriented in various ways
(spanwise, streamwise, etc.), and that data is fitted by a Re−1.4 line.

Figure 1.11: Hairpin vortices developing from a small jet in pipe flow (photograph by Finn
Box in the Mullin Lab). This is the typical transient behavior of the disturbance leading
to the R−1.4 scaling in fig. 1.10.
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Figure 1.12: Hairpin/Horseshoe vortex postulated to be the ‘molecule of shear turbulence’
by Theodorsen in 1952. Here q is the fluid velocity and L and D are the lift and drag on
the horseshoe structure [27].
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His picture, reproduced in fig. 1.12, is compelling and horseshoe structures have since
been observed as ubiquitous features in turbulent shear flows, but his mathematical justifica-
tion for those structures is mostly hand-waving and laced with not quite correct statements.
Theodorsen considers the enstrophy equation, obtained by dotting (1.74) with ω,

D

Dt

ω2

2
= ω · (ω · ∇v) + ν ω · ∇2ω (1.75)

where D/Dt = ∂t + v · ∇ is the material derivative and ω2 = ω · ω. He states that
ω · (ω · ∇v) = ω2dvs/ds where s is arclength along the local vortex line and vs = v ·ω/ω is
the velocity component in the direction of the vortex line. This is not correct in general. If
s, n, b represent an orthonormal Frenet-Serret frame along the vortex line, with s = ω/ω
and v = vss + vnn + vbb then

ω · (ω · ∇v) = ω2 s · d
ds

(vss + vnn + vbb) = ω2

(
dvs
ds
− κvn

)
(1.76)

where κ is the curvature of the vortex line. He argues that the viscous terms ω · ∇2ω is
negative and thus that ω · (ω · ∇v) is positive ‘on average’ for stationary turbulent flows.
The viscous term

ω · ∇2ω = ∇2ω
2

2
−∇ω : ∇ωT (1.77)

and the 2nd term is negative since ∇ω : ∇ωT = (∂jωi)(∂jωi) ≥ 0, but the first term can be
positive. These considerations do not explain the horseshoe structure however.

It appears that the basic reason for Theodorsen’s horseshoe proposal is to maximize
enstrophy production by the mean shear, that is to maximize ω · (ω · ∇v) for v = U(y)x̂
in which case ω · (ω · ∇v) = ωxωy dU/dy and the rate of enstrophy production, that is
ω · (ω · ∇v) /ω2 = (ωxωy dU/dy) /(ω2

x + ω2
y + ω2

z) is maximized for ωx = ωy with ωz = 0.
There are two constraints on this optimum. First, since ∇ · ω = 0, vortex lines cannot
terminate at a point in the fluid. Second, very close to the wall, the vorticity must be
ω ≈ ωzẑ. Putting all these things together: (1) vortex lines starting in the spanwise ẑ
direction near the wall, (2) turning in the 45◦ direction ωx ≈ ωy > 0, ωz ≈ 0 to maximize
stretching by the mean shear, (3) turning back when dU/dy ≈ 0 so that ωx ≈ ωy < 0
again maximizes stretching and (4) smoothly connects back to the ẑ direction near the
wall, leads to the very plausible horseshoe structure sketched in fig. 1.12. It seems clear
from Theordorsen’s depiction of lift and drag on the horseshoe — forces that are quadratic
in the relative velocity — that this is implicitly a coherent nonlinear structure, not the
linear dispersion of laminar flow eigenmodes.

1.4.2 An argument for R−1.4 ?

Theodorsen’s reasons for the horseshoe/hairpin vortex thus appear to be quasi-linear. The
hairpin vortex must be nonlinear to hold itself together in a coherent packet, but the basic
reason for the shape of the vortex appears to be merely stretching by the mean. If ` is the
scale and v the velocity amplitude of the initial perturbation (i.e. the small jet or push-pull
disturbance in the pipe experiments), we require that the perturbation’s Reynolds number
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be of O(1) for that perturbation to ‘roll-up’ and create a small coherent vortical structure,
that is

v`

ν
& O(1). (1.78)

Now for ‘optimal’ vortex stretching by the mean shear, we require that ωdU/dy & ν∇2ω,
that is

U

h
&

ν

`2
⇐⇒ `2

h2
&

ν

Uh
=

1
R
. (1.79)

where ` is an estimate for the vortex core and h is the pipe radius or the channel half-height.
The meaning of this equation is that ‘optimal’ (i.e. 45◦ orientation) stretching of the vortex
by the mean shear must at least balance the diffusion on the scale of the vortex core.

In the pipe experiments, the threshold amplitude is taken as the ratio of the perturbation
mass flux ≈ v`2, to the pipe flux ≈ Uh2. Combining (1.78) and (1.79) yields

v`2

Uh2
&

ν

Uh

`

h
& R−3/2, (1.80)

which is not R−1.4 but close to it. Note that this is not an argument for transition but a
quasi-linear argument for creation and amplification of hairpin vortices.

One issue with this argument is that ` is taken as both the size of the vortex core and
of the initial perturbation. In the pipe experiments with R−1.4 scaling [22], the scale of the
push-pull disturbance is fixed at 1mm (two 1mm holes, 1mm apart) and the pipe radius is
20mm so `/h ≈ 0.05 which seems large enough to satisfy (1.79), but these are mere scaling
arguments and there may be significant hidden constant factors. For single jet disturbances
with R−1 scaling, Peixinho and Mullin [22, Fig. 2(b)] show a scaling vd/ν & (D/d)1/2 for
the jet Reynolds number at fixed R = 2500, where d and D are the hole and pipe diameters,
respectively. This shows that small holes require stronger jets, perhaps to lead to vortical
structures with a size ` large enough to satisfy (1.78), (1.79). This suggests that the steeper
scaling R−1.4 instead of R−1 might be a small hole/low Reynolds number effect, although
the Peixinho & Mullin R−1.4 data is provided for a significant Reynolds number range.

Recent experimental studies of transition in plane Poiseuille flow by Lemoult, Aider and
Wesfreid (2012) [19] show transition induced by a continuous small jet with v/U ∼ R−1

and a steeper scaling closer to R−3/2 for low Reynolds number. The latter experiments
document the development and persistence of hairpin vortices, especially in transitional
states not laminar but not fully transitioned either. Thus the role of hairpin vortices and
the threshold scaling remain to be clarified. In particular, small jets in cross-flows introduce
multi-scale perturbations (the diameter of the jet and the thickness of the shear layer around
that jet) that lead to the development of multiple vortex structures, such as a large scale
counter-rotating vortex pair as well as smaller horseshoe (or necklace) vortices, possibly
coupled to ‘upright vortices’ ([18] but the flow regimes are quite different from fig. 1.11).
It may be that the visualizations draw our attention to the smaller scale trains of quasi-
linear hairpin vortices but that it is really the larger scale counterrotating vortex pair that
redistributes the mean to create streaks on the scale of the pipe radius and trigger the
turbulent transition.
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Lecture 2

Overview of turbulent shear flows
notes by Giulio Mariotti and John Platt
revised by FW
WHOI GFD Lecture 2, June 21, 2011

A brief review of basic concepts and folklore in shear turbulence.

2.1 Reynolds decomposition

Experimental measurements show that turbulent flows can be decomposed into well-defined
averages plus fluctuations, v = v̄ + v′. This is nicely illustrated in the Turbulence film
available online at http://web.mit.edu/hml/ncfmf.html that was already mentioned in
Lecture 1.

In experiments, the average v̄ is often taken to be a time average since it is easier to
measure the velocity at the same point for long times, while in theory it is usually an
ensemble average — an average over many realizations of the same flow. For numerical
simulations and mathematical analysis in simple geometries such as channels and pipes, the
average is most easily defined as an average over the homogeneous or periodic directions.

Given a velocity field v(x, y, z, t) we define a mean velocity for a shear flow with laminar
flow U(y)x̂ by averaging over the directions (x, z) perpendicular to the shear direction y,

v̄ = lim
Lx,Lz→∞

1
LxLz

∫ Lz/2

−Lz/2

∫ Lx/2

−Lx/2
v(x, y, z, t)dxdz = U(y, t)x̂. (2.1)

The mean velocity is in the x direction because of incompressibility and the boundary
conditions. In a pipe, the average would be over the streamwise and azimuthal (spanwise)
direction and the mean would depend only on the radial distance to the pipe axis, and
(possibly) time. Now we apply this averaging to the incompressible Navier-Stokes equations,

∂v
∂t

+ v · ∇v = −∇p+ ν∇2v , ∇ · v = 0. (2.2)

Using the incompressibility condition ∇ · v = 0 we can rewrite the momentum equation in
conservative form,

∂v
∂t

+∇ · (vv) = −∇p+ ν∇2v. (2.3)
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We split the flow into a mean part and a fluctuation,

v = U(y, t)x̂ + v′ (2.4)

Averaging the Navier-Stokes equations (2.3) over x and z yields the mean flow equation

∂U

∂t
+
∂uv

∂y
= −dP0

dx
+ ν

∂2U

∂y2
, (2.5)

where v′ = (u, v, w) in cartesian coordinates and the overline () denotes the average over x
and z. To arrive at this mean flow equation, we used the divergence theorem and the fact
that v′ = 0. The mean pressure gradient ∂P/∂x = dP0/dx is not zero in pressure-driven
channel and pipe flows where the pressure has the form P = P0(x) + p(r, t) with dP0/dx a
fixed constant and p(r, t) is the flow induced pressure required to maintain incompressibility.
For fixed flux, as in the Mullin pipe flow experiments [11], the mean pressure gradient can
fluctuate in time to maintain the total mass flux.

For sufficiently large domains and sufficiently large Reynolds number, the flow in a pipe
or channel is statistically steady, so the mean values are independent of t.1 For statistically
steady flow, the mean flow equation (2.5) reduces to

duv

dy
= −dP0

dx
+ ν

d2U

dy2
. (2.6)

Integrating (2.6) from the bottom wall at y = −h to the top wall at y = h gives 0 =
−2hdP0

dx + ν dU
dy

∣∣∣
h
− ν dU

dy

∣∣∣
−h

since u = v = 0 at the walls, leading to

−dP0

dx
=
τw
h

(2.7)

where τw = ν dU/dy
∣∣
−h = −ν dU/dy∣∣

h
is the shear stress on the bottom wall and top wall,

by symmetry.
Plane Couette flow is driven by moving walls situated at y = ±h with velocities v = ±U x̂

and there is no imposed pressure gradient. Integrating equation (2.6) with dP0/dx = 0 from
the bottom wall where u = v = 0 to y gives

ν
dU

dy
− uv = τw, (2.8)

where τw = ν dU/dy|h is the stress on the bottom wall. Equation (2.8) states that the mean
stress on the fluid layer below y is constant across the channel in Couette flow. The first
term on the left hand-side of (2.8), ν dU/dy, is the mean viscous stress from the fluid above
level y onto the fluid layer below y. The second term, −uv, is the Reynolds stress that
arises from the net vertical transport of streamwise momentum by the fluctuations, again
from the fluid above y into the fluid layer below y. The two stresses add up to a constant
total stress for Couette flow, τw. Note that these are all kinematic stresses, stress divided
by fluid density ρ, so the actual total stress is ρτw.

1This is a reasonable assumption, verified experimentally and numerically. However, our recent discoveries
of time-periodic solutions in plane Couette flow [4], [7], [15] show that is is possible to have time-dependent
averages, in general.
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2.2 Laminar and Inertial Scalings of the Drag τw

First we look at Couette flow, as described by equation (2.8). We try to find appropriate
scalings for the two terms on the left hand side using the obvious scalings for velocity and
length, U and h, the half-wall velocity difference and the half-channel height, respectively.
We can scale the viscous and Reynolds stress terms in (2.8) as

ν
dU

dy
∼ νU

h
, −uv ∼ U2, (2.9)

away from the walls, yielding the total stress as

τw ∼ νU

h
+ U2 =

νU

h

(
1 +

Uh

ν

)
=
νU

h
(1 +R) (2.10)

where R = Uh/ν is the Reynolds number for Couette flow. This correctly suggests that for
R� 1, the viscous stress νdU/dy dominates and we have laminar scaling

τw ∼ νU

h
⇒ τw

U2
∼ 1
R
, (2.11)

where τw/U2 is a friction factor, as in the Moody diagram of Lecture 1. For R � 1, the
Reynolds stress −uv dominates and we have inertial scaling

τw ∼ U2 ⇒ τw
U2
∼ 1. (2.12)

This corresponds to the R� 1 portion of the Moody diagram labeled ‘complete turbulence,’
where the friction factor τw/U2 is roughly independent of Reynolds number R and would
correspond to drag being dominated by the Reynolds stress −uv scaling as U2.

Next we look at the scalings for channel flow. Now our equation is (2.6) with (2.7),

ν
d2U

dy2
− duv

dy
= −τw

h
. (2.13)

This equation states that the mean force on a fluid layer between y and y+dy is a negative
constant in channel flow to balance the positive pressure force −dP0/dx = τw/h. Scaling
(2.13) as in (2.9)

ν
d2U

dy2
∼ −νU

h2
,

duv

dy
∼ U2

h
, (2.14)

away from the walls, yields

τw
h
∼ ν U

h2
+
U2

h
∼ ν U

h2
(1 +R) . (2.15)

This leads to the same results as in Couette flow, namely that the drag at the wall τw has
the laminar scaling τw ∼ νU/h, corresponding to a friction factor τw/U2 ∼ 1/R for low
R (2.11) and the inertial scaling τw ∼ U2 for large R (2.12). The drag at the wall is the
pressure gradient times the half-height, τw = −h dP0/dx, as derived in (2.7).
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2.3 Energy Dissipation Rate E = τwU/h

We now look at the the Kinetic Energy (KE) budget for the total flow (mean plus fluctua-
tion). The KE equation is obtained by the scalar product between the velocity v and the
NS equation (4.10), yielding

∂

∂t

(
1
2
|v|2

)
+ v · ∇

(
1
2
|v|2

)
+ v · ∇p = −dP0

dx
x̂ · v + ν v · ∇2v. (2.16)

Equation (2.16) is then averaged over the whole domain V , that is V −1
∫
V (· · · )dV as a

limit process in the homogeneous directions x and z, as in (2.1), or with periodic boundary
conditions as in numerical simulations. The advection and flow-induced pressure terms
vanish upon integration since ∇ · v = 0 implies that v · ∇(∗) = ∇ · (v(∗)), then the integral
of these divergences become surface integrals, by the divergence theorem, and the boundary
integrals vanish because of no flow through the walls and/or periodic boundary conditions.
The viscous term v · ∇2v = ∇2|v|2/2 − ∇v : ∇vT where A : B ≡ AijBji = trace(A ·B),
so ∇v : ∇vT = (∂ivj)(∂ivj) ≡ |∇v|2 ≥ 0 is positive definite.

For channel flow in statistically steady state, we obtain

−dP0

dx

1
V

∫
V

x̂ · vdV︸ ︷︷ ︸
energy input rate

=
ν

V

∫
V
|∇v|2dV︸ ︷︷ ︸

energy dissipation rate

= E ≥ 0, (2.17)

since v = 0 at the walls. This relation can be written

τw
h
U = E (2.18)

where τw/h = −dP0/dx, from (2.7), is the force per unit mass with τw the stress at the
wall, U = V −1

∫
V x̂ · v dV is the bulk velocity and E is the energy dissipation rate per unit

mass.
For plane Couette flow driven by the motion of the walls, with dP0/dx = 0, the viscous

term v · ∇2v = ∇2|v|2/2−∇v : ∇vT provides both the energy input and output. The KE
equation reads

ν

V

∫
V
∇ · ∇

(
1
2
|v|2

)
dV =

ν

V

∫
V
|∇v|2dV ≥ 0. (2.19)

The divergence theorem applied to the left hand side yields

ν

V

∫
V
∇ · ∇

( |v|2
2

)
dV =

ν

V

∫
y=h

ŷ · ∇
( |v|2

2

)
dA− ν

V

∫
y=−h

ŷ · ∇
( |v|2

2

)
dA

=
ν

V

∫
y=h

u
∂u

∂y
dA− ν

V

∫
y=−h

u
∂u

∂y
dA =

τw
h
U

(2.20)

since u = U on the top wall at y = h and u = −U at y = −h with v = w = 0 on both walls,
and τw = νA−1

∫
y=−h

∂u
∂y dA = νA−1

∫
y=h

∂u
∂y dA is the mean stress on the bottom wall with

surface area A, equal to the mean stress from the top wall onto the fluid and V = 2Ah.
These surface integrals may have to be interpreted as limits as A → ∞, as in (2.1). Using



Viscous Derivation 55

(2.20), the KE equation for Couette flow (2.19) can also be written in the compact form
(2.18),

τw
h
U = E (2.21)

but this U is the half wall velocity difference in plane Couette flow, instead of the bulk
velocity in (2.18), and h is the half channel height in both cases.

The energy input/dissipation balance (2.18), (2.21), for pipe, channel and plane Couette
flow, shows that there is a direct relationship between the scaling of the wall stress τw (the
drag) and the scaling of the energy dissipation rate E . For laminar scaling (2.11), (2.15)
for ‘small’ Reynolds number R = Uh/ν (meaning smaller than a few 100’s for the typical
definitions of R in shear flows)

τw ∼ νU

h
⇔ E ∼ νU

2

h2
, (2.22)

while the inertial scaling (2.12), (2.15) for large R = Uh/ν,

τw ∼ U2 ⇔ E ∼ U3

h
. (2.23)

The remarkable fact about the inertial scaling (2.23) is that the wall stress

τw = ν
dU

dy

∣∣∣∣
wall

(2.24)

which is necessarily transmitted from the fluid to the wall by viscosity, and the energy
dissipation rate (2.17), (2.29)

E = ν
〈|∇v|2〉 = 2 ν 〈S : S〉, (2.25)

where the brackets 〈 〉 denote volume average, which also arises from viscosity, would both
be independent of ν for sufficiently large R according to (2.23). This requires boundary
layers of thickness ∼ ν/U on average, much smaller than a stagnation point boundary layer
thickness ∼√ν/S, where S is a strain rate. The

√
ν/S boundary layer is to satisfy no-slip

at y = 0 for the outer stagnation point flow v = (Sx,−Sy, 0) in incompressible flow (e.g.
[1, §2.5]). It is not clear if and how one can obtain a ν/U boundary layer on a smooth wall
in incompressible flow.

Note on the energy dissipation rate

The expression for the energy dissipation rate E in (2.17) is not correct in general. The
viscous term ν∇2v in the Navier-Stokes equation (4.10) arises from the divergence of the
stress tensor T = ν(∇v+∇vT ) = 2νS, where S is the strain rate tensor, then ∇·T = ν∇2v
because ∇ · (∇v)T = ∇(∇ · v) = 0, since ∇ · v = 0. In the kinetic energy equation, then,

ν v · ∇2v = ν∇ · ((∇v) · v)− ν∇v : ∇vT (2.26)

is equal to
v · (∇ ·T) = ∇ · (T · v)−T : S, (2.27)
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where symmetry of the stress tensor T = TT has been used in (2.27) to obtain T : ∇vT =
Tij∂ivj = Tij(∂ivj + ∂jvi)/2 = TijSji = T : S. Integration over the domain shows that
the second form (2.27) yields the proper energy input rate on the boundaries, since, by the
divergence theorem ∫

V
∇ · (T · v) dV =

∫
∂V

f · v dS (2.28)

where f = n·T is the stress on the surface boundary ∂V of the volume V , with unit outward
normal n, by definition of the stress tensor T. Hence the energy dissipation rate per unit
mass arises from the 2nd term on the right hand side of (2.27)

E =
1
V

∫
V

T : S dV =
1
V

∫
V

2ν S : S dV ≥ 0, (2.29)

not from the 2nd term of (2.26), ν∇v : ∇vT .
Subtracting (2.26) from (2.27) and canceling out factors of ν shows that the expressions

∇v : ∇vT and 2 S : S differ by a divergence,

2 S : S = ∇v : ∇vT +∇ · (v · ∇v). (2.30)

The divergence term on the right hand side integrates to∫
V
∇ · (v · ∇v)dV =

∫
∂V

v · (∇v) · n dS (2.31)

and that boundary term vanishes for periodic boundary conditions, or for v = 0 on ∂V ,
or for flat boundaries for which n is constant so (∇v) · n = ∇(v · n) and there is no flow
through the walls, v · n = 0, so v · (∇v) · n = v · ∇(v · n) = 0 on ∂V .

Thus, the expressions (2.17) and (2.29) for E are equal for pipe and plane channel and
Couette flows, but they differ for cylindrical Couette flow, for instance. The difference is
most striking for rigid body rotation for which v = (−Ωy,Ωx, 0) and ∇v : ∇vT = 2Ω2 but
2 S : S = 0.

2.4 Kolmogorov spectrum and Energy cascade

The study of turbulence spawned a new branch in the 1930’s when researchers went be-
yond the study of mean flows U(y) and started focusing on the turbulent fluctuations.
Experiments measured two-point correlations 〈v(r′)v(r)〉, where the average denoted by
the brackets 〈 〉 is typically a time average in practice or an ensemble average in theory.
G.I. Taylor introduced the concept of homogeneous turbulence where those time or ensem-
ble averages are assumed to depend only on the two-point separation s = r′ − r but not on
location, e.g.

〈v(r′)v(r)〉 = R(s), (2.32)

that is 〈vi(r′)vj(r)〉 = Rij(s) in cartesian index notation. The possible time dependence of
these correlations will be kept implicit in this section. For fully developed turbulent flow
in a pipe or channel at sufficiently high Reynolds number, the turbulence is observed to
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be homogeneous in the azimuthal (or spanwise) and streamwise directions, sufficiently far
from the entrance and exit to the pipe, and from the sides in channels. The statistics are
strongly dependent on the distance to the wall, near the walls, but become approximately
homogeneous sufficiently far from the wall. Sufficiently far is best measured in wall units
(typically denoted with a ‘+’ and sometimes called ‘plus-units’)

δ+ =
ν√
τw

(2.33)

where τw = ν dU/dy|w is the (kinematic) stress at the wall (2.24) which has units of velocity
squared. For laminar scaling (2.11),

τw ∼ νU
h

⇒ δ+ ∼
√
νh

U
, (2.34)

but for inertial scaling (2.12), the wall unit would be much smaller

τw ∼ U2 ⇒ δ+ ∼ ν

U
. (2.35)

In practice, ‘sufficiently far’ means distances from the wall greater than about 50 δ+.
The theory of homogeneous turbulence, where the statistics are invariant under transla-

tions, quickly specialized to the study of isotropic turbulence where the statistics are also
independent of rotations and reflections. For the two-point correlation (2.32), that involves
vector quantities v and introduces the special direction s = r′ − r, this implies

〈v(r′)v(r)〉 = u2
rms

(
F (s) ŝŝ +G(s) (I− ŝŝ)

)
(2.36)

in dyadic notation, where s is the magnitude and ŝ the direction of s = s ŝ and I is the
identity tensor, or

〈vi(r′)vj(r)〉 = u2
rms

(
F (s)

sisj
s2

+G(s)
(
δij − sisj

s2

))
(2.37)

in cartesian index notation, where δij is the Kronecker delta and si are the cartesian com-
ponents of s = r′ − r. The root mean square velocity is u2

rms = 〈v · v〉/3. Equation (2.36)
≡ (2.37), says that the correlation depends only on the distance s between the two points
and whether the velocity components are parallel or perpendicular to s. Incompressibility,
∇ · v = 0 applied to (2.36), (2.37), yields

s
dF

ds
+ 2(F −G) = 0 (2.38)

relating G(s) to F (s), so the two-point velocity correlation tensor (2.32) is fully determined
by the longitudinal auto-correlation function,

F (s) ≡ 〈u1(r + se1)u1(r)〉
u2
rms

(2.39)

in homogeneous isotropic turbulence. The reader should consult the books by Pope [13] or
Sagaut and Cambon [14] for further information about homogeneous turbulence.
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In homogeneous isotropic turbulence, the flow is assumed to take place in an infinite 3D
euclidean space, maintained by a statistically steady and isotropic force but there are no
mean flows, no walls and no drag. Thus the relationship (2.18), between the wall drag τw
and the energy dissipation rate E is lost, although there is of course a similar relationship
involving energy input by the statistically homogeneous, isotropic force.

In the Kolmogorov theory of isotropic turbulence, the energy dissipation rate E is the
dominant quantity, it is the energy cascade rate, with energy input at the forcing scale `I
cascading to ever smaller scales by nonlinear distortion down to sufficiently small scales
where the energy is finally dissipated by viscosity. Kolmogorov estimated those small dissi-
pation length scales by dimensional analysis based on E that has units L2T−3 and viscosity
ν with units L2T−1, so the Kolmogorov dissipation length scale, is

`K ∼
(
ν3

E
)1/4

. (2.40)

Dissipation on those scales would be achieved by turbulent velocity fluctuations of magni-
tude

uK ∼ (νE)1/4 , (2.41)

with

E ∼ ν u
2
K

`2K
∼ u3

rms

`I
(2.42)

independent of ν, where 3u2
rms = 〈v · v〉 and `I is the energy input scale.

Kolmogorov’s theory also predicts a scaling for the Energy spectrum

E(k) ∼ E2/3 k−5/3 (2.43)

where
∫∞

0 E(k)dk = 〈v · v〉/2 = 3u2
rms/2 and E(k)dk is the energy per unit mass in the

wavenumber band [k, k + dk]. In isotropic turbulence, the energy spectrum E(k) fully
determines the Fourier transform Φij(k) of the two point correlation tensor Rij(s) defined
in (2.32)

Φij(k) =
E(k)
4πk2

(
δij − kikj

k2

)
(2.44)

where
Φij(k) ≡ 1

(2π)3

∫
R3

Rij(s) e−ik·sdVs (2.45)

Rij(s) =
∫

R3

Φij(k) eik·sdVk (2.46)

with dVs the volume element for s ∈ R3 and dVk the volume element for k ∈ R3, so
dVs = ds1ds2ds3 and dVk = dk1dk2dk3 in cartesian coordinates and k = |k|. The energy
spectrum E(k) can be related to F (s), the longitudinal auto-correlation (2.39), although
the relationship is non-trivial

u2
rmsF (s) = 2

∫ ∞
0

E(k)
(

sin(ks)
(ks)3

− cos(ks)
(ks)2

)
dk. (2.47)
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A simpler relationship can be derived from (2.37), (2.44) and (2.46)

Rii(s) = u2
rms (F (s) + 2G(s)) = 2

∫
R3

E(k)
4πk2

eik·sdVk = 2
∫ ∞

0
E(k)

sin(ks)
ks

dk. (2.48)

The Kolmogorov spectrum (2.43) occurs in the inertial range `I � k−1 � `K where the
wavelengths k−1 are much smaller than the energy input scale `I but much larger than the
Kolmogorov dissipation scale `K . Defining the Reynolds number for homogeneous isotropic
turbulence as

R =
urms `I
ν

=
E1/3`

4/3
I

ν
. (2.49)

Using (2.40) then gives
`I
`K

=
E1/4`I
ν3/4

≡ R3/4. (2.50)

providing a rule of thumb, first proposed by S.A. Orszag, that the numerical resolution
scales like N ∼ R9/4 for direct numerical simulation of 3D isotropic turbulence, where N is
the total number of Fourier modes (or grid points) required to resolve the turbulent flow.
A sketch of the energy spectrum with the inertial range (2.43) and the dissipation range for
k & (`K)−1 is shown in figure 2.1.

Since E is assumed to be independent of ν for sufficiently large Reynolds numbers, with
E ∼ u3

rms/`I , eqn. (2.42) as in the inertial scaling (2.23), the Kolmogorov dissipation length
(2.40) scales like ν3/4, smaller than the classic

√
ν boundary layer scaling, but larger than the

inertial boundary layer scaling ν/U in turbulent channels and pipes (2.35). Thus, although
the inertial scaling E ∼ U3/h in channels and pipes (2.23) and the Kolmogorov scaling
E ∼ u3

rms/`I are similar, there is a noteworthy difference between the two: the Kolmogorov
scaling is achieved by small dissipation scales ∼ ν3/4 throughout the volume of fluid, while
the inertial scaling in shear flows over smooth walls requires small boundary layers ∼ ν/U
to transfer the momentum between the fluid and the walls, so τw = ν dU/dy|w ∼ U2, and
would achieve ν-independent E through dissipation in those small boundary layers.

The Kolmogorov picture of turbulence is a cascade of energy to smaller and smaller
scales, from the energy input scale `I down to the Kolmogorov dissipation scale ∼ ν3/4,
together with a decoherence of the motions at different scales so that small scales are nearly
isotropic. In contrast, the inertial scaling (2.23) in shear flows appears to call for a coherent
transport of momentum over the height of the channel, from one wall to the other wall in
plane Couette flow for instance, transporting U over distance h to sustain boundary layers of
thickness ∼ ν/U , on average. It is also known that in turbulent shear flows, the turbulence
energy input occurs at small scales near the wall, not on the large scale of the channel.

2.5 Turbulent Kinetic Energy

In section 2.3, we derived a basic relation between the drag τw and the total energy dissipa-
tion rate E . Here, we derive an equation for the fluctuations from the mean flow in turbulent
channel flows. We return to the Reynolds decomposition v = v̄ + v′ with v = U(y, t)x̂ in
channels (2.4) and v′ = (u, v, w) in cartesian coordinates. Substituting v = U(y, t)x̂ + v′ in
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Figure 2.1: Sketch of the Turbulent Kinetic Energy spectrum E(k) where k is wavenum-
ber and E(k)dk is the kinetic energy in the wavenumber band [k, k + dk], according to
the Kolmogorov scaling theory. Energy enters the flow at low wavenumbers (large scales)
and cascades through the inertial range (2.43) to the dissipation scales (2.40) where it is
dissipated.

the Navier-Stokes equations (2.3) and subtracting the mean flow equation (2.5) yields the
equation for the turbulent fluctuations

∂v′

∂t
+ U

∂v′

∂x
+ v

∂U

∂y
x̂ +∇ · (v′v′)− ∂uv

∂y
x̂ = −∇p′ + ν∇2v′, (2.51)

where U and uv are functions of y and t in general. Dotting this equation (2.51) with v′ and
averaging over the whole volume using the divergence theorem, incompressibility ∇ ·v′ = 0
and the boundary conditions, yields the kinetic energy of the fluctuations

d

dt

〈 |v′|2
2

〉
=
〈

(−uv)
∂U

∂y

〉
︸ ︷︷ ︸
Production

− ν
〈|∇v′|2 〉︸ ︷︷ ︸

Dissipation≥ 0

(2.52)

where the brackets 〈· · · 〉 ≡ V −1
∫
V · · · dV denote a volume average, |∇v′|2 = ∂iuj∂iuj

in cartesian index notation (but recall (2.30) in general), and the v′ · x̂ ∂yuv = u ∂yuv
term vanishes upon averaging over horizontal planes since ū = 0. This fluctuating kinetic
energy equation should be contrasted with the mean kinetic energy equation obtained by
multiplying the mean flow equation (2.5) by U and averaging over the volume to obtain

d

dt

〈
U

2

2

〉
=
τw
h
U −

〈
(−uv)

∂U

∂y

〉
− ν

〈(
∂U

∂y

)2
〉

(2.53)

where τwU/h arises as in section 2.3 and U is the bulk velocity in channel flow, but the half
wall velocity difference in plane Couette flow, in either case τwU/h is the energy input per
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unit mass from the pressure gradient or the wall drag. Evidently, the ‘production’ term in
(2.52) appears with the opposite sign in the mean flow kinetic energy (2.53) and is a transfer
term extracting energy from the mean flow U to feed the fluctuations v′. Adding up (2.52)
and (2.53) leads back to the total kinetic energy equation of section 2.3, that reduces to
(2.18), (2.21) for statistically steady flow. For statistically steady state, the fluctuation
kinetic energy equation (2.52) becomes

1
2h

∫ h

−h
(−uv)

dU

dy
dy = ν

〈|∇v′|2 〉 ≥ 0. (2.54)

where the brackets 〈· · · 〉 denote a volume average and the overline (· · · ) denotes a horizontal
average. This equation states that (−uv) and dU/dy must have the same sign, on average,
in order to sustain the turbulent fluctuations.

2.6 Upper bound on drag and dissipation

Malkus [10] proposed a theory of turbulent convection and of shear turbulence where he
invoked concepts of marginal stability, existence of a smallest scale and maximization of
heat flux or momentum transport. This led Howard [5, 6] and Busse [2] to derive bounds
on heat flux in convection and momentum transport in shear flow.

For plane Couette flow, the idea is to look for the field v′ = (u, v, w) that maximizes the
drag τw (2.8) for a given U subject to various constraints including the boundary conditions
U = ±U and v′ = 0 at y = ±h, incompressibility ∇ · v′ = 0 and the fluctuation energy
equation (2.54). The expression (2.8) for the total stress,

τw = ν
dU

dy
− uv (2.55)

can be averaged over the fluid layer −h ≤ y ≤ h to obtain

τw =
νU

h
− 〈uv〉 (2.56)

since U(y = ±h) = ±U and τw is constant, and where the brackets 〈· · · 〉 denote a volume
average. While νdU/dy and −uv in (2.8) are functions of y that add up to the drag τw,
equation (2.56) expresses the drag as a the laminar value νU/h plus a nonlinear, turbulent
contribution −〈uv〉. Normalizing (2.56) by U2 yields

τw
U2

=
1
R
− 〈uv〉

U2
(2.57)

showing the 1/R scaling of the friction factor τw/U2 (recall the Moody diagram of Lecture
1) in laminar flow where 〈uv〉 = 0.

Eliminating τw between (2.55) and (2.56) gives νdU/dy = νU/h + uv − 〈uv〉 which we
can then use to eliminate the mean shear dU/dy in the fluctuation energy equation (2.54)
to obtain the constraint

−〈uv〉U
h

+
1
ν

(
〈uv〉2 − 〈uv2〉

)
= ν

〈|∇v′|2〉 (2.58)
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since 〈uv〉 = 〈uv〉. The 1/ν term on the left hand side is negative definite and can be
written 〈uv〉2 − 〈uv2

〉
= − 〈(uv − 〈uv〉)2

〉
, thus (2.58) shows that we need 〈uv〉 < 0 to

sustain turbulent fluctuations. In the standard non-dimensionalization of velocities by U
and lengths by h, the energy constraint (2.58) reads

−〈uv〉 = R
〈

(uv − 〈uv〉)2
〉

+
1
R

〈|∇v′|2〉 ≥ 0 (2.59)

with the Reynolds number R = Uh/ν. The upper bound problem is then to find the field
v′ = (u, v, w), with ∇ · v′ = 0 and v′ = 0 on the boundaries, that maximizes −〈uv〉 subject
to the energy constraint (2.59) for fixed Reynolds number R. Busse [2] uses a different
convention and normalization and actually solves for the minimum Reynolds number for
a given momentum transport µ ≡ −〈uv〉 ≥ 0. Busse argues that the optimum solution is
streamwise x independent and solves the problem approximately using so-called ‘multi-α
solutions’ that provide the interesting multi-scale optimum field shown in figure 2.2.

Doering and Constantin [3] have developed a different ‘background flow’ approach to
bounds on flow quantities and Kerswell [8] has shown the relationship between the Howard-
Busse and the Doering-Constantin approaches. Plasting and Kerswell [12] obtain the bound

τw
h
U = E < 0.034

U3

h
(2.60)

for plane Couette flow in the limit R = Uh/ν → ∞, where U is the half wall velocity
difference and h is the half distance between the walls.

2.7 Mean flow phenomenology

We now consider some features of a fully turbulent (i.e. R well above transition) shear flow
near a solid boundary. The following arguments are discussed in Kundu and Cohen [9, p.
570] and Pope [13, Chap. 7]. We consider the case where the boundary roughness is small,
so it does not affect the flow. In this section we think of y as the distance to the (bottom)
wall, not to the centerline as earlier in these notes.

Prandtl (1925) proposed that at sufficiently large Reynolds number R = Uh/ν � 1, in
a region sufficiently close to the wall y � h, the mean velocity profile U(y) should have a
universal form, independent of h. This is in the spirit of the inertial scaling discussed earlier.
Indeed, the drag at the wall τw = νdU/dy|wall is a function of the bulk or wall velocity U ,
the half channel height h and the kinematic viscosity ν, in general, but in non-dimensional
form this reads

τw = U2f(R) (2.61)

for some function f(R) where R = Uh/ν is the Reynolds number. This should be obvious
enough but follows more generally from the ‘Buckingham Pi theorem’. Recall that the plot
of τw/U2 as a function of R is the Moody diagram shown for pipe flow in lecture 1. The
assumption of inertial scaling is that f(R) → constant as R → ∞, an asymptotic regime
labeled ‘complete turbulence’ on the Moody diagram. This is equivalent to saying that for
sufficiently large R, the drag at the wall τw is independent of the size of the channel h,
which then implies that it is also independent of ν and can only be proportional to U2, by
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Figure 2.2: Qualitative sketch of the boundary-layer region of the vector field yielding
maximum transport of momentum, from Busse [2]. The streamlines depict the fiuctuation
field v′ = (u, v, w) and show that 〈uv〉 < 0 with u > 0 when v < 0 and u < 0 when v > 0.
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dimensional analysis. It is also equivalent to making the assumption that τw is independent
of ν as R→∞, in which case it is also independent of h by dimensional analysis.

The equation for the mean flow in plane Couette (2.8) can be written

dU

dy
=
u2
τ

ν
+
uv

ν
(2.62)

where it will be convenient to write the drag as τw = u2
τ . In channel flow, integrating (2.6)

over y with (2.7) gives
dU

dy
=
u2
τ

ν

(
1− y

h

)
+
uv

ν
. (2.63)

Recall that we have shifted the y coordinate so that the bottom wall is at y = 0 and the
channel centerline is at y = h for the purpose of this section, with U(0) = 0 and U(2h) = 2U
in plane Couette flow. From the boundary condition and incompressibility, ∇ · v′ = 0, we
have u, v, ∂v/∂y → 0 as y → 0 and dU/dy → u2

τ/ν as y → 0 so U ∼ u2
τy/ν in both Couette

and channel flow. This suggests introducing the friction velocity uτ (often written u∗) and
the ‘wall unit’ δ+,

uτ ≡ √τw, δ+ ≡ ν

uτ
, (2.64)

so that in wall units the asymptotic relation U ∼ u2
τy/ν as y → 0 simply reads

U
+ ∼ y+ (2.65)

where U+ = U/uτ and y+ = y/δ+ = yuτ/ν. Experiments and simulations show that (2.65)
holds in 0 ≤ y+ . 5, a region that is called the viscous sublayer. The friction Reynolds
number is then defined as

Rτ =
uτh

ν
=

h

δ+
, (2.66)

and the channel centerline in wall units is at y+ = Rτ . In laminar flow, τw ∼ νU/h so
Rτ ∼

√
R for ‘low’ R but the inertial scaling τw ∼ U2 gives Rτ ∼ R for large R. Pope

[13, p. 279] gives the approximation Rτ ≈ 0.09R0.88 for turbulent channel flow, but see also
(2.78) and (2.80) below, for a linear relationship up to a log correction.

These considerations suggest that it may be more appropriate to use uτ as the character-
istic velocity for the mean profile U(y) instead of the bulk or wall velocity U and δ+ = ν/uτ
as the length scale instead of h. So the mean profile U(y) depends on uτ , h, ν and y but
by dimensional analysis (and the Pi theorem if necessary) we can write in full generality

dU

dy
=
u2
τ

ν
f(y+, Rτ ) (2.67)

for some function f(·, ·) such that limy+→0 f(y+, Rτ ) = 1, for any Rτ , as follows from (2.62)
and (2.63). Note that y/h = y+/Rτ . Prandtl’s law of the wall postulates that

lim
Rτ→∞
y+ fixed

f
(
y+, Rτ

)
= Φ(y+), (2.68)
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and therefore
dU

dy
≈ u2

τ

ν
Φ(y+), (2.69)

for arbitrary but fixed y+ as Rτ →∞, i.e. for y � h with Rτ � 1. Equation (2.69) can be
written dU

+
/dy+ ≈ Φ(y+) and there is indeed good experimental and numerical evidence

that the mean profile scales in wall units, that is, mean profiles corresponding to different
Rτ will ‘collapse’ onto one another when plotted in wall units, U+(y+).

The law of the wall (2.69) implies that U(y) is independent of h for y/h→ 0. The von
Karman log law can then be derived by assuming further that dU/dy is also independent of ν
for sufficiently large y+, this would require both δ+ � y � h, and require Rτ = h/δ+ � 1.
Recall that in the inertial scaling τw ∼ U2 is independent of both h and ν. For dU/dy
in (2.69) to be independent of ν requires Φ(y+) ∼ 1/y+ giving dU/dy ∼ uτ/y. This is
equivalent to dU+

/dy+ ∼ 1/y+ and yields

U
+ ≈ 1

κ
ln(y+) + C, (2.70)

where κ is known as the von Karman constant. Experiments and simulations show that
κ ≈ 0.41 and C ≈ 5.2 and the log law (2.70) holds approximatively in 30 δ+ . y . 0.3h.
The region 5 . y+ . 30 where the mean velocity profile transitions from the viscous
behavior U+ ∼ y+ (2.65) to the log law (2.70) is called the buffer region.

Von Karman (1930) derived the log law using unsatisfying mixing length arguments and
2D flow considerations, instead of the reasoning presented above. Millikan (1938) provided
a more satisfying asymptotic ‘overlap’ argument (see e.g. [9]) that matches Prandtl’s law
of the wall for y � h to the velocity defect law that applies for y � δ+. Prandtl’s law of
the wall (2.69) can be written

U(y) ∼ uτ F (y+), (2.71)

or U+ ∼ F (y+) where U+ = U/uτ , with F (y+) ∼ y+ as y+ → 0 (2.65) and dF/dy+ =
Φ(y+). This law applies for y � h and Rτ � 1. There is a similar velocity defect law that
would apply for y � δ+ = ν/uτ . By dimensional analysis, we can write

U(y)− UC = uτ g(η,Rτ ) (2.72)

for some function g(·, ·), where U c is the centerline velocity and η ≡ y/h with y = 0 at the
wall to the channel center at y = h. The velocity defect law states that the velocity defect,
U(y)− UC , depends only on uτ and η = y/h but not ν

U(y)− UC ∼ uτ G(η) (2.73)

for Rτ →∞ with η = y/h = y+/Rτ fixed but arbitrary. In the overlap region, δ+ � y � h,
both equations (2.71) and (2.73) should hold and

dU

dy
∼ u2

τ

ν

dF

dy+
, (2.74)

dU

dy
∼ uτ

h

dG

dη
. (2.75)
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Figure 2.3: Sketch of the ‘Law of the Wall’ with its viscous sublayer U+ ∼ y+ for y+ . 5
and the log region U

+ ∼ κ−1 ln y+ + C for 30 . y+ . 0.3Rτ .

Multiplying both equations by y/uτ yields

y+ dF

dy+
∼ ηdG

dη
(2.76)

since y+ = yuτ/ν and η = y/h. Considering Rτ →∞ with y+ fixed but arbitrary gives

y+ dF

dy+
∼ lim

η→0

(
η
dG

dη

)
≡ 1
κ

(2.77)

where κ is the von Karman constant and this yields the log law (2.70).
The von Karman log law (2.70) is a good approximation to the mean velocity in most

of the channel except for a small viscous region with y+ . 30, i.e. y . 30ν/uτ and a small
deviation near the center of the channel. It can therefore be used to derive an approximation
to the friction factor τw/U2 = f(R) for large R. Integrating the log law (2.70) from y+ ≈ 30
to the centerline at y+ = Rτ � 1 and dividing by the half size of the channel in wall units,
Rτ , gives the bulk velocity U as

U

uτ
=

R

Rτ
≈ 1
Rτ

∫ Rτ

30

(
ln y+

κ
+ C

)
dy+ ≈ lnRτ

κ
, (2.78)

for Rτ � 1. Defining uτ/U =
√
λ where λ = τw/U

2 is a friction factor, equation (2.78)
gives

1√
λ

=
R

Rτ
≈ 2.44 lnRτ = 2.44 ln

(
R
√
λ
)

(2.79)
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for 1/κ ≈ 2.44, for channel flow. The friction factor is often defined as 2τw/U2 in the
literature, so watch out for factors of 2. In any case, the friction factor would not be quite
R independent as R → ∞ and there would be a relatively small log correction to that
inertial scaling.

For plane Couette flow, we could simply evaluate (2.70) at the centerline y = h so
y+ = Rτ where U = U (since U(0) = 0 and U(2h) = 2U in the convention of this section)
to obtain

U√
τw
≡ U

uτ
≡ R

Rτ
≈ 1
κ

lnRτ + C (2.80)

and therefore
τwU

h
= E ≈ 1

(5.2 + 2.44 lnRτ )2

U3

h
, (2.81)

using C ≈ 5.2 and κ ≈ 0.41. Again, there would be a log correction to the inertial scaling.
A good engineer would adjust all the constants to fit the data as well as possible, but our
purpose here was only to give a brief introduction to turbulence folklore.



68



Bibliography

[1] D. Acheson, Elementary Fluid Dynamics, Oxford University Press, 1990.

[2] F. H. Busse, Bounds for turbulent shear flow, Journal of Fluid Mechanics, 41 (1970),
pp. 219–240.

[3] C. R. Doering and P. Constantin, Energy dissipation in shear driven turbulence,
Phys. Rev. Lett., 69 (1992), pp. 1648–1651.

[4] J. Hamilton, J. Kim, and F. Waleffe, Regeneration mechanisms of near-wall
turbulence structures, J. Fluid Mech., 287 (1995), pp. 317–348.

[5] L. N. Howard, Heat transport by turbulent convection, Journal of Fluid Mechanics,
17 (1963), pp. 405–432.

[6] L. N. Howard, Bounds on flow quantities, Annual Review of Fluid Mechanics, 4
(1972), pp. 473–494.

[7] G. Kawahara and S. Kida, Periodic motion embedded in Plane Couette turbulence:
regeneration cycle and burst, J. Fluid Mech., 449 (2001), pp. 291–300.

[8] R. Kerswell, Unification of variational principles for turbulent shear flows: the back-
ground method of doering-constantin and the mean-fluctuation formulation of howard-
busse, Physica D: Nonlinear Phenomena, 121 (1998), pp. 175 – 192.

[9] P. Kundu and I. Cohen, Fluid Mechanics, Academic Press, Elsevier, 2010.

[10] W. V. R. Malkus, Outline of a theory of turbulent shear flow, Journal of Fluid
Mechanics, 1 (1956), pp. 521–539.

[11] T. Mullin, Experimental studies of transition to turbulence in a pipe, Annual Review
of Fluid Mechanics, 43 (2011), pp. 1–24.

[12] S. C. Plasting and R. R. Kerswell, Improved upper bound on the energy dissipa-
tion rate in plane Couette flow: the full solution to Busse’s problem and the Constantin–
Doering–Hopf problem with one-dimensional background field, Journal of Fluid Mechan-
ics, 477 (2003), pp. 363–379.

[13] S. Pope, Turbulent Flows, Cambridge University Press, 2000.

69



70

[14] P. Sagaut and C. Cambon, Homogeneous Turbulence Dynamics, Cambridge Uni-
versity Press, 2008.

[15] D. Viswanath, Recurrent motions within plane Couette turbulence, J. Fluid Mech.,
580 (2007), pp. 339–358.



Lecture 3

Stability of Shear Flow
notes by Zhan Wang and Sam Potter
Revised by FW
WHOI GFD Lecture 3, 6/22/2011

A look at energy stability, valid for all amplitudes, and linear stability for shear flows.

3.1 Nonlinear stability

Associated Navier-Stokes equation:

∂tv + v · ∇v +∇P = F + ν∇2v with ∇ · v = 0 (3.1)

In this equation ν = R−1 is the nondimensional viscosity coefficient, where R is the Reynolds
number. Let us assume a base flow U(x, t) that is a known solution to equation (7.1) driven
by the body force F (e.g. an imposed pressure gradient F = −x̂ dP0/dx in channel flow,
or gravity for flow down an inclined channel) and/or the boundary conditions. Next we
perturb the flow as v = U + u where u = (u, v, w) represents the perturbation. We plug
this v into equation (7.1) which yields:

∂t
(
U + u

)
+ U · ∇U + u · ∇U + U · ∇u + u · ∇u +∇(P + p

)
= F + ν∇2

(
U + u

)
(3.2)

Since U is a solution of equation (7.1) the associated terms cancel and we get the pertur-
bation equation:

∂tu + U · ∇u + u · ∇U + u · ∇u +∇p = ν∇2u (3.3)

with the incompressible constraint ∇ · u = 0. For the domain V with fixed boundary ∂V ,
the boundary condition for u is homogeneous, namely, u

∣∣
∂V

= 0 or periodic. Note that the
decomposition v = U+u into a base flow plus a perturbation is different from the Reynolds
decomposition v = v̄ + v′ into a mean plus a fluctuation. The base flow U is a solution of
the Navier-Stokes equations and is independent of the perturbation u, but the mean flow
is v̄ is not a solution of Navier-Stokes and is coupled to the fluctuations v′ through the
Reynolds stresses.
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In order to calculate the total kinetic energy of the perturbation, we multiply equation
(3.3) by u and integrate over the domain V∫

V
u ·
(
∂tu + U · ∇u + u · ∇U + u · ∇u +∇p− ν∇2u

)
dV = 0 (3.4)

Direct computation using integration by parts and the incompressibility condition (∇·U =
0→ ∇ · u = 0) yields

d

dt

∫
V

|u|2
2
dV =

∫
V
−u · ∇U · u dV − ν

∫
V
∇u : ∇uT dV

,
∫
V
−u · S · u dV︸ ︷︷ ︸
Production

− ν

∫
V
|∇u|2 dV︸ ︷︷ ︸

Dissipation

(3.5)

where S is the symmetric tensor strain rate tensor defined as Sij = 1
2

(
∂iUj + ∂jUi

)
and

uiSijuj = ui(∂iUj)uj using Einstein summation and ∇u : ∇uT , (∂iuj)(∂iuj) = |∇u|2 +
|∇v|2 + |∇w|2 , |∇u|2. Since the dissipation term is always positive, if the production term
is negative or zero the the flow is absolutely stable, that is, stable to any perturbation u.

Example: Rigid body rotation is absolutely stable, since the production term is 0. In this
case

U =

0 −Ω 0
Ω 0 0
0 0 0

xy
z

⇒ ∇U =

 0 Ω 0
−Ω 0 0
0 0 0


Sij =

1
2
(
∂iUj + ∂jUi

)⇒ S =

0 0 0
0 0 0
0 0 0

 . (3.6)

Definition (growth rate): We can think of the right hand side of (3.5) normalized by 2E ,∫
V |u|2dV as a growth rate since if the perturbation had the form u , eλtû(x), as would

be the case for time independent U in the linear limit, we would have |u|2 = exp(2σt)|û|2
and (2E)−1dE/dt = σ = <(λ), so σ, the real part of λ, is called the growth rate. We have
−u ·S ·u 6 λmaxu ·u where λmax is the largest eigenvalue of the real and symmetric (−S).
Manipulating the right hand side of equation (3.5) gives

σ ,

∫
V −u · S · udV∫

V |u|2dV
− ν

∫
V |∇u|2dV∫
V |u|2dV

6
λmax

∫
V |u|2dV∫

V |u|2dV
− ν

∫
V |∇u|2dV∫
V |u|2dV

6 λmax (3.7)

and this provides a simple upper bound on the growth rate of any instability.

Theorem (Serrin 1959): For any steady solution U there exists a critical Reynolds number
Re1 > 0 such that for any flow with Re 6 Re1, the system is absolutely stable. See [2,
§53.1] or [1, §9.6].
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Next let’s turn to shear base flows, i.e. U = U(y)x̂ and

S =

 0 U ′

2 0
U ′

2 0 0
0 0 0

 , where U ′ ,
dU

dy
(3.8)

The corresponding kinetic energy takes the form

d

dt

∫
V

|u|2
2
dV =

∫
V
−uvdU

dy
dV − ν

∫
V
|∇u|2dV (3.9)

that is very similar to the fluctuation energy equation derived in lecture 2, but again the
production term there involved the mean shear rate dU/dy that depends on the Reynolds
stress uv, while here we have the base shear rate dU/dy that is independent of uv. For
shear flows, the growth rate σ < max(U ′/2) (assuming U ′ ≥ 0) and this maximum would
require very large Reynolds numbers ν = 1/R → 0 and u = −v with w = 0, localized near
the max of U ′. In the case of nondimensional Couette flow U(y) = y, the energy equation
reads

d

dt

∫
V

|u|2
2
dV =

∫
V
−uv dV − ν

∫
V
|∇u|2dV (3.10)

From this equation it can be seen that −uv > 0 occurring somewhere in the domain V is
a necessary condition for instability. Turning to the energy stability of shear flows, if we
define the critical value νE

νE , max

∫
V
−uvdU

dy
dV

ν

∫
V
|∇u|2dV

(3.11)

it directly follows that

d

dt

∫
V

|u|2
2
dV 6 (νE − ν)

∫
V
|∇u|2dV. (3.12)

The inequality (3.12) shows that the perturbation is stable if νE < ν ⇔ R < 1/νE , RE .
This is a sufficient condition for stability and is known as the absolute stability threshold.
Therefore an argument for absolute stability turns into an optimization problem (3.11) with
the constraints ∇ · u = 0 and u

∣∣
∂V

= 0

Remark: For Couette flow, the critical Reynolds number for absolute stability is about 20.7,
see [2, §53.1].

3.2 Linear stability

The flow is decomposed into a base flow U and a perturbation about the base flow u

v = U + u. (3.13)
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Plugging into the Navier-Stokes equations and neglecting the quadratic nonlinearity u · ∇u
gives

∂tu + U · ∇u + u · ∇U +∇p = ν∇2u. (3.14)

The base flow is now taken to be a shear flow, U = U(y)x̂. Taking the curl of (3.14) and
dotting with the vertical unit vector ŷ gives

(∂t + U∂x − 1
R
∇2)η = −∂zv dU

dy
(3.15)

where η = ŷ · ∇ × u is the vertical component of the vorticity and v = ŷ · u is the vertical
component of the perturbation velocity. Taking the curl of (3.14) twice and dotting with
the vertical unit vector gives

(∂t + U∂x − 1
R
∇2)∇2v − ∂xvd

2U

dy2
= 0. (3.16)

Equations (3.15) and (3.16) are known as the Squire and Orr-Sommerfeld equations, respec-
tively. Note that the v equation (3.16) is decoupled from the η equation (3.15). There are
two basic kinds of boundary conditions at the walls of the channel. One is no-slip boundary
condition u = v = w = 0 which implies there is no perturbation at the walls. In the Orr-
Sommerfeld equation this boundary condition takes the form v = 0, vy = −ux−wz = 0 and
η = uz−wx = 0. The other is ‘free slip’ boundary conditions (i.e. stress or Neumann bound-
ary conditions on the full flow) v = uy = wy = 0 which implies v = 0, ηy = uyz − wxz = 0
and vyy = −uxy −wzy = 0 at the walls of the channel. Next we turn to the Fourier analysis
of the Orr-Sommerfeld system, since U = U(y) only, equations (3.15) and (3.16) admit
solutions of the form

η(x, y, z, t) = η̂(y)eλtei(αx+γz)

v(x, y, z, t) = v̂(y)eλtei(αx+γz)

where λ is a complex-valued growth rate, α and γ are the real streamwise and spanwise
wavenumbers, respectively, and η̂(y) and v̂(y) are complex functions. Plugging the above
forms of v and η into equations (3.15) and (3.16) gives[

λ+ iαU − 1
R

(D2 − k2)
]
η̂ = −iγv̂U ′ (3.17)[

λ+ iαU − 1
R

(D2 − k2)
]

(D2 − k2)v̂ − U ′′iαv̂ = 0 (3.18)

where a prime indicates a y-derivative, D = d/dy, and k2 = α2 + γ2. Equation (3.18) can
be simplified by multiplying through by k/α[

λ̃+ ikU − 1

R̃
(D2 − k2)

]
(D2 − k2)v̂ − U ′′ikv̂ = 0 (3.19)

where λ̃ = λk/α and R̃ = Rα/k.

Squire’s theorem. Equation (3.19) is (3.18) with α ≡ k and rescaled growth rate and
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Reynolds number. Therefore a three dimensional perturbation with wavenumbers (α, γ)
at Reynolds number R with growth rate λ is mathematically equivalent to a two dimen-
sional perturbation with wavenumbers (k, 0) but with Reynolds number R̃ = Rα/k ≤ R and
growth rate <(λ̃) = <(λ)k/α ≥ <(λ). In other words, for any 3D unstable mode (α, γ) there
is a 2D unstable mode (

√
α2 + γ2, 0) with larger growth rate at a lower Reynolds number.

This is Squire’s Theorem [3], [2]. Another way to derive this result, is to let αU(y) = kŨ(y)
in (3.19) and conclude that a 3D perturbation is equivalent to a 2D perturbation with a
weaker shear flow Ũ(y) = αU(y)/k.

Furthermore, it is easy to show that the homogeneous η equation, that is (3.17) with
v = 0 has only damped modes (multiply the homogeneous equation by η∗ the conjugate
of η, integrate from wall to wall and add the complex conjugate of the result to show that
λ+ λ∗ = 2σ ≤ 0). This is physically obvious since (3.17) is an advection diffusion equation
when v = 0, in fact the decay of

∫
V η

2dV for v = 0 can be shown for the full linear PDE
(3.15). Thus the eigenvalue problem for (3.15), (3.16), reduces to the consideration of the
Orr-Sommerfeld equation (3.19) for 2D perturbations only. Note that equation (3.17) with
v 6= 0 exhibits transient growth for 3D perturbations with ∂zv 6= 0, as discussed in lecture
1. The physical mechanism behind this is the redistribution of streamwise velocity U(y) by
the perturbation v to create u perturbations and η = ∂zu− ∂xw.

3.3 Energy equation

From Squire’s theorem it suffices to consider (3.18) with k = α[
λ+ iαU − 1

R
(D2 − α2)

]
(D2 − α2)v̂ − U ′′iαv̂ = 0. (3.20)

The equation for the complex conjugate v̂∗ reads[
λ∗ − iαU − 1

R
(D2 − α2)

]
(D2 − α2)v̂∗ + U ′′iαv̂∗ = 0. (3.21)

since U(y), α and R are real and where λ∗ is the complex conjugate of λ. Doing the following
surgery: v̂∗ · (3.20) + v̂ · (3.21) and integrating from the bottom of the domain (y = y1) to
the top of the domain (y = y2) yields

(λ+ λ∗)
∫ y2

y1

(|Dv|2 + α2|v|2) dy︸ ︷︷ ︸
kinetic energy

=
∫ y2

y1

U ′Tdy︸ ︷︷ ︸
production

− 2
R

∫ y2

y1

|φ|2dy︸ ︷︷ ︸
dissipation

. (3.22)

Here T , iα(v̂Dv̂∗ − v̂∗Dv̂) ≡ −α2uv, and φ , (D2 − α2)v̂ with∫ y2

y1

|φ|2dy =
∫ y2

y1

|D2v − α2v|2dy =
∫ y2

y1

(|D2v̂|2 + 2α2|Dv̂|2 + α4|v̂|2) dy ≥ 0. (3.23)

It is noted that when doing the integration by parts, the boundary condition v̂
∣∣
∂V

= 0 is
used, and either Dv̂

∣∣
∂V

= 0 or D2v̂
∣∣
∂V

= 0 can be applied to lead the same equality (3.22).
In other words, (3.22) holds for both no-slip and free-slip boundary conditions.
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Equation (3.22) is simply the version of (3.9) for 2D eigensolutions v = v̂(y)eλteiαx with
u = û(y)eλteiαx = (i/α)Dv̂ eλteiαx to satisfy ∂xu + ∂yv = 0 and the ‘Reynolds stress’ for
such a perturbation is

−uv = − (û∗v̂ + ûv̂∗) e2σt =
i

α
(v̂Dv̂∗ − v̂∗Dv̂) e2σt ≡ T

α2
e2σt (3.24)

where 2σ = λ + λ∗ and uv is the horizontal average of uv. Likewise, φ = (D2 − α2)v̂
is effectively the z component of vorticity ωz = ∂xv − ∂yu = (iαv̂ − (i/α)D2v̂) eλteiαx =
(−i/α)φ(y) eλteiαx.

For free-slip boundary conditions, v̂ = D2v̂ = 0 at the walls, we can derive a useful form
of the enstrophy equation, i.e. an equation for the integral of vorticity squared. Consider∫ y2
y1

[
(D2 − α2)v̂∗ · (3.20) + (D2 − α2)v̂ · (3.21)

]
dy = 0 to obtain

(λ+ λ∗)
∫ y2

y1

|φ|2dy = −
∫ y2

y1

U
′′′
Tdy︸ ︷︷ ︸

production

− 2
R

∫ y2

y1

[
|Dφ|2 + α2|φ|2

]
dy︸ ︷︷ ︸

dissipation≥0

(3.25)

It follows directly that U
′′′

= 0 implies linear stability for free-slip, that is 2σ = λ+λ∗ ≤ 0.
In other words plane Couette flow U(y) = y and plane Poiseuille flow U(y) = 1 − y2, in
−1 ≤ y ≤ 1, are linearly stable for free-slip (i.e. imposed stress) boundary conditions as
well as any combination of Couette and Poiseuille U(y) = a+ by + cy2, among other flows.
We’ll discuss this further in the next lecture.

The enstrophy equation (3.25) only holds under free-slip boundary condition, since
v̂
∣∣
∂V

= D2v̂
∣∣
∂V

= 0 leads to the cancelation of the boundary terms in integration by parts
but a boundary term of indefinite sign subsists for no-slip v̂ = Dv̂ = 0 at the walls. The
physical meaning of these boundary terms is that vorticity can be generated (or destroyed)
at the walls for no-slip but not for free-slip.
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Lecture 4

Stability of Shear Flow: part 2
notes by Matthew Chantry and Lindsey Ritchie
Revised by FW
WHOI GFD Lecture 4, 6/23/2011

We derive necessary conditions for linear instability of shear flows and prove linear stability
of plane Couette, Poiseuille and Kolmogorov flows for viscous flow with stress boundary
conditions (i.e. free-slip perturbations) thereby generalizing well-known inviscid stability
results. We give a straightforward derivation of classic inviscid results by combining the
perturbation energy and enstrophy equations. We then summarize the stability of var-
ious canonical shear flows and conclude the implications of energy stability and linear
theory. Furthermore, we examine inflectional instabilities and introduce their role in the
self-sustaining process.

4.1 Necessary conditions for linear instability

In the previous lecture the full flow v has been decomposed into a base shear flow U(y)x̂
and a perturbation u. The Navier-Stokes equations have been linearized about the base
flow U(y)x̂ and this led us to the Squire and Orr-Sommerfeld equation after elimination of
the pressure. Since the equations for u have been linearized and its coefficients depend only
on U(y), we can reduce the solution to the consideration of perturbations of the form u =
û(y)eλteiαxeiγz with α, γ real (i.e. Fourier-Laplace expansion of u). Then Squire’s theorem
shows that it suffices to consider 2D perturbations (γ = 0) to investigate exponentially
growing modes, that is solutions with 2<(λ) = λ + λ∗ = 2σ > 0. We define λ = σ − iω
where i2 = −1 and σ and ω are real.

We derived an energy and enstrophy equation for those linear 2D perturbations and
both equations include a production term that involves the perturbation ‘Reynolds stress’
−uv ≡ α−2T (y)e2σt, where

T (y) = −α2 (û∗v̂ + ûv̂∗) = iα (v̂Dv̂∗ − v̂∗Dv̂) , (4.1)

such that T = 0 at the walls at y = y1 and y = y2 since v = 0 there. We write D ≡ d/dy
for compactness. We drop the hat over v̂ below.
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The perturbation energy equation derived in the previous lecture implies that for an
instability, σ > 0, we must have

2σ
∫ (|Dv|2 + α2|v|2)+

2
R

∫
|φ|2 =

∫
U ′T = −

∫
(U − U0)T ′ > 0, (4.2)

where
∫

(· · · ) is short for
∫ y2
y1

(· · · )dy, the integral from the bottom wall at y = y1 to the
top wall at y2, the prime (·)′ ≡ D(·) ≡ d(·)/dy, that is U ′ = dU/dy, U ′′ = d2U/dy2,. . . The
function φ = (D2 − α2)v is effectively the perturbation vorticity (see lecture 3).1

Equation (4.2) follows from multiplying the Orr-Sommerfeld equation (4.17) by v∗, in-
tegrating over the full channel from y = y1 to y2 using integration by parts and taking the
real part of the result. The last expression in (4.2) was obtained by integration by parts
of
∫
U ′T and U0 is an arbitrary constant since

∫
U0T

′ = U0

∫
T ′ = 0 because T = 0 at the

walls.
For free-slip boundary conditions, that is v = D2v = 0 at the walls (corresponding

to stress boundary conditions on the full flow, that is v · ŷ = 0 with ∂yv‖ fixed), the
perturbation enstrophy equation derived in lecture 3 reads

2σ
∫
|φ|2 +

2
R

∫ (|Dφ|2 + α2|φ|2) =
∫
U ′′T ′ =

∫
(−U ′′′)T > 0, (4.3)

and the enstrophy production
∫
U ′′T ′ =

∫
(−U ′′′)T should be positive for an instability

σ > 0. This equation was obtained by multiplying the Orr-Sommerfeld equation (4.17) by
φ∗ = (D2 − α2)v∗, integrating over the channel using multiple integrations by parts then
taking the real part of the integral equation (i.e. adding its complex conjugate). This yields
the enstrophy equation (4.3) together with the boundary term

1
R

[
φ∗Dφ+ φDφ∗

]y2
y1

(4.4)

on the right hand side of (4.3). This boundary term vanishes for v = D2v = 0 on the
boundary since φ = D2v − α2v. For no-slip, v = Dv = 0, the boundary term (4.4) is sign
indefinite and corresponds to the generation or destruction of enstrophy at the walls.

Now, since φ = (D2 − α2)v, integration by parts with v = 0 at the walls gives∫
|φ|2 =

∫ (|D2v|2 + 2α2|Dv|2 + α4|v|2) (4.5)

so we can combine the energy and enstrophy equation taking (4.3) - α2 (4.2) to obtain

2σ
∫ {|D2v|2 + α2|Dv|2}+

2
R

∫
|Dφ|2 =

−
∫

(U ′′′ + α2U ′)T =
∫ (

U ′′ + α2(U − U0)
)
T ′ > 0. (4.6)

1In the classical literature, e.g. [1, Chap. 4], it is common to use a streamfunction φ(y) for the Rayleigh and
Orr-Sommerfeld equations, we prefer to use the vertical velocity v in those equations and our φ = (D2−α2)v
is effectively the vorticity, ω = ∂xv − ∂yu = (iα)−1φ(y)eλteiαx.
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We can go even further and take (4.6) - β2 (4.2) to obtain

2σ
∫ {(|D2v|2 − β2|Dv|2)+ α2

(|Dv|2 − β2|v|2)}+
2
R

∫ (|Dφ|2 − β2|φ|2) =

−
∫ (

U ′′′ + (α2 + β2)U ′
)
T =

∫ (
U ′′ + (α2 + β2)(U − U0)

)
T ′ (4.7)

The left hand side of (4.7) is not necessarily positive even for σ > 0 unless β is small
enough. Indeed, the left hand side consists of integrals of the form

∫
(|Df |2 − β2|f |2) and

each of these integrals will be positive provided β ≤ π/2 for free slip boundary conditions
v = D2v = φ = 0 at the walls at y = ±1 since for such functions one can show by variational
calculus that ∫ 1

−1
|Dv|2dy ≥ π2

4

∫ 1

−1
|v|2dy, (4.8)

∫ 1

−1
|Dφ|2dy ≥ π2

4

∫ 1

−1
|φ|2dy, (4.9)

∫ 1

−1
|D2v|2dy ≥ π2

4

∫ 1

−1
|Dv|2dy, (4.10)

so the left hand side of (4.7) will always be positive if σ > 0 (instability) and β2 ≤ π2/4.
This yields another necessary condition for instability

−
∫ (

U ′′′ +
(
α2 +

π2

4

)
U ′
)
T =

∫ (
U ′′ +

(
α2 +

π2

4

)
(U − U0)

)
T ′ ≥ 0. (4.11)

Condition (4.11) is expressed for a domain normalized to −1 ≤ y ≤ 1, for y1 ≤ y ≤ y2 the
factor π2/4 should be replaced by π2/H2, with H = y2 − y1.

Thus for a linear shear flow instability, σ > 0, we must have positive energy production∫
U ′T = − ∫ (U − U0)T ′ > 0 from (4.2), always, as well as condition (4.11) for viscous flow

with free-slip perturbations. Note that (4.11) together with (4.2) includes and therefore
supersedes (4.3) and (4.6) and we obtain the necessary conditions for linear instability for
viscous flow with free-slip, or for inviscid flow,

∫
(−U ′′′)T ≥

(
α2 +

π2

H2

)∫
U ′ T > 0 (4.12)

which, after integration by parts with T = 0 at the walls, can also be written as

∫
U ′′T ′ ≥

(
α2 +

π2

H2

)∫
(U0 − U)T ′ > 0 (4.13)

where H = y2 − y1 is the total channel height, U0 is an arbitrary constant,
∫ ≡ ∫ y2y1 dy and

T = T (y) is the perturbation Reynolds stress (4.1).
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4.1.1 Linear stability of Couette, Poiseuille and Kolmogorov

The enstrophy equation (4.3) allows us to conclude that plane Couette flow U = y, plane
Poiseuille flow U = 1− y2 and any combination of Couette and Poiseuille U = a+ by+ cy2

for any constant a, b, c (i.e. shear flow driven by both a pressure gradient and imposed
stress at the walls) are linearly stable for inviscid or viscous flow with free-slip, since all
these flows have U ′′′ = 0 and no enstrophy production, therefore σ < 0 for any 0 ≤ R <∞
from (4.3).2

Condition (4.12), or (4.13), allows us to show linear stability for free-slip of the Kol-
mogorov flow

U(y) =
sin(βy)

sinβ
(4.14)

whenever β ≤ π/2. The Kolmorogov flow (5.28) is normalized so U(±1) = ±1 as for Couette
flow which it asymptotes to for β → 0, and we can take β ≥ 0 without loss of generality. The
Kolmogorov flow is an inflectional profile with a vorticity maximum at y = 0. For (5.28),
we have −U ′′′ = β2U ′ = β3 cos(βy)/ sinβ so instability of the wall-bounded Kolmogorov
flow requires, from (4.12), that∫ 1

−1
cos(βy) T dy > 0 and β2 ≥ α2 +

π2

4
, (4.15)

where T (y) is defined in (4.1), so Kolmogorov flow (5.28) with 0 ≤ β ≤ π/2 is linearly
stable. This includes Couette flow for β → 0 and the flow U(y) = sin(πy/2) used in the
derivation of the SSP model [9], as well as all sinusoidal profiles between those two flows.

Lou Howard (1997, private communication) provided a proof for the linear stability of
the U = sin(πy/2) viscous flow with free-slip perturbations used in [9]. His proof made use
of the energy (4.2) and enstrophy (4.3) equations and U ′′ = (−π2/4)U for U = sinπy/2 to
eliminate the production terms through the combination (4.3) - π2/4 (4.2).

Linear instability for inviscid or viscous flow with no-slip or free-slip requires positive
perturbation energy production

∫
U ′T > 0 from (4.2). If we could show that U ′T ≥ 0

pointwise, for instance, then we could generalize the classic Rayleigh and Fjortoft theorems
of inviscid flow (see below) to viscous flow with free-slip perturbations. Indeed if we assume
that U ′T is positive pointwise, not just on average as required by (4.12), then∫

(−U ′′′)T ′ =
∫ (−U ′′′

U ′

)
U ′T ≤ max

y

(−U ′′′
U ′

)∫
U ′T

and (4.12) would yield the necessary condition3

max
y1≤y≤y2

(−U ′′′
U ′

)
≥ α2 + π2/H2. (4.16)

2We stress again that these results only apply to viscous flows with stress boundary conditions, that is,
v · n and ∂nv‖ fixed (i.e. fixed stress ν∂nv‖), where n is the unit normal to the wall and v‖ = v − (v · n)n
is parallel to the wall. From incompressibility, this yields v = D2v = 0 at the walls. For no-slip, (4.3) has
an extra boundary term of indefinite sign.

3as claimed in the lecture but flagged by Matt Chantry as only valid for U ′T ≥ 0 pointwise, which we
have not shown. Good eye, Matt!
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This would be a stronger version of Fjortoft’s theorem, implying for instance that a flow
such as U = y3 with U ′ = 3y2 ≥ 0 and U ′′′ = 6 > 0 could not be unstable but other
inflectional flows such as U = tanh(βy) could be unstable provided β is large enough. This
would be a nice result since the linear stability of shear flows (see e.g. [1, Chap. 4 ]) is in
an unsatisfactory state of affairs, with classic inflectional instability results derived only for
inviscid flows. If we could extend those results to viscous flow with free-slip, this would
certify that the difference is not between inviscid or viscous flow, but between free-slip or
no-slip, as numerical calculations indicate. The physical difference arising because no-slip
allows the generation of enstrophy at the walls but free-slip or viscosity-free do not.

4.1.2 Inviscid results

The energy (4.2) and enstrophy (4.3) integrals, and the instability conditions (4.12), (4.13),
still apply for inviscid flow with 1/R ≡ 0 in which case the Orr-Sommerfeld equation for
v(y) [

λ+ iαU − 1
R

(D2 − α2)
]

(D2 − α2)v − U ′′iαv = 0. (4.17)

reduces to the Rayleigh equation

(U − c)(D2 − α2)v − U ′′v = 0 (4.18)

with λ , −iαc, that is c = iλ/α = ω/α + iσ/α for λ = σ − iω with i2 = −1 and σ, ω
real. So an instability for Rayleigh’s equation occurs when =(c) = σ/α > 0, taking α > 0
without loss of generality. The only boundary condition for Rayleigh’s equation is no-flow
through the walls, that is v = 0 at y = y1 and y2.

Rayleigh’s equation (4.18) allows us to derive an expression for T ′, the Reynolds force.
Substituting for D2v from (4.18) into T ′ ≡ DT = dT/dy calculated from (4.1) gives

T ′ = iα(vD2v∗ − v∗D2v) = 2σ
U ′′

|U − c|2 |v|
2 (4.19)

hence T ′ has the sign of U ′′ when σ = <(λ) > 0 (instability).
Rayleigh’s theorem (1880). Since T = 0 at the walls (4.1), T ′ and therefore U ′′ must

change sign in the domain for instability. Thus U ′′ must vanish somewhere in the domain
but not everywhere (Couette flow) since σ = 0 from (4.2) and (4.19) when 1/R ≡ 0 and
U ′′ = 0 everywhere.

Fjortoft’s theorem (1950). Substituting for T ′ from (4.19) into (4.2) shows that insta-
bility requires (U0 − U)U ′′ ≥ 0 somewhere in the domain, for any U0, which again gives
Rayleigh’s theorem that U ′′ must change sign in the domain. Picking U0 = U(ys) = Us
where U ′′(ys) = 0, so both Us − U and U ′′ change sign when y crosses ys, gives the pertur-
bation energy equation (4.2) as∫ y2

y1

(|Dv|2 + α2|v|2) dy =
∫ y2

y1

(Us − U)U ′′

|U − c|2 |v|2 dy ≥ 0, (4.20)

for σ 6= 0 and Fjortoft’s theorem that (Us−U)U ′′ ≥ 0 somewhere in the domain is necessary
for instability. This implies linear stability of flows such as U = y3 for which (Us−U)U ′′ =
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−6y4 ≤ 0, but possible instability of flows such as U = sin(βy)/ sinβ that have U ′′ =
β2(Us − U), see e.g. [1, Fig. 4.2].

We can go further by substituting for T ′ from (4.19) into (4.11) or (4.13), with U0 = Us,
to find that (U ′′)2 ≥ (α2 +π2/H2)(Us−U)U ′′ somewhere in the domain. If we now assume
that (Us − U)U ′′ ≥ 0 everywhere, we obtain that

max
y1≤y≤y2

(
U ′′

Us − U
)
≥ α2 +

π2

H2
(4.21)

is necessary for instabilitym where H is the full height of the channel. This implies stability
of the Kolmorogov flows U = sin(βy)/ sinβ when |β| ≤ π/H as we already established for
viscous flow with free-slip, but now also includes other similar flows such as U = tanhβy
which are only unstable for β large enough (left to the reader). Condition (4.21) effectively
contains the results of Friedrichs (1942) and Drazin and Howard (1966) [1, p. 133, 134].
Our derivation is more straightforward but the result is not quite identical since Friedrichs
provides an expression for a neutral wavenumber. Condition (4.21) shows that inflectional
instabilities are larger scale instabilities, that is, they require 0 ≤ α2 ≤ β2

s − π2/H2, where
β2
s ≡ max(U ′′/(Us − U)).

Since the production integral on the right hand side of (4.20) can written for any constant
U0 in place of Us and in particular for U0 = cr = <(c), and since |U − c|2 = (cr − U)2 + c2

i

with ci = =(c) = σ/α, we can infer that while U ′′ = 0 somewhere is necessary for instability,
the maximum instability (max ci) occurs for values of cr that tend to maximize U ′′/(cr−U)
and functions v(y) that are largest near those maxima. For profiles that are anti-symmetric
about the inflection point, such as U = sinβy or tanhβy, this will likely be for cr = Us.

4.2 Rayleigh’s piecewise linear models

Rayleigh’s eigenvalue problem (4.18) is difficult to solve when U(y) is a smoothly varying
function (figure 4.1(a)). However, if U(y) is defined as a piecewise linear function (as
shown in figure 4.1(b)), then the solutions of Rayleigh’s equation are simple exponential or
hyperbolic functions which must satisfy certain matching conditions at a discontinuity of
U(y) or U ′(y) [1].

The matching conditions can be derived by going back to the primitive equations [1, §23]
and [8, §6.2.1] and the reader should study those derivations. Here, we start from Rayleigh’s
equation (4.18) and imagine a continuous deformation from a smooth profile to a piecewise
linear profile, for instance a continuous deformation of U = tanh(y/h) into the piecewise
linear profile in fig. 4.1(b)). Then Rayleigh’s equation applies but U ′′ →∞ at corners and
0 everywhere else, i.e. U ′′ tends to a sum of Dirac delta functions and Rayleigh’s equation
implies that D2v → ∞ at those points also, to balance the U ′′ divergences. That is, the
jumps in U ′ must be balanced by jumps in v′ as governed by Rayleigh’s equation. Indeed,
Rayleigh’s equation (4.18) can be rewritten in the form(

(U − c)v′ − U ′v)′ − α2(U − c)v = 0, (4.22)

and integrating (4.22) across a vanishing rapid transition region for U ′, say from y = y0− ε
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(a) (b)

-h

h

yy

xx

U(y)x̂

Figure 4.1: (a) Unbounded smooth shear flow. (b) Piecewise-linear unbounded shear flow.

to y = y0 + ε with ε→ 0+ gives the jump condition[
(U − c)v′ − U ′v

]y+0
y−0

= 0. (4.23)

This jump condition corresponds to continuity of pressure [1, §23] and [8, §6.2.1].
If we also allow for jumps in U , these must be matched by jumps in v and that balance

is revealed by rewriting (4.22) as(
(U − c)2

(
v

U − c
)′ )′

− α2(U − c)v = 0. (4.24)

which shows that v/(U − c) cannot jump since such a jump could not be balanced in
Rayleigh’s equation. Thus, the jump conditions for v at a jump of U is[

v

U − c
]y+0
y−0

= 0. (4.25)

A discontinuous U profile corresponds to the Kelvin-Helmholtz model with a sharp interface
between two differentially moving fluid layers. The jump condition (4.25) corresponds to
the linearized material interface condition [1, §23] and [8, §6.2.1].

Away from jumps, when the velocity profile is piecewise linear, U ′′ = 0, and so Rayleigh’s
stability equation (4.18) has the general solution

v(y) = Aeαy +Be−αy (4.26)

for arbitrary constants A,B. Therefore, we can use conditions (4.23) and (4.25) to match
solutions of the form (4.26) to solve any problem with a piecewise linear velocity profile.

For the piecewise linear unbounded shear flow, we take

U(y) =


U0 if y ≥ h,
U0y/h if − h ≤ y ≤ h,
−U0 if y ≤ −h,

(4.27)
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as in figure 4.1b. Note that U ′′ = (−U0/h)δ(y−h) + (U0/h)δ(y+h) where δ(·) is the Dirac
delta function and that U ′′ changes sign. We could consider this problem as the limit for
ε → 0+ of the smooth profile with U ′′ = (−U0/h)G(y − h, ε) + (U0/h)G(y + h, ε) where
G(y, ε) = (πε)−1/2 exp(−y2/ε) is the standard Gaussian.

Solving (4.18) for (4.27) with v → 0 as y → ±∞ gives

v(y) =


Ae−α(y−h) if y > h,

Beαy + Ce−αy if − h < y < h,

Deα(y+h) if y > −h,
(4.28)

with α > 0 (and D here is a constant not the d/dy shorthand as before). Since U is
continuous, the jump condition (4.25) reduces to continuity of v at y = ±h, hence

A = Beαh + Ce−αh,

D = Be−αh + Ceαh.
(4.29)

It is now convenient to let
ĉ =

c

U0
, α̂ = αh, (4.30)

(or equivalently taking h and U0 has length and velocity scales leading to h ≡ 1 and U0 ≡ 1)
then applying the jump condition (4.23) at y = ±h, substituting for A and D from (4.29)
gives (

2α̂(1− ĉ)− 1
)
Ceα̂ = Be−α̂,(

2α̂(1 + ĉ)− 1
)
Beα̂ = Ce−α̂,

(4.31)

which after elimination of B and C yields
(
(2α̂− 1)2 − 4α̂2ĉ2

)
= e−4α̂ and

ĉ2 =
(1− 2α̂)2 − e−4α̂

4α̂2
, (4.32)

such that ĉ2 → −1 as α̂ → 0, ĉ2 = 0 at α̂ ≈ 0.63 and ĉ2 < 0 in 0 < α̂ . 0.63. A
negative ĉ2 means c = cr + ici with cr = 0 and ci = ±|c|, hence instability. The growth
rate (4.18) λ = −iαc = αci is real when c2 is negative. Define λ̂ = α̂ĉi = αci(h/U0), so
λ̂ = λ(h/U0) and this non-dimensional growth rate is plotted in fig. 4.2 as a function of the
non-dimensional wavenumber α̂ = αh.

Kelvin-Helmholtz. The limit h→ 0 yields the Kelvin-Helmholtz model with α̂ = αh→ 0
in (4.32) yielding ĉ2 → −1 so c = ±iU0 and λ = −iαc = ±αU0. The Kelvin-Helmholtz
model is ill-posed since λ = αU0 can be as large as one desires by taking α large enough,
but Rayleigh’s piecewise linear model with a length scale h, eqns. (4.27), (4.32) and fig.
4.2, is well-posed and gives a qualitatively and quantitatively valid picture of the instability
that only occurs for α . 0.63/h. Although, ‘Kelvin-Helmholtz instability’ is often used
to describe general inflectional instability and vortex roll-up, the Kelvin-Helmholtz model
is a bit too singular to provide insights into the instability for smooth profiles U(y). The
Rayleigh model (4.27) is more physical and shows that the instability results from the
interaction between two regions where U ′′/(cr−U) is large and positive with U ′′ of opposite
signs. Valis [8, §6.2.4] provides a useful interpretation of the instability as an interaction
between edge waves for the Rayleigh model.
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α̂

Re(λ̂)

Figure 4.2: Growth rate λ̂ = α̂ĉi = αci(h/U0) with c given by equation (4.32). The flow is
unstable for α̂ = αh < 0.63.

Reynolds stress. The perturbation Reynolds stress is given by (4.1)

−uv =
i

α

(
v
dv∗

dy
− v∗ dv

dy

)
. (4.33)

In the case of piecewise linear unbounded shear flow (4.28) this gives

−uv =


0 if y > h,

2i(BC∗ −B∗C) if − h < y < h,

0 if y > −h.
(4.34)

then eliminating C using (4.31) with c = ici and σ̂ = α̂ĉi > 0 gives

−uv = 4σ̂|B|2e2α̂ > 0 (4.35)

in −h < y < h, where α̂ = αh and σ̂ = σ(h/U0) with σ = αci > 0 for an unstable mode.
Therefore, constant positive perturbation Reynolds stress −uv occurs throughout the shear
layer and U ′T ≥ 0 pointwise (4.2) (but this is for the inviscid problem). The Reynolds
stress −uv transports momentum from y = h to y = −h and vice-versa. The Reynolds
force onto the mean flow −duv/dy consists of two delta functions, one negative at y = h
and a positive at y = −h, slowing down the mean at y = h and speeding it up at y = −h.

4.3 Instability from viscosity and no-slip

Remarkably, viscosity and no-slip at the walls can lead to linear instability even for flows
with U ′′′ = 0, such as plane Poiseuille flow U = 1− y2, that are stable for free-slip as shown
in sect. 4.1. In plane Poiseuille flow, Heisenberg [2] found a weak linear 2D instability, that
occurs at R ' 5772 [4] and disappears as R→∞. In boundary layer flows Tollmien [7] and
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Schlichting [6] demonstrated a weak 2D instability which has a critical Reynolds number
of approximately R ' 500 and again disappears as R → ∞. However, unlike the previous
two flows, Romanov [5] proved that plane Couette flow is linearly stable for all values of R
(although this was already believed since the work of Hopf (1914), [1, §31.1]). While pipe
flow (or Hagen-Poiseuille flow) has not been proven linearly stable for all R, it is believed to
be so, and this has been shown up to Re ' 105 experimentally and R ' 107 computationally
(see lecture 1). When the no-slip boundary conditions are replaced by free-slip boundary
conditions for the perturbations then we showed earlier in sect. 4.1 that plane Poiseuille
and Couette flows are linearly stable for all R. The instability for viscous flow with no-slip
in channel flow arises because of the generation of vorticity at the boundary (4.4). This
is a delicate process because viscosity leads to dissipation of enstrophy in the bulk as well
as generation of enstrophy at the boundary (4.3), these two viscous effects are of the same
order and oppose each other.

(Note: A lecture on the Orr-Sommerfeld equation for R < ∞, with a look at Heisenberg
and Tollmien’s work and critical layers was skipped in the GFD program.)

4.4 Failures of linear theories

We now summarise the results derived from linear theory in the last two lectures. From the
previous lecture we have the governing linear equations

(
∂

∂t
+ U

∂

∂x
− 1
Re
∇2

)
η = −U ′∂v

∂z
, (4.36)(

∂

∂t
+ U

∂

∂x
− 1
Re
∇2

)
∇2v − U ′′ ∂v

∂x
= 0, (4.37)

where v = ŷ · v and η = ŷ · ∇ × v = ∂zu − ∂xw. For v = 0, we can show that η → 0 for
η = 0 or ∂nη = 0 at the walls, since the homogeneous η equation is an advection diffusion
equation. Exponential instabilities therefore can only originate from the v equation and
Squire’s theorem (lecture 3) shows that 2D (x, y), that is independent of the spanwise
direction z, are more unstable than 3D disturbances. However, the canonical shear flows
(Couette, Poiseuille, pipe) do not have a linear instability, except for a weak linear instability
for viscous plane Poiseuille flow with no slip at the walls.

Energy stability on the other hand (lecture 3 and [1, §53.1]) shows that 2D perturbations
depending on (y, z) only, independent of the streamwise direction x, lead to the lowest
Reynolds number below which the flow is absolutely stable. Hence linear stability theory
and energy stability theory give, literally, orthogonal results!

The x-independent perturbations of energy stability theory lead to the largest initial
perturbation energy growth since they maximize production over dissipation (lecture 3),
but such x independent perturbations ultimately decay. We discussed this in lecture 1 and
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can show it by considering the full non-linear Navier-Stokes equations with no x-dependence,

∂u

∂t
+

�
�

��
0

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
=

�
�
��

0

−∂p
∂x

+ F +
1
R
∇2u,

∂v

∂t
+

�
�

��
0

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+

1
R
∇2v,

∂w

∂t
+

�
�
��

0

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+

1
R
∇2w,

(4.38)

where v = (u, v, w) and where F in the u equation is a driving body force. The continuity
equation reduces to ∇ · v = ∂yv + ∂zw = 0. Hence, the equations for v and w decouple
from the equation for u and the latter is a passive scalar forced by F and redistributed
by v, w. This decoupling implies that v and w do not have any forcing and therefore
they decay because of viscosity, no matter their initial amplitude [3]. This was discussed
and proved in lecture 1. The proof is simple and consists in deriving the equation for
the cross-stream kinetic energy

∫
A(v2 + w2) where A is the cross-section and showing that

d
dt

∫
A(v2 + w2) = −(1/R)

∫
A

(|∇v|2 + |∇w|2) ≤ 0.
These x-independent perturbations also lead to the largest linear growth of the pertur-

bation energy. For such perturbations, η = ∂zu− ∂xw reduces to

η =
∂u

∂z
,

and we can therefore integrate equation (4.36) with respect to z to recover the streamwise
u = U(y) + ũ velocity equation (4.38) linearized about the base shear flow U(y)

∂ũ

∂t
− 1
R
∇2ũ = −vU ′. (4.39)

Hence, x-independent but z-dependent v(y, z) perturbations can generate large perturba-
tions of streamwise velocity u and large η = ∂zu. However, they eventually decay in the
linear theory as well as in the full x-independent nonlinear theory, as there is no feedback
upon v. The reader is referred to the discussions and models in lecture 1.

4.5 3D, nonlinear ‘instability’

Thus linear theory of shear flows fails. Energy stability and upper bound theories (lecture
2) suggest x-independent perturbations as most effective at initial perturbation energy
growth and maximum momentum transport and energy dissipation, but truly x-independent
perturbations always decay, for all amplitudes. So we need a nonlinear, 3D theory. Ouch!

Yet, we’re not far. The x-independent perturbations indeed are very good at redis-
tributing the streamwise velocity u and transporting momentum, that is maximizing −uv
and perturbation energy production −uv U ′. This is clear from equation (4.39) which for
large R gives ũ ∼ −vU ′t so −uv ∼ v2 U ′t.
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These perturbations are necessarily spanwise z dependent, otherwise continuity and
the boundary conditions would require v = 0. These perturbations typically introduce z-
inflections in the streamwise velocity profile and those lead to instabilities of inflectional
type, but as a result of z inflections, not y inflections as in the classical linear theory. These
inflectional instabilities extract energy and momentum from the u-fluctuations of course and
will therefore accelerate the return to the laminar flow, unless they manage to regenerate
v. This seems like a lot of ifs, however that is essentially the fundamental self-sustaining
process that leads to the possibility of 3D, nonlinear states disconnected from the laminar
flow, and ultimately the sustenance of turbulent shear flows. The self-sustaining process
will be written up in more detail in the next lectures. (There was lots of hand-waving and
jumping around by the lecturer that is difficult to write-up).
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Lecture 5

Feedback on vertical velocity.
Rotation, convection,
self-sustaining process.
Notes by Andrew Crosby, Keiji Kimura, Adele Morrison
Revised by FW
WHOI GFD Lecture 5, 24 June 2011

We have shown in the previous lectures that the −vU ′ term in the u equation, that is
∂tu = −vU ′ + · · · , is the key term leading to momentum transport −uv ∼ vvU ′t and per-
turbation energy production −uv U ′ ∼ vv(U ′)2t > 0. This term is the redistribution of
streamwise velocity that releases energy from the background shear to enable bifurcation
to turbulent flow. However, in shear flows we have not yet identified a mechanism that
can feedback from the u fluctuation to v, thus v creates just the right u through the −vU ′
advection term, but how is v sustained? In this lecture, we first review two linear mech-
anisms of feedback on v involving extra physics, (1) through the Coriolis term in rotating
shear flow, (2) through buoyancy in Rayleigh-Bénard convection. We derive the famous
Lorenz model for convection, then consider a similar model for shear flows that illustrates
the mechanisms involved in the nonlinear feedback from u to v, yielding a self-sustaining
process for shear flows v → u → · · · → v. This is the model that was already discussed in
lecture 1.

5.1 Redistribution of streamwise velocity

In this lecture we will consider the mechanisms that lead to a 3D nonlinear self-sustaining
process in shear flows. Let us first consider what this may look like in plane Couette flow.
If we introduce a perturbation in the y-direction (in this case v > 0), such as a cross-stream
jet, the perturbation will create so-called streamwise rolls, as shown in Figure 5.1, that is a
flow v = (0, v(y, z), w(y, z)) as a result of incompressibility and the boundary conditions.1

The streamwise rolls redistribute the streamwise velocity, by advecting negative momentum

1Streamwise rolls have their axis in the streamwise direction and they are streamwise-independent. Their
horizontal wavevector kH = (kx, kz) = (0, kz) is actually pointing in the spanwise direction z.
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(u < 0) up and towards z = 0 (where z = 0 is defined as the position of the jet) and positive
momentum (u > 0) down and away from z = 0.

y

z

z = 0

 positive momentum 

flux away from z = 0

negative momentum 

 flux towards z = 0

Figure 5.1: Streamwise rolls redistribute the momentum of the mean shear from the bottom
wall up and toward z = 0 and from the top wall down and away from z = 0. The mean
shear flow is into and out of the screen.

The redistribution of the streamwise momentum results in a pattern of so-called streaks
in u, with low streamwise velocity at the position of the jet. ‘Streaks’ refers to the patterns
made by hydrogen bubbles released in the near wall region of turbulent shear flows. In
theory, they refer to spanwise fluctuations of the streamwise velocity u, that is the departure
of the x averaged u, ux(y, z) from the x and z averaged u, u(y), so the streaks are defined
as ux(y, z)− u(y) (with t implicit). Figure 5.2 shows that the perturbation induces streaks
of faster and slower streamwise flow. The profile of u now has inflection points, but in the
spanwise z direction, and so we may expect it to be unstable.

z

x

u(y,z)

Figure 5.2: Top view: Streamwise rolls redistribute the mean shear creating streaks.

However, in order for the flow to bifurcate from the laminar flow, it is not enough to
have rolls (0, v(y, z), w(y, z)) creating unstable streaky flow (u(y, z), 0, 0), we need feedback
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from the streak instability into the rolls sufficient to lead to a self-sustaining process. To
investigate whether a mechanism exists to feedback on the v perturbation, let us consider
the energy stability discussed in earlier lectures. If the perturbations are independent
of the streamwise x direction, we can separate out the streamwise from the cross-stream
components as follows:

d

dt

∫
u2

2
dV =

∫ (−uvU ′)dV − 1
R

∫
|∇u|2dV (5.1)

d

dt

∫
v2 + w2

2
dV = − 1

R

∫ (|∇v|2 + |∇w|2) dV (5.2)

It is evident from eqn. (5.2) that there is dissipation, but no production, of the cross-stream
components. Therefore a further mechanism is needed if the rolls and streaks created by
the initial perturbation are to be sustained.

We can further investigate the feedbacks between the streamwise rolls and streaks by
considering the streamwise and cross-stream linearized momentum equations eliminating
any x dependence (see lectures 1 and 4)

∂tu− 1
R
∇2u = −vU ′ (5.3)

∂tv − 1
R
∇2v + ∂yp = 0 (5.4)

∂tw − 1
R
∇2w + ∂zp = 0 (5.5)

with the pressure p(y, z, t) enforcing ∂yv + ∂zw = 0 and where U ′ = dU/dy is the shear
rate of the laminar base flow. Equation 5.3 further emphasises the creation of streaks from
the streamwise rolls; an updraft v > 0 creates u < 0, while a downdraft v < 0 creates
u > 0, assuming U ′ > 0. However the cross-stream velocities v, w are decoupled from the
streamwise velocity u and therefore the rolls will decay.

5.2 Rotation induced shear instability

One method of creating feedback from u onto v is to add rotation to our system of plane
Couette flow. Let us consider rotation of the form Ωẑ, with Ω > 0. The linearized momen-
tum equations in the rotating frame involve the Coriolis force −2Ωẑ× v = (2Ωv,−2Ωu, 0)
(the centrifugal force is absorbed into the pressure gradient) and read

∂tu− 1
R
∇2u = −vU ′ + 2Ωv (5.6)

∂tv − 1
R
∇2v + ∂yp = −2Ωu (5.7)

with the same w equation (5.5). The Coriolis force adds a feedback from u to v. The
Coriolis force is energy conserving since it is always orthogonal to v. However, in the
presence of background shear U ′, the advection of U by v creates u that is rotated into
v by the Coriolis term and this can lead to a linear instability. As shown previously in
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Figure 5.1, a positive perturbation in v will lead to a negative perturbation in u, assuming
U ′ > 2Ω via the advection of mean shear (5.6). Coriolis −2Ωu in the v equation (5.7) turns
this negative u into a positive feedback on v, thereby sustaining the rolls and destabilizing
the flow. Ignoring diffusion and the pressure gradient, equations (5.6) and (5.7) suggest
instability when

2Ω(U ′ − 2Ω) > 0, (5.8)

for a base flow U(y)x̂ and rotation Ωẑ. Thus, too much rotation |U ′| < 2|Ω| will lead
to stability and any rotation in the direction of the shear vorticity (i.e. U ′Ω < 0) will
also stabilize, but a bit of rotation in the direction opposite to the shear flow vorticity (i.e.
U ′ > 2Ω > 0 or U ′ < 2Ω < 0) will lead to linear instability as a result of shear redistribution
and the Coriolis force.

This simple outline of rotating plane Couette flow is a way of understanding the classic
‘centrifugal’ instability seen in Taylor-Couette flow, in which fluid contained within two con-
centric cylinders is unstable when the inner cylinder rotates faster than the outer cylinder,
and indicate that that classic instability should perhaps be called ‘Coriolis instability’ in-
stead of ‘centrifugal’. The rolls and streaks in Taylor-Couette flow are shown in Figure 5.3.
Placing a plane Couette flow on a rotating table leads to similar ‘Taylor vortices’ as done
in experiments by Tillmark and Alfredsson.

Figure 5.3: Toroidal vortices in Taylor-Couette flow (by M. Minbiole and R. M. Lueptow)
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5.3 Thermal convection and the Lorenz model

A second method of creating feedback onto the cross-stream velocity perturbations v, w is
to add a thermal gradient. We consider the Boussinesq thermal convection between planes,
i.e. Rayleigh-Bénard convection (see Figure 5.4), especially in the weakly nonlinear regime,
and derive qualitatively the reduced system of ODEs known as the Lorenz model.

Cold

Hot

Figure 5.4: Schematic picture of Rayleigh-Bénard convection. Gravity acts downward in
the −ŷ direction.

The governing equations of Boussinesq thermal convection between planes are

∂u
∂t

+ (u · ∇)u +∇p = gαT ŷ + ν∇2u, (5.9)

∇ · u = 0, (5.10)
∂T

∂t
+ (u · ∇)T = κ∇2T, (5.11)

where u is the velocity, −gŷ is the acceleration of gravity, T the temperature2 departure
from some mean temperature so that the density ρ ≈ ρ0(1 − αT ) with α ≥ 0 the thermal
expansion coefficient, ν the kinematic viscosity and κ the thermal diffusivity. The distance
between the two plates is H = 2h and the temperature of the lower plate is T1 at y = −h
and the upper plate is at T2 at y = h, with T1 + T2 = 0. Thermal convection occurs when
the temperature difference ∆T = T1 − T2 is larger than a certain threshold. The base
temperature profile is

T = Tc = −∆T
H

y, (5.12)

which the conductive state solution of (5.9), (5.10) and (5.11) with u = 0, for all values of
the parameters. Buoyancy gαTc ŷ in (5.9) is balanced by an hydrostatic pressure.

(1) Insert rolls. We choose the boundary conditions as free-slip at the walls, that is v =
∂yw = ∂2

yv = 0, this is a physically reasonable boundary condition that is mathematically
convenient since it allows the representation of the velocity by Fourier modes. We insert a
‘streamwise roll’ into the flow that can be taken as

v = V (t) cos (βy) cos(γz), (5.13)

2Here, T is temperature, not the perturbation Reynolds stress that appeared in earlier lectures!
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where v = ŷ·u and β = π/(2h) so v = ∂2
yv = 0 at y = ±h and γ is an arbitrary wavenumber.

We choose the flow in the (y, z) plane to match the shear flow problem (fig. 5.1). From
incompressibility ∂yv + ∂zw = 0, the z velocity w = ẑ · u must be

w =
β

γ
V (t) sin (βy) sin(γz), (5.14)

with ∂yw = 0 at y = ±h since β = π/(2h). So this u = (0, v, w) flow (5.13), (5.14) as the
shape of the rolls sketched in Figure 5.4 and satisfies the boundary conditions v = ∂yw =
∂2
yv = 0 at y = ±h.

(2) Rolls redistribute temperature. Let T = Tc(y) + T̃ (y, z, t), that is, the conductive
profile (5.12) plus a perturbation T̃ . Then, (5.11) becomes

∂T̃

∂t
+ u · ∇T̃ = −vdTc

dy
+ κ∇2T (5.15)

which is entirely similar to the streamwise velocity perturbation equation in shear flows
(5.3) (and earlier lectures). Inserting the v mode (5.13) into the temperature equation
(5.15) with Tc = −y∆T/H shows that the −vdTc/dy = v∆T/H term generates a thermal
perturbation of the form

T̃ = T11(t) cos (βy) cos(γz) + · · · , (5.16)

that is the rolls (5.13) redistribute the linear temperature profile (5.12) inducing a temper-
ature fluctuation T̃ that has the same spatial form as v. The nonlinear term u · ∇u for
(5.13), (5.14) can be absorbed into the pressure gradient,3 so it does not distort the velocity
field. If it did (for different rolls, say for no-slip), we would assume at this stage that the
rolls are weak so ∇× (u · ∇u) is small.

(3) Temperature fluctuation feedback onto rolls. The temperature fluctuation T̃ (5.16)
yields a buoyancy fluctuation gαT̃ ŷ in the momentum equation (5.9) that perfectly feeds
back on the v mode (5.13). These V → T11 → V interactions through the base state Tc(y)
will lead to thermal instability provided this feedback can overcome the viscous and thermal
damping of the V and T11 modes, as shown below (5.27).

(4) Mean temperature gradient reduction. The ‘next’ effect4 is the interaction between
the rolls (5.13) and the induced fluctuation T̃ (5.16), in the temperature equation (5.15).
This interaction arises from the advection term −u · ∇T̃ in (5.15) for v, w and T̃ as in
(5.13), (5.14), (5.16), then after a simple calculation

−u · ∇T̃ = −v∂T̃
∂y
− w∂T̃

∂z
=
β

2
V T11 sin(2βy) + · · · (5.17)

so this interaction generates a sin(2βy) temperature fluctuation, which is a modification of
the mean temperature profile T (y, t), that is the z (and x) averaged temperature profile.

3∇×(u·∇u) = u·∇ωx̂ where ω = ∂yw−∂zv for this 2D flow. Using a streamfunction v = ∂zψ, w = −∂yψ
gives u ·∇ω = (∂yψ∂z − ∂zψ∂y)(∂2

y + ∂2
z )ψ. Now for (5.13), ψ = (V/γ) cosβy sin γz and ∇2ψ = −(β2 + γ2)ψ

so u · ∇ω = 0. Thus u · ∇u = ∇χ, indeed χ =
`

cos 2βy − (β2/γ2) cos 2γz
´
V 2/4.

4All these effects take place simultaneously but here we identify a cause and effect sequence, starting
with a small stirring of the fluid, then analyzing the dynamical consequences of that stirring.
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We label this mode the T20 mode since it is a temperature mode with y wavenumber 2β and
z wavenumber 0, hence the ‘two-zero’ (20) mode. This reduction of the mean temperature
gradient will lead to a reduction of the T11 forcing and saturation of the instability.

Therefore, the temperature distribution has the form

T = −y∆T
H

+ T11(t) cos (βy) cos(γz) + T20(t) sin(2βy) + · · · . (5.18)

together with the velocity field u = (0, v, w) with v and w as in (5.13), (5.14). The cause-
effect chain that we have in mind being V −→ T11 −→ V =⇒ T20 =⇒ T11, where as in
the scenarios of lecture 1, a −→ indicates a linear interaction (that is between the base
flow and a fluctuation) and a =⇒ a nonlinear interaction between fluctuations. Note that
amplitude-wise T11 ∼ V , T20 ∼ V T11 ∼ V 2 and the feedback from V and T20 onto T11 is of
order V T20 ∼ V 3.

We have identified a physically consistent set of modal interactions and can truncate
the expansion at this level. In general, this truncation will be valid only for sufficiently
small amplitude V since other modes are generated. We truncate the above formulation
using what is known as the Galerkin truncation or projection, that is we substitute these
expansions for v, w and T̃ into the equations and throw away higher order modes such as
cos 2γz, cos 3βy, etc. In the Galerkin truncated system, the dependent variables are the
modal amplitudes V (t), T11(t) and T20(t), thus we reduce the complete set of PDEs (5.9),
(5.10), (5.11) to 3 ODEs.

The temperature equation (5.15) is easy enough, but the u equation is complicated by
the pressure gradient needed to enforce incompressibility. For 2D flow, we can eliminate
pressure and u using a streamfunction, or as in the derivation of the Orr-Sommerfeld equa-
tion by taking ŷ · (∇ × ∇(∗)) = (∂y∇ − ŷ∇2) · (∗) ≡ P v · (∗), so P v · u = −∇2v and
P v · ∇ϕ = 0. Applying this P v operator to (5.9) yields

∂t∇2v = ν∇2∇2v + gα∇2
⊥T + P v · (u · ∇u) (5.19)

where ∇2 = ∂2
x + ∂2

y + ∂2
z and ∇2

⊥ = ∂2
x + ∂2

z and u follows from v and incompressibility in
2D flow, and P v · (u ·∇u) = 0 for (5.13). Additional η = ŷ ·∇×u and mean flow equations
would be needed for general 3D flow but (5.19) together with (5.15) suffice for 2D flow.
Then for v and T as in (5.13) and (5.18), equations (5.15) and (5.19) yield the governing
equations for the modal amplitudes V (t), T11(t) and T20(t),

dV

dt
+ ν11V = g11 T11,

dT11

dt
+ κ11T11 = V ∆T

H −β V T20,

dT20

dt
+ κ20T20 = β

2 V T11,

(5.20)

where

ν11 = ν(β2 + γ2), κ11 = κ(β2 + γ2), κ20 = κ(4β2), g11 = gα
γ2

β2 + γ2
(5.21)
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and β = π/(2h) = π/H. This is the famous Lorenz model of convection.5 One solution of
these equations is V = T11 = T20 = 0 which corresponds to the conductive state. Linearizing
about that state yields

dV

dt
+ ν11V = g11T11,

dT11

dt
+ κ11T11 = V ∆T

H ,
(5.25)

which has an unstable mode V (t) = eλtV̂ , T11(t) = eλtT̂11 if g11∆T/H > ν11κ11, that is for

gα∆T
H

γ2

β2 + γ2
> νκ(β2 + γ2)2 (5.26)

or in non-dimensional form with β̂ = βH = π and γ̂ = γH

Ra ≡ gα∆TH3

νκ
>

(π2 + γ̂2)3

γ̂2
≥ 27π4

4
≈ 657.5, (5.27)

where Ra is the non-dimensional Rayleigh number and the minimum Ra = 27π4/4 = Rac
value for onset of convection with free-slip occurs at γ̂ = γH = π/

√
2.

This, of course, is just the beginning of the story since the simple nonlinear model (5.20)
has some rather interesting chaotic nonlinear dynamics as first studied by E. Lorenz (1963),
and for the the full PDEs (5.9), (5.10), (5.11), this is just the onset of convection leading to
multiscale turbulence for larger Ra, much beyond the range of validity of the simple Lorenz
model.

5.4 SSP Model

In the previous sections we have illustrated instabilities that result from the interactions
v → u → v thanks to base velocity redistribution −vdU/dy and the Coriolis force, and
from the interaction v → T11 → v thanks to mean temperature redistribution −vdT/dy and
buoyancy in convection. In bare shear flows, there is no direct linear feedback from u→ v,
but there are more involved 3D nonlinear mechanisms that provide that crucial feedback.
The entire set of mechanisms is called the self-sustaining process and we illustrate it here
with a low order model similar in spirit to the Lorenz model of convection.

From the earlier energy stability result (Equation 5.2) we know that unless we have vari-
ation of the velocity in the x direction any perturbations must eventually die out (possibly
after some initial transient growth) thus any successful model must include such variation.

5The standard non-dimensional form of the Lorenz model is

dx

dτ
= σ(y − x), (5.22)

dy

dτ
= −y + rx− xz, (5.23)

dz

dτ
= −bz + xy, (5.24)

where τ = κ11t, σ = ν/κ, r = g11(∆T )/(ν11κ11H), b = κ20/κ11 and x = βV/(
√

2κ11), y =
β/(
√

2κ11)(g11/ν11)T11, z = (β/κ11)(g11/ν11)T20.



Streaky flows 101

Figure 5.5: Wall-bounded Kolmogorov flow, U = sinβy with βy = ±π/2 at the walls, is
stable for all Reynolds numbers for free-slip perturbations, as proved in lecture 4.

The SSP model was already described in lecture 1 and was first described in [2, 3]. The
model can be derived by Galerkin truncation from the full Navier-Stokes equations [4], and
some mode linking.

Brief derivation

We consider a wall-bounded Kolmogorov flow with free-slip at the walls, figure 5.5. This
will allow us to use Fourier modes to represent the flow and lead to a simpler and cleaner
model than other shear flows with no-slip.

U(y, t) = M(t) sin(βy)x̂ (5.28)

with β = π/2 and the walls at y = ±1. We assume that this flow is maintained by a body
force, so that the evolution of M in the absence of any perturbations is given by

Ṁ +
1
R
M =

1
R
, (5.29)

for which one solution is simply M = 1 and R is the Reynolds number. We proved in lecture
4 that this wall-bounded Kolmogorov flow is stable for all Reynolds numbers for free-slip
perturbations.

As before we consider an initial perturbation consisting of rolls whose axes are in the x
direction, see Figure 5.1, and flow in the y and z directions as follows:

v = V (t) cos(βy) cos(γz),

w =
β

γ
V (t) sin(βy) sin(γz)

(5.30)

this V (t) mode satisfies incompressibility ∂yv + ∂zw = 0 and the free-slip boundary con-
ditions v = ∂yw = ∂2

yv = 0 at βy = ±π/2. This is the same rolls as in the Lorenz model
(5.13). The vertical component, v, of these perturbations advects momentum associated
with the background flow and leads to a perturbation of the velocity in the x direction,
which to leading order has structure

u = U(t) cos(γz), (5.31)

these are the streaks and the need for this mode arises from the redistribution of the base
shear (5.28) by the rolls (5.30), so

v∂yU + w∂zU = βVM cos γz (cosβy)2x̂ =
β

2
VM cos γz (1 + cos 2βy) x̂.
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x

z

U

Figure 5.6: Inflectional instability viewed from below.

The cos 2βy was dropped in the derivation in [4] but it might be better to keep it and
define the streaks as U(t) cos γz (1 + cos 2βy). Moehlis et al. [1] have considered small
modifications of the 8 mode model in [4] that includes a few such adjustments of the mode
definitions. In any case, there is a VM forcing of U and likewise the advection by the rolls
of the streaks ux̂ with u as in (5.31) gives

v∂yu+ w∂zu = −β V U sinβy (sin γz)2 = −β
2
V U sinβy (1− cos 2γz)

and this gives a negative feedback on the base flow (5.28). Again we truncate the cos 2γz
contribution.

At this level, our Galerkin truncation for the redistribution of the base flow (5.28) by
the streamwise rolls (5.30) has the form

Ṁ + 1
RM = 1

R −UV
U̇ + 1

RU = VM

V̇ + 1
RV = 0

(5.32)

where the dot ˙( ) ≡ d/dt and the coefficients have been set to 1 to highlight the structure
of the interactions as clearly as possible. However, as our motion is still independent of
the x direction, there is nothing to regenerate the vertical motion V and all perturbations
will eventually die out. Viewed from above the flow now has strips of faster and slower
flowing fluid, the streaks U (5.31) sketched in Figure 5.2, which have been generated by
the advection of the mean shear M by the rolls V . This streaky flow has inflection points
in the spanwise z direction and hence we might expect it to be unstable to an inflectional
instability as discussed in lecture 4. This instability provides a mechanism for introducing
the variation in the x direction that we know is vital to sustain the perturbations. This
inflectional instability of U cos γzx̂ will consist of the growth of ‘streak-sloshing’ mode,
illustrated in Figure 5.6, that is most simply represented by a spanwise velocity perturbation
periodic in x, that is

w = W (t) cos(αx) (5.33)

(we could just as well choose sinαx, this is a phase choice that is inconsequential to the
dynamics at this point). This spanwise perturbation should be added to the streamwise roll
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contribution (5.30) so the full spanwise velocity at this level of truncation is

w = W (t) cos(αx) +
β

γ
V (t) sin(βy) sin(γz) (5.34)

Mode Ψ100 = (0, 0, cosαx) in (5.33) can grow from the U streak mode Ψ001 = (cos γz, 0, 0)
but only through interaction with the velocity mode (−γ cosαx sin γz, 0, α sinαx cos γz)
labelled Ψ101 in [4]. The Ψ modes are solenoidal, ∇ · Ψ = 0, and satisfy the boundary
conditions. The details are left to [4] but the conceptual result is that we now have an
x dependent mode W (t) and interactions between U and W such that W grows from an
instability of U , so the ‘forcing’ of W is in the form of a UW . Conceptually, the dynamics
reads

Ṁ + 1
RM = 1

R −UV
U̇ + 1

RU = VM −W 2

V̇ + 1
RV = 0

Ẇ + 1
RW = UW

(5.35)

Unfortunately there is still no feedback on V so our perturbations must still die out. This is
an important point rarely understood, streak instability does not guarantee bifurcation from
the laminar flow. The streak instability could simply, as in model (5.35), destroy the streaks
U created by V from M , and therefore accelerate the return of the flow to the laminar state
(M,U, V,W ) = (1, 0, 0, 0).

In fact it is remarkably difficult to generate feedback on the streamwise rolls from the
streak eigenmode interactions. This feedback requires the interaction of modes with opposite
y-symmetry, i.e. an even mode interacting with an odd mode, and those modes arise from
each other through interaction with the mean shear. Thus as observed in [4], the mean
shear M plays the dual role of supplier of energy and momentum but also shaper of the
streak instability in order to allow feedback on V from the nonlinear interaction of the
streak instability eigenmode. It turns out that no less than five x-dependent modes are
required before we can get feedback on V , [4, §III. A], giving an 8th order model. However
we can simplify the model by kinematic linking of those 5 modes into a single complex mode
of amplitude W , the details are spelled out in [4, §III. C] and the result conceptually is

Ṁ + 1
RM = 1

R −UV
U̇ + 1

RU = VM −W 2

V̇ + 1
RV = 0 W 2

Ẇ + 1
RW = UW −VW

(5.36)

with, at last, feedback on V .
However, the derivation in [4] shows that these interactions are necessarily accompanied

by a feedback from W to M , which can be interpreted as the unavoidable shearing of x
dependent modes by the mean shear M sinβy x̂ that tends to destroy the W mode and by
conservation of energy, transfer that energy and momentum back to M . This is therefore a
mean shear stabilizing term and it is key to the 1/R threshold discussed in lecture 1. The
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complete model [4, eqn. (20)] is then(
d

dt
+
κ2
m

R

)
M =

κ2
m

R
−σu UV +σmW 2(

d

dt
+
κ2
u

R

)
U = σuMV −σwW 2(

d

dt
+
κ2
v

R

)
V = σvW

2(
d

dt
+
κ2
w

R

)
W = σw UW −σv VW −σmMW

(5.37)

where all κ2 and σ are positive constants and R > 0 is the Reynolds number. This model
(6.11) has a laminar flow (M,U, V,W ) = (1, 0, 0, 0), that is linearly stable for all Reynolds
number. The nonlinear interactions conserve energy and

d

dt

(
M2 + U2 + V 2 +W 2

2

)
= κ2

m

M

R
− 1
R

(
κ2
mM

2 + κ2
UU

2 + κ2
V V

2 + κ2
WW

2
)

(5.38)

from which we see that the kinetic energy of the flow decays due to viscous dissipation
with the only energy input coming from the forcing of the mean shear, as should be. This
energy equation also shows that there is no blow-up since we have linear energy input with
quadratic dissipation and any non-laminar statistically steady state must have 0 < M < 1.

Brief analysis of the model

An analysis of the SSP model (6.11) is given in [4] and also in the notes for lecture 1.
Although the laminar flow is stable for all Reynolds numbers, as is the case for the full
linearized Navier-Stokes PDEs, the SSP model (6.11) allows the onset of non-trivial steady
states for sufficiently large R. For those non-trivial states,

1. V redistribute M to create U . This is the σuMV term, and −σuUV is the corre-
sponding ‘Reynolds stress’.

2. the streaks U are unstable leading to the growth of W . This is the σw UW term, this
is an instability, not a direct forcing. The corresponding ‘Reynolds stress’ on U is the
−σwW 2 term,

3. Ah, Ha! nonlinear feedback from W onto V , the σvW 2,

4. but also a feedback onto M , σmW 2, pushing up the transition threshold.

This process supports onset of non-trivial steady states for R above a critical value and these
states arise from ‘saddle-node’ bifurcations, although typically both states are unstable from
onset. Because of the higher dimensionality, both the saddle and the ‘node’ are unstable at
onset. In the low order model, the upper branch of solutions (the node), gains stability at
higher R. The bifurcation and scaling of W are sketched in Figure 5.7. The lower branch
saddle scales like W ∼ R−1 and the upper branch like W ∼ R−3/4.
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W

Re

~Re-3/4 

~Re-1 

S-N

Figure 5.7: Non-trivial steady states of the SSP model (6.11), Re is the Reynolds number.
The dashed line indicates instability of the solution. The laminar flow at W = 0 is stable
for all Re.
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Lecture 6

Exact Coherent States
Notes by Chao Ma and Samuel Potter
Revised by FW
WHOI GFD Lecture 6, June 27, 2011

Shear enhanced dissipation, R1/3 scaling in shear flows. Critical layer in lower branch
exact coherent states. SSP model modified to include critical layers. Construction of
exact coherent states in full Navier-Stokes. Optimum traveling wave and near-wall coherent
structures, 100+ streak spacing. Physical space structures of turbulence. State space
structure of turbulence.

6.1 Shear enhanced dissipation

In the (quick) overview of the SSP model, we discussed how the shearing of x-dependent
modes by the mean shear leads to a positive feedback on the mean flow. In the SSP model
these are the W 2 term in the M equation and the −MW term in the W equation. Although
this interaction is not necessary for the self-sustaining process itself, it is the key effect that
leads to the R−1 scaling of the transition threshold, and of the V and W components of the
lower branch steady state (while U and 1−M are O(1), see lectures 1 and 5).

Advection by a shear flow leads to enhanced dissipation and an R−1/3 scaling char-
acteristic of linear perturbations about shear flows, or evolution of a passive scalar. The
R−1/3 enhanced damping, instead of R−1, was included by Chapman for the x-dependent
modes in his modification of the WKH model (as discussed in lecture 1). However, that is
because Chapman considers the weak nonlinear interaction of eigenmodes of the laminar
flow, U(y). In contrast, the basic description of the SSP consists of the weak nonlinear
interaction of streaky flow eigenmodes, that is, neutral eigenmodes of the spanwise varying
shear flow U(y, z) consisting of the mean shear plus the streaks. An important aspect of
the streaky flow U(y, z) is that the mean shear has been reduced precisely to allow that
instability, as illustrated by the SSP model where σwU − σmM − σvV > 0 is needed for
streak instability and growth of W . So it is unclear a priori whether the R−1/3 should apply
to x-dependent modes in the SSP. In section 6.2 below we review the numerical evidence
that the 3D nonlinear lower branch SSP states in plane Couette flow do have R−1/3 critical
layers as R→∞ [24]. But why R1/3?
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Back-of-the-envelope analysis. Consider plane channel flow with near-wall velocity pro-
file U(y) ' Sy (Figure 6.1), where S is the shear rate. Denote x̂ as the flow direction and ŷ
as the shear direction. We introduce a small disturbance which we imagine as a little eddy

Figure 6.1: Shearing leads to enhanced dissipation and R1/3 scaling.

with characteristic length `0, generated perhaps using a push-pull perturbation as in some
of the experiments of Mullin et al. discussed in lecture 1 with the push-pull axis oriented
streamwise (we consider only 2D flow here). We assume that the eddy Reynolds number
is small so that the evolution of the eddy consists primarily of the distortion by the mean
shear (so small eddy Reynolds number and 2D means none of the Theodorsen horseshoes
discussed in lecture 1), that is the governing equation is the advection diffusion of spanwise
vorticity ω = ∂xv − ∂yu

(∂t + Sy ∂x − ν∇2)ω = 0. (6.1)

The eddy will be stretched in the x̂ direction as a result of the differential advection,1 and
the major axis a of this now elliptical eddy will grow like a ∼ `0

√
1 + (St)2 ∼ `0St, while

its minor axis b will decay like b ∼ `20/a ∼ `0/(St), since area is conserved in this 2D
incompressible flow. This is the back-of-the-envelope handling of the Sy∂x term in (6.1)
and we now estimate the dissipation ν∇2 ∼ −ν/`2 where the relevant length scale ` here is
the smallest scale which is b ∼ `0/(St) for long times. So the diffusion term will give

dω

dt
∼ −ν (St)2

`20
ω ⇒ ω ∼ ω0 exp

(
−ν S

2t3

3`20

)
(6.2)

Note that we have used a d/dt instead of ∂t since we have taken care of the advection
and are effectively doing a Lagrangian analysis. In the absence of differential advection,
we would have ω ∼ ω0 exp(−νSt/`20), so (6.2) is much smaller for St > 3, and differential
advection leads to enhanced diffusion. In non-dimensional form, we can define a Reynolds

1Two material points at the same y do not separate, but two material points at the same x but `0 apart
in y are differentially advected in x and the distance between them will be ` = `0

p
1 + (St)2.
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number R0 = S`20/ν based on the length scale `0 and the velocity scale S`0 and write (6.2)
as

ω

ω0
∼ exp

(
−(St)3

3R0

)
(6.3)

where St is a nondimensional time based on the shear rate S and this shows that enhanced
dissipation occurs on a time scale St ∼ R1/3

0 . If we have a length scale, say h for the shear
flow, then we can define a Reynolds number R = Sh2/ν then R0 = R (`0/h)2 and the
enhanced dissipation occurs on the time scale St ∼ R1/3(`0/h)2/3, still scaling like R1/3.

Didn’t he say ‘analysis’? Fellows uncomfortable with the back of an envelope should
go with the flow x = x0 − Syt and consider ω = ω(x0, y, t) in terms of the Lagrangian
coordinate x0 = x+ Syt and y, t, then (∂/∂x)y,t = (∂/∂x0)y,t but

(∂/∂y)x,t = (∂/∂y)x0,t
− St (∂/∂x0)y,t (6.4)

(∂/∂t)x,y = (∂/∂t)x0,y
− Sy (∂/∂x0)y,t (6.5)

and (6.1) for ω(x0, y, t) becomes

∂ω

∂t
= ν

(
1 + (St)2

) ∂2ω

∂x2
0

− 2νSt
∂2ω

∂x0∂y
+ ν

∂2ω

∂y2
(6.6)

that has solutions of the form ω = A(t)ei(αx0+β0y) with

A(t) = A0 exp
(
− ν ((α2 + β2

0)t− αβ0St
2 + α2S2t3/3

) )
, (6.7)

which for α = 1/`0, β0 = 0 gives

ω = ω0 exp
(
−ν t+ S2t3/3

`20

)
, (6.8)

that should reassure fellows of the validity of (6.2).
One can also use Kelvin modes and solve (6.1) (in an infinite domain in y) using solutions

of the form ω = A(t) exp(ik(t) · r), that is, Fourier modes with time-dependent wavevectors
k(t). For (6.1), one finds k(t) = (α, β0−αSt) and dA/dt = −νk2A with k2 = α2+(β0−αSt)2

and recover (6.7). Thus, shearing leads to wavenumbers that grow like St in the shear
direction β ∼ −αSt or ky ∼ −kxSt and this leads to enhanced damping.

In a semi-infinite domain, e.g. 0 ≤ y < ∞, the advection diffusion equation (6.1)2

has eigensolutions of the form eλteiαxf(y) where f(y) can be expressed in terms of Airy
functions with y length scales ∼ (ν/(αS))1/3 and <(λ) ∼ −(να2S2)1/3. For a bounded
domain, the eigenmodes have y scale ∼ (αR)−1/3 and decay rates ∼ (αR)−1/3, with α now
the non-dimensionalized x wavenumber. The connection between the y scale and the decay
rate follows from the form of the dissipation ∂t = ν∇2 ∼ −νk2 where k is a wavenumber.
In non-dimensional units, this is ∂t ∼ −k2/R with k ∼ R1/3 for scales ∼ R−1/3, thus

−k
2

R
∼ −R−1/3. (6.9)

2for the y vorticity η with boundary condition η = 0 or ∂yη = 0, or for ∂xω = (∂2
x + ∂2

y)v with no-slip
v = ∂yv = 0 or free-slip v = ∂2

yv = 0.
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Figure 6.2: Scalings of the component of the lower branch steady state in plane Couette
flow from [24]. The top curve (green) is the amplitude of the streaks u0(y, z)−U(y) ∼ O(1)
as R → ∞. The 2nd from the top (red) is w1 ∼ R−1, the 3rd (blue) is v0, w0 ∼ R−1. The
bottom two curves are the higher harmonics exp(i2αx) (magenta) and exp(i3αx) (orange)
and they converge to zero faster than R−1.

6.2 R−1/3 in lower branch exact coherent states

Lower branch exact coherent states, that is the unstable 3D steady states calculated from
the Navier-Stokes equations using Newton’s method and the SSP phenomenology [18], show
R−1/3 critical layers as illustrated by the plane Couette flow steady states in [24]. Those
calculations (up to about R ≈ 60 000) show that for large R the flow converges to a simple
form

v→ v0(y, z) + eiαxv1(y, z) + e−iαxv∗1(y, z) (6.10)

such that v0 = (u0, v0, w0) has streaks u0(y, z)− u0(y) = O(1), but rolls v0, w0 ∼ O(R−1).
The x-mode v1(y, z) scales almost like R−1, see Figure 6.2. The structure of this lower
branch steady state is shown in Figure 6.3 and the gentle updraft and downdraft supporting
O(1) streaks is quite visible together with the critical layer structure of the wave mode
v1(y, z).

6.3 SSP model with critical layers

The SSP model [17] discussed in lectures 1 and 5 was intended as an as-simple-as-possible
low Reynolds number model of the essential process in shear flow that leads to feedback
from u onto the shearwise velocity v that creates u through the redistribution of the base
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Figure 6.3: The lower branch plane Couette flow steady state for α = 1, γ = 2, R = 50 171.
Top left: Contours of u0(y, z) (dashed, with u0 = 0 thick solid) and v0(y, z) (color) showing
updraft at z = 0 and downdraft at z = ±π/2. Top right: |u1(y, z)|. Bottom left: |v1(y, z)|.
Bottom right: |w1(y, z)|. Note the concentration of u1, v1 and w1 in a R−1/3 layer about
u0 = 0. From [24].
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shear (∂tu ∼ −v ∂yU + · · · ), thereby leading to bifurcation from laminar flow. The model
was derived from the Navier-Stokes equations through a Galerkin truncation procedure
entirely similar to that needed to derive the Lorenz model of Rayleigh-Bénard convection.
The latter is well-known to be physically valid only for Rayleigh numbers Ra close to the
onset of convection at Rac = 27π4/4, and the famous chaos of the Lorenz 3-mode model
disappears for higher resolution, indeed the chaos is labelled as physically spurious [1].3

The 3-mode Lorenz model does capture the bifurcation from the conduction state to a
steady convection state for Ra & Rac but for Ra not too far from Rac only (Ra . 10Rac).
The 3-mode model is physically successful for relatively low Ra because the instability is
linear and supercritical, i.e. it saturates at small amplitudes ∼ (Ra−Rac)1/2 [10]. Likewise
the SSP 4-mode model [17] obtained by projection of the Navier-Stokes equations onto a
few large scale Fourier modes is expected to be valid only for low R near onset of bifurcated
states, but not as accurate as the Lorenz model since the SSP 4-mode model attempts to
capture a nonlinear, finite amplitude bifurcation.

Nonetheless, the lower branch steady states do appear to result merely from the weakly
nonlinear interaction of neutral streaky flow eigenmodes but those streaky flow eigenmodes
contain R−1/3 critical layers as we have seen. Thus the R → ∞ scalings predicted by the
low order model, namely W ∼ R−1 for the lower branch state (lecture 5 and [17]), may not
be correct. Recall that the SSP 4-mode model reads(

d

dt
+
κ2
m

R

)
M =

κ2
m

R
−σu UV +σmW 2(

d

dt
+
κ2
u

R

)
U = σuMV −σwW 2(

d

dt
+
κ2
v

R

)
V = σvW

2(
d

dt
+
κ2
w

R

)
W = σw UW −σv VW −σmMW

(6.11)

Since W is the amplitude of the only x-dependent mode in the SSP 4-mode model, it is the
mode that we should correct for critical layers and its dissipation wavenumber κw should
be κw ∼ R1/3 as R → ∞, as discussed in the previous section. This gives a W decay rate
scaling as κ2

w/R ∼ R−1/3, instead of R−1. The damping wavenumber κv for the rolls V also
needs to be changed to R1/3 in spite of it being x-independent. This is because the rolls are
generated through the nonlinear interaction of the streak eigenmode of amplitude W that
lives on the critical layer of thickness ∼ R−1/3 so the dissipation of the rolls occurs at that
scale and κv ∼ R1/3 also. Likewise the nonlinear interaction coefficients σw, σv, σm scale
like R1/3 because those originate from the u · ∇u nonlinearity, and when reduced to the
V forcing for instance, [17, eqn. (6)], it involves only ∂y and ∂z derivatives, i.e. derivatives
across the warped critical layer of thickness R−1/3, so those derivatives scale like R1/3. Thus
because of the critical layer of the streak eigenmodes we expect

κv, κw ∼ R1/3 and σv, σw, σm ∼ R1/3 (6.12)

3There are constrained physical systems, e.g. the heated fluid loop [9] or the Malkus-Howard water-
wheel nicely described in Strogatz’s Nonlinear Dynamics and Chaos book, that are governed by the Lorenz
equations and do show chaos.
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but κm, κu and σu remain O(1) because the mean shear M and streaks U are x-independent
(so no shearing and critical layers for those modes) and they arise from the smooth redis-
tribution of streamwise velocity by the large scale rolls V .

With these modifications, the lower branch steady state would have the R→∞ scaling
U , M ∼ O(1) and V ∼ R−1 but

κ2
v

R
V = σvW

2 ⇒ R−4/3 ∼ R1/3W 2 ⇒ W ∼ R−5/6 (6.13)

This scaling matches the asymptotic analysis of Hall and Sherwin [4], and the plane Couette
numerical results [24], but the asymptotic analysis of the full PDEs is a lot more involved.

6.4 SSP and Exact Coherent States

6.4.1 Bifurcation from streaky flow

OK, but how does one find the 3D Navier-Stokes solutions shown in section 6.2? There
are several approaches nowadays, but the original robust approach that worked for plane
Couette and plane Poiseuille with both no-slip and free-slip perturbations [18, 19, 20] as well
as for pipe flow [2, 25, 11] is based on the self-sustaining process (SSP) shown schematically
in Figure 6.4.

O(1/R) O(1/R)

O(1)

Streaks

Streak wave
mode (3D)

Streamwise

self−interaction
nonlinear

U(y,z)
instability of

Rolls

advection of
mean shear

Figure 6.4: Schematic of the self sustaining process from [17]. Note that the scaling of the
‘Streak wave mode’ should now be corrected to R−5/6.

The SSP was initially conceived as a periodic process where each element would occur
in succession: (1) rolls redistribute streamwise velocity to create streaks, (2) streaky flow
U(y, z) develops an instability, (3) the nonlinear self-interaction of that instability (essen-
tially an oblique vortex roll-up) regenerates the rolls. Indeed, the earliest test of the validity
of this process [22, 5] using direct numerical simulations, showed a nearly periodic version
of the process and truly time-periodic solutions were later isolated by Kawahara and Kida
[6] and Viswanath [15].



116

But there are also equilibrated versions of the process where the rolls, streaks and streak
eigenmode have just the right structure and amplitude to stay in mutually sustained steady
or traveling wave equilibrium. The self-sustaining process theory can be used to find 3D
steady state or traveling wave solutions of the full Navier-Stokes equations (NSE), i.e. the
3D NSE with sufficiently high resolution in all 3 directions. The solutions are represented
in terms of Fourier-Chebyshev expansions, Fourier in the x and z directions and Chebyshev
in the wall-normal y direction (see [20] for numerical details). The SSP-based procedure to
do this [18] is

1. Add
F

R2
forcing of rolls (0, v0(y, z), w(y, z)) to NSE ⇒ O(

1
R

) rolls, O(1) streaks

2. Find Fc for onset of instability of [u0, v0, w0](y, z) for given α (or αc for given F ).

3. Use W (amp of eiαx mode) as control parameter and continue to F = 0 (Subcritical
bifurcation thanks to nonlinear feedback from wave mode onto rolls).

The parameter F is O(1) and R is the Reynolds number [17, 18, 20]. This procedure is
illustrated in Figures 6.5, 6.6 and 6.7 for free-slip plane Couette flow (‘FFC’ = ‘Free-Free
Couette’) where it is particularly clean since the roll forcing has a simple form to yield the
v0(y, z) = (F/R) cosβy cos γz with β = π/2 from lecture 5. Here Fc = 5 for α ≈ 0.49
and γ = 1.5 at R = 150. F = 0, W = 0 is the laminar flow u = y with u = 0 at y = 0
(the green surfaces in Figures 6.6, 6.7, the yellow surface is u = −0.5). For F 6= 0, we are
forcing simple streamwise rolls seen as the red and blue tubes in Fig. 6.6 that redistribute
the streamwise velocity u, warping the isosurfaces u = constant, to create a 2D streaky
flow. Increasing F beyond a critical value Fc leads to an unstable streaky flow, although
when F becomes too big, the rolls stir up the flow so much that the mean shear and streaks
are wiped out and the streaky flow regains stability. This streaky flow for α = 0.49, γ = 1.5,
R = 150 is unstable for 5 < F < 18.3 (i.e. fixed geometry, although we usually fix F and
find the band of unstable α). Taking W , the normalized amplitude of the eiαx mode, as
the control parameter and increasing from W = 0 leads to the sequence of 3D steady states
shown in figures 6.6 and 6.7 yielding to self-sustained states with no roll forcing (F = 0).

This procedure can be used in other flows: Rigid-Rigid Couette (i.e. no-slip at both
walls), Rigid-Free Couette, Rigid-Free Poiseuille, Rigid-Rigid Poiseuille as well as in no-slip
pipe flow [2, 25, 11] and duct flow (Kawahara et al. ).
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Figure 6.5: Bifurcation diagram for Free-Free Plane Couette Flow with α ≈ 0.49, γ = 1.5,
R = 150, fixed. F = W = 0 is the laminar flow U = y. W = 0 corresponds to x-
independent streaky flow with rolls and streaks when F 6= 0. The green markers at W = 0,
F = 5, 18.3 are the streaky flow bifurcation points and the streaky flow is unstable between
those markers (dashed line). The red markers at F = 0 indicate the self-sustained 3D steady
states. Since W is the amplitude of the eiαx mode, a change of sign of W corresponds to a
half-period shift in x. This is for well-resolved spectral calculations of the full Navier-Stokes
equations not the low-order model, although the low-order model has similar behavior.
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Figure 6.6: SSP construction of exact coherent states for Free-Free Plane Couette Flow.
The green surfaces are u = 0, gold is u = −0.5. Red and blue correspond to positive
and negative streamwise vorticity ωx, respectively (80% of max). F is the normalized roll
v0(y, z) amplitude and W is the normalized eiαx streaky mode amplitude. First we increase
F with W = 0 until the 2D streaky flow is unstable (bottom left), then we start increasing
W with F free.
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Figure 6.7: Continued from Fig. 6.6, we keep on increasing W and obtain a lower branch
self-sustained steady state when F = 0 (bottom left) and an upper branch (bottom right).
These are the upper two red markers in the bifurcation diagram Fig. 6.5.
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6.4.2 Homotopy of exact coherent states

The solutions can also be easily ‘deformed’ into one another. For instance one can perform
the homotopy from Free-Free Couette to Rigid-Free Poiseuille, this is a Newton continuation
of the steady state Couette solutions to traveling wave Poiseuille solutions in a half-channel
with no-slip at the bottom wall at y = −1 and free-slip at the centerline at y = 1. This is
the homotopy

UL(y) = y + µ

(
1
6
− y2

2

)
(1− µ)

∂u

∂y
+ µu = 0 at y = −1

(6.14)

and similarly for w at the wall, with µ = 0 → 1 to go from Couette with free slip at both
walls to Poiseuille UL(y) = 1/6 + y − y2/12 with no-slip at the bottom wall, where UL(y)
is the laminar flow and Poiseuille is normalized to be nearest to Couette. If this homotopy
is performed at fixed W (amp of eiαx mode) then R becomes the free parameter, since
we are now only interested in self-sustained 3D states with no external roll forcing F = 0
(Figure 6.8).

Figure 6.8: Homotopy (6.14) from free-free Couette µ = 0 (left) to Rigid-free Poiseuille at
µ = 1 (right) [18, 19]. The gold u = −0.5 isosurface cannot be swept away with no-slip at
y = −1 (right). The green isosurface on the right is u− c = 0 where c is the wave speed.

By ‘homotopy’ we mean to emphasize the very similar (‘homo’) shape (‘topos’) of the
solutions in the various flows, e.g. free-slip Couette and no-slip Poiseuille, and the ‘homo-
topy’ procedure consists of a smooth deformation of one solution into the other. In contrast,
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we used bifurcation from streaky flow to construct the solution from scratch and that is not
smooth since it involves a bifurcation (sect. 6.4.1). In the literature, authors often refer to
the latter as ‘homotopy’ as well, but we do not.

6.4.3 ‘Optimum’ channel Traveling Wave

Once a self-sustained 3D steady state or traveling wave has been found, it is interesting to
find its lowest onset Reynolds number. To do so we need to optimize the 3D solutions over
the fundamental wavenumbers α and γ, i.e. over the wavelengths Lx and Lz in order to
minimize the Reynolds number. This was done for a variety of flows, including Rigid-Rigid
Couette where onset R ≈ 127.7 and Rigid-Free Poiseuille where onset R ≈ 977 (based on
the laminar centerline velocity and the wall to centerline distance to compare to 5772 for
onset of the weak 2D viscous no-slip instability). Note that there is a factor of 4 difference
arising just from the different definitions of R in plane Couette and Poiseuille.

Figure 6.9: Channel flow traveling wave at onset Reynolds number Rτ ≈ 44 for L+
x ≈ 274

and L+
z ≈ 105 in wall units. This corresponds to a pressure gradient based Reynolds number

(i.e. laminar centerline velocity and wall to centerline distance) of 977 [20]. Rτ is based on
the friction velocity uτ =

√
τw and the wall to centerline distance. Wall or ‘plus’ units are

based on ν/uτ . Each vortex (red and blue isosurfaces) has a shear layer of opposite sign ωx
at the wall below it. The green isosurface is u− c = 0 where c is the traveling wave speed.
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One remarkable result of this optimization is that the length scales for minimum onset
Reynolds number turn out to be almost identical to the length scales that had long been
observed for coherent structures in the near-wall region of turbulent channel flows, namely
L+
x ≈ 300, L+

y ≈ 50 and L+
z ≈ 100, the latter corresponding to the well-known 100+

streak spacing. This fits with the idea that those scales are the smallest scales for the
self-sustaining process and the streak spacing is essentially an onset Reynolds number [16].
The structure of the traveling wave is also remarkably similar to the educed structure of
near wall momentum transporting flows shown in Figure 6.10. Those observed structures
consists of wavy low speed streaks flanked by staggered counterrotating quasi-streamwise
vortices, exactly like the 3D traveling waves, hence the name of exact coherent states for
the latter [19].

Figure 6.10: Near-wall coherent structure educed from turbulent channel data by Derek
Stretch (1990) [14]. Note the wavy streak as the wavy green isosurface in Fig. 6.9 and the
counterrotating quasi-streamwise vortices as the red and blue isosurfaces in Fig. 6.9, and
the earlier Couette solutions in Fig. 6.7.

6.5 Turbulence: onset and structure in state space

We saw in sect. 6.4.1 how the exact coherent states — 3D steady states and traveling
wave solutions of the Navier-Stokes equations — can be constructed by bifurcation from
streaky flow in the (F,W ) parameter space for fixed R,α, γ (Fig. 6.5). For fixed F = 0 these
solutions arise from saddle-node bifurcations, also known as out-of-the-blue-sky bifurcations,
in the (R,W ) parameter plane, as shown in Figure 6.11. Although the drag of the upper
branches grows quickly with Reynolds number, at least initially (we expect fixed (α, γ)
solutions to eventually saturate), the lower branch solution quickly asymptotes to a constant
larger than the laminar drag. These computations have been pushed to R ≈ 60 000 and the
lower branch drag appears constant, consistent with Fig. 6.2 where the solution asymptotes
to O(1) streaks. This suggest that these solutions never bifurcate from the laminar flow,
not even at R→∞.

But all these upper and lower branches are unstable from onset, how then could they
be relevant? We have already seen that their structure and length scales (e.g. the 100+
streak spacing) match very well with the observed near-wall coherent structures in turbulent
shear flows, and the latter are clearly unstable, yet they are statistically ever present and
control the momentum transport. Figure 6.12 provides other evidence of the relevance
of unstable coherent states to turbulent flows that appear to oscillate around the upper
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Figure 6.11: Rigid-rigid Couette bifurcation diagram for 3D steady states for (α, γ) = (1, 2)
(red) and (1.14,2.5) (blue). Drag versus Reynolds number. Drag is non-dimensionalized by
the laminar drag so this is a Nusselt number, τw/(νU/h) and Drag=1 is the laminar flow.
The upper branch drag increases rapidly with R but the lower branch quickly asymptotes
to a constant > 1. The solutions arise out-of-the-blue-sky but do not bifurcate from the
laminar flow.

branches, suggesting that the upper branch is a good first approximation to the statistics
of turbulent flows such as drag, energy dissipation, mean flows, . . .

The lower branch on the other hand has the remarkable property of having only one
unstable direction, at least in plane Couette flow except close to the nose of the bifurcation
curve [24]. Starting in the unstable direction either leads quickly to turbulent flow, or in the
opposite direction leads quickly back to laminar flow as shown in Figure 6.13. This suggests
that the lower branch is the backbone of the laminar-turbulent boundary that would be the
stable manifold of the lower branch. Further calculations by us and others have confirmed
this role of the lower branch [12].

Figure 6.14 is an old cartoon (APS DFD 2001, [19], [21]) sketching how these exact
coherent states and their stable and unstable manifold structure the state space. Gibson,
Cvitanović and Halcrow [3] have produced a beautiful picture of the state space of plane
Couette flow for given fundamental wavenumber (α, γ) and Reynolds number R = 400 that
shows the role of the coherent states and their unstable manifolds in guiding the turbulent
dynamics. Kawahara, Uhlmann and van Veen explore the relevance of invariant solutions
for fully developed turbulent flows [7].
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Figure 6.12: Rigid-rigid Couette 3D steady states for (α, γ) = (0.95, 1.67) in the total energy
input rate τwU/h versus total energy dissipation rate E (lecture 2), normalized by laminar
values so blue marker is laminar flow at (1,1). Green marker is lower branch, red marker
is upper branch. The blue orbit is a DNS of turbulent flow for 2000 h/U time units for
(α, γ) = (1.14, 1.67). Turbulent orbit was computed by Jue Wang using John Gibson’s
Channelflow code [24].
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Figure 6.13: Rigid-rigid Couette for (α, γ) = (1, 2) at R = 1000. Starting on the positive
(say) side of the lower branch unstable direction quickly leads to a turbulent flow that
oscillates about upper branches (left). Starting on the opposite side quickly leads to a slow,
reverse SSP, decay back to laminar. That is, the flow first loses its x dependence, then the
rolls and streaks slowly decay back to laminar flow (right). Note the different scales. The
dots on the red curve mark equal time intervals to show speed along the curve.

Laminar

Turbulent

Figure 6.14: Schematic of the state space and role of the unstable exact coherent states.
Laminar flow (blue) is stable for all R. Lower branch is the backbone of the laminar-
turbulent boundary which is the stable manifold (red dashed) of the lower branch (green
marker). The turbulent flow is an aperiodic oscillation about upper branches (red marker).
There exists also unstable periodic orbits (red curve), that form the skeleton of the turbulent
attractor.
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6.5.1 Conclusion

These six lectures have been a quick and necessarily incomplete overview of the problem of
turbulence onset and structure in basic flows such as flows in pipes and channels. The sci-
entific study of this basic fluid dynamics problem started with the experiments of Reynolds
and the analyses of Rayleigh in the 1880s and has been an active field of study ever since,
splitting into several distinct directions such as stability theory, turbulence modeling and
statistical theories of turbulence.

Linear stability theory of shear flows does not explain onset of turbulence but has many
technical and physical peculiarities such as critical layers and (weak) instability arising
from viscosity in channel but not in pipe, in pressure-driven but not wall-driven flows,
yet turbulence in all these different flows is quite similar. Statistical theories have focused
largely on homogeneous isotropic turbulence and disconnected drag from energy dissipation.
The Kolmogorov picture of turbulence with its energy cascade concept and k−5/3 energy
spectrum is compelling, but has little if anything to say about momentum transport or
heat flux in realizable wall-bounded flows. Numerical simulations and modern experimental
visualization techniques such as PIV (particle image velocimetry) have revealed a myriad
of coherent structures and a major challenge has been to decide how to identify and classify
these observed structures and their interconnections, and figure out how to introduce them
in models and theories.

Our work on exact coherent states reconnects turbulence onset to developed turbulence
with its observed and educed coherent structures. The 100+ streak spacing of near-wall
coherent structures in fully developed turbulent shear flows is closely related to, if not
identical with, the critical Reynolds number for turbulence onset [16], [20]. In a little
more than a decade, we have gone from the two well-known states of fluid flow, laminar
and turbulent, to the discovery of a multitude of intermediate states, unstable exact coherent
states. These states can be steady states or more generally traveling waves in plane Couette,
Poiseuille, pipe and duct flows as well as time periodic solutions. The latter have been
found mostly in plane Couette flow so far, by Kawahara and Kida [6], Viswanath [15] and
many unpublished states found by John Gibson (but posted on his web page). Schneider,
Gibson and Burke [13] have found spanwise localized states that bifurcate from the lower
branch states close to the ‘nose’ of the saddle-node bifurcation. This bifurcation is directly
connected to the Hopf bifurcation that was known to occur along the lower branch as we
approached the saddle-node bifurcation [23], [24], and to the instability of the upper branch
(the node) at onset.

Our cartoon (Fig. 6.14) is now too simplistic, there are many lower branches and upper
branches, even snakes and ladders [13], and Eckhardt and co-workers have shown that
there are more complex types of ‘edge states’ on the laminar-turbulent boundary than mere
traveling waves. Lebovitz [8] uses low order models to explore features of the laminar-
turbulent boundary and shows that the ‘edge’ may not be a laminar-turbulent boundary
but an invariant set separating the basin of attraction of the laminar state in two parts. We
have discovered the unstable coherent scaffold of turbulent flows and, not surprisingly, it is
rich and complex.
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Lecture 7

Transition Scenarios: Normality vs
Non-Normality

7.1 Transition scenarios

Transition to turbulence in fluid systems can be broadly divided into two different classes:
the ‘supercritical’ or the ‘subcritical’ scenario.

7.1.1 Supercritical scenario

In the supercritical scenario, there is a well-defined sequence of supercritical bifurcations
in which the flow gradually becomes more complicated in space and time. For these flows,
nothing happens (that is, all disturbances decay) below a well-defined value of a control
parameter, e.g. the Reynolds number Re. The following commonly-referred-to values of
the control parameter R (e.g. [19]) then effectively characterise the situation:

• RE , the threshold below which any disturbances, both finite and infinitesimal, mono-
tonically decay. This is known as the Energy stability threshold.

• RL, the threshold for linear stability.

• RG, the least R below which the basin of attraction of the laminar solution includes all
states with the exception of a set of states of measure zero. RG signals the emergence
of another attractor beyond the laminar solution.

In the supercritical scenario where the first bifurcation from the base state is supercritical,
RE ≤ RL = RG. The only interesting issue is then whether RE = RL or RE < RL so there
is a gap.

Rayleigh-Bénard convection (RB) is an example of a flow in the supercritical scenario
class (e.g. see [6], chapter 6). The motionless conductive state is provably absolutely
stable (i.e. to all disturbances) until a certain value (RaL = 1708 for rigid-rigid boundary
conditions, where Ra is the Rayleigh number) so RE = RL = RG = 1708. Above this value,
the flow undergoes a sequence of supercritical bifurcations.

Another member of the supercritical scenario class is Taylor-Couette flow (TC) with
co-rotating cylinders. TC flow shows a succession of bifurcations and increasing complexity
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Figure 7.1: Phase diagram of patterns observed in Taylor-Couette flow as a function of the
inner Reynolds number Ri and the outer Reynolds number Ro. The heavy line denotes
the boundary between featureless flow below the line and patterned states above the line.
(Redrawn from [1], see also [6], figure 7.8).

for R := Ri > RL > 0 (increasing rotation rate of the inner cylinder and fixed outer
cylinder rotation rate Ro > 0): see figure 7.1. Contrary to RB flow, RE < RL = RG which
means that transient growth - an initial disturbance can initially grow in amplitude before
eventually decaying away - is possible for RE < R < RL with TC flow (see figure 7.2). The
supercritical scenario is well-studied and understood.

7.1.2 Subcritical scenarios

In the subcritical scenario, as typified by wall-bounded shear flows, transition is sudden,
noise-dependent and dramatic, i.e. the flow immediately becomes complicated. There is
usually a region of bistability so that the laminar and turbulent states can coexist (in plane
Couette and Hagen-Poiseuille flow, this region extends to infinite Re!). As a result this
is the more interesting scenario where there has been considerable recent research activity
and so will be the focus of my lectures. Flows in the subcritical scenario class cannot
be sufficiently described by the three (established) parameters defined above. Therefore,
as a first attempt in building up a more sophisticated picture, we introduce the following
additional parameter values:
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Figure 7.2: Sketch of different solution characteristics under different values of R for the
supercritical scenario.

Figure 7.3: Sketch of different solution characteristics under different values of R for the
subcritical scenario.

• RS , the threshold above which there exists initial conditions with measure zero which
do not convergence to the basic state. Or equivalently, there exists ‘other’ unstable
exact solutions of the governing equations beyond the basic state.

• RT , the threshold above which long-lived non-trivial flows exist. These flows look tur-
bulent (characterised by positive Lyapunov exponents so nearby trajectories diverge)
but may not be sustained if RT < R < RG.

For subcritical scenarios we have that RE < RS , RT ≤ RG, where RS < RT seems likely
but is unproven and typically RG < RL for wall-bounded shear flows like plane Poiseuille
flow, plane Couette flow and Hagen-Poiseuille flow. The qualitative behaviour of a typical
subcritical scenario is sketched in figure 7.3. For R < RE all solutions decay monotonically
to the base state. For RE < R < RS transient growth is possible of some disturbances. For
RS < R < RT at least one disturbance does not decay to the base state. For RT < R < RG
at least one solution experiences a ‘long-lived’ transient before eventually decaying. For
RG < R < RL the flow need not relaminarise when disturbed and finally, for R > RL
the flow always evolves away from the base state. Table 7.1 emphasizes how the Rayleigh-
Bénard problem differs from plane Poiseuille, plane Couette and Hagen-Poiseuille flows
which are all in the subcritical scenario class.
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RE RS RT RL

RB 1708[8] 1708 1708 1708

PPF 49.6[4] ≤ 977+[20] 2100[18] 5772[13]

PCF 20.7[8] ≤ 127[12, 20] ∼ 325[5] ∞[17]

HPF 81.5[9] ≤ 773∗[15] ∼ 1800[11] ∞†

Table 7.1: The various thresholds for different flow types: Rayleigh-Bénard (RB), plane
Poiseuille flow (PPF), plane Couette flow (PCF), and Hagen-Poiseuille flow (HPF). Source
references are shown as superscripts and † indicates still unproven. + means RS is based
upon fixed pressure gradient whereas ∗ means RS based upon fixed mass flux. RS for PPF
based upon fixed mass flux is close to but strictly below 860 whereas HPF based upon
pressure gradient is close to, but strictly below, 990.

7.1.3 Normality vs Non-normality

We now discuss the reasons for this very different behaviour which, because of the special
form of the nonlinearity in the Navier-Stokes equation, can be largely traced back to the
properties of the linear operator produced by linearising the Navier-Stokes equation around
the basic state.

If utot = ulam + û so û satisfies homogeneous boundary conditions (is real, at least C2

and has finite kinetic energy), then the Navier-Stokes equation for the perturbation û can
be written as

∂û
∂t

= Lû +N(û, û), (7.1)

∇ · û = 0, (7.2)

where L and N are linear and nonlinear operators, respectively. If 〈u,v〉 :=
∫

u∗.v dV where
∗ indicates complex conjugation (redundant here for real û but important when discussing
the eigenfunctions and adjoint of L), then〈

(L+u),v
〉

:= 〈u, (Lv)〉 (7.3)

defines L+, the adjoint of L and L is normal if and only if L+ commutes with L i.e.
LL+ = L+L. The eigenvalue spectrum of the linear operator L determines the linear
stability of the base state ulam with RL defined by when max[<e(eig(L))] = 0. Energy
stability is derived by examining the instantaneous rate of change of the perturbation kinetic
energy,

∂

∂t
〈1
2
û2〉 =

〈
û,
∂û
∂t

〉
= 〈û, (Lû)〉 = 1

2

〈
û, (L+ L+)û

〉
(7.4)
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since 〈û, N(û, û)〉 = 0 (this is the special property of the Navier-Stokes equations referred to
immediately above) and L can always be decomposed into ‘symmetric’ and ‘antisymmetric’
parts, L = 1

2(L+L+)+ 1
2(L−L+). Clearly there can only be energy growth if the right hand

side of (7.4) is positive for at least one allowable û (where ‘allowable’ is taken to mean a real
incompressible velocity field which is twice-differentiable, satisfies the boundary conditions
and has finite kinetic energy). Since L + L+ is a self-adjoint (symmetric) operator, this
can only happen if one of its eigenvalues is positive (recall all eigenvalues of a self-adjoint
operator are real). If L is self-adjoint, then this is one and the same condition that the flow
is linearly unstable so RE = RL. However, the weaker condition that L is normal is also
sufficient. This is because if L has the (possibly complex) eigenvalue and eigenfunction pair
(µi,vi) then L+ has the equivalent pair (µ∗i ,vi) when L commutes with L+. Then

eig( 1
2(L+ L+) ) = <e( eig(L) ) (7.5)

and so energy growth starts to occur precisely when an eigenvalue of L crosses into the right
hand side of the complex plane. Hence

Normality of L⇒ RE = RL ⇒ supercriticality. (7.6)

The bifurcation at RL has to be supercritical as the laminar state is the global attractor for
R < RE . The reverse direction is not valid, i.e. supercritically does not imply RE = RL as
we will see in the example of rotating plane Couette flow below.

A subcritical bifurcation atRL impliesRE < RL and therefore the possibility of transient
growth: for some (but not all) û, the perturbation energy will initially grow but ultimately
decay for RE < R < RL. This means that an eigenvalue of L + L+ must reach into
the right hand side of the complex plane while no eigenvalue of L does so L has to be
non-normal. In other words

Non-Normality of L⇐ RE < RL ⇐ subcriticality. (7.7)

The arrows cannot be reversed as non-normality does not imply RE < RL. It is theoret-
ically possible (but presumably unusual) to have a non-normal operator where the largest
eigenvalue of (L + L+) becomes positive precisely when the eigenvalue of largest real part
for L crosses onto the right hand side of the complex plane. From a different perspective,
non-normality of L implies that the eigenfunctions of L are non-orthogonal but this in it-
self is not sufficient to produce transient growth as the following example illustrates. Let
u = veλ1t + weλ2t where λ1 and λ2 are negative and v.w 6= 0. If v2 = c2

1, w2 = c2
2,

v.w = αc1c2 where 0 < α2 < 1 and c = (c1 c2)T , then

du2

dt
|t=0 = cTBc where B :=

[
2λ1 α(λ1 + λ2)

α(λ1 + λ2) 2λ2

]
. (7.8)

For no transient growth, B must be negative definite. Since B is symmetric this requires
both of its eigenvalues to be negative which is the condition that 4λ1λ2 > α2(λ1 + λ2)2.
This can always be achieved by choosing α small enough (thanks to Divakar Viswanath for
this nice example).

So, in summary, if the linear operator is normal then RE = RL, otherwise the operator
is non-normal which is a necessary but not sufficient condition for a subcritical bifurcation.
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7.1.4 Transient growth

To illustrate the phenomenon of transient growth we consider a simple system of 2 ODEs
given by

d
dt

x(t)

y(t)

 = Ax(t) =

− 1
Re

0

1 − 2
Re


x(t)

y(t)

 (7.9)

where x represents rolls and y streaks (say). The operator A is non-normal since AAT 6=
ATA (transpose being the matrix equivalent of adjoint) and has eigenvalues −1/Re and
−2/Re. The initial rate of change of the ‘energy’ is

d

dt
x2 = xT (A+AT ) x (7.10)

Since A+AT is symmetric, all that is needed to find initial growth is a positive eigenvalue and
initial conditions with sufficient overlap with the corresponding eigendirection. The simple
initial conditions x(0) = y(0) = 1 are adequate (providing Re > 3) since the solution,x(t)

y(t)

 =

 1

Re

 e−t/Re +

 0

1−Re

 e−2t/Re ∼
 1− t

Re +O
(

t2

Re2

)
1 + Re−2

Re t+O
(

t2

Re2

) , (7.11)

has the initial energy behaviour

E(t) :=
1
2

(x2(t) + y2(t)) = 1 +
(Re− 3)
Re

t+O
(
t2

Re2

)
(7.12)

Although the rolls decay, there is enough initial growth in the streaks to give overall energy
growth even though both eigenvalues of the system are negative.

7.2 Bifurcation Analysis

In wall-bounded shear flows, the linear operator is generically non-normal and therefore to
understand the situation we need to find other nonlinear solutions which exist. There are a
variety of methods that can be used, but the first (default) way is to use bifurcation analysis
and nonlinear branch continuation techniques. Rotating plane Couette flow presents a
beautifully accessible arena in which to illustrate this while also indicating how the first
nonlinear solutions in plane Couette flow were found by Nagata [12]. The governing Navier-
Stokes equations for an incompressible flow are

∂utot

∂t
+ 2Ωẑ× utot + utot · ∇utot +∇p =

1
Re
∇2utot, (7.13)

∇ · utot = 0, (7.14)

where utot(x,±1, z, t) = ±x̂ and Ω = Ωẑ is the spanwise rotation rate. As in §7.1.3, we
define utot = ulam + û, where û := (û, v̂, ŵ) is a (possibly large) perturbation to the laminar
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base state ulam := yx̂ so that the full perturbation equations are

∂û
∂t

+ 2Ωẑ× û + ulam · ∇û + û · ∇ulam + û · ∇û +∇p̂ =
1
Re
∇2û, (7.15)

∇ · û = 0, (7.16)

where now û(x,±1, z, t) = 0. Firstly, we compare the energy and linear stability thresholds
for this problem.

1

z
Ω

x

y

1

y = −1

y = 1

Figure 7.4: (Spanwise) Rotating Plane Couette flow

7.2.1 Energy stability

The energy equation is derived by taking the scalar product of û with (7.15),

〈û · (7.15)〉 =
∂

∂t
〈1
2
û2〉 =− 〈2Ωẑ× û · û〉 − 〈ulam · ∇1

2
û2〉 − 〈û · û · ∇û〉

− 〈û · ∇ulam · û〉 − 〈û · ∇p̂〉 − 1
Re
〈|∇û|2〉, (7.17)

( where

〈(. . .)〉 :=
∫ ∫ ∫

(. . .)dV = lim
Lx→∞

lim
Lz→∞

1
4LxLz

∫ Lx

−Lx

∫ Lz

−Lz

∫ 1

−1
(. . .)dydzdx ) (7.18)

which simplifies to

∂E

∂t
= −〈û · ∇ulam · û〉 − 1

Re
〈|∇û|2〉

= 〈|∇û|2〉
[
−〈û · ∇ulam · û〉

〈|∇û|2〉 − 1
Re

]
. (7.19)

Hence, energy growth is possible only if −〈û · ∇ulam · û〉 > 1
Re〈|∇û|2〉 or, turning this

around, there is a threshold ReE defined as

1
ReE

≡ max
∇.û=0,û(x,±1,z,t)=0

−〈û · ∇ulam · û〉
〈|∇û|2〉 (7.20)
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below which no energy growth is possible. After some manipulation, the eigenvalue problem
for ReE can be written as

1
2
[∇ulam + (∇ulam)T

] · û +∇p̂ =
1

ReE
∇2û, (7.21)

which, since ulam = yx̂, simplifies to

1
2

v̂û
0

+∇p̂ =
1

ReE
∇2û (7.22)

together with ∇.û = 0 and û(x,±1, z) = 0.

7.2.2 Linear stability

Linearising equation (7.15) gives

∂û
∂t

+ 2Ωẑ× û + ulam · ∇û + û · ∇ulam +∇p̂ =
1
Re
∇2û. (7.23)

Assuming streamwise Taylor (2D) roll solutions of the form

û(x, t) = ũ(y)eikz+σt (7.24)

(known to be critical for the energy stability problem), (7.23) becomes

σũ +

(1− 2Ω)ṽ
2Ωũ

0

+∇p̃ =
1
Re
∇2ũ. (7.25)

Comparing equation (7.25) to the energy stability equation (7.22) we see that when Ω = 1/4,
the operators from the energy and linear stability are identical providing σ = 0 also. This is
a special case of a more general relationship between ReE and ReL which can be extracted
by reducing (7.25) down to a problem in just ṽ. Eliminating ŵ using the incompressibility
condition, p̂ from ẑ.(7.25) and û from x̂.(7.25) leaves

2Re2Ω(1− 2Ω)k2ṽ = −(D2 − k2 − σRe)2(D2 − k2)ṽ, (7.26)

to be solved subject to boundary conditions

ṽ = Dṽ = (D2 − k2 − σRe)(D2 − k2)ṽ = 0 at y = ±1, (7.27)

where D := d/dy. This system must be solved to find ReL = mink Re such that <e(σ) = 0.
Conveniently, this can be done by comparing it to the Rayleigh-Bénard convection problem
given by

k2Ra w̃ = −(D2 − k2 − σ)2(D2 − k2)w̃ (7.28)

with boundary conditions

w̃ = Dw̃ = (D2 − k2 − σ)(D2 − k2)w̃ = 0 at y = ±1
2
, (7.29)
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where Ra is the Rayleigh number. This system has a well-known solution, with mink Ra =
1708 for σ = 0 and k = 3.117 (Drazin 2002, section 6.3 and the rigid-rigid case). Since
the layer depth for Rayleigh-Bénard convection is standardly non-dimensionalised to be 1
whereas it is 2 here (e.g. compare positions of boundaries), the lengths in equations (7.26)
and (7.27) need to be rescaled to make the connection exact. Letting D2 → 1

4D
2, k2 → 1

4k
2

and setting σ = 0 means the association

Re2
L =

1708
24[2Ω(1− 2Ω)]

(7.30)

can be made. The minimum of ReL occurs when Ω = 1/4 (as noticed above) where the
linear operator is normal and so

min
k,Ω

ReL = 20.67 = ReE . (7.31)

More generally (Ω 6= 1/4)

ReL =
ReE√

8Ω(1− 2Ω)
(7.32)

exceeds ReE and the linear operator is non-normal. Notice also that ReL →∞ for Ω→ 0
and 1/2. Beyond these values, there is no linear instability: the Rayleigh number in the
analogous Rayleigh-Benard problem is then negative indicating that the stationary fluid is
now hotter on its top surface than the bottom which is a very stable situation.

Figure 7.5 shows the bifurcation diagram for rotating plane Couette flow. The 2-
dimensional steady solution surface emanating out of the bifurcation given by (7.32) is
shown in blue. This is traced out by considering the velocity expansion[

u(y, z)
p(y, z)

]
=

+∞∑
l=−∞

[
ũl(y)
p̃l(y)

]
eilkz (7.33)

truncated to some finite positive upper and negative lower values in l where k is the critical
wavenumber (a weakly nonlinear solution would just have l = 0,±1,±2 only). The expan-
sion functions ũl(y) and p̃l are typically themselves expanded in terms of basis functions in y
so that the solution is represented by a doubly-indexed set of complex coefficients. Solutions
are then found using root-finding algorithms invariably based upon the Newton-Raphson
method. These 2D solutions become unstable to 3D steady disturbances (shown as a green
curve). By tracing these solutions around in (Re,Ω) parameter space, Nagata [12] found
that they pierced the Ω = 0 plane for Re ≥ 125 (later more accurately computed to be
127.7 [20]). These non-rotating steady 3D solutions (shown in red) were the first discovery
of exact solutions to plane Couette flow beyond the simple constant shear state.

The rotating plane Couette system is also of interest in astrophysics for studying the
fluid dynamics of accretion disks (e.g. [16]). A disk with an angular velocity profile of
Ω∗ ∼ R−q and a thin distant radial strip R ∈ [R− 1, R+ 1] (with 1� R) looks locally like
rotating PCF with

Ω =
1
q

(7.34)
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Figure 7.5: Bifurcation diagram for rotating plane Couette flow.

(relative to a non-dimensionalised shear of 1 across the domain as above). The astrophysical
interest is in understanding what hydrodynamic processes can operate in a Keplerian disc
which has Ω∗ ∼ R−3/2 or Ω = 2/3 so as to enhance dissipative processes (see [2] for an intro-
duction to the issues). However, the Rayleigh [10] (axisymmetric) stability criterion predicts
that profiles with angular momentum increasing radially outwards i.e. d(R2Ω∗)/dR > 0
or Ω > 1/2 are stable. This does not preclude non-axisymmetric (streamwise-dependent)
instabilities or the existence of disconnected nonlinear solutions as in the plane Couette
problem but these have yet to be found (e.g. [7, 16, 14] and [3] for a recent commentary).
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Lecture 8

Edge Tracking – Walking the
Tightrope

In the subcritical transition scenario, there is typically a regime where the linearly stable
basic state coexists with the turbulent state. The simplest model of this is a 1D system
ẏ = y(1

2 − y)(y − 1) where the basic state is y = 0, the ‘turbulent’ state is y = 1 and there
is an intermediate state y = 1

2 which separates initial conditions which become turbulent
(if y(0) > 1

2 then y(t) → 1 as t → ∞) from those which laminarise (if y(0) < 1
2 then

y → 0 as t → ∞). The state y = 1
2 is special in that it separates these two different

types of behaviour and corresponds to neither (if y(0) = 1/2, y(t) = 1/2 ∀ t). Identifying
initial conditions which lead to this intermediate behaviour is crucial for understanding
transition. An extra dimension is needed in our model to allow this intermediate behaviour
to be non-trivial so consider the 2D system

ẋ = −x+ 10y,
ẏ = y(10e−0.01x2 − y) (y − 1) ,

(8.1)

which, like the 1D model, has two stable equilibria and an unstable state. The line y = 1
separates initial conditions which will laminarise to (0, 0) and those which become ‘turbu-
lent’, that is, spiral into the fixed point at ≈ (14, 1.4): see figure 1. All points on y = 1
– here the basin boundary for the laminar and turbulent states or more generally called
the ‘edge’ – are attracted to the relative attractor at (10, 1) which is called the ‘edge state’
(this is a saddle point in 2D but an attractor for trajectories confined to the 1D edge). This
lecture is about recent successes in identifying the edge state in realistic flows whereas the
next will be concerned with identifying the closest point of approach of the edge to the
laminar state1.

8.1 Approach

The approach to finding the edge goes back to [17] (at least in fluid mechanics) and is based
on simple bisection combined with direct numerical simulation (DNS). A turbulent velocity

1This will indicate the initial conditions of least energy which can trigger turbulence - if this distance is
defined as

p
x2 + y2 and energy as x2 + y2, this would be the point (0, 1) here.
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Figure 8.1: Phase plane of the 2D system (8.1) created using the free Matlab macro pplane6.m
written by John Polking, Rice University, 1995. The laminar state is at (0, 0), the edge state at
(10, 1) and the ‘turbulent’ state at ≈ (14, 1.4). The edge is the line y = 1.
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field uturb(x) generated by DNS is the starting point and is decomposed into a 2D part and
a 3D part. Importantly, this 2D part is known in practice not to be able to initiate 3D
turbulent state in plane Couette or pipe flow. In pipe flow, either azimuthally averaging or
axial averaging can be used, i.e.

u2D =


1

2π

2π∫
0

u(r, θ, z)dθ

1
L

L∫
0

u(r, θ, z)dz
(8.2)

and then
u3D(x) := uturb(x)− u2D. (8.3)

The key point is that these two velocity fields can be used to reconstruct an initial condition
as follows

u(x, 0;λ) := u2D + λu3D(x) (8.4)

where λ ∈ [0, 1] is a free mixing ratio. u(x, 0; 1) = uturb so that the DNS code will continue
to follow the turbulent attractor whereas u(x, 0; 0) = u2D and the flow must subsequently
relaminarise. Given these contrasting behaviours, there must be (at least) one interme-
diate value λ∗ where the flow neither becomes turbulent nor relaminarises. At this value
u(x, 0;λ∗) must be precisely on the edge and the flow has to subsequently walk the tightrope
of the edge neither converging back to the laminar state nor swinging up to the turbulent
state. The approach to finding λ∗ is to successively bisect the nth interval [λnl , λ

n
u] where

λl causes relaminarisation and λu leads to turbulence. This requires initialising a DNS
using u(x, 0; 1

2(λl + λu)) and having some criterion for deciding if the flow is starting to
relaminarise or become turbulent (obviously the quicker this decision is made, the faster the
bisection technique). Typically, λ∗ must be known to considerable accuracy to be able to
track the edge for any length of time because of the edge’s inherent instability. To illustrate
this, let µ be the Lyapunov exponent which describes the rate at which trajectories diverge
from the edge. Then if |λnu − λnl | ≤ 10−14 (e.g. double precision accuracy in Fortran), one
could anticipate being able to shadow the edge for a time T where

eµT × 10−14 . 1. (8.5)

Typically, for pipe flow at Re = O(2500), UT/D ≈ 200− 300 (D pipe diameter and U bulk
velocity along the pipe). Once λ∗ has been found to this accuracy, the bisection approach
can be restarted a little back from T , say 0.9T , using the velocity fields u(x, 0.9T ;λl) and
u(x, 0.9T ;λu) so that both velocity fields are still very similar albeit on different ’sides’ of
the edge. In this way a long-time edge-shadowing trajectory can be generated by piecing
together different tracking sections. The edge-tracking technique relies on two ingredients
for success.

1. The ability to quickly distinguish between two (and only two) different evolutions.
A clear energy level separation between the turbulent state and the edge is usually
sufficient.

2. The fact that the edge is a hypersurface and so can be reached by adjusting one
parameter (or alternatively, there is only one unstable direction across the edge).
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Figure 8.2: Perturbation energy traces of trajectories bounding the edge of chaos from [12].
Re=2875 and the pipe is 5D long.

It’s worth remarking here that this bisection approach can identify more general hyper-
surfaces in phase space than basin boundaries since only different initial behaviours are
needed. Whether the turbulent state is sustained or not is irrelevant for the mechanics of
the procedure although this does, of course, influence the interpretation of the edge.

8.2 First Calculations

Following Toh & Itano’s [17] first calculations, Skufca, Yorke & Eckhardt [16] treated a low-
dimensional model of shear flow and then the first edge-tracking calculation in pipe flow was
carried out in [12]. Figure 2 shows one of their edge trackings in a 5D pipe at Re = 2875.
The first thing to notice is the characteristic way the trajectories leave the edge to swing up
in energy to the turbulent state. The trajectory (d) and the relaminarising trajectory (e)
both provide a good approximation to the edge dynamics until about t ≈ 1800 when they
start to separate. If the edge is followed for longer, chaotic dynamics are obtained as the
‘edge state’ (the limiting set). Interestingly, a time-average of the velocity field (see figure
3) over this attractor reveals a coherent large scale structure where streamwise rolls and
streaks combine in a familiar way [4, 20]. A very similar-looking travelling wave (TW) was
found soon afterwards [9] prompting the conclusion that this TW must be embedded in the
edge state. The fact that some TWs could be part of the edge was an idea already gaining
momentum [5, 19]. Figure 4 shows the effect of perturbing a typical lower branch TW along
its most unstable direction (from [5], ‘lower branch’ meaning closer to the laminar state than
the ‘upper branch’ in any sensible measure such as energy or dissipation). Depending on
the sign of the perturbation, the evolution can either lead to the turbulent state (solid green
line) or the laminar state (dashed green line). Hence this TW must be on the edge. Contrast
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Figure 8.3: Edge trajectory snapshots, their time-average and an exact travelling wave calculated
in [9].

this situation with perturbing an upper branch TW (figure 5) where the subsequent flow is
turbulent whichever way the perturbation is applied. The consensus now is that the edge
is made up of (at least) the union of all the stable manifolds of the lower branch TWs.

8.3 Developments

The significance of the edge state is that initial conditions which are just able to trigger
transition should follow the edge, reach the edge state and then be ejected along its unstable
manifold to the turbulent state. Hence, in some sense, it is an organising centre for transition
(see [3] for a discussion). From another perspective, the edge-tracking technique can be
viewed as a powerful new approach to finding nonlinear solutions of the Navier-Stokes
equations. The edge state can change depending on the flow geometry (e.g. length of pipe),
Re and the symmetries imposed on the flow (see examples below). Starting conditions for
the tracking will also be important if the edge state is not the unique attractor on the edge.
All of these aspects of the procedure have been explored and will now be briefly described.

8.3.1 Varying Re

Schneider & Eckhardt [11] examined how the typical edge state energy varies compared to
the turbulent state for Re ∈ [2000, 4000] in their 5D pipe. Figure 6 makes it clear that the
separation of the edge and turbulence increases with Re. However, over this range of Re,
the edge state remains chaotic (see [3] for even higher Re).
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Figure 8.4: The disturbed kinetic energy per unit mass versus wall shear stress τ for a lower branch
TW. The subsequent flow either becomes turbulent (solid green line) or tamely relaminarises (dashed
green line). All the TWs known in 2007 to fit into a 5D pipe are plotted: 2-fold rotationally sym-
metric TWs(blue), 3-fold TWs(red) and 4-fold TWs(black). The non-smooth bold black separating
line is supposed to indicate the edge. For details see [5].
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Figure 8.5: The disturbed kinetic energy per unit mass versus wall shear stress τ for a typical upper
branch TW [5].

Figure 8.6: Typical energy of the edge trajectory (down triangles) and turbulence (black boxes) as
a function of Re for a 5D pipe from [11].
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Figure 8.7: Energy contained in the axially dependent flow. The thick line indicates the edge
trajectory and the thinner lines nearby trajectories which either relaminarize (energy decrease) or
become turbulent (energy increases to a higher level). Pipe length is 2.5D, Re = 2400 and the flow
is calculated within the R2-subspace [2]. The two cross-sections on the right indicate (at least) two
travelling waves which are stable on the edge (the upper one corresponds to the trace on the left at
large times).

8.3.2 Geometry and use of Invariant Subspaces

Duguet, Willis & Kerswell [2] looked at the edge state in a 2.5D pipe imposing R2 symmetry
(the flow is symmetric under a π rotation about its axis) at Re = 2400. The plot of E3d

(energy in the streamwise-dependent part of the flow) as a function of time is shown in
figure 7. The edge energy is seen to quickly level off indicating an edge state with constant
E3d which corresponds to a TW solution (labelled C3 1.25 in [2] and later renamed N2 in
[10]). This finding was significant in two ways. It was the first identification of a TW using
this technique (see also [13] who found a steady state in small geometry plane Couette flow
at about the same time) but it was not the expected TW. Calculations in [5] had identified
that a lower branch TW (in their nomenclature 2b 1.25, now known as S2) only had one
unstable direction indicating that this would be a relative attractor in the edge. However,
the TW found possessed an additional mirror symmetry never seen before. Thus it was
the first demonstration of multiple edge states. Secondly, the realisation that such ‘highly
symmetric’ TWs could exist led to whole new families of TWs being quickly discovered
thereafter [10]. As Re increases, these waves turn out to appear before the original less-
symmetric TWs found in [4, 20]. Plausibly, these latter waves arise from the former in
symmetry-breaking bifurcations ([10] shows an example of this - S3 bifurcating off N3 - in
their figure 8).

Duguet, Willis & Kerswell [2] also noticed that the edge trajectory in the 5D case at
Re = 2875 occasionally dipped to low energy values and smoothened locally (see Figure 8
for an example). They realised that the flows at these local energy minima turn out to be
very close to other (lower branch) TWs embedded in the edge but these are now saddles
there rather than relative attractors. This clearly reinforces the picture of lower branch
TWs embedded in the edge. The picture is then of the edge trajectory transiently visiting
the neighbourhood of these (saddle) TWs before ultimately reaching an edge state (see
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Figure 8.8: Upper: energy contained in the axially dependent modes on the edge for 5D pipe at
Re = 2875. The thick line indicates the edge trajectory. Lower: Schematic view of phase space.
The surface separates initial conditions which relaminarize from those which become turbulent. An
edge trajectory visiting three pink states is shown schematically [2].

Figure 8).

8.3.3 Larger Geometries

The bisection technique also works in larger geometries where the edge state turns out
to be localised. This was first seen in the ‘2 + ε’ dimensional model of pipe flow [21]
and then in fully 3 dimensional pipe flow [8]: see Figure 9. In both these cases, only
spatiotemporally chaotic edge states are found. In plane Couette flow, however, spanwise-
localised equilibrium and travelling wave solutions were found [15] in short (streamwise) and
wide (spanwise) domains. These spanwise-localised solutions were later found to bifurcate
off the spanwise-periodic solutions already known [14] suggesting that all strictly periodic
solutions could have connected localised versions too (see the talk by Tobias Schneider in
this volume). Opening up the flow even further by considerably lengthening the domain
leads to an edge state also localised in the streamwise direction, albeit now chaotic [1, 15].
Intriguingly, this edge state resembles a turbulent spot (although the energies are lower)
and highlights the large size of domains needed to see streamwise localisation. Figure 10
illustrates this latter point by comparing the small plane Couette flow domain originally
used for edge-tracking [13] (4π × 2 × 2π being the streamwise, cross-stream and spanwise
dimensions respectively) with the short, wide domain (4π× 2× 8π) and long, wide domain
(64π× 2× 16π) of [15]. It is currently an outstanding question as to whether fully localised
equilibrium or TW solutions exist in wall-bounded shear flows.

There are still many issues surrounding the edge and efforts have started in very low
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Figure 8.9: Localized edge state (ES) and turbulent state (TS) at Re = 1900. Energy distribution
of (a) the localized edge state and (b) a turbulent state. (c) and (d) show cross-sectional distributions
of isosurfaces of the edge state and the turbulent state respectively, from [8].

dimensional models to unravel these [6, 7, 18].

Summary

• Edge tracking is possible if there are two different types of behaviour (which can
easily be discerned). The subcritical scenario is ideal as the laminar and turbulent
states co-exist. If these two states are locally stable, the edge represents the laminar-
turbulent boundary. If they are not, then the edge is a hypersurface which divides
initial conditions which experience different initial behaviour only.

• Edge tracking can find exact solutions if they are relative attractors on the edge or
even if they are saddle points on the edge (with luck).

• Edge states act as organising centres for transitional flows.

• Edge states vary with Re, geometry of the flow and what symmetries are imposed.

• Edge tracking just needs a DNS code and patience.
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Figure 8.10: The small domain of [13] in which the edge state is a steady global state is shown as
the lower left green rectangle (flow is left to right). The short wide box of [15] is shown as the lower
left yellow rectangle (4 times wider than the green rectangle) with both dwarfed by the 16 times
longer, wide box which captures a fully localised edge state. Underneath are shown the spanwise
localised states found by edge tracking in the short wide box.
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Lecture 9

Triggering Transition: Towards
Minimal Seeds

9.1 Introduction

In the previous lecture we discussed the edge and tracking it forward in time to a relative
attractor - the edge state. This always seems to be on an energy plateau compared with
other points and it is natural to ask what is the lowest energy attained by the edge. The
initial condition corresponding to this point - the minimal seed - infinitesimally disturbed
represents the easiest way (energetically) to trigger turbulence. In this lecture, we discuss a
method of finding the minimal seed which, in some sense, manages to integrate backwards
in time along the edge.

Some evidence that there is a disparity in energies on the edge was supplied recently by
Viswanath and Cvitanović [13] who looked at shooting for the edge state in a short pipe
of length πD (D is the pipe diameter). They took a combination of only three flow fields
as an initial condition and searched for the lowest initial energy for which the ensuing flow
would approach a particular travelling wave solution some time later. This travelling wave
was chosen as the target since it is known to be embedded in the chaotic edge state in a
5D pipe [7]. They chose one of the initial flow fields as the travelling wave solution itself
and the other two to be its two unstable eigenmodes, and found that the maximum growth
ratio of the energy was O(104) (see also [4]). Thus some regions of the edge have a much
smaller energy level than the attracting plateau where the edge state resides. This suggests
a strategy to identify the minimal seed which involves looking for the initial condition
which experiences the largest energy growth. A brute force search over all possible initial
conditions is not feasible but a variational approach is.

We define the growth of the energy at time T by the gain

G(T ) := max
u0(x), ∇·u0=0

〈
1
2
|u(x, T )|2

〉
〈

1
2
|u0(x)|2

〉 , (9.1)

where u0(x) = u(x, t = 0) and 〈·〉 means the volume integration
∫
· dV . It is this function
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G(T ) that we want to maximise to find the minimal seed. We briefly discuss the matrix-
based and a matrix-free variational methods to find the minimal seed of the linearised
Navier-Stokes equations. Then we extend the matrix-free approach to investigate the fully
nonlinear transient energy growth problem [8],[9].

9.2 Linear transient energy growth (non-modal analysis)

The non-dimensionalized linearized Navier-Stokes equation around the laminar flow ulam is
∂u
∂t

+ (ulam · ∇)u + (u · ∇)ulam +∇p =
1
Re
∇2u, (9.2)

where u is the perturbation of the laminar flow ulam and Re is the Reynolds number. As
normal we assume that the fluid is incompressible, ∇ · u = 0.

9.2.1 Matrix-based method

We can rewrite the linearized Navier-Stokes equation (9.2) in the form

∂u
∂t

= Lu, (9.3)

where L is a linear operator, which has eigenvalues λj and eigenfunctions qj . Assuming
that the set qj is complete (but not necessarily orthogonal unless L is normal), then

u0(x) =
∞∑
j=1

aj(0)qj(x) ⇒ u(x, t) =
∞∑
j=1

aj(t)qj(x) (9.4)

where aj(t) := aj(0) exp(λjt). Then

G(T ;Re) = max
a(0)

〈u∗ .u 〉
〈u∗0 .u0 〉 = max

a(0)

∑
i

∑
j a
∗
i (T )aj(T )〈q∗i .qj 〉∑

i

∑
j a
∗
i (0)aj(0)〈q∗i .qj 〉

. (9.5)

Truncating at some large but finite N (so things become finite-dimensional yet insensitive
to the exact value of N) then Mij := 〈q∗i .qj 〉 is a Hermitian n × n matrix which can be
reduced to another matrix F such that F ∗F = M , then

G(T ;Re) = max
a(0)

[Fa(T )]∗.Fa(T )
[Fa(0)]∗.Fa(0)

= max
a(0)

[FeΛTa(0)]∗.F eΛTa(0)
[Fa(0)]∗.Fa(0)

= ||FeΛTF−1||22 (9.6)

where eΛT = diag(eλ1T , eλ2T , . . . , eλNT ) [11]. This can handled by standard Singular Value
Decomposition (SVD) software to give the largest singular value. If L is normal, M and F
are diagonal and

G(T ;Re) = ||eΛT ||22 = max
j

∣∣∣eλjT ∣∣∣2 = max
j
e2<e(λj)T (9.7)

so there can be no transient growth when L is linearly stable i.e. <e(λj) ≤ 0 for all j.
This method is straightforward but only really computationally feasible for one-dimensional,

or possibly two-dimensional problems because the size of the matrices becomes unwieldy
and then unmanageable for three-dimensional problems. A better approach is the matrix-
free method which, although incurring more start-up costs (e.g. building a time stepping
algorithm), is extendable to include nonlinearity.
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9.2.2 Matrix-free method – Variational method

In this section, we consider the use of a matrix-free variational method for finding the
energy growth which involves time-stepping the linearised Navier-Stokes equations. Since
the problem is linear, the initial energy can be rescaled to 1 and we consider the Lagrangian

G = G(u, p, λ,Sν, π;T ) =
〈

1
2
|u(x, T )|2

〉
+ λ

{〈
1
2
|u(x, 0)|2

〉
− 1
}

+
∫ T

0

〈
Sν(x, t) ·

{
∂u
∂t

+ (ulam · ∇)u + (u · ∇)ulam +∇p− 1
Re
∇2u

}〉
dt

+
∫ T

0
〈π(x, t)∇ · u〉 dt (9.8)

where λ, Sν and π are Lagrangian multipliers imposing the constraints that the initial
energy is fixed, that the linearized Navier-Stokes equation (9.2) holds over t ∈ [0, T ] and
the flow is incompressible (their corresponding Euler-Lagrange equations are respectively:〈

1
2
|u(x, 0)|2

〉
= 1, (9.9)

∂u
∂t

+ (ulam · ∇)u + (u · ∇)ulam +∇p− 1
Re
∇2u = 0, (9.10)

∇ · u = 0.) (9.11)

The Euler-Lagrange equation for the pressure p is

0 =
∫ T

0

〈
δG

δp
δp

〉
dt =

∫ T

0
〈(Sν · ∇)δp〉 dt

=
∫ T

0
〈∇ · (Sνδp)〉 dt−

∫ T

0
〈δp(∇ · Sν)〉 dt. (9.12)

which to vanish means

Sν = 0 at boundary, (9.13)
∇ · Sν = 0. (9.14)

Finally, considering variations in u (with the condition that δu = 0 on the boundary):

∫ T

0

〈
δG

δu
· δu

〉
= 〈u(x, T ) · δu(x, T )〉+ λ 〈u(x, 0) · δu(x, 0)〉

+
∫ T

0

〈
Sν ·

{
∂δu
∂t

+ (ulam · ∇)δu + (δu · ∇)ulam − 1
Re
∇2δu

}〉
dt

+
∫ T

0
〈π∇ · δu〉 dt. (9.15)
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The first term in the second line of the above equation can be reexpressed as∫ T

0

〈
Sν · ∂δu

∂t

〉
dt =

∫ T

0

〈
∂

∂t
(δu · Sν)

〉
dt−

∫ T

0

〈
δu · ∂Sν

∂t

〉
dt

= 〈δu(x, T ) · Sν(x, T )− δu(x, 0) · Sν(x, 0)〉 −
∫ T

0

〈
δu · ∂Sν

∂t

〉
dt,

(9.16)

the second term as

〈Sν · {(ulam · ∇)δu}〉 = 〈∇ · ((Sν · δu)ulam)− δu · {(ulam · ∇)Sν}〉
= −〈δu · {(ulam · ∇)Sν}〉 , (9.17)

the third term as

〈Sν · {(δu · ∇)ulam}〉 =
〈
δu · {Sν · (∇ulam)T

}〉
(= 〈δui νj ∂iulam,j〉). (9.18)

and the fourth term as〈
Sν ·

(
− 1
Re
∇2δu

)〉
= −

〈
1
Re

δu · ∇2Sν
〉
, (9.19)

and finally the last term as

〈π∇ · δu〉 = 〈∇ · πδu〉 − 〈δu · ∇π〉
= −〈δu · ∇π〉 . (9.20)

Combining all these gives∫ T

0

〈
δG

δu
· δu

〉
= 〈δu(x, T ) · {u(x, T ) + Sν(x, T )}〉

+ 〈δu(x, 0) · {λu(x, 0)− Sν(x, 0)}〉

+
∫ T

0

〈
δu ·

{
−∂Sν

∂t
− (ulam · ∇)Sν + Sν · (∇ulam)T −∇π − 1

Re
∇2Sν

}〉
dt.

(9.21)

For this to vanish for all allowed δu(x, T ), δu(x, 0) and δu means

δG

δu(x, T )
= 0 ⇒ u(x, T ) + Sν(x, T ) = 0 (9.22)

δG

δu(x, 0)
= 0 ⇒ λu(x, 0)− Sν(x, 0) = 0 (9.23)

δG

δu
= 0 ⇒ ∂Sν

∂t
+ (ulam · ∇)Sν − Sν · (∇ulam)T +∇π +

1
Re
∇2Sν = 0. (9.24)

The last equation is the ‘dual (or adjoint) linearized Navier-Stokes equation’. This equation
can only be integrated backwards in time because of the negative diffusion term. Figure 9.1
shows a diagram of a numerical method for iteratively solving these variational equations
in order to construct the initial condition with maximum growth (e.g. [5]). The algorithm
has the following steps.
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Figure 9.1: Diagram of iterative method.

Step.0 Choose an initial condition of the iterative method u(0)(x, 0) such that〈
1
2

{
u(0)(x, 0)

}2
〉

= 1. (9.25)

Then we construct u(n+1)(x, 0) from u(n)(x, 0) as follows:

Step.1 Time integrate the linearized Navier-Stokes equation (9.2) forward with incom-
pressibility ∇ · u = 0 and boundary condition u = 0 from t = 0 to t = T with the
initial condition u(n)(x, 0) to find u(n)(x, T ).

Step.2 Calculate Sν(n)(x, T ) using (9.22) which is then used as the initial condition for
the dual linearized Navier-Stokes equation (9.24).

Step.3 Backwards time integrate the dual linearized Navier-Stokes equation (9.24) with
incompressibility (9.14) and boundary condition (9.13) from t = T to t = 0 with the
‘initial’ condition Sν(n)(x, T ) to find Sν(n)(x, 0).

Step.4 Using equation (9.23), a simple approach to calculating the correction of u(n) is as
follows:

u(n+1) = u(n) + ε

[
δG

δu(x, 0)

](n)

(9.26)

= u(n) + ε
(
λu(n)(x, 0)− Sν(n)(x, 0)

)
, (9.27)

with λ chosen such that

1 =
〈

1
2

{
u(n+1)(x, 0)

}2
〉

(9.28)

=
〈

1
2

[
(1 + ελ)u(n)(x, 0)− εSν(n)(x, 0)

]2
〉
. (9.29)
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1 2

decay

Figure 9.2: Initial noise is magnified as it passes through the pipe expansion before even-
tually decaying.

Figure 9.3: Comparison between noise-driven flows (bottom halves) and the linear optimal
growth (top halves) for Re = 900 (upper) and Re = 1200 (lower) [1].

Here ε is a parameter of this iterative method and must be sufficiently small.

This last step moves u(n)(x, 0) in the direction of maximum ascent in order to increase
G(T ). Iterating the last four steps typically converges to a local maximum of G(T ) [3], [5].

An example of the application of this method for finding linear optimum initial condi-
tions is the case of expansion flow in a pipe [1], see Figure 9.2. Flow through an expansion in
a pipe is a classical engineering problem which is not spatially homogeneous. The resulting
linear-growth optimal can be compared with the numerical result of perturbing the flow
with random noise, see Figure 9.3. The dominant spatial structure which grows out of the
noise appears to agree well with the linear optimal.

9.3 Non-linear optimization

The matrix-free approach is, in principle, ‘easily’ extended to the non-linear problem. There
are only two changes that need to be made to the Lagrangian G: the nonlinearity is added
back to the linearised Navier-Stokes equation and the initial energy is explicitly set at E0

which joins T as a free parameter of the problem. So

G(T,E0;Re) = ...+
∫ T

0
〈Sν · (u · ∇)u〉 dt+ λ

{〈
1
2
u2(x, 0)

〉
− E0

}
(9.30)
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t=0 t=T

u(x,t)

ν(x,t)

Figure 9.4: Checkpointing: during the calculation of Sν(x, t) the velocity u(x, t) is recalcu-
lated in short sections from each checkpoint.

The change to a the non-linear term means that the part of the functional derivative of G
with respect to u must be recalculated to get∫ T

0

〈
δG

δu
·δu
〉
dt = ...+

∫ T

0
〈Sν·[δu · ∇u + u · ∇δu]〉 dt

= ...+
∫ T

0

〈
δu·[(∇u)T·Sν − u · ∇Sν]

〉
dt. (9.31)

Thus the dual Navier-Stokes equation becomes

−∂Sν
∂t

+ (∇[u + ulam])T·Sν − (u + ulam)·∇Sν −∇π − 1
Re
∇2Sν = 0. (9.32)

The consequences of adding the non-linear term can be summarised as follows:

1. The full Navier-Stokes equations now need to be integrated forward in time.

2. The dual Navier-Stokes equation remains linear in Sν but now depends on u(x, t).

3. The result now depends on both E0 and T .

The added dependence of the dual equations on u(x, t) creates some problems numerically
as this suggests that u(x, t) must be stored at every step of the forwards integration. For
large systems the memory requirements associated with this are unfeasible so a method
called ‘checkpointing’ is used instead. This involves storing u(x, t) at a reduced set of
times or ‘checkpoints’ and then integrating forward in time again from each checkpoint as
required when calculating Sν, see Figure 9.4. This method results in much reduced storage
requirements but at the added cost of having to perform the forward integration twice per
iteration.

9.4 Results

Before looking at some actual numerical results, we briefly consider what might happen.
For a fixed value of T we could expect the algorithm to converge for energy values E0 where
it is not possible to trigger turbulence. However, once E0 exceeds a threshold Ethresh where
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(a) Expected variation of G with E0. (b) Possible variations of E with t: turbulent (top),
non-linear optimal (middle), linear optimal (bottom).

Figure 9.5: Expected results; the red curves correspond to the results of linear transient-
growth analysis [12].

turbulence can be reached by some initial conditions, the algorithm should find these since
they experience the larger energy growth. Then the algorithm should fail to converge due to
the extreme sensitivity of the turbulence-triggering initial conditions to the exact turbulent
energy level reached a fixed time later: see Figure 9.5.

9.4.1 Pipe flow

Pringle & Kerswell [8] numerically solved the nonlinear optimisation problem in the case
of pipe flow using a short pipe with L = πR (see also [2] for a boundary layer calculation).
Figure 9.6 shows the growth G against E0 at Re = 1750 which indicates how a new 3-
dimensional optimal emerges at E0 ≈ 10−5 to replace the 2-dimensional linear optimal. The
optimisation time T was taken to be the time taken for the linear calculation to reach its
maximum value of G to emphasize the effect of nonlinearity in the optimisation calculation.
This, however, was too short a time for initial conditions to reach the turbulent state and
convergence problems were encountered at E0 = 2× 10−5 < Ethres (similar issues were also
found at Re = 2250).

The linear optimal is a well-known 2D structure as shown in Figure 9.7 (e.g. [12]).
The optimum initial disturbance consists of a roll structure which then generates large
velocity streaks before eventually decaying back to laminar flow. The structure of the new
3D optimal is much more complicated: see Figure 9.8. It initially consists of a radially-
localised helical mode which unwinds to create rolls which then form streamwise streaks;
the presence of these two distinct stages can be clearly seen from the two stages of growth
in Figure 9.6b (see [9] for more details). When similar calculations are performed for longer
pipes a localisation of the initial condition in the axial direction is also observed. This
localised initial perturbation now also unrolls and expands in the streamwise direction to
produce long streamwise rolls and ultimately streaks.
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(a) Variation of G with E0. (b) Evolution of G(t) with time for linear optimal
(lower/red) and non-linear optimal (upper/blue).

Figure 9.6: Results of numerical calculation for short pipe [8].

Figure 9.7: Linear optimal at three successive times. Colours represent streamwise velocity
and the arrows represent velocity in the cross-section.
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Figure 9.8: Non-linear optimal at five successive times. Colours represent streamwise ve-
locity and the arrows represent velocity in the cross-section [8].

Two questions emerge from these preliminary results:

1. Can this approach be used to estimate Ethresh?

2. Does the non-linear optimal found correspond to the minimal seed for turbulence?

It is clearly possible that the extremum to which the numerical code converges may be
a local maximum rather than the global maximum. This would result in too high a value
of Ethresh. Even if the numerical code finds the correct value of Ethresh, it is possible that
the non-linear optimum found does not become turbulent but rather the minimal seed is
a different point on the same surface of E0, see Figure 9.9. Further numerical results [9],
however, suggest that the answer to the first question is ‘yes’ and the answer may also be
‘yes’ to the second as well.

9.4.2 PCF

Numerical optimisation calculations have also been performed for PCF [6]. However this
work used a different choice of G choosing instead to look at the total dissipation

G′ =
1
T

∫ T

0

〈
1
Re
|∇u|2

〉
dt. (9.33)

This functional was chosen based on the idea that turbulent flow is much more dissipative
than laminar flow. The results of these calculations are shown in Figures 9.10 & 9.11.
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Ec

turbulence

NLOP?

Figure 9.9: Does the non-linear optimal found numerical necessarily correspond to the
minimal seed?

The increase in dissipation as the initial condition switches from remaining laminar to
transitioning to turbulence is very clear. We also see a localisation of the initial perturbation
as was previously observed for a long pipe. Optimising the energy growth for exactly the
same flow configuration (geometry and Re) seems to produce the same estimate of Ethres
[10]. This is consistent with the thinking developed in [9] where the exact functional used
is not important but merely that the functional takes on enhanced values for turbulent flow
states compared to their laminar counterparts. It should be clear that there is much to
explore and understand in this promising new variational approach.
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Figure 9.10: Variation of energy threshold for transition to turbulence with E0 (top) and of
dissipation with E0 (bottom). Blue marks correspond to flows that remain laminar, green
to those that transition to turbulence, and the red star to the non-linear optimal [6].

Figure 9.11: Evolution of the non-linear optimal with time [6].
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Lecture 10

Turbulence: Transient or
Sustained?

Many realised in the 1980s that Chaos theory was not going to solve the problem of tur-
bulence because it is an inherently spatiotemporal phenomenon (at least at low to interme-
diate Re). Pomeau [12]1 was the first to start thinking about turbulence from a statistical
mechanical viewpoint by comparing spatiotemporal intermittency to directed percolation.
Here, a spatial lattice of sites which individually can either be active (‘turbulent’) or passive
(‘laminar’) is stochastically evolved in time using simple rules which incorporate information
about neighbouring states. In the simplest models, there is one parameter p which defines
the evolutionary strategy and then the challenge is to characterise the ensuing dynamics
as a function of p. What typically emerges is that the order parameter ρ(t) defined as the
ensemble average of the lattice average of active sites (active=1, passive =0) asymptotes to
0 as t→∞ for p ≤ pc where pc is a critical value, whereas for p > pc, limt→∞ ρ(t) ∼ (p−pc)β
(there are universality classes defined by the exact value taken by the exponent β). What
is important here is the idea that turbulence and the laminar state can coexist above a
definite threshold (in Re) and the use of statistical techniques to characterise this via an
order parameter (e.g. turbulent fraction in a domain).

These ideas were followed up most famously in 1998 by Bottin et al. [4] who conducted
a series of plane Couette flow experiments in very large domains (non-dimensionalised as
380 × 2 × 70 in the streamwise, cross-stream and spanwise directions respectively) so that
the spatiotemporal behaviour near the transition threshold could be seen. The turbulent
fraction of the flow, Ft as a function of time for various Re is shown in Figure 10.1. This
plot emphasizes the temporal variability in Ft and the sensitivity of the flow to the initial
conditions used (e.g. compare the two time signals for Re = 322). Ft is found to approach 0
eventually for all Re < Rc ≈ 323, but long transients are found when Ru ≈ 312 < Re < Rc
so that a long-time average which is non-zero can still be defined (all turbulence rapidly
decays for Re < Ru). This is plotted verses Re in Figure 10.2.

Bottin et al. then applied a statistical approach to quantifying the transience of tur-
bulence in the Re range [Ru, Rc]. They collected lifetime data from 50 − 120 separate
experiments and then estimated P (T ), the probability that the flow still remains turbulent

1Apparently, this work was mostly done at the Woods Hole summer program of 1985.
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Figure 10.1: (From [4]) Turbulent fraction vs. time during typical runs at various values of
Re.

after a time T : see Figure 10.3. The best fit lines drawn through the data at each Re
indicate an exponential distribution of lifetimes

P (T ) = e−T/τ , (10.1)

(since P (0) = 1) where τ = τ(Re) is the mean lifetime of the process. If p(T )dT is the
probability that the flow relaminarises in the time interval [T, T + dT ) (as dT → 0), then

p(T ) =
1
τ
e−T/τ (10.2)

and the half life (median) is τ ln 2. This distribution indicates that the relaminarisation
process is memoryless, that is, the probability of relaminarising in the interval [T, T + s)
only depends on s and not T . Figure 10.3 also shows that flows at higher values of Re take
longer to relaminarise. In fact plotting 1/τ against Re indicated a linear relationship with
an intercept (τ →∞) at ≈ 323: see Figure 10.3. This is consistent with Rec such that for
Re < Rec the turbulence will always be transient with a finite half life, while for Re > Rec
the half life is infinite and the turbulence sustained.

A similar statistical approach was also adopted numerically in small systems, that is, flow
geometries where the flow is either globally laminar or turbulent: see Schmiegel & Eckhardt
(1997) for plane Couette flow and Faisst & Eckhardt (2004) for pipe flow. The latter study
was motivated by an experimental study by Daryshire & Mullin (1995) which showed no
sharp border between initial conditions which lead to turbulence and those that did not.
Faisst and Eckhardt found a similar situation when observing over a fixed period of time
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Figure 10.2: The time-averaged turbulent fraction against Re from [4]. Ru = 312 is the
Re threshold below which turbulent patches rapidly decay (see Figure 10.1)). For Ru <
Re < Rc ≈ 323, there are long-lived turbulent transients. Above Rc, turbulence is sustained
although since Ft < 1 it is not space-filling (the lower dotted line is a conjectured threshold).

in their short, 5D (5 diameters) long pipe across which they applied periodic boundary
conditions and through which they enforced constant mass flux. They collected lifetime
statistics based on repeatedly initializing a numerical simulation using a perturbation of
fixed form but randomly varying its amplitude. 50-100 different runs were done for each
Re and 8 values of Re chosen from the interval [1600, 2200]. As in [4], they found that
P (T ) = e−T/τ(Re) - see Figure 10.4 - and estimated τ using the half life rather than the
mean lifetime due to the cut off in the observation times imposed. Figure 10.5 shows that
the mean lifetime τ increases rapidly with Re with the inset figure indicating that actually
τ → ∞ as Re → 2250. Faisst and Eckhardt speculated that for Re < 2250 where the
turbulent lifetime is finite, there is a chaotic repeller while for Re > 2250 there is a chaotic
attractor.

Further evidence for critical point behaviour in the transition to turbulence in a pipe was
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Figure 10.3: (From [4]) Left: cumulated lifetime distributions for turbulent transients at
different values of Re < Rec indicating exponential decay (lin-log scales; solid lines are fits
through the experimental data points). Right: variation of the inverse average decay time
1/τ as a function of Re extrapolating to zero at Rec = 323.

Figure 10.4: (From [6]) Probability for a single trajectory to still be turbulent after a time
t for six Reynolds numbers as indicated.

presented by a novel experiment by Peixinho and Mullin in 2006 [11]. In their experimental
setup (depicted in Figure 10.6a), a short duration perturbation was used to generate a



Transient or Sustained? 175

Figure 10.5: (From [6]) τ is found to increase rapidly withRe until the cut-off lifetime of 2000
at Re = 2200 is reached. The red dashed line shows the linear increas e in lifetime expected
due to purely non-normal linear dynamics. The inset shows the inverse mean lifetime vs.
Re and a linear fit, corresponding to a law τ(Re) ∝ (Rec −Re)−1, with Rec ≈ 2250.

localised puff at Re = 1900. The puff was allowed to advect 100D down the pipe so as to
become independent of the initial conditions, at which point Re was lowered to the required
value. The lifetime of the turbulence from this point onwards was then measured up to a
maximum travel of 500D (their pipe was 785D long in total). The mean puff lifetime as a
function of Reynolds number is shown in Figure 10.6b. In qualitative agreement with the
conclusions of Faisst and Eckhardt’s numerical simulations, the experiments showed that
above a critical Reynolds number - estimated to be Rec ≈ 1750 ± 10 - the lifetime of the
puffs becomes infinite and turbulence is sustained.

An experimental and numerical study by Hof et al. in 2006 [8], however, failed to find
any evidence for a critical Reynolds number. Instead, their results indicated that although
the half life of turbulence increases rapidly with Re it never actually becomes infinite for
finite Re so that pipe turbulence remains transient for all Re. Their experiments were
performed using a longer (30m) and thinner (4mm diameter) opaque pipe which was non-
dimensionally much longer at 7500D than Peixinho & Mullin’s. Turbulent puffs were excited
by injecting water through holes in the pipe (apparatus shown in Figure 10.7a). Since the
pipe was opaque, the angle at which the jet exited the pipe was monitored to see if the
puffs had survived or not (an exiting puff causes a small flicker in the jet). This meant
survival distances were measured rather than survival times with the latter found assuming
that the puff speed is uniform. Other differences with the experiments of Peixinho & Mullin
(2006) included using fixed-pressure-gradient driving rather than constant mass flux and,
since the pipe was opaque, the implicit assumption that puffs were always triggered by the
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a)

b)

Figure 10.6: (From [11]) a) Schematic of flow control procedure. Laminar pipe flow was
developed at Re = 1900 for 185D before a perturbation was injected (indicated by the
arrow). The puff progressed downstream for 100D and Re was then reduced to a prescribed
value. b) Variation of the mean lifetime as a function of Re and a fit, which indicates a
sharp cutoff at Rec ≈ 1750 ± 10. The inset is the inverse mean lifetime versus Re and a
linear fit.

jets. These subtleties aside, their mean lifetime data (inset of Figure 10.7b) did not appear
to fit the simple exponential implied by τ(Re) ∝ (Rec −Re)−1, as in [6] and [11]. Instead,
they suggested an exponential relation between τ and Re, of the form

P (T ;T0) = e−(T−T0)/τ(Re) (10.3)

with lifetime given by
1
τ

= e(a+bRe)
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b)

a)

Figure 10.7: (From [8]) a) Sketch of the experimental apparatus. b) The reciprocal char-
acteristic lifetimes as a function of Re for all experiments with t0 = 120D/U , plotted on
a log scale. Each data point required 400 to 500 measurements, with the total number of
experiments underlying the figure exceeding 5,000. The straight line is an exponential fit
to the data points. Inset, the same data replotted on a linear scale, underlining that they
are not compatible with a diverging mean lifetime.

where a and b are constant fitting parameters. The significance of an exponential relation-
ship is that there is no critical Reynolds number beyond which turbulent puffs are sustained
for all times. The introduction of a shifted time origin T0 was crucial in their data analysis:
the best straight line fit needs to be shifted in time. The explanation for this was that the
flow would take a finite time ≈ T0 to reach the turbulence state after the initial disturbance,
so that T −T0 would actually be the puff lifetime. Hof et al (2006) also redid the short pipe
numerical computations of [6] to reach the same conclusion. Furthermore, they reprocessed
Faisst & Eckhardt’s original data incorporating a best-fitted time origin to confirm that
this data also supported a lack of a critical Re.

Next to attack this problem were Willis & Kerswell in 2007 [15] who carried out numer-
ical simulations in a pipe long enough (10 times longer than in [6]) to realistically capture
the localised structure of a turbulent puff. The methodology for generating initial condi-
tions mirrored that of [11], as puffs at a higher Re of 1900 were used as initial conditions
for the numerical simulations at lower Re. Using 40-60 independent simulations per Re as
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the computations were so costly, a critical Rec was found with a value of ≈ 1870 and τ best
fitted by

τ = α (1870−Re)−1 ,

where α = 2.4× 10−4, comparing favourably with the results of [11] who found

τ = α (1750−Re)−1 ,

with α = 2.8× 10−4.

Figure 10.8: (From [7]) Decay rate 1/τ plotted on a log linear scale against Re suggesting
superexponential dependence of τ upon Re.

This result was countered by Hof et al. in 2008 [7] who presented results from four
different physical experiments (pipe length =600D, 690D, 2000D & 3600D ) in three dif-
ferent locations (Manchester, Delft and Göttingen) (see also the arXiv discussion articles
arXiv:0707.2642 and arXiv.0707.2684). The authors also increased the number of observa-
tions taken compared to their previous paper [8]. From this greater data set, they revised
their exponential dependence of τ upon Re to superexponential,

τ ∼ eαRe ⇒ τ ∼ eeαRe .
This new relationship still implied that no finite value for Rec existed (see Figure 10.8: note
the last Re considered and the later work of [1] discussed below).

Further numerical work then started to be done in large domains. Initially, due to the
extreme cost, these simulations were carried out working with reduced resolution in one
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Figure 10.9: (From [16]) The sensitivity of lifetime (τ) to pipe length is shown with data
generated using the 2 + ε dimensional model. The 1/τ is plotted against Re for a range of
pipe lengths from 2πD to 32πD ≈ 100D. The results suggest an infinite value of Rec for
pipes shorter than 8π and a finite value for longer pipes.
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direction in order to ensure enough data was collected of long transients (e.g. Lagha &
Manneville 2009, Willis & Kerswell 2009). The hope was that these reduced models would
capture the real qualitative aspects of the problem, that is, whether there is a finite Rec
or not. In work by Lagha & Manneville [9] on plane Couette flow, the authors heavily
reduced the resolution in the wall-normal direction, while maintaining the resolution in the
two remaining directions. Using this approach they found evidence for a finite value for
Rec. Alongside this work, Willis & Kerswell [16] developed a similar reduction in pipe flow.
Here the resolution reduction was made in the azimuthal direction, with just 3 Fourier
modes retained in this direction (m = 0, ±3). Again the reduced model provided good
qualitative comparisons with full DNS. Large numbers of simulations were carried out for
both short and long pipes which suggested a transition in the relationship between τ and
Re (Figure 10.9). For pipes too short to support localized turbulence, Rec = ∞ with τ
taking the form

τ ∼ eαRe.
When long pipes were studied, a different relationship emerged with a finite Rec,

τ ∼ (Rec −Re)β .

The ‘2+ε’ dimensional model of [16] was so much more efficient to run that the full 3
dimensional situation that 100D pipes could easily be handled and transients followed for
O(100) times longer. However, this was not fully exploited because as Re was increased
the puffs started to delocalise or split to form ‘slugs’ (a turbulent state which aggressively
expands). This highlighted the fact that extrapolating puff lifetime data to asymptotically
large Re was actually irrelevant since the morphology of the turbulence changes. It took a
later study (Avila et al. 2011, see below) to pursue this realisation to a logical conclusion.

In the meantime, further numerical work was attempted in the 50D pipe to collect even
more data by fully harnessing a supercomputer. Using the same numerical code as in [15]
with the same resolution, Avila et al [2] extended the results of [15] in Re, sample size and
included pipes of length 100D. Armed with much more data, the authors saw no statistical
evidence for Rec being finite within their range of Re < 1900 (Figure 10.10).

After this, Avila et al. 2011 [1] took measurements of a puff splitting in both numerical
simulations and experimental work. They measured the lifetime of a puff before it underwent
its first split to become two puffs, and calculated S (T ), the probability that a puff has not
split by time T . Their results suggested this probability had an exponential (memoryless)
form with a mean lifetime τs having a superexponential dependence on Re (Figure 10.11).
By combining the plots of decay and splitting to see the crossover, a critical Reynolds
number of 2040 was found beyond which, on average, a puff should survive. For Reynolds
number smaller than this, puffs are more likely to decay than split, and therefore, on average
to ultimately decay. In other words, below 2040 turbulence is transient, and above it, the
expectation is that it will be sustained. Individual initial conditions at Reynolds numbers
greater than 2040 can still lead to transient turbulence, but the expectation over an ensemble
of runs is that more will yield turbulence at the end of a given time period (however long)
than not.

The current conclusion is then the following. For small systems, all current evidence is
that turbulence appears transient albeit with very large half life as Re increases. In large
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Figure 10.10: (From [2]) 1/τ plotted against Re, summarising the recent work against their
results which suggest a superexponential dependence of τ upon Re.

domains, however, the balance of evidence is that turbulence is ultimately sustained. The
key difference between small and large systems is that in large systems, turbulent patches
can independently exist in the flow. The spatial coupling between these turbulent patches
appears crucial to achieve sustenance [10]. This realisation has led to a return of statistical
approaches to modelling turbulence, most recently in the form of directed percolation [14]
and other reduced models [3].



182

Figure 10.11: (From [1]) Mean lifetime before decay and the mean lifetime before splitting
are plotted against Re (both experimental and numerical data shown).
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Project 1

Constraints on low order models:
The cost of simplicity
Martin Hoecker-Martinez: Advisor, Phil Morrison

Oregon State University

Low degree of freedom models have been proposed to understand the transition to tur-
bulence and the coherent structures which form. The low order model on which the Self
Sustaining Process [10] for turbulence in Couette flow is examined with respect to mean
conservation laws of Fourier truncations Aspects of the non-dissipative limits of these mod-
els are studied. Transport equations and conservation laws are derived for Energy, vorticity
and helicity. Connections are made between low order models and conservation laws and
Lie algebras

1.1 Introduction

The transition from laminar to turbulent flow is of interest in bounded shear flow geometries.
Laminar flows are advection free and mix only by molecular diffusion while turbulent flows
are characterized by drastic increases in mixing rates. The change in mixing regimes is due
to advective transport accessible to the turbulent state. Some flows can transition through
a linear instability of the laminar flow. In contrast systems like plane Couette flow which are
stable to infinitesimal perturbations exhibit transitions to turbulence for finite amplitude
perturbations.

1.1.1 Equations of Motion

The governing equations of fluid flow can be constructed through two very different ap-
proaches. The most fundamental method of generating equations of fluid motion begins
with a continuously labelled set of fluid particles from which a Hamiltonian is constructed1.
From this Hamiltonian formulation conservation laws may in principle be derived using

1For a discussion of Hamiltonian dynamics of fluids see [4, 8]
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Noether’s theorem. For most fluids it is difficult to write an expression for the Hamiltonian
in this manner as the natural co-ordinate system is advected with the particles.

An alternate approach constructs a set of partial differential equations which include
specific conservation laws. This approach is also more amenable to inclusion of empirical
equations of state and stress strain relations. The Navier-Stokes equations

∂v

∂t
+ v · ∇v = −1

ρ
∇p+

1
R
∇2vi (1.1)

∂ρ

∂t
+∇ · ρv = 0 (1.2)

are derived in this manner, using assumptions about diffusion of fluid properties and con-
servation of mass and momentum. The parameter R is the Reynolds number which gives
a measure of the relative influence of diffusion and advection. The ratio of advective and
diffusive transports is given by the Reynolds number[7, 9, 6]

R =
UL

ν
(1.3)

where U and L are characteristic velocity and length scales and ν is the molecular diffusivity.
These two modes of derivation can be bridged starting with governing equations from

application of conservation laws then seeking to find a Hamiltonian system which is consis-
tent with those dynamics. This requires an expression for the Hamiltonian H and a Poisson
bracket operator {A,B}. The Poisson bracket is implicitly defined by the time evolution
operator

∂

∂t
A = {A,H} (1.4)

For example in an ideal fluid is governed by the Euler equations

∂v

∂t
+ v · ∇v = −1

ρ
∇p (1.5)

∂ρ

∂t
+∇ · ρv = 0 (1.6)

∂s

∂t
+ v · ∇s = 0 (1.7)

and have a Hamiltonian takes of the form

H[v, ρ, s] =
∫∫∫

1
2
ρv · v + ρU(ρ, s) d3r (1.8)

where v is the velocity, ρ is density, s is entropy density and U is internal energy. The
Poisson bracket for this system is found explicitly by [5, 4]

{A,B} = −
∫∫∫

δA

δρ
∇ · δB

δv
− δB

δρ
∇ · δA

δv

+
∇× v
ρ
· δB
δv
× δA

δv
(1.9)

+
∇s
ρ
·
(
δA

δs

δB

δv
− δB

δs

δA

δv

)
d3r
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where δA
δv is the functional derivative. It is from this middle road approach we take the

inspiration for analysis of low order models of turbulence.

1.1.2 Flow parameters

Since the ideal fluid (1.5) is the limit as R→∞ of the viscous fluid (1.1) it is instructive to
describe some of the characteristics such flows. Before continuing the analysis we further
restrict ourselves to incompressible flows. This replaces the density evolution equation with
the requirement that velocity be divergence free ∇ · v = 0. To highlight the differences
between incompressible solutions to (1.5) and (1.1) we will focus on the evolution of three
quantities. Kinetic energy 1

2v
2, vorticity ω = 1

2∇× v, and helicity ω · v are governed by the
transport equations

∂

∂t

v2

2
= ∇i

(
−viP

ρ
+

1
R
∇i v

2

2

)
− (∇iuj)2

R
(1.10)

∂

∂t
ωi = ∇j

(
ωjvi − vjωi +

1
R
∇jωi

)
(1.11)

∂

∂t
viωi = ∇i

(
ρv2 − 2P

2ρ
ωi − vivjωj +

∇iωjvj
R

)
− 2 (∇jωi) (∇jvi)

R
. (1.12)

For the inviscid case the transport equations are a flux divergence and these quantities
are conserved. When viscosity is introduced energy is damped and vorticity is made more
homogeneous. The influence of diffusion on helicity is more complex, in addition to a
homogenizing diffusive term there is an additional term whose sign is indeterminate.

At large but finite Reynolds number diffusion is weak and only has influence at very
small length scales. This separation of scales is the basis of the Kolmogorov hypothesis
where at intermediate scales the motion self-organizes so that there is a constant energy
dissipation rate ε. The Kolmogorov length scale

η = 4
√
ν3/ε ∝ 4

√
1
R

(1.13)

is the scale at which diffusion can dissipate all the energy input and sets a lower bound on
the size of flow persistent features[9, 6].

1.1.3 Truncation

For very viscous flows the range of scales of motion available are limited, this has led to the
exploration of low dimensional models of turbulent transitions [10, 3, 2]. Using a spectral
decomposition of the flow these low order models retaining a subset of the modes which
represent motion with the largest length scales and whose dynamics will be least damped.
If density ρ is assumed to be constant (1.1) can be written in spectral form

∂v(k)
∂t

+ v(k) ∗ ikv(k) = −1
ρ
ikp(k)− 1

R
k2v(k) (1.14)

where ∗ is the convolution operator. Truncation changes the behaviour of the convolution
operator by restricting the domain available in the spectral space to a set of amplitudes
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Zi. The result is a finite set of non-linear differential equations for the amplitude of the
chosen modes. It is important to emphasize that the choice of which modes enter into the
truncation can greatly effect the behaviour of the low dimensional system.

Projecting (1.1) into Fourier space ûi(k) imposes a strong constraint on the motion
through phase space

∂

∂ûj(k)
dûi(k)

dt
= 2i

(
δij − kikj

k2

)
ûm(0)km − 1

R
k2δij . (1.15)

Trajectories in the inviscid limit 1
R → 0, with no mean flow û(0) = 0 are divergence free.

These divergence free trajectories additionally satisfy a Detailed Liouville where each term
in the sum (1.15) is separately zero. This Detailed Liouville behaviour in Fourier space has
been noted by [1] without the constraint on mean flow.

Some additional properties of the trajectories are low dimensional analogues of Flux-
divergence conservation laws of the full partial differential equation. If Fourier modes are
used for the decomposition there are some basic properties which all truncations will share.
The volume average of these transport equations can be used to form additional constraints
on the amplitudes of a Fourier decomposition. By Parceval’s theorem mean kinetic energy
is simply the sum of squares of Fourier amplitudes and must evolve according to

N∑
i=1

ZiŻi = − 1
R

N∑
i=1

κ2
iZ

2
i (1.16)

where κi is the wave vector for mode i. Similarly mean vorticity
N∑
i=1

Ziω(Zi) and mean

helicity
N∑
i=1

Zi$(Zi) must evolve according to

N∑
i=1

Żiω(Zi) = − 1
R

N∑
i=1

κ2
iZiω(Zi) (1.17)

N∑
i=1

Żi$(Zi) = − 2
R
κiωj(Z) ∗ κiuj(Z) (1.18)

where u(Zi), ω(Zi), and $(Zi) are the velocity, vorticity and helicity in mode Zi when it
has unit amplitude. Mean vorticity dynamics rarely contribute to low order truncations,
it is common to have no modes with mean vorticity [2], one mode out of eight [10], or
two modes out of nine [3]. Helicity dynamics are absent in low order models where all the
included modes have zero helicity [10, 3, 2]. The absence of helicity is due to the choice
of modes not the boundary conditions, in the domain used by [10, 3] a helical mode with
similar wave-numbers to those included in the truncation is of the form

~u =

cos2 πy sinπy
0

cosπy sin2 πy

 (1.19)

where the velocity spirals between the boundaries.



Martin Hoecker-Martinez 191

Figure 1.1: Mean flow mode M from [10]

1.2 Examination of Low Order Models

Analogously to how [5, 4] take the continuum equations for momentum balance in an ideal
fluid we hope to connect the low order models of [10] to an underlying Hamiltonian system
in the inviscid limit. With that goal in mind the necessary conditions of truncations are
checked for the four and five dimensional systems proposed and both systems are found to
behave in a manner inconsistent with a truncation. In the inviscid limit the fourth order
system has atracting regions in phase space and can not be a Hamiltonian system.

1.2.1 Detailed Liouville

In the inviscid limit any Fourier truncation is expected to be divergence free in phase space.
This Liouvillian character of trajectories implies there can not be any purely attracting
regions in phase space once the effects of viscosity have been removed. Because the parent
model is a truncation of Fourier modes and there is no mean flow there is the stronger
condition that the trajectories have a Detailed Liouville behaviour (1.15). Using Zi for the
amplitude of the ith Fourier mode in the truncation

∂Żi
∂Zi

= 0 no sum on i. (1.20)

The simplest low order model we consider is the fourthorder model from [10]. This
model has a mean flow M figure 1.1 and three additional modes charachterized as streaks U ,
Stream-wise vorticies, and a Streak Instability W which are combined into a Self Sustaining
Process figure 1.2. The governing equations
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Figure 1.2: Self sustaining process from [10]

Mean shear Ṁ = −UV + ΣmW
2 − 1

R
(M − 1) (1.21)

Streaks U̇ = +MV + ΣuW
2 − κ2

u

R
U (1.22)

Stream-wise Rolls V̇ = +ΣvW
2 − κ2

v

R
V (1.23)

Streak Instability Ẇ = −W (ΣmM + ΣuU + ΣvV )− κ2
w

R
W (1.24)

include a source term in the mean flow 1
R (M − 1) to model the input of energy from outside

the system. The coupling constants Σm,u,v arise from the convolution of the truncated
modes. and are functions of the particular wave-numbers κu,v,w chosen in the truncation.
The equations have been made non-dimensional to minimize the number of constants. The
fourth order model of [10] has an attracting orbit in the 1

R → 0 limit is shown in figure 1.3

(M,U, V,W ) = (M0 cosV0t,M0 sinV0t, V0, 0). (1.25)

This convergent behaviour in phase space indicated that the simplifying assumptions used
to reduce the model from an eighth order truncation introduced non-physical dissipation.
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Figure 1.3: Attracting orbit of [10] 4 dimensional model in the limit 1
R → 0. M , U , W are

shown in projection and V is colored

The fifth order parent model

Mean shear Ṁ = −UV + ΣmAE − 1
R

(M − 1) (1.26)

Streaks U̇ = +MV + ΣuaA
2 + ΣueE

2 − κ2
u

R
U (1.27)

Rolls V̇ = +ΣvAE − κ2
v

R
V (1.28)

Ȧ = −E
2

(ΣmM + ΣvV )− ΣuaUA− κ2
a

R
A (1.29)

Ė = −A
2

(ΣmM + ΣvV )− ΣueUE − κ2
e

R
E (1.30)

is non-divergent but fails the more stringent requrement of being Detailed Liouvillian (1.20).
Using the fifth order model from [10] as a starting point a similar set of equations which
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satisfies Detailed Liouville (1.20) is constructed

Mean shear Ṁ = −UV + ΣmAE − 1
R

(M − 1)

Streaks U̇ = +MV + ΣuAE − κ2
u

R
U (1.31)

Rolls V̇ = +ΣvAE − κ2
v

R
V

Ȧ = −E
2

(ΣmM + ΣuU + ΣvV )− κ2
a

R
A (1.32)

Ė = −A
2

(ΣmM + ΣuU + ΣvV )− κ2
e

R
E (1.33)

where A2 and E2 have been replaced by a term proportional to AE in (1.27) and terms pro-
portional to UA in (1.29) have been replaced by UE and vice-versa in (1.30). In the inviscid
limit this new set of equations satisfies Detailed Liouville (1.20), as well as conservation of
energy (1.16), and vorticity (1.17).

The stability of the laminar state equilibrium, where M = 1 and all others are zero, can
be explored using energy stability. The laminar state Li is globally stable with respect to
the energy while

d
dt

(Zi − Li)2 ≤ 0 (1.34)

for any system state Zi. This criterion is dependent on the value of R, in fact the laminar
state is stable only if both

R ≤ 2 |κuκv| (1.35)

R ≤ 2
∣∣∣∣κaκeΣm

∣∣∣∣ (1.36)

hold. The other equilibria of the system of equations can be found by solving the roots of a
5th order polynomial, but the solution is not amenable to testing limiting behaviour. The
equilibria criteria can be simplified into the relations

U = −ΣmΣvM
2 + ΣmΣuκ2

v−2κaκeΣv
R M − 2κaκeΣuκ2

v
R2

ΣuΣvM + κ2
uΣ2

v+Σ2
uκ

2
v

R

(1.37)

V =
κ2
uΣvU

ΣvRM + Σuκ2
v

(1.38)

E2 = −κaκ
2
vV

κeΣvR
(1.39)

A2 =
κ2
e

κ2
a

E2 (1.40)

in addition to the trivial solution M = U = V = A = E = 0. From these relations and



Martin Hoecker-Martinez 195

 10  100  1000  10000

Reynolds number

 0.0001

 0.001

 0.01

 0.1

 1

[(
A

2
+

E
2
)/

2
]1

/2

 0

 1

 2

 3

 4

 5

U
n

s
ta

b
le

 m
o

d
e

s

 110  112  114  116  118  120

 0.12
 0.13
 0.14
 0.15
 0.16
 0.17
 0.18
 0.19

 0.2
 0.21
 0.22

Figure 1.4: Equilibrium solutions as a function of Reynolds number, colored by number of
unstable modes

(1.26) the limiting behaviour as R→∞

M → 1

1 + κ2
u

Σ2
m

Σ2
u

(1.41)

U → −Σm

Σu
M (1.42)

V → −Σmκ
2
u

ΣuR
(1.43)

E2 → κaΣmκ
2
vκ

2
u

κeΣuΣvR2
(1.44)

A2 → κeΣmκ
2
vκ

2
u

κaΣuΣvR2
(1.45)

which differs from both the zero and laminar solutions. At finite Reynolds number these
solutions come in families where the sign of E, and A are arbitrary when (1.39) has real
roots.

To continue to characterize the behavior of the system it is helpful to use numerical
methods and integrate the equations of motion. Since the equilibria are insensitive to the
sign of A or E and both the trivial and laminar states have A = E = 0 figure 1.4 plots√

1
2 (A2 + E2) of the equilibria against Reynolds number. The laminar equilibrium becomes

an unstable equilibrium at a Reynolds number between 20 and 30. The break in the graph
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Figure 1.5: Equilibrium solutions colored by stability

in that region is due to the discrete step size taken in Reynolds number. Two additional
unstable equilibria arise near R ≈ 113 unlike the equilibrium near R ≈ 20 which is stable.
One equilibrium remains unstable for all Reynolds numbers while the other becomes stable
for increasing Reynolds number.

The nature of this transition can be more easily seen in figures 1.5 and 1.6 where the
equilibria are plotted in M,U, V space. The two curves show the two disjoint families
of equilibrium of solutions. As Reynolds number is increased the laminar state smoothly
transitions to a state of no motion. In contrast at moderate Reynolds number another
set of solutions come into existence, an unstable equilibrium smoothly approaches the in-
viscid equilibrium state as Reynolds number increases. The other equilibrium is initially
very unstable ubt quickly become stable and smoothly approaches the state of no motion.
This show two co-existing stable equilibria which approach each other in the limit of large
Reynolds number.

1.2.2 Hamiltonian

Having modified the five dimensional system to satisfy Detailed Liouville we now seek to
find a Hamiltonian system from which it can be derived. The construction is simplified by
the quadratic form of the energy

H = M2 + U2 + V 2 +A2 + E2 (1.46)

where the H is chosen to emphasize that in the inviscid system the Hamiltonian is the
energy. Now we need a co-ordinate transformation so that we can recover the equations of
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Figure 1.6: Equilibrium solutions colored by Reynolds number

motion using a Poisson bracket
Żi =

{
Zi, H

}
. (1.47)

For finite dimension Hamiltonian systems the Poisson bracket used for time evolution can
be written in a general from

{f, g} =
∂f

∂Zi
J ij

∂g

∂Zj
(1.48)

where J ij is an anti-symmetric tensor which satisfies the Jacobi identity

Sijk = J im
∂J jk

∂Zm
+ J jm

∂Jki

∂Zm
+ Jkm

∂J ij

∂Zm
+ = 0 (1.49)

Because we are using a quadratic Hamiltonian and are enforcing Detailed Liouville the
tensor J ij is of the form

J ij = Cijk Z
k (1.50)

where Cijk form a Lie algebra. For four dimensional systems there are only two Lie algebras
which give rise to full rank tensors J ij , the two archetypal forms of the J tensor are

J ij =


0 −Z1 0 0
Z1 0 0 0
0 0 0 −Z3

0 0 Z3 0

 or


0 −Z3 0 0
Z3 0 0 0
0 0 0 −Z1

0 0 Z1 0

 (1.51)

but neither admit linear co-ordinate transformations which reproduce the characteristics
of the fourth order model of [10] such as non-normality. For the five dimensional case the
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possible Lie algebras have not been exhausted but no J ij which satisfies the Poisson bracket
has been found which satisfies the Jacobi identity (1.49).

1.3 Conclusion

A non-dimensional version of the low order models in [10] have been shown to introduce an
additional damping not present in the continuous system. Hamiltonian generalization of the
fourth order model has been been excluded using properties of Lie algebras. The fifth order
model [10] has been shown to violate the Detailed Liouville criterion, a simple substitution
was introduced into the fifth order model to recover Detailed Liouville. The behaviour of
this modified fifth order model is explored in detail and the stability and multiplicity of
the equilibria is shown for a range of Reynolds numbers. No conclusive statement is made
about the existence of a Hamiltonian parent model for the models of order higher than four.
A trial form for the anti-symmetric tensors J ij was found for both fifth order systems was
found which satisfied time evolution as a Poisson bracket. The candidate tensors fail the
Jacobi identiy, the time evolution only uniquely determines J ij for systems of order three
and less and no general statement can be made from the failure of of the Jacobi identity
for these particular tensors.
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Project 2

On One-Fluid MHD Models with
Electron Inertia
Keiji Kimura

Kyoto University

We investigate the limitations of various MHD models that include electron inertia by
considering expansion in terms of non-dimensional parameters, and by classifying those that
have energy conservation. It is revealed that a correction term in the momentum equation,
which is usually neglected, is needed to conserve the total energy. In order to investigate
the effect of this correction term, a modified Grad-Shafranov equation is obtained in the
“straight torus,” i.e., where toroidal curvature is neglected, for the cases when the plasma
has constant density or is barotropic. In the case with toroidal curvature, some conditions
on the magnetic field in a torus are needed even if the plasma has constant density.

2.1 Introduction

The usual ideal magnetohydrodynamic (MHD) model is often used in various fields, for
instance, in astrophysics, nuclear fusion and geophysics. Of course, as with all models,
ideal MHD has some limitations, such as in a specific regions where magnetic reconnec-
tion takes place, which is considered to have an important role in energy transfer. Other
effects can also be important and the MHD model may breakdown for other reasons. Con-
sequently, many researchers have considered other MHD models (usually called extended
MHD) and investigated their properties both analytically and numerically. However dif-
ferent researchers have used different extended MHD models [1, 3, 4, 10], and the relation
and limitation between these models seems to be unknown. For all of these models the
difference only exists in the generalized Ohm’s law, with the momentum equation being the
same as the usual MHD model.

Here we first classify models with electron inertial in terms of energy conservation; we
find which models have an energy conservation law. Next, to investigate the effect of electron
inertia, we try to generalize the Grad-Shafranov equation, which describes the equilibrium

201



202

state with no flow and axisymmetry in a torus [5, 6]. Finally, we introduce some equilibrium
states with flow in an incompressible plasma.

This report is organized as follows. In Section 2.2 we discuss the limitations of some
inertial MHD models and investigate their energy conservation. In Section 2.3, we classify
some inertial MHD models in terms of energy conservation. In Section 2.4 we try to modify
the Grad-Shafranov equation to include the effect of electron inertia term and in Section
2.5 we introduce some equilibrium states with constant density and with flow. Finally,
Conclusions and discussions are given in Section 2.6.

2.2 Limitation and Energy Conservation of Inertial MHD
Model

In this section we derive the asymptotically consistent inertial MHD (IMHD) model from
a complete one-fluid model. We consider an electron-ion plasma that is completely ionized.
The one-fluid model has been derived from kinetic theory (see e.g. [3, 2]) of charged particles,
that is, a plasma. We begin with the model of Lüst [8] who derived the continuity equation,
the momentum equation, and the generalized Ohm’s law for the one-fluid model.

Using the fact that the electron mass is much lighter than the ion mass and assuming
the plasma is quasi-neutral, we obtain the continuity equation, the momentum equation,
and the generalized Ohm’s law as follows:

0 =
∂ρ

∂t
+∇ · (ρSV ),

ρ

(
∂SV
∂t

+ (SV · ∇)SV
)

= −∇p+ Sj × SB − me

e
(Sj · ∇)

Sj
en
,

SE + SV × SB =
1
σ

Sj +
1
en

(Sj × SB −∇pe)

+
me

e2n

[
∂Sj
∂t

+∇ · (SV Sj + SjSV )
]

− me

e2n
(Sj · ∇)

Sj
en
,

where ρ is the density of plasma, SV the bulk velocity, p the pressure, Sj the current density,
SB the magnetic field, me the electron mass, e the elementary charge, n the number density
of each species of charged particles, SE the electric field, σ the conductivity, and pe the
electron pressure. Note that the momentum equation is equivalent to the summation of the
momentum equations of the electron and ion species, and the generalized Ohm’s law is the
difference. Ohm’s law can be viewed as representing the momentum equation of electron.

The last term on the right-hand-side of the momentum equation exists due to the elec-
tron inertia. We call the second term on the left-hand-side of the generalized Ohm’s law
the “nonlinear term,” the first term on the right-hand-side the “collision term,” the second
term the “Hall term,” and the third and fourth terms will be called the “electron inertia
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terms.” To compare the size of these terms, we use the following characteristic numbers:

Rem ≡ Nonlinear term
Collision term

= σµ0UL,

CH ≡ Hall term
Collision term

=
σB

en
,

CI ≡ Electron inertia term
Collision term

=
σme

e2nτ
,

where U , L, B, and τ are the characteristic velocity scale, length scale, magnitude of
magnetic field, and time scale of current change, respectively. The number Rem is called
the magnetic Reynolds number.

In this report we focus on the situation where the electron inertia term is much larger
than the collision term and the Hall term; however, the nonlinear term is still considered
to be large enough to be comparable with the electron inertia term, that is,

Rem � 1, CI � 1,
CI
CH
� 1.

Since the last relation is equivalent to

CI
CH

=
me

eB

1
τ

=
1

ΩGeτ
,

where ΩGe is the electron gyro-frequency, this relation can be interpreted as saying that the
characteristic time scale of the current change is much shorter than the gyro-period of the
electron.

Finally, we obtain the IMHD model given by the following equations:

0 =
∂ρ

∂t
+∇ · (ρSV ), (2.1)

ρ

(
∂SV
∂t

+ (SV · ∇)SV
)

= −∇p+ Sj × SB − ε me

e
(Sj · ∇)

Sj
en
, (2.2)

SE + SV × SB = ε
me

e2n

[
∂Sj
∂t

+∇ · (SV Sj + SjSV )
]
− δ me

e2n
(Sj · ∇)

Sj
en
, (2.3)

0 =
∂S

∂t
+ (SV · ∇)S, (2.4)

where S is the entropy of the plasma and the last equation means the plasma is adiabatic.
We have inserted book keeping parameters ε and δ to label terms, yet both of these have
value unity. The above equations are to be solved with the pre-Maxwell’s equations,

∇ · SE = 0,
∇ · SB = 0,

∇× SE = −∂SB
∂t

,

∇× SB = µ0Sj.
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Note that because of quasi-neutrality, the current density is solenoidal, that is,

∇ · Sj = 0.

Next, let us consider the energy of this IMHD model. Taking the dot product of SV
and the momentum equation, the dot product of Sj and the generalized Ohm’s law, and
from the pre-Maxwell equations, we obtain the following energy relation:

0 =
∂

∂t

(
1
2
ρ|SV |2 + ρU + ε

me

e2n

|Sj|2
2

+
|SB|2
2µ0

)
+∇ ·

[(
1
2
ρ|SV |2 + p+ ρU + ε

me

e2n

|Sj|2
2

)
SV

+ε
me

e2n
(SV · Sj)Sj − δ me

2e3n2
|Sj|2Sj +

SE × SB
µ0

]
.

Because of the electron inertia the term
me

e2n

|Sj|2
2

is included in the energy density term.

Note that, from the generalized Ohm’s law, SE includes the time derivative term ε
me

e2n

∂Sj
∂t

,

so the above formulation is not in the usual conservation form.1 However, upon integrating
the above energy relation over the whole domain V with appropriate boundary conditions,
it is revealed that the total energy H, which is defined as

H ≡
∫
V

(
1
2
ρ|SV |2 + ρU + ε

me

e2n

|Sj|2
2

+
|SB|2
2µ0

)
dSr,

is conserved.

2.3 Classification of Inertial MHD Model in terms of Energy
Conservation

In this section we consider the classification of some IMHD models in terms of the energy
conservation. In order to classify these models, we label the different epsilon term the
different epsilon as is shown in the following arguments.

1When we solve the governing equations (2.1)–(2.4) with the full Maxwell’s equations, we obtain the
following energy relation:

0 =
∂

∂t

„
1

2
ρ|SV |2 + ρU + ε

me

e2n

|Sj|2

2
+
|SB|2

2µ0
+

1

2
ε0|SE|2

«
+∇ ·

»„
1

2
ρ|SV |2 + p+ ρU + ε

me

e2n

|Sj|2

2

«
SV

+ε
me

e2n
(SV · Sj)Sj − δ me

2e3n2
|Sj|2Sj +

SE × SB

µ0

–
,

and this relation is of the usual conservation form.



Keiji Kimura 205

First, we consider the compressible IMHD model which is governed by pre-Maxwell’s
equations and by the following equations:

0 =
∂ρ

∂t
+∇ · (ρSV ),

ρ

(
∂SV
∂t

+ (SV · ∇)SV
)

= −∇p+ Sj × SB − εEOM
me

e
(Sj · ∇)

Sj
en
,

SE + SV × SB = εt
me

e2n

∂Sj
∂t

+ εad
me

e2n
(SV · ∇)Sj + εcp

me

e2n
Sj(∇ · SV )

+ εM
me

e2n
(Sj · ∇)SV − δ me

e2n
(Sj · ∇)

Sj
en
,

0 =
∂S

∂t
+ (SV · ∇)S,

where S is the entropy and δ, εt (time derivative), εad (advection), εcp (compressible), εM
(related to EOM), εEOM (in EOM) are labels of these terms. In this system, the energy
conservation is as follows:

∂

∂t

(
1
2
ρ|SV |2 + ρU + εt

me

e2n

|Sj|2
2

+
|SB|2
2µ0

)
+∇ ·

[(
1
2
ρ|SV |2 + p+ ρU + εad

me

e2n

|Sj|2
2

)
SV

+εM
me

e2n
(SV · Sj)Sj − δ me

e3n2

|Sj|2
2

Sj +
SE × SB

µ0

]
= (εt − εad)

me

e2n

|Sj|2
2
∇ · (nSV )

n
+ (εad − εcp)

me

e2n
|Sj|2(∇ · SV )

+ (εM − εEOM)
me

e
SV ·

{
(Sj · ∇)

Sj
en

}
.

Then, since the εt term have to exist in this model because when deriving the IMHD model
we evaluate the electron inertia term using the characteristic time scale of current change,
we find that the total energy is conserved only when all the epsilon terms exist or εt, εad

and εcp exist. Therefore we conclude that the epsilon term in the momentum equation is
very important to conserve the total energy in IMHD model.

Secondly, we consider the incompressible IMHD model which is governed by pre-Maxwell’s
equations and by the following equations:

ρ = ρ0 = const. ⇔ n = n0 = const.,

ρ0

(
∂SV
∂t

+ (SV · ∇)SV
)

= −∇p+ Sj × SB − εEOM
me

e2n0
(Sj · ∇)Sj,

SE + SV × SB = εt
me

e2n0

∂Sj
∂t

+ εad
me

e2n0
(SV · ∇)Sj

+ εM
me

e2n0
(Sj · ∇)SV − δ me

e3n2
0

(Sj · ∇)Sj.

Note that εcp do not exist in the above equations because of the incompressibility. In this
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system, the energy conservation is as follows;

∂

∂t

(
1
2
ρ0|SV |2 + εt

me

e2n0

|Sj|2
2

+
|SB|2
2µ0

)
+∇ ·

[(
1
2
ρ0|SV |2 + p+ εad

me

e2n0

|Sj|2
2

)
SV

+εM
me

e2n0
(SV · Sj)Sj − δ me

e3n2
0

|Sj|2
2

Sj +
SE × SB

µ0

]
= (εM − εEOM)

me

e2n0
SV · {(Sj · ∇)Sj} .

Then it is revealed that total energy is conserved when εM = εEOM = 0 or 1, and there are
no other constraints against εt and εad.

εt εad εcp εM Ohm’s law SE + SV × SB = εEOM Conserved?

Compressible plasma
1 1 1 1 me

e2n

„
∂Sj

∂t
+∇ · (SV Sj + SjSV )

«
1 OK!

1 1 1 me

e2n

„
∂Sj

∂t
+∇ · (SV Sj)

«
OK!

1 me

e2n

∂Sj

∂t

me

e2n

|Sj|2

2

∇ · (nSV )

n

1 1 me

e2n

„
∂Sj

∂t
+ (SV · ∇)Sj

«
me

e2n
|Sj|2(∇ · SV )

1 1 1 1 me

e2n

„
∂Sj

∂t
+∇ · (SV Sj + SjSV )

«
me

e
SV ·


(Sj · ∇)

Sj

en

ff

Incompressible plasma

1 − me

e2n0

∂Sj

∂t
OK!

1 1 − me

e2n0

„
∂Sj

∂t
+ (SV · ∇)Sj

«
OK!

1 1 − 1 me

e2n0

„
∂Sj

∂t
+∇ · (SV Sj + SjSV )

«
1 OK!

1 1 − 1 me

e2n0

„
∂Sj

∂t
+∇ · (SV Sj + SjSV )

«
me

e2n0
SV · {(Sj · ∇)Sj}

Table 2.1: Classification of some IMHD models in terms of energy conservation. The epsilons
in the generalized Ohm’s law are listed from the first to fourth columns, and the generalized
Ohm’s law is described in the fifth column. The epsilon in the momentum equation are
listed in the sixth column. When the total energy is conserved “OK!” is written in the
last column, otherwise the remaining terms are written in the last column. Note that in a
incompressible plasma, there is no εcp term in the generalized Ohm’s law, then we write −
in the third column in a incompressible plasma.

We summarize the classification of some IMHD models in terms of the energy conser-
vation in Table 2.1.
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2.4 Equilibrium States with No Flow – Grad-Shafranov Equa-
tion

In the previous section we find that εEOM term is very important to conserve the energy
in the MHD model. Then in this section, to investigate the effect of this term, we try to
modify the Grad-Shafranov (GS) equation ([5],[6]) which can be derived from the (ideal)
MHD model and describe the equilibrium state with no flow in a torus and with toroidal
axisymmetry, for example, the axisymmetric toroidal plasma in a tokamak.

2.4.1 Modified Grad-Shafranov Equation in a “Straight Torus” with Con-
stant Density

Let us consider the Grad-Shafranov equation of plasma with constant density in a “straight
torus,” which means a torus with no curvature, that is, a cylinder. We assume that the
plasma is steady and z-independent, where z means the axis of the cylinder. Then, using
the cylindrical coordinate (r, θ, z), the magnetic field can be described as

SB = BzSez + Sez ×∇ψ,

and the current density is

Sj =
1
µ0
∇× SB =

1
µ0

[
Sez(∇2

⊥ψ)− Sez × (∇⊥Bz)
]
,

where Bz and ψ are both z-independent and

∇⊥ ≡ Ser
∂

∂r
+ Seθ

1
r

∂

∂θ
,

∇2
⊥ ≡

1
r

∂

∂r

(
r
∂

∂r

)
+

1
r2

∂2

∂θ2
,

and Ser, Seθ are the unit vector toward the radial and polar angle direction, respectively.
Then the governing equations can be simplified to the following equations:

S0 = −∇p+ Sj × SB − ε me

e2n0
(Sj · ∇)Sj, (2.5)

S0 = ∇× SE = −δ me

e3n2
0

∇× [(Sj · ∇)Sj], (2.6)

where p is also z-independent.
First we focus on the momentum equation (2.5). Considering the z component of the

momentum equation, we obtain

0 =
{
ψ − ε̃∇2

⊥ψ, Bz
}
,

where ε̃ ≡ εme/(µ0e
2n0) and

{f, g} ≡ Sez · (∇⊥f ×∇⊥g),
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where f and g are both z-independent 2 . Then we obtain the first constraint, that is,

ψ − ε̃∇2
⊥ψ ≡ L(Bz), (2.7)

where L is an arbitrary function of Bz.
Taking the dot product of Sj and the momentum equation, we obtain

0 =
{
µ0p+ ε̃

(∇2
⊥ψ)2

2
+ ε̃
|∇⊥Bz|2

2
, Bz

}
,

⇔ M(Bz) ≡ µ0p+ ε̃
(∇2
⊥ψ)2

2
+ ε̃
|∇⊥Bz|2

2
, (2.8)

where M(Bz) is an arbitrary function of Bz, and this is the second constraint.
Taking the dot product of ∇⊥ψ and the momentum equation and substituting the above

two constraints (2.7) and (2.8), we obtain the third constraint described as

0 =
dM

dBz
+

dL

dBz
(∇2
⊥ψ) +Bz − ε̃(∇2

⊥Bz). (2.9)

Considering ε → 0, the first constraint (2.7) means Bz is a function of ψ, that is,
Bz ≡ F (ψ), then the second constraint means p is also a function of ψ, and the third
constraint becomes

∇2
⊥ψ = −µ0

dp

dψ
− F dF

dψ
, (2.10)

which is the incompressible Grad-Shafranov equation in a “straight torus.”
Next we consider the constraint from the δ term (2.6) with the above three constraints

with finite ε. After some calculations, we obtain the following equation from (2.6):

S0 = − dL

dBz
∇⊥ψ ×∇⊥Bz +∇× (∇⊥ψ ×∇⊥Bz),

then we find that

∇⊥ψ ×∇⊥Bz ≡ S0, ⇔ Bz ≡ F (ψ), (2.11)

where F is an arbitrary function of ψ, and this is the fourth constraint.
¿From the first constraint (2.7) and the fourth one (2.11), ∇2

⊥ψ is also a function of ψ.
Then |∇⊥ψ|2 is also a function of ψ because of the relation that∇2

⊥Bz = F ′′|∇⊥ψ|2+F ′∇2
⊥ψ

with the third constraint (2.9) and the fact that ∇2
⊥ψ is a function of ψ. So we define

|∇⊥ψ|2 ≡ K(ψ).

Then, considering the second constraint (2.8) with the relation that |∇⊥Bz|2 = F ′2|∇⊥ψ|2,
it is revealed that p is also a function of ψ.

2If {f, g} = 0, f is an arbitrary function of g, or g is an arbitrary function of f .
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Finally, after some calculations, we obtain the following equation from the third con-
straint (2.9):

∇2
⊥ψ = − 1

1− ε̃F ′2 (µ0p
′ + FF ′)− ε̃F ′2

1− ε̃F ′2
K ′

2
, (2.12)

where prime means the derivative of ψ, and this is the modified incompressible Grad-
Shafranov equation in a “straight torus.” Note that when ε → 0, the above equation
becomes the (usual) incompressible Grad-Shafranov equation in a “straight torus” already
shown in (2.10).

2.4.2 Modified Grad-Shafranov Equation in a “Straight Torus”

Next, let us consider the Grad-Shafranov equation of compressible plasma in a “straight
torus.” Then the governing equations are

S0 = − 1
men
∇p+

1
men

Sj × SB − ε
(

Sj
en
· ∇
)

Sj
en
, (2.13)

S0 = ∇× SE = −δme

e
∇×

[(
Sj
en
· ∇
)

Sj
en

]
. (2.14)

We assume p, n, Bz and ψ are all z-independent. Comparing the z component of
momentum equation, we obtain the first constraint:{

Bz, ψ − ε me

µ0e2

∇2
⊥ψ

n

}
= 0, ⇔ ψ − ε me

µ0e2

∇2
⊥ψ

n
≡ L(Bz). (2.15)

Taking the dot product of Sj and the momentum equation (2.13), we obtain

0 =
1
n

[Bz, µ0p] +
[
Bz, ε

me

µ0e2

(∇2
⊥ψ)2

2n2
+ ε

me

µ0e2

|∇⊥Bz|2
2n2

]
, (2.16)

and taking the dot product of ∇⊥ψ and the momentum equation (2.13), we obtain

0 = −∇⊥ψ · ∇⊥(µ0p)− (∇2
⊥ψ)|∇⊥ψ|2 −∇⊥ψ · ∇⊥

(
B2
z

2

)
− ε me

µ0e2

∇⊥ψ
n
· ∇⊥

( |∇⊥Bz|2
2

)
+ ε

me

µ0e2

(∇2
⊥Bz)
n

∇⊥ψ · ∇⊥Bz

+ ε
me

µ0e2

1
n2

[Bz, n] · [Bz, ψ], (2.17)

where we use the first constraint (2.15).
Next we focus on the constraint of δ term (2.14), and we can define the potential Φ as

the following relation:(
Sj
en
· ∇
)

Sj
en

=
1
µ2

0

1
e2n2

[
∇⊥

( |∇⊥Bz|2
2

)
− (∇2

⊥Bz)∇⊥Bz

− 1
n
{Bz, n}Sez × (∇⊥Bz)

]
+

1
µ2

0

1
e2n

{∇2
⊥ψ

n
,Bz

}
Sez,

≡ ∇Φ = ∇⊥Φ +
∂Φ
∂z

Sez.
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Then, since n, Bz and ψ are all z-independent, it is revealed that

∂

∂z
(∇⊥Φ) = S0, and

∂

∂z

(
∂Φ
∂z

)
= 0,

therefore we obtain

C =
∂Φ
∂z

=
1
µ2

0

1
e2n

{∇2
⊥ψ

n
,Bz

}
,

where C is a constant. Using the constraint (2.15), the above equation becomes

C =
1
εµ0

1
n
{ψ,Bz} .

Multiplying nB2
z by the above equation and integrating in the whole area S perpendicular

to the z-axis,

C

∫
S
nB2

zdS =
1
εµ0

∫
S
B2
z {ψ,Bz} dS

=
1
εµ0

∫
S
ψ
{
Bz, B

2
z

}
dS = 0,

where we use Bz = 0 on the boundary ∂S. Since n is positive and B2
z 6= 0 in some region

in the area S, the constant C must be 0. This fact means that the potential Φ is also
z-independent, that is,

∂Φ
∂z

= 0, ⇔
{∇2

⊥ψ

n
,Bz

}
= 0,

then it is revealed that ∇2
⊥ψ/n is an arbitrary function of Bz. Considering this fact with

the first constraint (2.15), we find that ψ is a function of Bz, that is,

Bz ≡ F (ψ). (2.18)

In this case, (2.16) becomes

0 =
1
n

[ψ, µ0p] + [ψ, εµ0meΦ] =
1
n

[ψ, µ0p] +
[
ψ, ε

me

µ0e2

F ′2

2n2
|∇⊥ψ|2

]
, (2.19)

and (2.17) becomes

0 = −∇⊥ψ · ∇⊥(µ0p)
n

− FF ′ |∇⊥ψ|
2

n

−
(

1− ε me

µ0e2

F ′2

2n

) ∇2
⊥ψ

n
|∇⊥ψ|2 − ε me

µ0e2

F ′2

2n2
∇⊥ψ · ∇⊥(|∇⊥ψ|2)

= −∇⊥ψ · ∇⊥(µ0p)
n

− FF ′ |∇⊥ψ|
2

n
− ∇

2
⊥ψ

n
|∇⊥ψ|2 − εµ0me∇⊥ψ · ∇⊥Φ. (2.20)
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Let us consider the situation that the plasma is barotropic, that is, p = p(n). We define
the function P as

∇⊥P ≡ 1
n(p)
∇⊥p.

¿From (2.19), we obtain the following constraint:

P + εmeΦ ≡ P̃ (ψ),

where P̃ is an arbitrary function of ψ. Since ∇2
⊥ψ/n is a function of Bz, and Bz is a function

of ψ, that is, ∇2
⊥ψ/n ≡ G(ψ) where G is a function of ψ. And so (2.20) becomes

0 = −µ0P̃
′ − FF ′

n
−G,

where prime means the derivative of ψ. Therefore we find that n is also a function of ψ.
¿From (2.19), it is revealed that |∇⊥ψ|2 is a function of ψ, that is, |∇⊥ψ|2 ≡ K(ψ), where
K is a function of ψ. Finally, after some calculations for (2.20), we obtain the following
equation:

∇2
⊥ψ = − 1

1− ε me

µ0e2n
F ′2

(
µ0p
′ + FF ′

)− ε
me

µ0e2n
F ′2

1− ε me

µ0e2n
F ′2

K ′

2
, (2.21)

where prime means the derivative of ψ, and this is the modified Grad-Shafranov equation
in a “straight torus.” This includes the modified Grad-Shafranov equation with constant
density in a “straight torus” which is described as (2.12).

2.4.3 Modified Grad-Shafranov Equation in a Torus with Constant Den-
sity

Thirdly, let us consider the Grad-Shafranov equation of plasma with constant density in a
torus. We assume that the plasma is steady and φ-independent, where we use the cylindrical
coordinate (R,φ, Z) and φ means the azimuth. In this case the magnetic field can be
described as

SB = BφSeφ +
1
R

Seφ ×∇⊥ψ,

where Bφ and ψ are both φ-independent. The current density can be described as

Sj =
1
µ0

[
1
R

(∆∗ψ)Seφ +
1
R
∇⊥(RBφ)× Seφ

]
,

where ∇⊥ and ∆∗ are defined as

∇⊥ ≡ SeR
∂

∂R
+ SeZ

∂

∂Z
,

∆∗ ≡ R ∂

∂R

(
1
R

∂

∂R

)
+

∂2

∂Z2
,
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and SeR, SeZ are the unit vector toward the radial and height direction, respectively. The
governing equations are as follows:

S0 = −∇p+ Sj × SB − ε me

e2n0
(Sj · ∇)Sj, (2.22)

S0 = ∇× SE = −δ me

e3n2
0

∇× [(Sj · ∇)Sj]. (2.23)

First we focus on the momentum equation (2.22). Comparing the φ component of this
equation, we obtain the first constraint as follows:

ψ − ε̃∆∗ψ ≡ L(RBφ), (2.24)

where L is an arbitrary function of RBφ and

ε̃ ≡ ε me

µ0e2n0
.

Taking the dot product of Sj and the momentum equation, we also obtain the second
constraint, that is,

M(RBφ) ≡ µ0p+ ε̃
(∆∗ψ)2

2R2
+ ε̃
|∇⊥(RBφ)|2

2R2
, (2.25)

where M is an arbitrary function of RBφ. Finally, taking the dot product of ∇⊥ψ and
the momentum equation and using the first and second constraints, we obtain the third
constraint which is described as

0 = R2 dM

d(RBφ)
+

dL

d(RBφ)
∆∗ψ − ε̃∆∗(RBφ) +RBφ. (2.26)

When ε → 0, using (2.24)– (2.26), we can obtain the (usual) Grad-Shafranov equation
which is described as

∆∗ψ = −µ0R
2p′ − FF ′,

where p ≡ p(ψ) and RBφ ≡ F (ψ), and prime means the derivative of ψ.
Next we consider the constraint of (2.23). This equation means

∇Φ ≡ (Sj · ∇)Sj

= ∇⊥
[ |∇⊥(RBφ)|2

2µ2
0R

2
+

(∆∗ψ)2

2µ2
0R

2
− M

µ2
0ε̃

]
+

1
µ2

0ε̃

1
R2

[−(∆∗ψ)∇⊥ψ −RBφ∇⊥(RBφ) +∇⊥ψ ×∇⊥(RBφ)] .

Therefore, we find

∂

∂φ
∇⊥Φ =

∂

φ

∂Φ
∂φ

= 0, ⇔ ∂Φ
∂φ

= C,

where C is a constant.
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If C = 0, that is, Φ is also φ-independent, then we find RBφ ≡ F (ψ) where F is an
arbitrary function of ψ. Then, from the first constraint (2.24) ∆∗ψ ≡ N(ψ) where N is an
arbitrary function of ψ.

S0 = ∇×∇Φ =
1
µ2

0ε̃

2
R3

(
N + FF ′

)
SeR ×∇⊥ψ,

therefore we find that

N + FF ′ = 0, or ψ = ψ(R). (2.27)

Especially the second situation that ψ is only a function of R and independent of Z may
be unrealistic. Further analyses are needed.

If C 6= 0, the potential Φ becomes a multivalued function, so this means the domain
must not be simply connected space. This situation is satisfied in a tokamak. Further
analyses are also needed.

2.4.4 Summary of Modified Grad-Shafranov equation in IMHD model

Straight torus Torus
3 constraints (2.7)– (2.9) 3 constraints (2.24)– (2.26)

Plasma with are obtained. are obtained.
constant density Modified GS (2.12) Only the condition (2.27) is

is obtained. obtained if ∂Φ/∂φ = 0.
1 constraints (2.15) and 2 (weak) ??

Compressible constraints (2.16), (2.17) are obtained.
plasma If barotropic, modified GS (2.21) ???

is obtained.

Table 2.2: Summary of the constraints of the equilibrium states with no flow in a “straight
torus” and a torus and the modified Grad-Shafranov (GS) equations. The upper row in
each situation shows the result with considering only ε term in the momentum equation,
while the lower row shows the result with considering both ε and δ terms. At compressible
plasma in a “straight torus,” “weak constraints” mean that these constraints are not the
form that some values are purely the functions of another values but are simply the written
formulation. We could not obtain any efficient conditions for compressible plasma in a torus
and so ‘??’ is written in the above table.

In Table 2.2, we summarize the constrains of the equilibrium states with no flow in
a “straight torus” or a torus and the modified Grad-Shafranov equation obtained in the
previous sections.

In “straight tori,” the modified Grad-Shafranov equations are obtained with the as-
sumption that the plasma is barotropic. In torus, however, because of its curvature, useful
equations could not be obtained and only some conditions are obtained even if the plasma
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has constant density. In compressible plasma in torus, there were no efficient results ob-
tained. The physical interpretation of this effect of its curvature is a future work and further
analyses are needed.

2.5 Incompressible Equilibrium States with Flow

In this section we introduce some equilibrium states in an incompressible plasma with flow,
but further analyses are future works.

The governing equations are as follows:

ρ = ρ0 = const. ⇔ n = n0 = const., (2.28)

S0 = −∇p+ Sj × SB − ε me

e2n0
(Sj · ∇)Sj − ρ0(SV · ∇)SV, (2.29)

∇Φ = SE = −SV × SB + ε
me

e2n0
[(SV · ∇)Sj + (Sj · ∇)SV ]− δ me

e3n2
0

(Sj · ∇)Sj, (2.30)

because the plasma is incompressible and

S0 =
∂SB
∂t

= −∇× SE ⇔ SE ≡ ∇Φ.

2.5.1 The Situation SV ∝ Sj

We assume

SV = C
Sj
en
,

then the governing equations (2.28)– (2.30) become as follows;

0 = −∇p+ Sj × SB −
(
C2 ρ0

e2n2
0

+ ε
me

e2n0

)
(Sj · ∇)Sj,

0 = ∇Φ +
C

en
Sj × SB −

(
2Cε

me

e3n2
0

− δ me

e3n2
0

)
(Sj · ∇)Sj.

If

2Cε
me

e3n2
0

− δ me

e3n2
0

=
C

en

(
C2 ρ0

e2n2
0

+ ε
me

e2n0

)
and we define Φ as Φ ≡ −Cp/(en0), the two equations are equivalent. Indeed, if δ = 0,

C = ±
√
ε

me

e2n0ρ0
= ±

√
ε

me

mi +me
,

and the governing equation becomes

0 = −∇p+ Sj × SB − 2ε
me

mi +me
(Sj · ∇)Sj,

where ∇× SB = µ0Sj. Studying the physical meaning of the value of C is a future work.
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2.5.2 Beltrami – “Jeltrami” Flow

In this section we consider the Beltrami – “Jeltrami” flow, which means the velocity and
current density satisfy the following equations:

∇× SV = λSV,

∇× Sj = µSj,

where λ and µ are some functions in general. In this case the magnetic field satisfies the
following equation:

SB =
µ0

µ
Sj +∇χ,

where χ is an arbitrary harmonic function because SB is solenoidal. Then the governing
equations (2.28)– (2.30) become as follows:

∇p̃ = Sj ×∇χ,

∇Φ̃ = −SV ×∇χ+
µ0

µ

[
1 +

(
me

µ0e2n0

)
µ(µ− λ)

]
Sj × SV,

where p̃ and Φ̃ are defined as

p̃ ≡ p+ ρ0
|SV |2

2
+ ε

me

e2n0

|Sj|2
2

,

Φ̃ ≡ Φ + ε
me

e2n0
(SV · Sj) + δ

me

e3n2
0

|Sj|2
2

.

For simplicity, if µ, λ and χ satisfy the following relations,

µ = λ, and χ ≡ 0,

the governing equations becomes

∇p̃ = 0,

∇Φ̃ =
µ0

µ
Sj × SV.

2.6 Conclusions and Discussions

We have investigated limitations of IMHD model by introducing some non-dimensional
parameters and classify IMHD models according to whether or not they conserve energy.

It is revealed that the correction term
me

e
(Sj · ∇)

Sj
en

in the momentum equation, which is
usually neglected, is needed to conserve the total energy.

In order to investigate the effect of this correction term, we attempted to modify the
Grad-Shafranov equation, which describes the equilibrium state in a torus with no flow,
and obtain a modified Grad-Shafranov equation in a “straight torus” when the plasma is
barotropic (the density being a function of the pressure). However, we were only ablte to
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do this with some conditions on the magnetic field in a torus due to its curvature. The
physical interpretation of this effect of curvature will be addressed in future work and further
analyses are needed.

We also introduced some equilibrium states with constant density and with flow. One
has SV proportional to Sj and another was the Beltrami–”Jeltrami” flow. Concrete analyses
of these will also be considered in future work.

The dispersion relation of the Alfven wave in usual MHD model is ω/k = VA cos θ, where
ω is the frequency, k the wavenumber, VA ≡

√
B2

0/(µ0ρ0) the speed of Alfven wave (B0 is
the magnitude of magnetic field and ρ0 the density), and θ is the angle between the uniform
magnetic field and the wavevector. On the other hand, the dispersion relation of the IMHD
model is ω/k = VA cos θ/

√
1 + d2

ek
2, where d2

e ≡ me/(µ0e
2n0) (me is the electron mass, e

the elementary charge and n0 the number density) [9]. Therefore, higher wavenumber waves
propagate more slowly in IMHD model than in usual MHD model. The same tendency can
be found in the fast and slow magnetosonic waves. These facts suggest that the stability
of some states can be changed by the effect of electron inertia, and this is this will also be
considered in future work.
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Project 3

Traversing the edge:
a study of turbulent decay
Matthew Chantry

University of Bristol

In this work the “edge of chaos” is studied to increase our understanding of turbulence in
shear flows. The “edge” is a hypersurface in phase space which separates conditions which
return to the laminar state from those which engage in turbulent dynamics. We tackle the
subject of the geometry of the edge, and its involvement during the return to the laminar
state. Here studying plane-Couette flow we observe the death of the self-sustaining process
during decay and identify the processes which govern the decay rate. The report concludes
with tests on the validity of edge geometry observed in low dimensional models.

3.1 Introduction

The study of Newtonian fluid flow through through a straight circular pipe was first carried
out in the 19th century, where Hagen [1] and Poiseuille [2] separately studied the laminar
flow which now carries both their names. This work was continued by Reynolds [3] who
studied the transition from laminar flow to flow which is both temporally and spatially dis-
ordered, called turbulent flow. The Reynolds number Re := UD/ν governs this transition,
where U is the mean speed, D the diameter and ν the kinematic viscosity. The laminar
Hagen-Poiseuille flow is linearly stable for all values of Re, meaning that a finite amplitude
disturbance is required to generate turbulent behaviour. The energy that the disturbance
requires to trigger turbulence has been studied for many years, and depend sensitively upon
the shape of the disturbance and the Reynolds number. The minimum value of the Reynolds
number at which turbulence is seen varies between experiments but appears to lie in the
range 1750-2300. It is thought that in this range of Re that there exists a chaotic saddle
responsible for the dynamics, which may transition to a chaotic attractor for larger Re [4].
In this regime the lifetime of turbulence can vary strongly, so mean dynamics described
by probability functions are used to demonstrate the behaviour. Faisst et al. [4] amongst
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others showed that probability of turbulence surviving depends exponentially on the ratio
of time, t, to a mean lifetime which depends upon Re. The relationship between Re and the
mean lifetime is still a subject of research, both experimental and computational. In that
work the discussion centres around the existence of a finite Re for which the probability of
decay back to the laminar state is zero.

Pipe flow is one member of a class of shear flows which also include plane Couette
flow, Taylor-Couette flow and boundary layer flow. Plane Couette flow (PCF) is the flow
between two infinite plates, which are driven at constant speed in opposite directions. The
flow shares all of the features discussed about (although with different critical Re), but
for research has two advantages over pipe flow. The symmetry of the system allows the
existence of fixed points solutions, whereas the simplest structure in pipe flow are travelling
waves. The Cartesian geometry of PCF is computationally simpler than the cylindrical
coordinate system of pipe flow.

The linear stability of the laminar states makes finding new solutions to the Navier-
Stokes equations challenging, however recently new solutions have been found ([5], [6], [7],
[8], [9], [10], [11], [12]). These solutions are fixed points (in PCF only), travelling waves
which are steady under a translating reference frame and periodic orbits, many of which
exhibit symmetries. These solutions are unstable but have both stable and unstable mani-
folds and are therefore saddle points in phase space. Kerswell [13] and others propose that
these, and more solutions form a “skeleton” for the dynamics which can guide trajectories
around the turbulent portion of phase space.

Within the last 10 years a new method has been implemented to find solutions in both
pipe flow and PCF. The method, pioneered by Itano et al. [14], is to track the “Edge
of Chaos”, the hyper-surface surface which separates separates conditions which simply
relaminarize from those which are subjected to turbulence. The edge therefore provides a
minimum on the energy required to trigger turbulence, however there is no known method
to use the edge to find this minimum energy point. By reducing the dynamics to only evolve
along the edge, new structures have been found in both pipe flow and PCF ([15], [16], [17]).
By evolving along the edge only, one unstable direction is removed, meaning solutions
embedded in the edge with just one unstable direction in the full dynamics become local
attractors within the dynamics of the edge. As discussed earlier, at low Reynolds number
turbulence is transient and initial conditions experience sudden decay back to the laminar
state. The edge can therefore not be considered a boundary for the basin of attraction of the
laminar state, as conditions either side of the edge will decay. This therefore raises a question
into the understanding of phase space in these systems. How do initial conditions on the
“turbulent side” of the edge pass back to the laminar state and does there exist a unique
point (or a small number of points) where this passing occurs? In particular geometries the
edge contains simple attracting states, such as fixed points or travelling waves. In some of
these situations, evidence points to a single global attracting state in the edge, to which all
initial conditions on the edge converge, called the edge state. A secondary question of this
work concerns the dynamical significance of this edge state during relaminarization. The
point is significant within dynamics on the edge, and all initial conditions must, in some
manner, pass by this edge, therefore the edge state may be important in this relaminarization
process. We will attack this problem on two fronts. The first will examine the statistics of
decay, and look for evidence of a unique “crossing” point. The second half will look to the
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results of low-dimensional models and attempt to draw parallels between these and the full
dynamics. In the next sections we will discuss the set-up used to investigate this problem,
and present some statistical work on this problem. We will then look at previous work using
low dimensional models to consider this problem, and compare these to the full dynamics.
Finally we shall draw conclusions and discuss further work into this problem.

3.2 Methods

To examine the questions considered above we choose plane Couette flow as the shear
flow for our investigation. This has been chosen for its simple geometry and the evidence
for a single fixed point attracting edge state in a particular geometry (Schneider private
communication 2011). As with pipe flow discussed above, no-slip boundary conditions at
the wall are used, with periodic boundaries in the two remaining directions. The laminar
flow is linearly stable and takes the form

ū = Uy x̂, (3.1)

where convention dictates that x takes the direction of the wall motion, y the wall normal
direction and z the spanwise direction. The DNS is carried out in a Fourier by Chebyshev
by Fourier domain, with an adaptive 3rd order Semi-implicit Backwards Differentiation
timestep code written by Gibson ([23] [24]). The Reynolds number in this system is Re :=
Uh/ν, where U is the wall speed, h is half the wall separation and ν the kinematic viscosity.
For simplicity both U and h remain equal to one. We will study Reynolds numbers in
the range [340, 380] where turbulence exists but turbulent lifetimes are short (order 1000
time units). The domain is [0, 4π] × [−1, 1] × [0, 2π], chosen for the existence of a single
edge state, a member of the “Nagata” solution family [5], which is visualised in figure 3.1.
We shall use the notation breaking the velocity field, ū, into the laminar and perturbation
parts, ū = y x̂ + u. This study will begin with a statistical investigation into decaying
turbulence, where trajectories will be aligned to decay at the same point in a new time t∗

which is defined for each simulation as

t∗ := tlam − t, (3.2)

where tlam is the time such that ∫
V

u · u dV < 0.005. (3.3)

This finds the time where the flow is sufficiently close to the laminar state to be considered
as laminar. The results of this section are not qualitatively affected by the precise choice of
this distance from the laminar state. For brevity we shall refer to this as the relaminarization
time. We begin by simulating a large number of DNS runs from turbulent initial conditions
until they reach the laminar state. Once aligned by their relaminarization times we can
find the mean and standard deviation of the L2 norm of u, and plot this against the
relaminization time. In figure 3.2 we carry out this procedure for 100 evolutions at a
Reynolds number of 380. Several observations can be made from this figure in answering
the questions posed previously. The decay from the turbulent state begins approximately
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Figure 3.1: Visualization of the fixed point embedded in edge, which is an attractor when
the dynamics are restricted to the edge. Colours indicate downstream velocity, with red
flowing into the page and blue out of the page. Arrows plot cross stream velocity field.

500 time units before relaminarization time, and before this a statistically steady state is
observed with approximately constant variance. During decay, while a decrease of variance
is observed, trajectories do not converge until just prior to t∗ = 0. This simple observation
suggests an answer to one of the questions postulated above: does there exist a unique point
for passing by the edge? If a unique point existed, one would expect to see the trajectories
converge at an L2 norm value associated with the edge (∼ 0.2). The result was robust to
using a range of metrics to align the decaying trajectories, including E3D, vorticity, and
downstream vorticity. With all of these metrics no patterns in the decay emerged, therefore
suggesting that this hypothesis is false.

3.3 Statistical analysis

We can use this approach to examine the physical properties of the flow during decay,
and confirm the features expected from analytical and previous computational work. In
figure 3.3 we plot the mean evolution of the L2 norm of 4 physical quantities during the
last 1000 time units before decay, the velocity, the vorticity, the downstream vorticity and
the “3D velocity”. These first two are related to the energy and dissipation of the system
respectively, and begin to decay simultaneously with similar relative gradients. The L2
norm of the downstream vorticity provides a measure for the downstream vorticies, or rolls,
which redistribute the mean shear. This then creates downstream streaks, which can develop
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Figure 3.2: L2 Norm of perturbation velocity field u against t∗, the time before relami-
narization. Plotted are the mean ± the standard deviation of 100 turbulent evolutions at
Re = 380. Initial conditions generated from turbulence at slightly larger Re.
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instabilities. These instabilities feedback into the rolls. This is called the self-sustaining
process (SSP [18]), and plays a crucial role in the maintenance of turbulence. Therefore
if the rolls are removed then the sustaining process is broken, and turbulent cannot be
maintained. The results in frame (c) of figure 3.3 show that the L2 norm of the downstream
vorticity begins to decay at the same time as the previous two metrics, however it decreases
at greater relative rate. This results in no rolls existing for the final 200 time units of the
decay. The final measure considered is the “3D velocity”, u′, the part of the velocity field
which depends upon x.

u =
1
Lx

∫
ũ dx+ u′ (3.4)

The quantity is dynamically important to the maintenance of turbulence, the energy in this
part of the velocity field we shall denote as E3D. It can be shown in shear flows that a 2D
perturbation cannot to lead to turbulence. From the view of the SSP this quantity measures
the instabilities which complete the process and feedback upon the rolls. Frame (d) of figure
3.3 shows the evolution of this quantity before relaminarization. The beginnings of decay
are observed in line with the other 3 quantities, with decay occurring at the same relative
rate as downstream vorticity. Therefore we observe that the for the last 200 time units of
decay the flow is two-dimensional with no downstream rolls, this leaves only downstream
streaks (and a small amount of cross-stream flow). These findings therefore agree with the
previous work, which suggested that downstream rolls and 3D flow are the first parts of
the flow field to fully decay. After these two quantities have decayed the streak decay will
govern the overall decay rate, which we shall now study.

Understanding the structure of the streaks during this decay will explain the variety
of decays rates observed, as these are the only feature remaining during the final part of
decay. In figure 3.4 frames (a) & (b) show the x-averaged1 velocity for two different decay
trajectories approximately 200 time units before relaminarization. Trajectories were chosen
for displaying slow and fast decay respectively, i.e. shallow and steep decay rates during
the final 200 time units of decay. Beyond this choice these trajectories are generic within
their respective class (slow or fast decay). Obvious from the figure are the two different
streak structures involved in the flow field, where streaks are indicated by waviness in the
downstream velocity contours. Frame (a) has two streaks, one fast and one slow, whereas
frame (b) has four streaks with two of each sign. The different length-scales involved with
these flow fields explain the decay rates involved. In this regime the diffusion operator
dominates the evolution, meaning that structures with small length-scales involved will
decay at a faster rate compared to those with larger length-scales. The flow at this stage in
decay is independent of x, and all flow-fields have similar dependence upon y leaving the z
structure to set this rate. To further this work we consider the evolution of simple structures
carrying the two and four streak pattern, members of the “Nagata” family of solutions. As
previously discussed one member of this family, which has a four streak pattern (figure
3.1), is the edge state in the chosen geometry. However there exists a two streak member
of the family, which also lies on the edge but has two unstable directions (and is therefore
not an attracting structure on the edge). The x-averaged flow field for these solutions are
plotted in frames (c) and (d) of figure 3.4. The comparisons between the decaying fields and

1Recall final decay is independent of x, therefore 2D visualization displays all flow features.
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solution fields can be easily seen, but the solutions have sharper streak structure and retain
downstream vorticity. We can study the length-scales involved in these fixed points and the
decaying trajectories by by representing the z dependence of the flow-field through a Fourier
decomposition. As these solutions belong to the same family, but are effectively solutions
from two different box widths their dependence on the first few Fourier modes differs. The
two streak solution contains a large amount of energy in the first mode, whereas the four
streak solution contains none. The second Fourier mode will be the dominant term for the
4-streak solution, but be of lesser importance in the 2-streak solution. When these two
solutions are perturbed in the correct unstable direction (to the “laminar side” of the edge)
the solutions will smoothly decay to the laminar state. The decay of these states, with their
different spanwise spectra will be a useful comparison for decaying turbulence. In figure 3.5
100 decaying trajectories are plotted, alongside the decay from the two states discussed all
at the same Reynolds number. The striking feature of this figure is that the decay from two
fixed points almost bounds the decay from turbulence. We can understand this by studying
the spanwise Fourier modes during the last 200 time units of decay. Those decaying at a
similar rate as the two streak solution, will have more energy in the first spanwise Fourier
mode and little in the second. Whereas those decaying with the four streak solution will
have little in the first spanwise Fourier mode and the majority in the second. Trajectories
decaying at rates between these two “extremes” will have energy in both these modes in
varying proportions which match the decay rate. An observation to made from this figure
is that no decaying trajectory in our sample decayed at a significantly greater rate than
the four streak fixed point. It appears within this domain all turbulence (in this range
of Reynolds number) decays through a very simple streak structure. How this behaviour
would change if a wider domain was used, or a larger Reynolds number set, remains a
topic for further research. The author suggests that if the domain was sufficiently widened
then turbulence would decay through a six streak structure, in addition to the two and
four structures. It is not obvious that all decaying turbulence in this geometry should have
streaks with such similar y-dependence, although the tight constraints of the domain might
again be responsible. Studying the decay of other fixed points in this geometry would make
for an interesting comparison with those discussed above. Are these two solutions special
in the way they almost bound the decay, or is this a feature of fixed points?

3.4 Edge geometry

Through examining the statistics of the decay from turbulence we have gained insight into
the processes involved, and evidence that a unique route past the edge does not exist. Be-
yond this fact we have learnt little about how the decaying trajectories pass the edge. In
this section we will examine this issue with the aid of low dimensional models. Attempts
to study low dimensional models for shear turbulence have been used in recent years with
limited success. Waleffe [18] took the ideas behind his self-sustaining process to construct
both eight and four mode ODE models, however these were limited by representing tur-
bulence with a fixed point. These models did show that the physical processes behind
turbulence could be captured in a small number of well chosen modes. Extensions to a nine
mode model [19] and an eight mode PDE model [20] have made progress in capturing more
detail but more modes makes the analysis more complex. In order to understand the edge
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Figure 3.3: Evolution of the mean ± standard deviation for the L2 norm of 4 flow field
quantities, (a) Velocity, (b) downstream vorticity, (c) vorticity & (d) “3D velocity”. All
experience decay approximately 500 time units before relaminarization, with faster relative
decay rates for downstream vorticity and 3D velocity.
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Figure 3.4: Frames (a), (b) show x-averaged flow fields 200 time units before decay. Solu-
tions selected for demonstrating slow and fast relaminarization rates respectively. Frame
(a) has two streaks, one fast at the centre of the domain, and one slow at the left edge.
Frame (b) has four streaks, two fast and two slow. To be compared with frames (c) and
(d) x-averaged flow field for members of the Nagata solution family. Frame (c) shows the
longest spanwise wavelengths family member. Solution in frame (d) contains two copies of
the Nagata solution in spanwise direction.
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Figure 3.5: Coloured lines - L2 norm of the u against time for decaying trajectories. Black
horizontal lines - indicate the value of L2 norm for the two solutions from figure 3.4 (higher
line - two streak solution). Black lines - decay from fixed point solutions to the laminar
state after perturbation. All decaying lines have been aligned by decay time.
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Lebovitz examined the edge structure in Waleffe’s four mode model [21]. He subsequently
designed a two dimensional system which captured the same edge topology [22]. It is this
two dimensional system which we will compare with the edge structure in the full system.
The equations of the system are

ẋ1 = −δx1 + x2 + x1x2 − 3x2
2

ẋ2 = −δx2 − x2
1 + 3x1x2, (3.5)

where δ is the control parameter and surrogate for Reynolds number, which we will fix at
0.4. For this value of δ the system has 3 fixed point solutions. One is stable and located at
(0, 0) which will be the surrogate for the laminar state. One is an unstable saddle, called
the lower branch (LB), which is the surrogate for the edge state. The final fixed point is
unstable, called the upper branch (UB) and is the surrogate for the turbulent state. In
figure 3.6 the three fixed points points are plotted alongside the manifolds of the edge state
and a typical decay from near the upper branch point. The stable manifold of the edge state
forms the edge in this system; near the edge state initial conditions below the edge decay
to the laminar state, whereas points above the edge visit an area in phase space further
from the laminar state before being attracted the laminar state. The feature captured by
this model, and Waleffe’s four order model, is that while the edge goes out to infinity in
one direction, in the other it spirals infinitely many times around the upper branch point.
An initial condition near the upper branch point will spiral outwards before passing around
the edge on the way to the laminar state. It is this spiral feature that provides the route
from the “turbulent” part of phase space to the “laminar state”.

In this section we wish to answer the following. Does a higher dimensional equivalent
of this behaviour occur in the full dynamics? It is obvious that we cannot simply plot the
phase space of the full dynamics, so we need a test to compare the model with the full
dynamics. We shall introduce the test in the reduced model before carrying out the same
analysis in PCF. We begin with a trajectory spiraling out from the unstable equilibrium,
and select several time points along the trajectory. At these points we shall calculate a new
initial condition

xin = λx (3.6)

in the model for a range of λ around λ = 1, the condition that recovers the original point on
the relaminarizing trajectory. For each value of λ we will evolve the new initial condition
and study the dynamics. A condition close to the surrogate for turbulence will be “above”
the edge, therefore there exists a λ ∈ [0, 1] for which a new condition lies below the edge and
will quickly relaminarize. The subsequent behaviour is measured by a time average of the
L2 norm of x, (called the T measure), taken over a suitable time. The T measure should
be considered a surrogate for the lifetime of the flow. Considering how this T measure
changes with λ will locate the edge relative to the relaminarizing trajectory. A sudden and
large change in the value of T denotes a transition across the edge. Figures 3.7 shows the
evolution in phase space of the rescaled and original decaying trajectories, from an initial
condition above and on the outside of the spiral structure. This measure of “turbulence”
against λ is plotted in figure 3.8. The original trajectory decays quickly, as do those rescaled
further from the laminar state. However for λ < 0.97 a large increase in the time average of
the L2 norm is observed, this is caused by stepping across the edge meaning another spiral
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Figure 3.7: Phase space of the 2D model. Blue curving line denotes the trajectory decaying
from “turbulence”. Blue straight line shows range of rescaled initial conditions, the evolution
of which are plotted in red. Original decaying point lies above the edge. Rescaled initial
conditions span the edge.

must be completed before relaminarization. We will compare these results to the carrying
out the same analysis at later point along the original trajectory, with results in figures 3.9
& 3.10. The original point lies below the edge, so the reverse λ scaling is observed. For
λ < 1.08 trajectories relaminization quickly, but larger values lie the other side of the edge.
The results from these two points highlight the transition that is made as a trajectory in
this model passes around the edge on route to the laminar point. By using a relatively
short time average of the L2 norm for our projection we restrict the edge crossings that we
can observe. Crossing the outer-most loop of the spiral is captured as a transition, but the
subsequent crossings of inner parts of the edge are not caught by this relatively short time
average. By using this metric we observe a behaviour which is has a parallel in the full
dynamics, which will be discussed later.

In the case of the low dimensional model the outcome of the test could be predicted
from the phase portrait alone. Having studied this simple system the same analysis can be
performed on the full dynamics and allow some interpretation of the complex behaviour of
the edge. Before we can begin this work we should consider the methods previously used
to study the edge. These methods have revolved around a bisection technique between
an original turbulent state and another which smoothly relaminarizes. The criterion as
to the turbulent or laminar evolution of the new flow field are usually energy or E3D

thresholds, with the turbulent threshold set just below the turbulent value of the metric.
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Figure 3.8: T measure against λ. Measures whether each initial condition maintains “tur-
bulent” evolution during measure time. Values above 0.2 indicate “turbulent” evolution.
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Figure 3.9: Phase space of the 2D model. Test this time carried out at later time on the
original decaying trajectory. Initial condition now lies below the edge. Rescaled initial
conditions still span the edge.
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Figure 3.10: T measure against λ for second point on the trajectory. Graph confirms no
edge beneath trajectory (smaller λ) but edge exists above (larger λ).

These techniques work well for finding the attracting objects embedded within the edge,
but using this definition the edge will not be found near the turbulent part of phase space.
This can be compared to using the T measure (with a short time average) to define the
edge in the low dimensional model. If this was used, only the outer spiral of the edge would
be detected. In the two dimensional model the edge is defined to be the stable manifold
of the edge state, which removes the issue. In the full system, in geometries which have
a single attracting edge state, we can use the same definition. While the edge state may
be located using the bisection technique, we suggest that the edge is defined as the stable
manifold of the edge state. It should be noted that this definition does not automatically
solve the problem of tracking the edge near turbulent, which will be discussed later in this
work. With this new definition of the edge, we can move forward to comparing the full
dynamics with the low dimensional model.

The test begins with a single relaminarizing trajectory, along which two test points are
selected. The flow fields at these points are rescaled using the same methodology as before,

uin = λu (3.7)

where λ = 1 recovers the original dynamics. For each value of λ the initial condition is
generated, evolved for a set time, and the time average of the L2 norm of u recorded (again
called the T measure). Figure 3.11 shows the evolution of the L2 norm of u for the original
trajectory and rescaled conditions for λ ∈ [0.8, 1.3], and in figure 3.12 is plotted the T
measure against λ. By choice the original trajectory decays quickly, as do its neighbours
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in λ. However for both larger and smaller values of λ the T measure increases, indicating
a crossing of the edge to turbulent dynamics on both sides of the point. A second region
where trajectories decay exists at λ ' 0.9. The main point to receive is that there exists
an edge (in this case several pieces of the edge) below the relaminarizing trajectory. The
next step is to carry the process out at a later time, the results of which are presented in
figures 3.13 & 3.14. A transition has occurred since the previous analysis, as there now
exists no edge beneath the relaminarizing trajectory. Turbulent dynamics are only to be
found by choosing λ > 1.2. While the results of conducting this test on the full dynamics
are far more complicated than those of the low dimensional model, certain characteristics
are maintained in both situations. Early in the decay, part of the edge exists beneath the
trajectory in phase space. Yet later, this edge beneath is no longer present. This result
is unsurprising given that by the definition of the edge this transition from one “side” to
another has to occur. However the time and manner of the transition can provide evidence
as to the topology of the edge.

Early in the decay the test shows the existence of an edge below the decaying trajectory.
Using the bisection techniques briefly discussed earlier we can track the dynamics on this
edge. Later in the decay of the original trajectory there exists only an edge above the
decaying trajectory. Again bisection can be used to track the dynamics of this part of
the edge. Figure 3.15 shows the evolution of these two pieces of edge, the edge beneath
in green and the edge above in red. The dynamics on these two pieces of edge initially
move in different directions, however 200 time units later they become involved in the same
dynamics which is maintained for the rest of the time the edge is accurately tracked2. This
result suggests that the two pieces of edge above and below the trajectory are dynamically
connected. Building on the previous result we now have a more complete picture of the
route past the edge. The transition from the trajectory lying above the edge to below it,
added to the dynamical connection of those two pieces of edge fits with the low dimensional
picture built by the 2D model of Lebovitz. The complete geometry of the edge in the full
dynamics is much more complicated than a 2D model could hope to model, as shown by
the multiple layers of edge observed in figure 3.12. Two further details from this work also
suggest agreement with the low dimensional model, that the edge goes up into the turbulent
part of phase space. If we examine the location of the transition in relative edge position
of a trajectory (from above the edge to below the edge) under the E3D projection of the
dynamics we note that this transition occurs at values of E3D associated with turbulent
dynamics. This metric is commonly used to evaluation if a flow field is turbulent and
therefore suggests the edge also exists near turbulence in phase space. This claim could
be proved by developing a method to track the edge into turbulence, however a method to
perform this is not clear. The second observation to be made concerns the evolution of the
dynamics after the transition in edge location has occurred. As can be seen in figure 3.15,
the relaminarizing trajectory tracks the dynamics of the edge for approximately 50 time
units before diverging. This picture is consistently observed and helps our understanding of
the manner in which trajectories pass by the edge. The trajectories running approximately
parallel to the edge in phase space fits the picture produced from the low dimensional
model. None of the results found in this work are individually convincing arguments for the

2i.e. when the coloured pairs diverge. There is no evidence that if the edge was tracked longer these edge
dynamics would separate.
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Figure 3.11: L2 norm of u against time. Blue curve shows decaying trajectory in full
dynamics. Blue straight line shows range of initial condition from λ rescaling. Red curves
show selected evolution trajectories from these new initial condition.

spiral topology of the edge. However together they begin to form a body of evidence which
supports a more complicated version of this cartoon of the edge geometry. The manner of
the transition around the edge appears to agree with the picture constructed. The E3D

projection suggests this transition happens near turbulence, and the dynamics of the edge
near this transition appear to be connected. The evolution of the trajectory as it leaves
turbulence remains close to the edge for a significant amount of time (> 50 time units) both
before and after transition, which again is in agreement with the low dimensional model.

3.5 Conclusion

The focus of this work has been understanding the role that the edge plays during decay
from turbulence. Beginning from a hypothesis that turbulence decayed through a point in
the edge, we examined the statistics and physical processes involved in decay. We finished
by comparing the dynamics of the edge in a low dimensional system to the full dynamics
of plane Couette flow. There was no evidence to support the hypothesis of a unique decay
point, instead what was observed was a wide variety of decay rates and routes back to the
laminar state. We statistically confirmed ideas about the physical processes involved during
the decay. Statistically all parts of the flow field begin to decay at the same point in time,
but the downstream rolls and x-dependent part of the flow field decay at a greater relative
rate. The last 200 time units of decay involve only downstream fast and slow streaks. The
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Figure 3.12: T measure against λ for first point in full dynamics. T measure values larger
than 0.2 indicate turbulent evolution. Highly complex edge structure evident, with 3 regions
of turbulent dynamics and 2 regions of laminar dynamics. Points to 3 individual edge pieces.
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Figure 3.13: L2 norm of u against time for second point 60 time units later. Blue curve shows
decaying trajectory in full dynamics. Blue straight line shows range of initial condition from
λ rescaling. Red curves show selected evolution trajectories from these new initial condition.
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Figure 3.14: T measure against λ for second point. Simpler structure, evidence for single
edge piece intersecting the rescaling line. Edge lies above the relaminarizing trajectory.
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in same dynamics, indicating dynamical connection. Inset: close-up around t = 0.
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rate that these streaks decay is set by the horizontal length-scales involved. The streak
structure during decay is simple, involving predominately the first and second horizontal
Fourier modes. The relative energy in these two modes sets the decay rate. To understand
the geometry of the edge in the full dynamics we ran tests to compare this to a 2D model.
This 2D model had been selected as the simplest model containing edge structure seen in
several low dimensional models of shear flows. In these models the edge extended to infinity
in one direction, but in another wrapped up infinitely many times around a structure (in
the case of the 2D model a fixed point). Comparing to this model we saw some evidence in
the full dynamics for similar, if more complicated structure. Decaying trajectories passed
around the edge, and the parts it passed around were found to be dynamically connected
in some cases. The value of E3D at this transition suggests that the edge passes up into
phase space. However we do not claim that this evidence proves this model to be accurate.
What we have succeeded in doing, is test the validity of this model with a series of tests,
and further work is required before stronger conclusions can be made. There are several
areas of this work where interesting extensions are clear. Conducting the statistical analysis
for a larger domain size would allow study of the conjectures on streak structure. Are six-
streak structures observed in larger domains during decay, and at what Reynolds numbers?
Another question opened up by this work is into the significance of the location where a
decaying trajectory passes around the edge. Does this occur at a specific time before decay,
and are there particular characteristics of the flow field as the edge is rounded?

Despite having held attention of great minds since 1883, turbulence in shear flows is
an area where real progress is currently being made around the globe. Modern ideas and
powerful computers have enabled the discovery of new and complex solutions, which bear
resemblance to experimental work. Progress has been made furthering our understanding of
the edge, and the role that it plays in the dynamics of turbulent shear flows. The edge itself
changes strongly with Reynolds number, with different solutions playing the role as the
edge state. The idea that the edge is wrapped and folded around the turbulent dynamics,
which a trajectory must negotiate in order to return to the laminar state, is an idea which
requires further study before conclusions can be drawn.
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4.1 Introduction

Recent studies of turbulent transition in shear flows [12, 10] have highlighted the presence
of a peculiar feature in the phase space: the edge of chaos. The edge of chaos, or simply the
edge, is a codimension one invariant set embedded in the basin of attraction of the laminar
state, which divides this basin into two subregions: one where orbits decay directly and quite
rapidly, and a second where they decay indirectly and more slowly. In terms more familiar
to fluid mechanics, the edge divides initial flow conditions that relaminarize rapidly from
initial flow conditions that experience transient turbulence and eventually relaminarize.

The edge behavior has been identified both in Direct Numerical Simulations (DNS)
[10, 11, 9] and in low dimensional models [12]. In both cases the edge coincides with the
stable manifold of an invariant object, the edge state [12], which can be either a simple
fixed point [11], a periodic orbit or a higher-dimensional chaotic invariant set [12, 10].

Even though DNS constitutes the ultimate tool to explore turbulence, low dimensional
models offer precious insights and analogies on the nature of the edge. A seminal contri-
bution is Waleffe’s model for Couette flow [14] (W97), based on a Galerkin truncation of
the NS equations. The modes chosen for the truncation stem from a self sustained process
between streamwise rolls, streamwise streaks, and streaks instabilities, a triad considered
fundamental in turbulent transition [3]. Waleffe proposed an eight modes model and a fur-
ther reduction to a four modes model, both of which showed a lower branch family of saddle
points and an upper branch family of stable or unstable fixed points, analogous to the upper
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and lower branches of traveling waves found in DNS [15, 16]. The presence of a dual re-
laminarization behavior in the W97 model, ‘direct’ and through ‘transient-turbulence’, was
identified in [1], while the edge structure was studied recently in [4]. A dual relaminarization
behavior was also found in a nine modes variation of W97 [6, 7].

A question about the edge remains open: if the edge divides the phase space in two
regions, how do trajectories that experience transient turbulence relaminarize? It was ini-
tially proposed [12] that initial conditions that experience transient turbulence lie close to
the edge, specifically between two symmetric parts of it, but in the laminar basin. The
longer relaminarization time was explained by the fractal structure of the edge. It has been
suggested [10] that ‘the stable manifold of the laminar profile and the stable manifold of
the edge state have to intermingle tightly in the region with turbulent dynamics’.

A dynamical description of the edge’s ‘intermingling’ has been drawn by a simple two
dimensional model [5], which features only linear and quadratic terms, non-normal matrix
for the linear terms and energy conserving nonlinear terms. The idea is that the edge, i.e.
the stable manifold of the edge state, does not extend indefinitely over the whole phase
space. Indeed, the model shows that part of the stable manifold of a lower branch fixed
point, i.e. the edge, coincides with the unstable manifold of an upper branch fixed point.
The basic mechanism of the edge is hence the following: trajectories starting below the
stable manifold approach the origin directly, while trajectories starting above the stable
manifold have to travel around the upper branch fixed point in order to reach the origin.
To complicate further the situation, the stable manifold can spiral around the upper branch
fixed point. As a result, an orbit starting between the folds of the stable manifold will
experience a longer path to the origin, enhancing the edge behavior.

Here we study a sixth-order truncated model of Plane Poiseuille Flow with free-slip
boundary conditions. The basic structure is analogous to W97 and indeed the model shows
analogous dynamical characteristics. In addition, the model has striking similarities with
the two dimensional model in [5]. The main purpose of this work is to identify the edge-like
behavior and to explain it in terms of basic dynamical-systems objects. This description
will hopefully facilitate the understanding the edge behavior in more complex systems, such
as the full NS equations.

4.2 Model description

The coordinate system is chosen such that x is in the streamwise direction, y in the wall-
normal direction, and z in the spanwise direction. The domain is x ∈ [0, Lx], y ∈ [−1, 1],
and z ∈ [0, Lz], where Lx = 2π

α , Lz = 2π
γ . The vertical wave number, β, is chosen equal

to π/2, while the x and z wavenumbers are initially left unconstrained. Periodic boundary
conditions are imposed along x and along z. Six solenoidal modes are introduced:

φ1 =

√2cos(βy)
0
0

 , (4.1)

φ2 =

2
√

2cos(γz)sin(2βy)sin(βy)
0
0

 , (4.2)
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φ3 =
2
c3

 0
γsin(2βy)cos(γz)
−2βcos(2βy)sin(γz)

 , (4.3)

φ4 =

 0
0

2cos(αx)sin(2βy)

 , (4.4)

φ5 =
√

2
c5

 2γcos(αx)sin(γz)sin(βy)
0

−2αsin(αx)cos(γz)sin(βy)

 , (4.5)

φ6 =
2
√

2
c6

 −αβcos(αx)sin(βy)sin(2γz)
(α2 + γ2)sin(αx)cos(βy)sin(2γz)

βγsin(αx)sin(βy)sin(γz)2

 , (4.6)

with the following normalization coefficients:

c2
3 = 4β2 + γ2, c2

5 = γ2 + α2, c2
6 = α2β2 + γ4 + 2γ2α2 + α4 + 3/4β2γ2. (4.7)

The first three modes are intended to represent respectively the mean streamwise flow,
the streamwise streaks, and the streamwise rolls. The last three modes are intended to
represent the 1D, 2D and 3D streak instabilities. The mean flow is approximated by a
cosine. The maximum difference in the streamwise velocity is found between the walls,
y = 1 and the center line, y = 0. As a consequence, the roll capable of the most mixing
has a wavelength equal to β/2 (Fig. 4.1). As a comparison, the most mixing efficient roll
in Couette Flow has wavelength equal to β. The resulting Galerkin representative of the
streaks, φ2, has a maximum at y = ± 2

π arccos
(

1√
3

)
∼ ±0.61, which is closer to the wall

than the centers of the rolls, y = ±1
2 (Fig. 4.1).

The roll mode φ3 has free-slip boundary condition in the z direction, and the 2D and 3D
streaks instability modes, φ5 and φ6, have free-slip boundary conditions in both the x and
z directions. The six modes are drawn from the ‘shift-reflect’ class, i.e., equivalent under
the transformation:

[u(x, y, z); v(x, y, z);w(x, y, z)]→ [u(x+Lx/2, y,−z); v(x+Lx/2, y,−z);−w(x+Lx/2, y,−z)],
(4.8)

where u, v, and w are the velocity components along x, y, and z.
Assuming that the modes are fully capturing the dynamics of interest, we truncate the

velocity field to the following finite sum:

u(x, t) =
N∑
i=1

Xi(t)φi(x), (4.9)

where Xi is the amplitude of the mode φi and N is the number of modes, here equal to 6.
The truncated velocity is then substituted in the Navier Stokes equations,

∂u
∂t

+ u · ∇u = −∇p+
1
R
∇2u + F (y)X̂, (4.10)
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and the resulting equation (4.10) is projected into the each mode φk, by setting the inner
product of (4.10) and φk equal to zero. The spatial integration of the inner product re-
moves the space-dependence and the procedure yields a system of N coupled ODEs for the
amplitude Xi. The partial time derivative in (4.10) becomes the total time derivate in the
ODEs, the laplacian becomes a linear term, while the advection becomes non-linear terms.
Because of the solenoidal condition of the modes and the boundary conditions, the pressure
term does not appear in the ODEs, while the body force becomes an inhomogeneous term.

Utilizing the modes 4.1-4.6, we obtain the following system of ODEs for the amplitudes
Xi,

Ẋ = AX + g(X) +
k1

R
X̂1. (4.11)

The forcing term is present only in the direction of the mean flow mode. The matrix A
describes the viscous dissipation,

Ai,j = −δi,j ki
R
, (4.12)

where,

k =



β2

5β2 + γ2

c2
3

α2 + 4β2

α2 + β2 + γ2

(α2 + β2) + (γ2(4c4
5 + β2(4α2 + γ2)))/c2

6

 . (4.13)

The operator g includes the non-linear terms,

g(X) =



−σ0X2X3

σ0X1X3 − σ1X4X5

−(σ4 + σ5)X5X6

σ2X2X5 − σ3X1X6

(σ1 − σ2)X2X4 + (σ4 − σ6)X3X6

(σ5 + σ6)X3X5 + σ3X1X4

 , (4.14)

with the following coefficients:

σ0 =
βγ

c3
, σ1 =

γ2

c5
, σ2 =

α2

c5
, σ3 =

γαβ

2c6
, σ4 =

β2(4α2 + 5γ2)α
2c3c5c6

, σ5 =
(β2 − α2 − γ2)γ2α

2c3c5c6
, σ6 =

γ2β2α

4c3c5c6
.

(4.15)
The non-linear terms are quadratic and conserve energy, i.e. 〈X · g(X)〉 = 0. The sys-
tem of ODEs shows three symmetries: S1=diag(1,1,1,-1,-1,-1), S2=diag(1,-1,-1,1,-1,1), and
S3=diag(1,-1,-1,-1,1,-1). The last symmetry comes from the product of the first two. These
symmetries are undoubtedly inherited from the shift-reflect symmetry, but the derivation
has not been done.

Finally, the transformation X1 → X1 + 1 is introduced, so that the laminar state corre-
sponds to X = 0.
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4.3 Analysis of the system

The matrix of the system linearized around the laminar state is non-normal, because of
the component σ0X1X3 in the second ODE of (4.11). The laminar state is a fixed point,
linearly stable for all R. It is evident that the model is not able to reproduce the linear
instability of the laminar state found in Plane Poiseuille Flow for R > 5772 [8]. However,
it is widely accepted that this instability is not significant for transition to turbulence.

The analytical solution for the steady state of the system (4.11) is found to be a poly-
nomial of 8th order in X5. Under the explored range of values for the parameter α, γ and
R, no real solutions are found, implying that the system (4.11) has no fixed points other
than the laminar point. Also an asymptotic analysis shows no presence of fixed points. In
order to reduce the number of free parameters, the wavelengths are set constant, γ = 5/3
and α = 1.1, corresponding to the values used for the Couette flow in W97 [14].

The search of other non-trivial solutions is initially performed sampling the direction of
the maximum transient linear growth. An approximation of this direction is found to be
X̂3, i.e. the rolls component. However, perturbing the laminar state in only one direction
is not sufficient to find non-laminar solutions. In fact, the modes X1,2,3 constitute a closed
set when the initial value of the modes X4,5,6 is zero. We therefore introduce a small
perturbation, O(10−3), on the modes X2,4,5,6, and a greater perturbation, O(10−1), on the
X3 mode. Fixing R = 500, a stable periodic orbit is found.

4.4 Bifurcation analysis

The bifurcations of the stable orbit were followed using the continuation software MatCont
[2], using R as control parameter. A saddle node bifurcation appears for R > Rsn ∼ 291.7,
giving birth to two branches of periodic orbits (Fig. 4.2A). The lower branch (POlb), closer
to the laminar state, is unstable for all R, with only one real Floquet multiplier greater than
one (Fig. 4.2C). The upper branch (POub) is initially unstable, with two real multipliers
greater than one (Fig. 4.2D). The two multipliers readily become complex conjugate for
R > Rc ∼ 292.4, but they remain greater than one. At R > Rt ∼ 305.5 the two complex
conjugate multipliers become smaller than one, and the periodic orbit becomes stable.
Because of the system symmetries, two other couples of upper and lower branches periodic
orbits are present.

The bifurcation portrait shows some similarities with the model W97, in which a saddle-
node bifurcation gives birth to two branches of fixed points. Also for the W97 model, the
lower branch is always unstable, with only one unstable direction, and the upper branch is
initially unstable, with two unstable directions. The upper branch is initially an unstable
node, and turns readily into an unstable spiral, when the two positive eigenvalues become
complex conjugate. For higher value of R the spiral node becomes stable through a Hopf
bifurcation. The analogy between the two models is clear when fixed points are replaced
with periodic orbits.
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4.4.1 Bifurcation at Rt

state ceases to be the only attracting state and POub introduces an additional basin X1−R
plane, with components X2,3,4,5,6 kept fixed, is plotted in Figure 4.3. The basin boundary is
initial conditions which converge to the laminar state from initial conditions which converge
to POub. This identification is

When R exceeds Rt, a bifurcation takes place: the laminar state ceases to be the only
attracting state and POub introduces an additional basin of attraction. A slice of the two
basins in the X1 −R plane, with components X2,3,4,5,6 kept fixed, is plotted in Figure 4.3.
The boundary is identifiable using the time needed for the orbit to come arbitrarily close
to the origin (relaminarization time). Trajectories starting inside the basin of attraction of
POub have a relaminarization time equal to infinity or to the maximum simulation time.
The identification of the basin boundary is complicated, as usual, by the long transient time
of trajectories starting close to the basin boundary. As expected the new basin of attraction
appears around R = Rt, and expands for increasing value of R.

Are there structures embedded in the boundary of the basin of attraction? Since the
bifurcation at R = Rt is a subcritical Neimark-Sacker type, we expect the appearance of
an invariant two-dimensional torus for R > Rt. Indeed we found a periodic orbit lying on
a torus embedded in the basin boundary. This orbit was found bisecting initial conditions
on different sides of the basin boundary. The orbit on the torus for R = 307.0 is shown in
Figure 4.4D. The torus orbit has a high-frequency modulation with a period approximately
equal to that of POub. The total period of the torus orbit is approximately ten times this
high-frequency modulation. The multipliers of the orbit are 1.19 ± 0.45i ; 1; 2 10−5; 1
10−10; 5 10−8. The torus is therefore unstable, with a very attracting stable manifold.

Unfortunately, we were not able to continue the torus orbit for different values of R
using Matcont. Computing the torus orbit with the bisection technique for different value
of R, we found that the torus shrinks for decreasing values of R and collapses to POub at
R = Rt. We also found that the period of the orbit on the torus can change discontinuously
with R. A complete investigation of the torus is left to other studies.

4.4.2 Description of the periodic orbit

For completeness, a brief description of the periodic orbit is presented. The period at the
saddle node bifurcation is ∼31.8 time units. The period of POub, T , increases monotoni-
cally with R, while the period of POlb decreases monotonically with R (Fig. 4.2B), both
approaching an asymptotic value. The structure of POub and POlb is similar for all values
of R (Fig. 4.4). The center of both POub and POlb has components X2,3,4,6 equal to zero
and components X1,5 different from zero. In addition, the period of the components X1 and
X5 is half the period of the other 4 components, i.e. the period of of X1 and X5 alone is half
the period of the full orbit. The different behavior of the mode X1 and X5 compared to the
other modes emerges from the symmetry S3. We have in fact that S3(X(t)) = X(t+ T/2),
i.e. S3(X(t)) is not a different periodic solution but just the original solution translated by
half period. This implies that the mean of X2,3,4,6 over a period must vanish. In general,
we don’t expect this to be a common feature in other low dimensional models.

A particular behavior of the streaks and rolls mode, φ2 and φ3, was noticed: they seem
to have a different relative phase in the stable and unstable periodic orbit. As shown in
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Figure 4.4A and B, the streaks precede the rolls in the stable orbit, while the rolls precede
the streaks in the unstable orbit. In the X2 −X3 plane, the former situation corresponds
to a counter clockwise rotation of the trajectory and the latter to a clockwise rotation.
The phase lag of the streaks relative to the roll is quantified with the maximum of the
cross-correlation between X2 and X3:

ϕ = max(t)
∫
T
X3(τ)X2(τ + t)dτ, (4.16)

The lag of the streaks is positive for the whole lower branch and for most of the unstable
part of the upper branch. For R just before Rt the lag of the streaks turns negative, and
remains negative for the remaining part of the upper branch. The physical interpretation
of these behaviors is not clear, and will not be considered further in this work.

4.5 Structure of the edge

The rest of this work is devoted to the search for edge-like structures in the phase space.

4.5.1 R > Rt

We first consider the case of R > Rt, when both a stable and an unstable periodic orbit
are present. The lifetime before relaminarization is used to map the phase space (see
[6, 12, 10, 13]). The coordinates X1 and X5 seem an intuitive choice, given their different
behavior with respect to X2,3,4,6. Figure 4.5 shows the relaminarization time for different
fixed values of X2,3,4,6, keeping R fixed, equal to 307.0. Two regions are distinguished:
D, where orbits are attracted to the stable periodic orbit POub, and B, where orbits are
attracted to the origin in a finite time. In addition, two subregions can be distinguished in
B: Bs, where orbits tend to the origin in a relatively short time, and Bl, where orbits tend
to the origin in a longer time. In general, while trajectories starting in Bs proceed almost
directly to the origin, trajectories starting in Bl take a more convoluted path to the origin,
causing the longer relaminarization time.

The different time and pattern of relaminarization in B is now analyzed. Starting with
a trajectory in Bs (e.g. trajectory p1 in Fig. 4.6A), we move the initial condition toward
the basin D. We intersect a point after which orbits take a considerably longer path before
approaching the laminar state. Using a bisection technique [12], we identify a point in the
phase space of initial conditions, say x0, which determines a sudden change: a trajectory
starting just below x0, x−, approaches the origin quite directly, while a trajectory starting
just above x0, x+, takes a longer path to the origin (Fig. 4.6B).

Both trajectory x− and x+ approach POlb arbitrarily closely. Before the two trajectories
collapse into POlb, they separate: x− goes directly to the origin while x+ swings up, visits
the region near the torus orbit and eventually converges to the origin. The fact that both
x− and x+ initially converge to POlb implies that the point x0 lies on the stable manifold
of POlb, SM(POlb). The different trajectory behavior after POlb is evidently dictated by
the presence of two branches of the unstable manifold of POlb, UM(POlb).

Because both x− and x+ belong to the laminar basin, the point x0 has the nature of
an edge: trajectories starting infinitesimally close but on two opposite sides of x0 have
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different finite-time, but same asymptotic dynamics. This result agrees with the finding
that the edge coincides with the stable manifold of an invariant object [10, 9, 6, 12], which
in this case corresponds to a lower branch of unstable periodic orbits. In addition, the
fact that the trajectory x+ is approaching the region of POub suggests the presence of a
connection between the upper and lower periodic orbits.

The way toward multiple edges

In order to navigate the variety of relaminarization patterns in B, we analyze two transects
of initial conditions crossing ∂D. For simplicity, the two transects are chosen in the X1

and X5 direction, with all the other initial conditions kept fixed (Fig. 4.7). The first point
on the transects, pi, corresponds to a trajectory that relaminarizes ‘directly’, while the last
point on the transects, pe, corresponds to a trajectory that converges to POub. Trajectories
are described using two parameters: the time to relaminarization, and the maximum value
achieved by the coordinate X5, a footprint of the trajectory history.

The outcomes for both transects are similar. The relaminarization time is minimum for
pi and maximum, equal to the simulation time, for pe. The lifetime of the initial conditions
between pi and pe is characterized by ‘steps’ and ‘spikes’. Starting from pi and moving
toward pe, the lifetime is approximately constant, it suddenly increases and shortly after
decreases. The lifetime then remains steady, higher than before the peak, approximately
constant until the next peak. Increasing the number of bisection points, we found that
points starting close to each peak come arbitrarily close to POlb. The interpretation is
straightforward: at every peak the vector of initial conditions is intersecting a different fold
of SM(POub). Points lying just below or above SM(POub) are attracted to POub and then
are captured by the two opposite arcs UM(POub). The peak of max(X5) is evidently a
trajectory captured by the arc of UM(POub) leaving in the direction opposite to the origin.

What happens between the different folds of SM(POlb)? We noticed that after every
peak in the relaminarization time, the orbit makes an ‘extra loop’ around the torus orbit.
The consequence of these extra loops is manifested as the ‘steps’ in relaminarization time.
Therefore every fold of SM(POlb) determines a band of increasing relaminarization time.
This suggests that SM(POlb) is wrapped around ∂D. Different folds of SM(POlb) appear
also when other coordinates are chosen to section the phase space (Fig. 4.8). For example,
the first 4 folds of SM(POlb) are plotted in Figure 4.8D.

It comes natural to ask what relationship is present between SM(POlb) and the orbits
on the basin boundary of POub. A simple interpretation would be that SM(POlb) coincides
with the unstable manifold of the orbit on the torus, UM(T ). The spacing between the
folds supports this idea. We found that the distance between the folds is in a geometric
succession, approximately equal for both transects studied. Indeed the folds of an unstable
manifold spiraling out of a periodic orbit are expected to be in a geometric succession. A
cartoon of the various periodic orbits and manifolds is exemplified in Figure 4.7C. This
situation is analogous to the 2D model in [5], where the stable manifold of the lower branch
fixed point coincides with the unstable manifold of an unstable periodic orbit.

The situation in our case is more complicated than described above. The edge, which
coincides with SM(POlb), has codimension one, i.e. dimension 5 in our system. The
torus orbit has two complex conjugate unstable multipliers, at least for the value of R
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considered. The dimension of UM(T ) is 3, considering both the unstable and neutral
multipliers. Therefore UM(T ) and SM(POlb) cannot coincide. Instead, it is likely that
these two objects intersect. A three dimensional cartoon of this intersection is shown in
Figure 4.9.

4.5.2 R < Rt

When R decreases the basin of attraction of POub shrinks and eventually disappears for
R < Rt (Fig. 4.3). The origin is a global attractor, except for a measure zero set containing
the upper and lower branch unstable periodic orbits. Is the edge structure still present?

Rc < R < Rt

First we investigate the case with Rc < R < Rt, when the multipliers greater than one are
complex conjugate. Again, we use the relaminarization time to map the phase space. All
initial conditions relaminarize before the maximum simulation time (Fig. 4.10), in agree-
ment with the absence of no other basins of attraction besides the laminar one. However,
both regions with short, Bs, and long, Bl, relaminarization time persist, indicating the
presence of the edge.

We study a transect of initial conditions, with the initial point pi on Bs and the final
point pe on POub. The results are analogous to the case with R > Rt: the lifetime of pi is
minimum, the lifetime of pe is equal to the maximum time allowed by the simulation, and
the lifetime of the initial conditions between pi and pe is characterized by ‘peaks ’and ‘steps’.
Also in this case, trajectories associated with the peaks converge toward POlb, confirming
that the transect of initial conditions is intersecting SM(POlb).

The distance between the peaks continues to be in a geometric succession, which sug-
gests that SM(POlb) is spiraling around POub. Is SM(POlb) still related to an unstable
manifold? Because the torus orbit disappeared, UM(POub) is the only candidate to con-
sider. Also in this case the dimension of the unstable manifold is 3, less than the dimension
of SM(POlb). Again, UM(POub) cannot coincide with SM(POlb), but it might intersect
it. Interestingly, the dimension of UM(POub) is one unit smaller than the dimension of
SM(POlb), and hence UM(POub) is a potential candidate for the boundary of SM(POlb).

It is remarkable that, even though the basin boundary of POub and the torus orbit are
no longer present, the behavior of the edge remains unvaried. Therefore the edge is not
related to the presence of a second basin of attraction besides the laminar one.

Rsn < R < Rc

Finally, we consider the case with Rsn < R < Rc. The multipliers of POub greater than one
become real, which forecasts the disappearance of the spiraling behavior of SM(POlb) and
UM(POub). Indeed, a sample of initial conditions from a point in Bs to a point on POub
shows no ‘peaks’ and ‘steps’ in relaminarization time. The lifetime is gradually increasing
starting from the point on Bs and moving toward the point on POub (Fig. 4.11A,B), where
it has a maximum. After POub the lifetime decreases and sets to a quite constant value,
higher than before the point on POub. Only a hint of the edge remained: a single step in
lifetime crossing POub.
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How did UM(POub) change? Because the multipliers are real, UM(POub) has two
distinct directions: UM1(POub), associated with the most unstable eigenvector v1, and
UM2(POub), associated with the least unstable eigenvector v2. UM1(POub) is easily tracked
starting a initial condition along on v1 and −v1: both arcs of UM1(POub) are connected
directly to the origin. UM2(POub) is more difficult to follow because initial conditions on
v2 are attracted to UM1(POub). Using a bisection technique, and exploiting the fact that
initial conditions on different sides are attracted to different arcs of UM1(POub), we find
an arc of UM2(POub) which is connected directly to POlb, without any spiraling structure
(Fig. 4.11C). The bisection technique is not able to find the other arch of UM2(POub), and
we suppose that this arch is connected directly to the origin (Fig. 4.11D).

In this configuration the edge behavior is present but strongly reduced. Trajectories on
the upper side of the edge have to circumnavigate POub before reaching the origin, but they
are not slowed by the complicated path imposed by the spiral.

4.6 Discussion

The following dynamical portrait emerges from the study of a six dimensional model for
shear turbulence. For R > Rt there is a stable periodic orbit with a finite basin of attraction
D. A periodic orbit on a torus is embedded in ∂D. The unstable manifold of the torus
orbit, UM(T ), has a convoluted structure, which in a two dimensional projection appears
as a spiral. This unstable manifold intersects the stable manifold of an unstable periodic
orbit SM(POlb) (Fig. 4.12C).

SM(POlb) is technically part of the boundary of B, because every neighborhood of
SM(POlb) contains at least one point of B (e.g., orbits that relaminarize) and at least one
point not of B (e.g., orbits that collapse to POlb). However, the basin boundary nature of
SM(POlb) is not intuitive, since orbits on both sides of SM(POlb) relaminarize. SM(POlb)
divides orbits with different qualitative behavior belonging to the same basin of attraction,
and hence it is an edge. The different qualitative behavior emerges because orbits on the
side of the stable manifold opposite to the origin need to circumnavigate this object in order
to relaminarize. The path followed by the orbits is complicated by the coiling structure of
SM(POlb) around the basin of attraction of POub. Orbits starting between the folds of the
unstable manifold have to uncoil before reaching the origin. This is apparent in the two
dimensional representation in Figure 4.7.

We propose the following analogy: the basin of attraction of POub represents persis-
tent turbulence, i.e. flows that never decay to laminar. Trajectories between the folds of
SM(POlb) represent instead transient turbulence: complex flows which eventually decay to
the laminar state. The edge structure divides orbits that relaminarize in a simple fashion
from orbits that experience transient turbulence.

For Rc < R < Rt the upper branch periodic orbit becomes unstable. The basin bound-
ary of this orbit disappears, the torus collapses to POub, and UM(POub) takes the place
of UM(T ). This unstable manifold continues to be a spiral, and continues to intersect
SM(POlb) (Fig. 4.12B). The structure of the edge remains unchanged. To continue the
analogy, the case Rc < R < Rt describes a situation in which no sustained turbulence is
possible. All the observed turbulence must be transient.

Finally, for Rsn < R < Rc the multipliers of POub become real, and the spiraling
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behavior ceases to exist. One arc of UM(POub) continues to intersect SM(POlb). Since
this stable manifold is no longer a spiral, the edge effect is strongly reduced. The edge is
still present as a single fold, which divides trajectories that go straight to the origin from
those that have to circumnavigate POub (Fig. 4.12A).

These results show many similarities with the two-dimensional model studied by Lebovitz
[5]. The model in [5] shows, for a certain range of a Reynolds-like parameter R∗, an upper
and lower fixed point and an unstable periodic orbit, which are the analogues of POub, POlb
and the torus orbit of our model. For small value of R∗ the upper fixed point is stable and
the periodic orbit constitutes its basin boundary. The stable manifold of the lower branch
point spirals around the periodic orbit and coincides with its unstable manifold. This situ-
ation clearly represents a 2D analogue of our model for R > Rt. For higher values of R∗ the
upper fixed point becomes unstable and the periodic orbit disappears. The stable manifold
of the lower fixed point is now spiraling around the upper fixed point and coincides with its
unstable manifold. This situation is analogous to our model for Rc < R < Rt.

Some differences are present between the two models. First, because Lebovitz’s model is
2D, the stable and unstable manifolds of the different objects can have the same dimension
and hence coincide. Second, the additional basin of attraction is present for small values of
R∗ and disappears for high R∗, while in our model it appears for high values of R. These
differences should warn about the variability of results between simplified models. However,
the analogies suggest the presence of common features in shear turbulence models.

The portrait emerging from the model proposed here and the model of Lebovitz give a
simple interpretation of the edge. The fact that the edge coincides with a stable manifold
of an invariant object was already known [12, 10, 11]. The novelty of our results is that
one limb of the edge does not extend to infinity, but connects to another invariant object,
which for the case here studied can be a fixed point, a simple periodic orbit or a torus
orbit. If this stable manifold is spiraling around the invariant object, then the difference in
relaminarization time between trajectories starting on different sides of the edge is enhanced.
However, we should stress that the spiral structure is not strictly necessary for the presence
of the edge. In higher dimensional models, the full NS as the limit, we expect the invariant
objects and the manifolds to be more convoluted than in a two or six dimensional model.
As a consequence, we expect a greater difference in trajectories on different side of the edge,
with or without the presence of a spiral behavior.

Finally, the edge seems to be related to the unstable manifold of this invariant object,
but dimensional considerations imply that these two cannot coincide. We conclude that
the stable and unstable manifold intersect, but more investigation is needed to draw more
specific conclusions.

4.7 Conclusion

A six-dimensional system of ODEs representing a Galerkin truncated model for Plane
Poiseuille Flow was derived and analyzed. In this model the edge behavior is explained
by the combination of simple dynamical elements: the stable manifold of an invariant ob-
ject connected to another invariant object. This configuration is possible with or without
the presence of another basin of attraction besides the laminar one, and with or without a
spiraling stable manifold.
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Figure 4.1: A) Vector field of the streamwise rolls (y and z component of φ3). B) Contour
lines of the streamwise streaks (x component of φ2). C,D) Redistribution of the streamwise
velocity under the combination of the mean flow and the stramwise streaks, for X2 = 0.1
and X2 = 0.2, with X1 = 1. Contour lines every 0.1, from 0 at y = ±1 to 1 at y = 0.
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Figure 4.2: A) Coordinate X1 and X5 of the center of the upper and lower branches periodic
orbits for different value of R. The blue circles represent the periodic orbits at selected value
of R. The coordinate X2,3,4,6 of the center of both periodic orbits is identically zero for all
R. B) Period of the upper and lower branch periodic orbits. C,D) First three greater
multipliers of the upper and lower branch periodic orbits. The values in the squares are the
same, i.e. the multipliers coincide at the saddle node bifurcation.

Figure 4.3: Each grid square is colored to show the lifetime before relaminarization for
trajectory with initial conditions X1 and parameter R. The other initial conditions are
constant for each cells, X2 = −0.0511, X3 = −0.0391, X4 = 0.0016, X5 = 0.1924, X6 =
0.1260, which correspond to a point on POub. The other parameters are γ = 5/3, and
α = 1.1. A section of the basin of attraction of POub coincides approximately with red
region. The lines represent the projection of the minimum and maximum value of POub.
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Figure 4.4: A) Upper branch stable periodic orbit, R = 307.0 (R > Rt). The orbit in the
X2 −X3 plane is counter clockwise. B) Lower branch unstable periodic orbit. The orbit in
the X2 −X3 is clockwise. C) Average phase lag between the mode X2 (streaks) and mode
X3 (rolls). Positive lag means that the rolls precede the streaks. D) Periodic orbit on the
torus, embedded in the basin boundary of POub.
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Figure 4.5: A) Two dimensional sample of the phase space, with the laminar state at the
origin, for R = 307.0 (R > Rt). Each grid square is colored to show the lifetime before
relaminarization for trajectory with initial conditions X1 and X5 and the center of the cell.
The other initial conditions are constant for each cells: X2 = −0.0511, X3 = −0.0391,
X4 = 0.0016, X6 = 0.1260, which correspond to a point on POub. The other parameters
are γ = 5/3, and α = 1.1. The upper and lower branch periodic orbits are projected into
this plane. B,C) Same as in A, with the coordinate X3 increased by 0.1 and 0.5 respectively.
D) Detail of C.
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Figure 4.6: On the background, lifetime of trajectories before relaminarization, for R =
307.0, as in Figure 4.5. The upper and lower branch periodic orbits, the torus orbit and
some significant trajectories are projected into this plane. A) Trajectory p1 relaminarizes
following a short path; trajectory p2 relaminarizes following a longer path, visiting the region
near POub and the torus orbit; trajectory p3 converges to POub. B) Trajectories starting
infinitesimally close to each other first approach POlb and then diverge into different path
toward the origin. C,D) Trajectories near the basin boundary of POub have convoluted paths
around POub and the torus orbit, and some of them approach POlb before relaminarization.
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Figure 4.7: A,B) Lifetime of trajectories, as in Figure 4.5. Some trajectories and the
periodic orbits are projected into the plane. Two transects of initial conditions crossing
∂D are analyzed. Transect A is aligned along the direction X5; transect B is aligned
along the direction X1. All the other initial conditions are kept fixed. The first point on
both transects, pi, corresponds to a trajectory that relaminarizes ‘directly’, while the last
point, pe, corresponds to a trajectory that converges to POub. Trajectories corresponding
to the initial conditions on the transects are described using two parameters: the time to
relaminarization, and the maximum value achieved by the coordinate X5, a footprint of
the trajectory history. C) Cartoon of the phase space, with the laminar fixed point, POub,
POlb, the torus orbits and some trajectories as an example.
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Figure 4.8: A,B) Lifetime of trajectories and projection of POub and POlb, as in Figure
4.5, but utilizing different coordinates: X4-X6, and X2-X3. C) Representation of the edge’s
folds, identified using the ‘peaks’ of relaminarization time as in Figure 4.7.

Figure 4.9: Example of how UM(POub) can intersect SM(POlb), in a three dimensional
case. UM(POub) lies on a vertical plane and the green line is the intersection.



262

Figure 4.10: A,B) Lifetime of trajectories and projection of POub and POlb, as in Figure 4.5,
but with R = 298.3 (Rc < R < Rt). C) Analysis of a transect of initial conditions crossing
POub. Trajectories corresponding to the initial conditions on the transect are described
using two parameters: the relaminarization time and the maximum value achieved by the
coordinate X5. The point pi corresponds to an initial condition that relaminarize ‘directly’,
while the point pe corresponds to an initial condition on POub. D) Cartoon of the phase
space, with the laminar fixed point, POub, POlb. Trajectory p1 starts close to SM(POlb),
trajectory p2 starts between two folds of SM(POlb).
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Figure 4.11: A) Lifetime of trajectories and projection of POub and POlb, as in Figure
4.5 and Figure 4.10, but with R = 292.4 (Rsn < R < Rc). B) Analysis of a transect
of initial conditions crossing POub. The point pi corresponds to an initial condition that
relaminarizes ‘directly’, while the point pe corresponds to an initial condition on POub. C)
Directions of the unstable manifolds of POub: UM1 is associated with the most unstable
multiplier, UM2 is associated with the other unstable multiplier. D) Cartoon of the phase
space, with the laminar fixed point, POub, POlb, and unstable manifolds of POub.

Figure 4.12: Cartoon of the phase space for different values of R. A) Rsn < R < Rc, two
unstable periodic orbits, both with real unstable multipliers. B) Rc < R < Rt, two unstable
periodic orbits; the upper one with two complex conjugate unstable multipliers, the lower
one with a real unstable multiplier. C) R > Rt, stable and unstable periodic orbits. The
unstable orbit has a real unstable multiplier. The color shading indicates in an approximate
way regions with different relaminarization behavior.
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Upstream basin circulation of
rotating, hydraulically controlled
flows
Adele Morrison
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5.1 Introduction

5.1.1 Motivation

The overflows of dense water from the Nordic Seas into the North Atlantic are a key element
of the global meridional overturning circulation. The deep southward limb of the overturning
is fed primarily by the overflows, and the transport of the deep limb is closely linked to the
transport in the warmer northward currents in the upper ocean of the North Atlantic. The
threat of potentially significant shifts in climate due to changes in the overturning motivates
an improved understanding of the overflows and the associated upstream basin circulation.
Despite enhanced recent efforts [1, 2], the source regions and pathways of the deep water
masses upstream of the overflows remain uncertain.

Observations of the Denmark Strait and Faroe Bank Channel, the two primary exit
points of deep water from the Nordic Seas, indicate that the overflows are hydraulically
controlled. Hydraulic control is qualitatively suggested by the characteristic spillage ob-
served in the drawdown of downstream isopycnals (Figure 5.1), the lack of seasonality in
overflow transport
and the dependence of the overflow transport on upstream interfacial elevation. The hy-
draulic control has also been quantitively confirmed by the identification of control sections
where the flow undergoes sub-critical to super-critical transitions [4].

A feature of hydraulically controlled flows is that the stratification in the basin upstream
of the overflow sill or strait consists of a uniform dense layer overlaid by a dynamically
inactive upper layer, as shown in Figure 5.1. It is therefore not unreasonable to model the
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Figure 5.1: An along-stream section of the Faroe Bank Channel indicating the character-
istic spillage of hydraulically controlled flows, showing temperature (colour shading) and
isopycnals (contours). From Hansen et al. (2001)[3].

upstream basin as a single fluid layer (or 11
2 layers with reduced gravity) governed by the

shallow water equations.
Here we focus on the nature of the upstream basin circulation in an idealised one layer

model with circular basin geometry and varying source location, using a combination of
laboratory and numerical experiments.

5.1.2 Overview

Monitoring the transport of the Nordic Sea overflows has long been a goal of the oceano-
graphic community. Direct current measurements are difficult due to the complex structure
of the flows. Instead, observational studies have attempted to infer overflow transports from
upstream hydrographic measurements [3, 5], as suggested may be reasonable by the rotating
hydraulic theory of Gill [6]. Calculation of the overflow transport using Gill’s theory, which
assumes a uniform potential vorticity flow through a rectangular cross-section channel, re-
quires knowledge of the upstream basin circulation (ie. interfacial height on a boundary),
as well as the strait geometry and potential vorticity. On the contrary, Helfrich and Pratt
(2003)[7] have shown that the overflow transport in an idealised numerical model depends
only on the strait parameters (geometry and potential vorticity) and not the upstream
circulation. The simulated basin-strait system selects the Gill solution with maximum po-
tential energy in the basin. This implies that accurate estimates of the transport cannot
be gained from upstream information. The original plan for this project was to perform an
experimental comparison of the findings of Helfrich and Pratt (2003). However, we were
unable to pursue this question very far due to limitations of the experimental parameter
range. In particular, the width of the strait in the experiment was small compared with the
Rossby radius, placing it in a different regime from the previous numerics.

As an alternative, we have focused on the dependence of the circulation direction in
the upstream basin on the potential vorticity flux through the basin, as introduced in
Section 5.1.3. We show that, for the parameter regime of the experiments, the relative
vorticity component of the potential vorticity flux cannot be ignored and that the commonly
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assumed simple dependence of the flow direction on the relative thicknesses of the inflow
and outflow does not necessarily hold for hydraulic flows.

5.1.3 Potential vorticity balance of the upstream basin circulation

Previous studies of boundary layer flows in semi-enclosed basins have shown that the direc-
tion of circulation (ie. cyclonic or anticyclonic) in the basin is strongly dependent on the
potential vorticity (PV) fluxes at the inflow and outflow [7, 8, 9]. Integrating the PV over
the entire basin yields a balance between the net PV fluxed in or out of the basin and the
dissipation of PV by friction. Here we derive the PV balance, following Yang and Price
(2000) [10]. We begin with the shallow water momentum and continuity equations:

Du

Dt
− fv + g

∂h

∂x
= −λu (5.1)

Dv

Dt
+ fu+ g

∂h

∂y
= −λv (5.2)

Dh

Dt
+ h

(
∂u

∂x
+
∂v

∂y

)
= 0, (5.3)

where D
Dt is the material derivative, (u, v) are the velocity components, h is the layer depth,

f is the Coriolis parameter and λ is the Rayleigh bottom friction coefficient. Given the
northerly latitude and small size of the basins under consideration, we take f to be constant.
The vorticity equation may be obtained by taking the curl of the momentum equations:

∂

∂t
(∇× u) +∇× ((f +∇× u)× u) = −λ∇× u. (5.4)

Extracting the steady state, vertical component of the vorticity equation (applying
incompressibility and noting that the divergence of the vorticity is zero) gives:

(u · ∇)(f + ζ) = (f + ζ)
∂w

∂z
− λζ (5.5)

where ζ = vx − uy is the vertical component of the relative vorticity and w is the vertical
component of the velocity. Rearranging the term on the left (again using incompressibility
and separating the divergence into horizontal and vertical parts), we obtain:

∇ · [uh(f + ζ)] +
∂

∂z
[w(f + ζ)] = (f + ζ)

∂w

∂z
− λζ (5.6)

where uh = (u, v) is the horizontal vorticity. The second and third terms in this equation are
similar in form. The term ∂

∂z [w(f + ζ)] represents vorticity transport due to a vertical mass
flux into the layer, while (f + ζ)∂w∂z is the usual vortex stretching term. If adjacent layers
have different relative vorticity (ie. ∂ζ

∂z 6= 0), there is not necessarily a cancellation between
the two terms. For downwelling located in the interior of a basin, the upper layer flow will
likely be slow and geostrophic, and thus f � ζ is a reasonable assumption. However this
is not necessarily the case for downwelling near a basin boundary (within a boundary layer
flow). Given this caveat, Yang and Price [10] make the assumption that f � ζ, which
reduces Equation 5.6 to:
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∇ · [uh(f + ζ)] = −λζ (5.7)

Under the shallow water approximation, all variables are assumed to be depth indepen-
dent, allowing us to rewrite Equation 5.7 in terms of depth-integrated variables:

∇ ·
[
Uh

(
f + ζ

h

)]
= −λζ, (5.8)

where Uh = uhh is the depth integrated horizontal velocity and ζ+f
h is the potential vor-

ticity. Finally, integrating Equation 5.8 over the entire basin and applying the divergence
and Stokes theorems, we obtain a balance between the net PV fluxed in or out of the basin
and the dissipation of PV by friction:∮

C
(Uh · n̂)

(
f + ζ

h

)
ds = −λ

∮
C

(
uh · t̂

)
ds (5.9)

where C is the boundary of the basin, n̂ is the normal vector across the basin boundary and
t̂ is the tangential vector along the boundary. The term on the left of Equation 5.9 is simply
the net PV fluxed out of the basin via the open boundaries at the inflow and outflow, ie.

Q

[(
f + ζout
hout

)
−
(
f + ζin
hin

)]
= −λ

∮
C

(
uh · t̂

)
ds. (5.10)

Equation 5.10 implies that if the net PV flux through the openings is positive, the
average direction of the circulation on the basin boundary must be anticyclonic, so that
the dissipation of PV balances the net flux. Similarly, if the net PV flux is negative, the
average boundary circulation direction is cyclonic. Yang and Price (2000) [10] simplify this
balance even further, by assuming a ‘slug’ (unidirectional and steady) flow at both the
inflow and outflow to argue that the relative vorticity integrated across an opening must be
zero. The relative vorticity component will also vanish in a model with no-slip conditions.
This assumption leads to:

Qf

[(
1
hout

)
−
(

1
hin

)]
= −λ

∮
C

(
uh · t̂

)
ds. (5.11)

Numerical simulations of Yang and Price (2000) [10] and Yang (2005) [9], using a free-
slip boundary to determine the dissipation given by the circulation integral, and prescribed,
uni-directional flows at the openings (so that the simplification of Equation 5.11 holds), show
that by changing the relative heights of the inflow and outflow (and therefore the sign of
the net PV flux), the circulation can be made to switch direction in the basin, as shown
in Figure 5.2. For a net PV flux of zero, the inflow was found to split into two branches,
so that the circulation direction differed across the two sides of the basin. This relation
between the net PV flux and the direction of basin circulation has been used to explain the
puzzling discrepancy of the circulation direction in the models of the Arctic Ocean Model
Intercomparison Project [9].

Although the dependence of the circulation direction given by Equation 5.10 relies
strongly on the linear friction parameterisation, numerical studies using smaller frictional
coefficients, no-slip boundary conditions or lateral friction instead of bottom friction have



Adele Morrison 271

(a) (b)

Figure 5.2: Numerical simulations showing the control of the net PV flux through the
basin on the circulation direction. The left figure (a) shows the case where the PV flux
at the outflow is larger than the inflow, which was achieved by tilting the basin such that
hout < hin. The right figure (b) shows the effect of tilting the basin in the opposite direction.
From Yang (2005) [9].

also found consistency between the sign of the PV flux through the basin and the circulation
direction [9, 10].

5.1.4 Review of previous studies of upstream basin flows

In this section, we review past numerical, analytical and experimental studies, which have
examined the structure of the flows in basins upstream of a hydraulically controlled sill.

Pratt (1997)[8] derived analytical expressions for the boundary layer currents that link
the upstream sources to the overflow strait. The flows are equivalent to the northern or
southern boundary layers arising in a homogeneous Stommel circulation in a rectangular
basin. Variation in topographic slope near the boundary replaces the latitudinal variation
of f . An average estimate of the boundary layer thickness, δ, arises from what is essentially
a diffusion equation with angle around the basin replacing the role of time:

δ =
√
Rb

√
λ

βT
(5.12)

where Rb is the basin radius, βT = −f ∂
∂r

(
h
Ho

)
is the topographic beta and Ho is the depth

scale. The diffusive nature of the solution gives rise to a spreading of the boundary layer as
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the current flows from the inflow source to the exit strait. Pratt matched this solution to
various inflow and outflow boundary conditions and found that all of the analysed solutions
have the flow entering the strait along the left wall (note we will use ‘left’ and ‘right’ as
if looking downstream from the basin towards the overflow channel). The left wall may
be interpreted as a western boundary with the beta effect arising due to the presence of
a topographic slope between the basin and strait. The solution for a source located on
the boundary opposite the outflow channel has two opposing boundary layers, as shown in
Figure 5.3. The boundary layer along the right wall overshoots the strait to join the left
wall boundary layer and enter the strait from the left. Note that the inflow was assumed
to split in order to feed the two boundary layers directly.

Figure 5.3: Analytical boundary layer solution of Pratt (1997)[8] for basin flow fed by an
isolated boundary source and sink.

The primary experimental study that has looked at the nature of the flows upstream
of a controlling passage was that of Whitehead and Salzig (2001)[11]. This study observed
the qualitative features of the upstream circulation for varying source locations. For all
source locations, Whitehead and Salzig observed the current entering the strait from the
left, either flowing directly along the left wall or overshooting the strait from the right wall
to enter along the left. For a source located on the right hand boundary wall upstream of
the strait, the flow formed a boundary layer on the right wall which crossed to the left side
of the strait entrance before forming a tightly curving current on the left wall of the exit
strait. Fluid entering through a source on the left boundary, just upstream of the channel,
was observed to flow directly along the left wall to the overflow channel. A source placed
in the centre of the upstream basin formed a clockwise boundary current around the edge
of the basin.

Helfrich and Pratt (2003)[7] investigated upstream flows in numerical simulations using
two different source locations. A uniform downwelling over the entire basin created a domed
interface and an essentially geostrophic, anticyclonic circulation, with fluid approaching the
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strait along the left wall. With an inflow on the boundary directly opposite the strait, the
flow split into two boundary currents, which rejoined at the strait. An asymmetry was
observed between the two currents, with the right wall current stronger and overshooting
the strait to enter from the left.

5.2 Laboratory experiments

5.2.1 Apparatus and procedure

The experiments were carried out in a basin on a 1 m diameter rotating table in the
geophysical fluid dynamics laboratory at the Woods Hole Oceanographic Institution, as
depicted in Figure 5.4. The parabolic basin had a depth of 0.20 m and a radius of 0.46 m.
A vertical sidewall of height 0.10 m was attached to the top of the basin edge following
the curvature of the basin, except near the side inflow and outflow strait, where the radius
of curvature was 0.12 m and 0.20 m respectively, in order to smoothly connect the inflow
and outflow channels. For all but one experiment, the overflow sill had a height of 0.025 m
and was positioned within the outflow strait, which had a width of 0.13 m, at a distance of
0.20 m from the basin edge.

  side
in�ow

sill
sponge

sponge

 base
in�ow

a)

sill   side
in�ow

 base
in�ow

b)

c)

Figure 5.4: The experimental apparatus, shown from a,b) top view and c) side view.

The inflow location was varied between a boundary and centred upwelling region. For
the boundary inflow, water entered the basin directly opposite the strait, through a sponge
which had a width of 0.12 m and was aligned with the basin edge. For the case of upwelling
inflow, water entered through a circular sponge of radius 0.07 m at the bottom of the tank.
The overflow water was collected in a basin, before being pumped back to the inflow. Pump
rates varied between (10 – 40) mL/s ((0.77 – 3.08)×10−4 m3/s) and the basin was rotated
anti-clockwise with a range of rotation rates corresponding to f = (1, 1.5, 2) s−1.

A lid was fitted on top of the entire basin during all experiments in order to reduce the
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effects of surface stress from the overlying air. The basin was lit from below using ∼ 300
white LEDs below a diffuser. With the table rotating and the pump switched on, the basin
was left to spinup for 30 minutes. Dye was then released into the inflow at a constant rate
of ∼15 mL/hr. At higher dye release rates, the interface between the central undyed fluid
and the dyed right wall current was observed to tilt and become baroclinically unstable.
The advection of dye by the flow was imaged from above by a co-rotating black and white
camera, with images taken at intervals of 0.5 s.

Using the same scaling for the channel depth ho as Whitehead and Salzig (2001) [11],
gives a Rossby radius (Rd =

√
gho/f) in the range of (0.2 – 0.4) m for the range of experi-

mental parameters. The strait width is therefore much less than the Rossby radius and the
hydraulic control on the basin will be more similar to the non-rotating case.

Due to the brief nature of the summer project, it was decided not to perform quantitative
measures of the circulation, such as particle image velocimetry (PIV), at this time.

5.2.2 Qualitative description of the flows

The flow behaviour observed in the experiments qualitatively agrees with the expected flows
from previous numerical simulations [7, 9] and a theoretical boundary layer solution [8], as
described in Section 5.1.4, except that the case of boundary inflow is rarely (if ever) observed
to split into a left wall and right wall current, as described in these previous studies.

Boundary inflow

Figure 5.5 shows the progress of dye around the basin from the inflow to the strait. The
dye was released at a constant rate into the inflow after the circulation had reached steady
state. The inflow is entirely deflected to the right, into the cyclonic boundary layer. The
cyclonic right wall current overshoots the strait, as also observed in previous numerics and
experiments [7, 11]. The overshooting behaviour is a result of the flow looping back to form
a nominal ‘western’ boundary current as it crosses background PV contours on the way out
of the basin. Also seen in Figure 5.5c,d is a strip of undyed fluid exiting in the centre of
the strait. This undyed fluid is fed from the anticyclonic left wall current, which spirals
out of the centre of the basin. Given sufficient time, the overshooting right wall current
would spiral inwards to the centre of the basin to eventually feed the outward spiralling left
wall current. Similar circulation patterns were observed over a range of inflow fluxes and
rotation rates.

Over the range of experimental parameters investigated (perhaps with the exception of
the raised sill, discussed below), the inflow was not observed to split into a left wall and a
right wall current, as was assumed in the interpretation of both the numerical simulations
of Yang (2005) [9] and the analytical solution of Pratt (1997) [8]. In hindsight, reexamining
these studies shows that the inflow (except perhaps for the case shown in Figure 5.2a) turns
entirely to the right and that the left wall current is fed from the interior of the basin, rather
than directly from the inflow.

The separation of the current from the left wall of the exit strait is due to the surface
curvature resulting from the centripetal effect of the rotating table. The free surface height
increases by an amount d = Ω2r2

2g where Ω = f/2 and r is the distance from the axis of
rotation. For f = 1 s−1, the surface is raised by 2.6 mm at the edge of the basin. For
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a)

d)c)

b)
0.9 minutes 1.8 minutes

6.0 minutes 15.0 minutes

Figure 5.5: A sequence of false-colour photographs from the experiment showing the pro-
gression of dye around the basin. The inflow is on the right and strait on the left. The
inflow was set to 30 mL/s and the rotation rate was f = 1.5 s−1.

f = 2 s−1, the effect becomes more significant with the surface raised by 10.6 mm. At
higher rotation rates, the gradient of the thickness in the strait increases, resulting in an
effective western boundary layer on the right wall of the strait.

Upwelling inflow

The experiments with a central upwelling source behaved much as expected from previous
numerical work, with a predominantly anticyclonic geostrophic circulation. Figure 5.6 shows
the steady state flow for a typical experiment. Dye enters the basin through the sponge at
the center of the tank and gradually spirals outwards in the small ageostrophic component
of the flow due to bottom friction. The boundary current around the rim of the basin
recirculates as well as feeding the overflow. A persistent feature of the flow is a cyclonic
eddy at the entrance to the strait.

Raised sill

To investigate the dependence of the circulation direction on the PV budget, an experiment
was carried out with a raised sill, of height 0.045 m. Apart from the location of the sill, the
experimental parameters were identical to those of the experiment shown in Figure 5.5. The
sill was placed at the edge of the basin to remove the effects of the strait on the circulation.
It should be noted that the topographic gradient leading up to the sill was large. With
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Figure 5.6: False-colour dye image for upwelling inflow through the base of the tank (through
the dark patch in the centre). The inflow spirals anticyclonically outwards. Note the
concentration of dye in the cyclonic eddy near the entrance to the strait. The inflow was
set to 20 mL/s and the rotation rate was f = 1.5 s−1.

a raised sill, the net PV flux through the boundary (under Yang’s assumption that we
can ignore the relative vorticity component) is strongly positive. According to the balance
between the net PV flux and PV dissipation (Section 5.1.3) and the numerical simulations of
Yang (2005) (Figure 5.2), we would expect the right wall current to be severely diminished
(if present at all) and the circulation in the basin to be predominantly anticyclonic.

Figure 5.7 shows a timeseries of dye entering through the inflow. Compared to the
experiment with a lower sill, the left wall current is noticeably stronger. It is unclear if the
inflow is splitting into two directions, or if the left wall current is entraining dye from the
right wall current as it spirals outwards from the centre of the basin. Despite the increased
presence of the left wall current, the right wall current remains dominant and the circulation
appears predominantly cyclonic. In order for the flow to satisfy the PV balance, either the
relative vorticity components of the PV flux through the boundary must be significant,
or dissipation along the left wall leading up to the strait dominates, despite the opposing
contribution from the dissipation along the right wall.

5.3 Numerical simulations

5.3.1 Methods

Numerical solutions of the shallow water equations were computed in order to gain a more
quantitative understanding of the flows seen in the laboratory. The model domain was
constructed to closely mimic the experiments. Figure 5.8 shows the bathymetry, using
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a)

d)c)
11.0 minutes

2.0 minutes 4.0 minutes

20.0 minutes

b)

Figure 5.7: A sequence of photographs from the experiment with a raised sill. Apart from
the location and height of the sill, the parameters were identical to the experiment shown
in Figure 5.5. Note that the view of the strait is obstructed by the placement of the
sill at the edge of the basin. The strength of the anticyclonic left wall current noticeably
increases when the thickness of the outflow is reduced, though the right wall current remains
dominant.

rectangular cells with a resolution of 0.5 cm. The numerical model (described in detail
in [12, 7]) solves the shallow water equations in flux form and using a second-order finite-
volume method to allow shocks, hydraulic jumps and layer depths approaching zero, as are
common in rotating hydraulics. The model was run out to equilibrium and a time mean
used for the analysis described in the following sections.

5.3.2 Simulations of the experiments

The simulations described in this section had a no-slip boundary condition, small lateral
friction, bottom friction and an added centripetal term to obtain the variation in free surface
height seen in the experiments. The numerics reproduced the mean state of the experiments
well. Figure 5.9 shows the mean state of the basin circulation with inflow through the side
wall and with parameters typical of the experiments. The structure of the circulation is
remarkably similar to that observed in the experiments (Figure 5.5) and highlights the spiral
structure of the flows, with the left wall boundary current spiralling anticyclonically out
from the centre, while the overshooting right wall boundary current spirals cyclonically into
the centre of the basin. The simulations show clearly that the left wall current in this case
is fed from the interior of the basin, rather than from a direct splitting of the inflow, as was
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Figure 5.8: Bathymetry used in the numerical simulations.

assumed for the flows in [8, 9].
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Figure 5.9: Time averaged numerical simulation of an experiment with side inflow = 40
mL/s and f = 2 s−1. a) Velocity flow field at equilibrium. b) The log of the velocity
magnitude.

The effect of adding the centripetal term (Ω2r) to the shallow water momentum equation
is shown in Figure 5.10. The simulations demonstrate that the separation of the flow from
the left wall of the strait, such as seen in Figure 5.5d, is a result of the enhanced thickness
gradient due to the increased surface curvature that is present with the centripetal term.

The numerical simulations with inflow through the bottom of the basin are shown in
Figure 5.11. Again, the features seen in the experiment, such as the anticyclonic geostrophic
flow and the dominant eddy near the strait are also observed in the numerics.
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b)b)a)

Figure 5.10: The effect of the centripetal term on the strait flow. Centripetal term switched
a) off, and b) on.
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Figure 5.11: Numerical simulation of an experiment with bottom upwelling inflow = 40
mL/s and f = 2 s−1. a) Time-averaged flow field at equilibrium. b) Relative vorticity.

5.3.3 Potential vorticity balance

A range of simulations with varying sill height were carried out to investigate the extent of
the dependence of the basin circulation direction on the PV flux through the basin. These
simulations were performed with free-slip boundary conditions and zero lateral friction,
leading to the simple PV balance of Equation 5.10. As outlined in Section 5.1.3, as the
height of the sill is raised, we would expect the net PV flux out of the basin to increase
and therefore the dissipation should compensate by switching the direction of the flow, so
that the inflow feeds the left wall boundary current (ie. the reverse of the flow shown in
Figure 5.9).

Figure 5.12 shows the effect of doubling the sill height on the basin circulation. The right
wall boundary current weakens as the sill height is increased, but there is no clear switch
in direction, as was expected. Alternatives for the flow to satisfy the PV balance without
changing the direction of circulation may be either an increase in dissipation on the left wall,
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relative to the right wall, as the flow approaches the strait, or compensation by significant
relative vorticity fluxes through the openings (previously assumed to be negligible). It
seems unlikely that the former is the case, as the left wall boundary current also weakens
and breaks up with increasing sill height. It is also apparent here that the jagged boundaries
caused by the rectangular grid cells result in anomalies in the weak left wall boundary flows.
In order to investigate if the relative vorticity fluxes are significant, the PV flux at the
outflow was split into planetary and relative vorticity components, as shown in Figure 5.13
for varying sill height.
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Figure 5.12: Comparison of simulations with varying sill height. The left (right) figure
shows the flow for a 2 cm (4 cm) sill.

As the sill height is increased, the outflow layer thins, resulting in an increase in the
planetary vorticity. The relative vorticity at the outflow compensates by becoming increas-
ingly negative. Interestingly, the sum of the two vorticity components (ie. the net outflow
PV) remains constant as the sill height is varied. Compared with previous work [8, 10, 9],
these results show that, at least for the parameter range of the experiments, changes in the
outflow planetary vorticity, resulting from changing fluid thickness, may be compensated
by changes in relative vorticity at the outflow, rather than changes in basin dissipation (ie.
a change in circulation direction). The primary difference between these numerical simula-
tions and those of Yang (2005) is that we have not fixed the direction or transport of the
flow at the exit of the basin. The compensation depicted in Figure 5.13 may be due simply
to the freedom allowed for the flow to adjust, or perhaps a result of the criticality of the
flow at the exit sill. It is possible that the relative vorticity at the North Atlantic overflows
is insignificant, as is commonly assumed, and that our experiments and simulations are in
a different parameter range. Figure 5.14 shows that we also see significant relative vortic-
ity fluxes over a wider range of parameters (varying rotation rate, f , and transport, Q).
However in order to have a closer comparison with the real ocean, rotation rates roughly
double these are required. The largest rotation rate (f = 3 s−1) of the simulations shown
in Figure 5.14 corresponds to a Rossby radius equal to the width of the exit channel.
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Figure 5.13: Variation of the relative versus planetary components of the potential vorticity
flux at the outflow for changing sill height. Sill height increases towards the right of the
figure. The line represents constant net potential vorticity at the outflow.
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Figure 5.14: Variation of the relative versus planetary components of the potential vorticity
flux at the outflow for a range of simulations with varying Coriolis parameter f and outflow
transport Q.

The one caveat to these results is that we have had some difficulty in closing the PV
budget of the basin. We expect this is due to the noisy boundary dissipation in the regions of
low flow, as shown in Figure 5.15. Simulations run at double the resolution have significantly
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reduced boundary noise and improved closure of the PV budget, with no noticeable effect
on the splitting of the two boundary currents. This suggests that the results of the relative
vorticity compensation are generally correct despite the closure problem. Higher resolution
or better boundary fitting are needed in order to balance the PV budget.

Figure 5.15: Typical spatial dissipation (−λ∇× (u/h)) for a simulation with side inflow.

5.4 Conclusions and further work

We have performed experiments and numerical simulations to investigate the basin circu-
lation upstream of a hydraulically controlled sill. Previous work by Yang (2005) and Pratt
(1997) has shown a simple dependence of the direction of circulation in the basin on the
relative thickness of the inflow and outflow. This relationship is based on the assumption
of negligible relative vorticity at the basin openings, compared with the component of plan-
etary vorticity in the fluid. Previous numerical studies have enforced this assumption by
constraining the direction and transport of the flow through the openings. We have shown
in a series of experiments and numerical simulations that, for the parameter range exam-
ined here, the relative vorticity may be significant if the flow is given freedom to adjust.
Changes in outflow thickness may be compensated by changes in relative vorticity, rather
than changes in dissipation brought about by a reversed circulation.

Repeating the analysis of the relative vorticity contribution to the PV budget in addi-
tional numerical simulations with an extended parameter range (in particular, increasing
f , so that the Rossby radius is a fraction of the strait width) would enable the results to
be more readily applied to the ocean. Further work on the PV balance would also require
closure of the budget by increasing the resolution of the simulations or using improved
boundary fitting.

A further extension of this work would be to compare the response of the PV balance
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in flows with subcritical and critical outflows. It is possible that the significant changes in
relative vorticity we have observed are a feature of the hydraulic flows and would not be
present in the subcritical case.
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Project 6

Islands in locally-forced basin
circulations
Sam Potter

Princeton University

6.1 Abstract

The circulation response of a square basin with an island and localized surface stress curl
is discussed. Attempts in a laboratory were unsuccessful due to unforeseen difficulties in
applying a localized surface stress curl to a rotating tank experiment. Numerical simulations
show that the effect of an island on the circulation of a square basin with localized forcing
can for the most part be characterized by Kelvin’s circulation theorem. The circulation
response is shown to depend on whether the island has vertical or sloped walls.

6.2 Introduction

6.2.1 Simple gyre circulations

Stommel (1948) and Munk (1950) ([7, 8]) created a simple theory for understanding the
gyre circulations of the oceans. Both of these papers solve for the steady state flow field of
a homogeneous small Rossby number ocean forced by a wind stress curl. The equation to
consider, from [6]

∂

∂t
∇2ψ + εJ(ψ,∇2ψ) +

∂ψ

∂x
= curlτ − µ∇2ψ + E∇4ψ. (6.1)
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Here ψ is the streamfunction and

ε =
U

βL2
=
(
δI
L

)2

(6.2)

µ =
r

βL
=
(
δS
L

)
(6.3)

E =
ν

βL3
=
(
δM
L

)3

. (6.4)

U and L are the scaling velocity and length, respectively. r is the bottom friction coefficient,
ν is viscosity and β = df

dy is the meridional gradient of the Coriolis parameter. The first
and second terms on the LHS of (6.1) are the material derivative of the relative vorticity
and the third term is the meridional advection of planetary vorticity. The first term on
the RHS of (6.1) is the curl of the wind stress and the second and third terms are bottom
friction and lateral friction, respectively. δI , δS , δM are the inertial, Stommel and Munk
boundary layer widths. Since the nondimensional numbers above are functions of these
boundary layer widths, the nonlinearity of the system can be framed in terms of δI/δS or
δI/δM . A larger δI/δS means the system is more nonlinear. In this report δI is calculated
as δI =

√
US/β =

√
curlτ/β2 where US = curlτ/β is the Sverdrup flow.

Considering a steady state and assuming that ε, the Rossby number for this system,
is small, the first two terms on the left hand side of (6.1) are dropped. For the Stommel
model ν := 0, and vorticity is modified by bottom friction with r−1 the frictional timescale.
In the Munk model r := 0 and lateral viscosity takes the place of bottom friction. The
solution streamfunction can be found found by splitting the solution into two parts: a
frictionless interior where either viscosity or bottom drag can be ignored and a frictional
boundary layer, where length scales are short enough for friction to be important. Follow-
ing [5] an explicit approximate solution can then be found by asymptotically matching the
Sverdrup flow of the geostrophic interior, where ∂ψ

∂x = curlτ = wE, to the western boundary
layer solution where friction is important. For the nondimensional Stommel problem the
approximate streamfunction solution with a wind stress of τ = (−cos(πy), 0) is given by
ψ = π(1−x−ex/d)sin(πy) (see Figure 6.1). From (6.2), d = δS/L = µ is the nondimensional
width of the frictional western boundary layer and is assumed to be much less than one. The
solution of the Munk problem is not shown here but exhibits the same basic characteristics
as figure 6.1.

The solution of the Stommel and Munk problems forced with anticyclonic (cyclonic) wind
curl exhibit two features: slow anticyclonic (cyclonic) flow in the interior of the ocean and
fast northward (southward) flow in the western boundary current. This report will deal
with several modifications of this ocean circulation theory. I will be considering how the
gyre circulation is changed when (a) the wind forcing is localized, not universal, and (b)
there exists an island with or without topography in the basin.
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6.2.2 Gyre circulation with islands

Adding an island to the Stommel-Munk setup creates a multiply connected domain. This
allows for the existence of an island circulation, defined as the total transport between the
island and the outer basin boundary. When the circulation is in steady state and linear
and the bulk of the dissipation takes place on the eastern side of the island, which acts as
a western boundary for the sub-basin east of the island, the island transport can be solved
for using the Island Rule of Godfrey [3, 1].

Following Pedlosky et al. (1997) the Island Rule can be derived starting from the
horizontal momentum equations for a single homogeneous layer:

∂u
∂t

+ (ζ + f)k̂ × u = −∇
(
p

ρ
+
|u2|

2

)
+ Diss(u) + T (6.5)

where T is a forcing (e.g. wind stress), Diss(u) is dissipation, either bottom friction, lateral
friction or both, ζ is relative vorticity, and the first term on the right hand side is the
Bernoulli function. The β-plane approximation is made, making f = f0 +βy. To determine
the island streamfunction it is necessary to integrate around the island, but this creates a
problem since the eastern side of the island contains a highly dissipative western boundary.
Assuming that the only non-negligible dissipation due to the island occurs on the eastern
side, the trick of Godfrey is to create a contour that avoids this western boundary (see figure
6.2). Integrating around a circuit that only sees ocean interior and eastern boundaries allows
the Diss(u) term to be ignored. Assuming that the flow is linear, in a steady state and is
non-divergent (so a streamfunction can be defined) integrating (6.5) around the contour C
defined in figure 6.2 gives

β(yn − ys)ψI = −
∮
C

T · t̂ds, (6.6)

where ys and yn are the southernmost and northernmost latitudes of the island, respectively,
and ψI is the island streamfunction, which is assumed to be zero on the eastern basin
boundary and a constant on the island. This relation can be further simplified by defining
a Sverdrup streamfunction

βψS = −
∫ xe

x
k̂ · ∇ ×Tdx′

where xe is the x-coordinate of the eastern basin boundary. Using Stokes Theorem the
forcing term in (6.6) becomes∮

C
T · t̂ds =

∮
CI

T · t̂ds+
∫ ∫

R
β
∂ψS
∂x

dxdy (6.7)

=
∮
CI

T · t̂ds− β
∫ yn

ys

ψS(x+, y)dy, (6.8)

Here x+ is the x-coordinate of the eastern side of the island and CI is the counter-clockwise
circuit around the island. If we assume there is no net tangential force around the island
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the first term on the right hand side of (6.8) drops out and (6.6) becomes

ψI =
1

yn − ys

∫ yn

ys

ψS(x+(y), y)dy. (6.9)

Therefore the island streamfunction in this idealized setup has a very simple interpretation:
it is the average of the Sverdrup streamfunction along the eastern boundary of the island.

The presence of the island circulation changes the standard Stommel-Munk problem. From
[1], figure 6.3 shows an anticyclonic gyre circulation in a circular ocean basin with an island
in the center of the tank. The flow is forced by a uniform wind stress curl. The circular
basin geometry is different than the rectangle of the original Stommel-Munk problem, which
changes the form of the Sverdrup flow and western boundary current. The primary change
induced by the island is a recirculation region in the eastern sub-basin. The extent of this
recirculation is determined by the latitudes where ψI is equal to the Sverdrup flow [1, 2].
The existence of the recirculation is demanded by Kelvin’s circulation theorem: southerly
flow above and below the recirculation is balanced by a patch of northerly flow in the recir-
culation. If dissipation Diss(u) is modeled as bottom friction, the contour integral around
the island is conserved:

∮
C Diss(u) · t̂ = −r ∮C u · t̂ = 0 [1]. This relation requires that the

contribution by the western side of the island is negligible.

The Godfrey and Pedlosky et al. island studies above assumed that the island had
vertical walls – there is no gradual slope leading from ocean bottom to island top. Assuming
vertical walls simplifies the analysis considerably since potential vorticity contours simply
follow lines of latitude when there is no bottom topography. Pedlosky et al. (2009) studied
the gyre circulation with an island of the form in figure 6.4. The resulting circulation is
shown in figure 6.5, which can be compared directly to figure 6.3. The recirculation region
has for the most part disappeared. A sharp meander has now formed in the western sub-
basin, with streamlines sharply breaking from topographic control to rejoin the southward
Sverdrup flow.

6.3 This report

I will study the above questions – how basin circulation changes when an island is included
– but for localized forcing. The above studies mostly concentrated on the case where the
surface forcing was basin-wide, the circulation changes considerably when the wind stress
curl is localized in space. The remainder of the paper will be organized as follows. Section
6.4 will describe an unsuccessful attempt to study locally-forced island circulations in a
rotating tank experiment and section 6.5 will describe more successful numerical models of
the circulations.

Numerical model

For the following numerics the model created by Helfrich et al. (1999) was used [10]. The
model solves the single layer rotating shallow water equations with bottom friction and
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viscosity:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g∂h

∂x
− ru+

ν

h
∇ · (h∇u)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
− fv = −g∂h

∂y
− rv +

ν

h
∇ · (h∇v)

∂h

∂t
+
∂(uh)
∂x

+
∂(vh)
∂y

= 0,

where h is the fluid height, f = f0 + βy and the second and third terms in the horizontal
momentum equations are bottom friction and lateral friction, respectively.

The model was made to mimic the laboratory setup (described below). The model is
nondimensionalized using the half width of the basin l as a horizontal length scale, the
mean depth H as a vertical length scale, the gravity wave speed

√
gH as the velocity scale,

and the advective time l/
√
gH as the time scale. A 150x150 grid was used and the model

was run out to 6.5 Ekman spindown times, though the model only needed 1-2 spindown
times to equilibrate. The model’s Stommel layer was resolved by 3 grid widths, the Munk
layer by 2 grid widths. This western boundary layer resolution is not ideal, however, the
results presented below are reasonable.

6.3.1 β-plume circulation

The circulation that results from a localized forcing is called a β-plume [4, 5, 9]. Figure 6.6
shows a β-plume circulation in the shallow water model. Unless noted otherwise all wind
stress curls are anticyclonic, which induces a southerly Sverdrup flow beneath the forcing.
The streamlines roughly follow lines of constant potential vorticity f/H, where H is fluid
depth. The edges of the plume expand north and south since the edges of the circulation
form small length scales in which friction is important. A zonal boundary layer scaling
analysis shows that the plume expands as δS |x−x0|)1/2, where |x−x0| is the distance from
the forcing region located at x0. Again there is a frictional western boundary current that
allows a northward return flow. We will discuss the island results in a later section, but
from 6.9 and the arguments made in section 6.2 we can already guess that the β-plume
cannot simply use the island to form a western boundary current.

6.4 The laboratory

The tank used for this experiment is shown from above in figure 6.7. The tank is square
with sides of 60 cm and an average depth of 25 cm. The bottom of the tank is angled with a
slope of 0.15 to create a topographic β effect with the top of the picture the effective north.
The topographic β equals f0s/H where f0 is the rotation of the tank, s is the bottom slope,
and H is the mean depth. An island of length 30 cm is located 23 centimeters east of the
western wall. This island has a sloping topographic ‘skirt’ going from the island surface
to the tank bottom. The flow is driven by a stepper motor attached to a rotating disk of
radius 7.5 cm located 45 cm east and 30 cm north of the southwest corner (bottom left).
There is a rigid lid above the entire flow, with the disk the only moving piece of the lid.



292

The water beneath the rotating lid experiences a constant wind stress curl; this curl drives
an Ekman pumping that is balanced by a horizontal geostrophic flow. Diluted food dye was
used to visualize the flow, with images taken by a videocamera mounted on the rotating
table.

For the rotating table experiment the Munk width δM = 1.33 cm and the Stommel width
δS = 0.87 cm for f0 = 2 s−1. The inertial boundary layer width δI can be calculated as
δI =

√
US/β where US = |w0|/s is the Sverdrup flow driven by a surface Ekman pumping

under the disk w0 = ( νΩ)1/2∆Ω. ν is the viscosity, Ω = f0/2 is the rotation of the tank and
∆Ω is the differential rotation of the forcing disk.

Figure 6.7 shows the steady state flow after ninety minutes of spinup. The dye shows up
poorly so the flow is highlighted by black arrows. The table rotation was counterclockwise
at f = 2Ω = 2 s−1 and the disk rotation was clockwise at ∆Ω = 0.1 s−1. The nonlinearity
measure δS/δI = 2.78, so the flow is being forced strongly. This does not change the conclu-
sions of the following paragraphs, however, and the odd behavior found in the lab was also
found for weaker forcings. The dye entry point can be seen along the southeastern side of
the island. The red dye does not illuminate any dynamics, so it can be ignored here. Follow-
ing the arrows in the picture, the blue travels north before it heads east towards the disk.
The flow wraps under the disk, then heads back west near the location where the dye was
entered. The dye then arcs to the northeast where it wraps behind the disk. Once the flow
has gone behind the disk it heads west to join back up with the flow to create a recirculation.

A northward flow to the east of the forcing region is a problem since the tank is a rigid lid
system with negligible buoyancy effects. The only method of communicating information
in the system is Rossby waves propagating on the topographic β. Since β > 0 the Rossby
waves propagate to the west and consequently a water parcel to the east of the forcing
region has no way of knowing that there is any forcing, and thus should not be moving.

The first guess as to what was going wrong was something involving the imperfect lab-
oratory setup: unaccounted for buoyancy effects, incorrect rotation–either from the table
itself or from placement on the table, or incorrect forcing. These are issues that do not effect
the shallow water model, so we next tried to emulate the laboratory flow in the model.

The result is shown in figure 6.8. A clockwise rotating circulation emanates from the disk
and heads towards the island, returning after heading north on a frictional boundary layer.
A counter-clockwise rotating circulation can be seen behind the clockwise circulation, very
much as in the laboratory experiment. Therefore the problem is not with the laboratory,
but with the setup. The laboratory forcing did not turn out as intended.

In the laboratory experiment the azimuthal surface stress is as follows

τ(r) =
{
τmaxr/R : r ≤ R
0 : r > R
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where τmax is the maximum stress and r is the radial distance from the disk center. The
curl of the stress is

curlτ(r) =


2τmax/R : r ≤ R
−sgn(τmax)δ(r −R) : r = R
0 : r > R

since the there is a discontinuous jump in stress from r = R to r > R. This oppositely
signed ring of stress curl drives the counter-rotating flow that shows up just to the east of
the forcing. Friction causes the circulation to spread in the laboratory; in the model this
discontinuity in curl is spread over a grid cell.

This problem was corrected in the model by changing the stress term outside the disk
to

τ(r) =
{
τmaxr/R : r ≤ R
τmaxR/r : r > R

This gives zero curl outside the disk. The nonzero stress for r > R does generate a small
Ekman transport, but this has a negligible effect on the flow for weak forcing. For the
remainder of this report I will discuss numerical model runs forced with this corrected
stress distribution.

6.5 Numerics

6.5.1 Vertically-walled island

A vertically walled island is now included in the basin. The island is one nondimensional
unit long in y centered at y = 0.7. The island is two grid cells in width as required by the
numerics. The circulation is shown in figure 6.9. The center of the β-plume is interrupted
on its way west and a recirculation region the width of the forcing region extends to the
island. The outer edges of the plume continue west until intersecting the western side of
the domain, forming a boundary layer. The island intersection of these two parts of the
β-plume determine stagnation points of the circulation at y ≈ 0.7, 1.3 along the eastern side
of the island.

This flow satisfies the island rule and the structure of the eastern sub-basin circulation
is analogous to the circulation on the eastern side of the vertically walled island in figure
6.3 (Pedlosky et al. (1997)). The recirculation region in figure 6.9 is a stretched out form
of the recirculation in figure 6.3. Moving south to north along the eastern side of the island
in both circulations the velocity changes from southward to northward to southward, again
satisfying the circulation constraint

∮
C Diss(u) · t̂ = −r ∮C u · t̂ = 0, again assuming that the

primary dissipative process is bottom friction Diss(u) = −ru acting on the eastern side of
the island.

The same considerations apply when the basin geometry is varied. When the island is
small relative to the forcing the circulation looks like a β-plume with slightly modified con-
tours where the island lies (figure 6.10). When the island is large relative to the forcing the
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western basin response is the scale of the island (figure 6.11). These two figures show that
the size western basin response will scale as the larger of the island and forcing meridional
lengthscales. This still holds if the forcing region is moved relative to the island. In figure
6.12 the forcing is moved to the south but since a piece of the β-plume hits the island the
western sub-basin response is the size of the island.

6.5.2 Island with topography

The topographic island placed in the basin is shown in figure 6.13. The shallow water
model used for these numerics becomes unstable when the island reaches to the surface so
the island was only made to reach 3/4 of the way to the surface. The dynamics of the
‘submerged’ island are assumed to be very similar to an island reaching to the fluid top
since there are closed f/H contours surrounding the (submerged) island. The submerged
island could also be thought of as a seamount.

Adding a topographic island changes the geometry of potential vorticity f/H contours.
In the absence of friction a linear flow will follow f/H contours. A topographic island is
very different from a vertically-walled island because topography creates closed f/H con-
tours, whereas the vertical island merely disrupts f/H contours, exactly like the eastern
and western boundary in the Stommel or Munk problem. We might expect the flow to look
like the sketch in figure 6.14, with the flow only leaving an f/H contour when encountering
the western boundary. This however, is not what happens, and the the resulting circulation
is shown in figure 6.15 for a case with δI/δS = 0.33

The circulation has changed drastically compared to the vertically walled island in fig-
ure 6.9. There is still a main recirculation region, but it now reaches all the way to the
southwestern tip of the island. The topography has a strong control on the flow, with the
streamfunction lines for the most part tracking f/H contours, except in small areas where
friction is important. The around island flow also differs from the vertically-walled case.
As the return flow comes around the northern edge of the island it tracks south on a f/H
contour, but then takes a hard left turn and heads north towards the forcing region. This
sharp meander is reminiscent of the meander in figure 6.5 from Pedlosky et al. (2009). In
the Pedlosky et al. paper the meander is in the western sub basin – in the localized forcing
case in figure 6.15 the meander is to the east of the island. The meander again allows the
circulation to satisfy the circulation constraint, the return flow of the main recirculation cell
moves counterclockwise (mostly northward) with respect to a closed f/H contour, while the
flow returning from the western sub-basin moves clockwise (mostly southward). The reason
that the flow does not follow the course shown in figure 6.14 is friction: there is enough
friction for the flow to ‘slide’ off of f/h contours and travel all the way around the island.
In fact the main recirculation region is simply a truncated version of the sketch in figure
6.14, with the flow only making it to the southern tip of the island before it gets rerouted
from its course to the western wall.

With cyclonic forcing the circulation response is the same, but with opposite sign, as ex-
pected for the linear regime.
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6.5.3 Increasing non-linearity

The numerical model used was designed to study inertial flows and was not ideal for this
problem. Thus we were not able to study the entire range of parameter space that we
would have liked. For example it was difficult to modify lateral and bottom friction and
change the geometry of the sloped island. However we were able to get interesting results
for changing δI/δS , the nonlinearity factor, by increasing the strength of the wind stress
curl. Results for both anticyclonic and cyclonic forcing are shown in figures 6.16a-6.16d.
Increasing the nonlinearity pushes the center of the western boundary current to the north
(south) corner for anticyclonic (cyclonic) forcing. The main recirculation region becomes
deformed and stretches to the south. For δI/δS = 7.37 with a vertically-walled island the
flow is unsteady, with vortices being shed off the southern tip of the island (not shown).
This unsteadiness, which was not found in the topographic island circulation, may be a
result of flow separation at the sharp corners of the vertically walled island.

6.6 Conclusions

The presence of an island in a basin with localized wind stress curl significantly changes
the standard β-plume response. Whether the island has vertical walls or a topographic
slope the circulation is split into two components. The bulk of the circulation stays close
to the eastern side of the island, forming a small recirculation region that includes most
of the forcing area. In the vertically walled case, this recirculation forms a rectangular
region with latitudinal scale defined by the size of the forcing region. In the topographic
slope case the western side of the main recirculation region is diffused southward, with a
small component of the flow reaching the southwestern tip of the island topography. The
second component of the flow travels around the island, using the western edge of the basin
to form a western boundary current. This flow is for the most part quite similar for both
islands – the circulation acts as an interrupted β-plume, extending around the southern and
northern edges of the island. This around-island flow does differ significantly on the return
by the northern edge of the island. In the topographic case, the return flow tracks almost
due south along an f/H contour until sharply jumping north to rejoin the forcing region
and forming a meander. All of the around-island dynamics appear for the most part to be
governed by Kelvin’s circulation theorem about the island:

∮
C Diss(u) · t̂ ≈ −r ∮C u · t̂ = 0.

Thus around the island, or in the topographic case around a closed f/H contour about the
island, the clockwise flow must balance the counterclockwise flow. In the vertically walled
case this requirement creates a recirculation zone analagous to that found in Pedlosky et
al. (1997) and in the topographic case it creates a sharp meander in the eastern sub-basin.

An interesting effect of the island is that even when the forcing radius is very small relative
to the island length the circulation response must be on the scale of the island. This is
again due to the circulation constraint on a closed contour of the flow about the island and
the act of friction forcing flow off of f/H contours. This dramatic effect of the island on
the basin circulation is not seen in the studies with basin-wide forcing.
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6.6.1 Future Work

It is easy to change the relative size, shape, and relative position of the forcing region and
island within the model. The results found in this study and some results not placed in
this report suggest that the bulk of the possible flow types are captured well by the two
examples given above. However there are many basin and forcing geometries and some may
give fundamentally different circulations. Related to this, it would be nice to replicate the
numerical results in this paper with a model more suited to slow, linear ocean circulations.
The model used here was created to study inertial flows and worked quite well but was not
perfect: it was not amenable to turning off lateral friction or turning down bottom friction,
and had issues with some island geometries. Lastly, to study this problem in the lab would
require a mass source-sink setup that was either a point source or a source over a general
area that induced an Ekman pumping directly. It would be interesting to see if the lab
results match up with the numerical results over a wide range of forcings.
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Figure 6.1: Following [5], the solution streamfunction of the Stommel problem with d = 0.04.

Figure 6.2: The contour integral allowing for the evaluation of the island circulation, from
[1].
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Figure 6.3: Linear gyre circulation in a circular basin with a vertically-walled island [2].
The forcing is anticyclonic. The island is represented by the bar in the center of the basin.

Figure 6.4: The island with topography from [2].
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Figure 6.5: The circulation in a gyre with the island from figure 6.4(from [2]). The dashed
line marks the outer edge of the island topography.

Figure 6.6: A β-plume circulation forced by a disk of constant wind stress curl centered
at (x, y) = (1.5, 1) with radius 0.25. The straight black lines indicate the width the beta
plume would have if there were no friction. δI/δS = 0.33.
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Figure 6.7: A run of the rotating table experiment. Starting at X the arrows denote the
path of a water parcel through the flow.

Figure 6.8: Steady state streamfunction from the numerical model in a setup mimicking
the laboratory experiment. Black lines denote height contours.
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Figure 6.9: Circulation with a vertically walled island. δI/δS = 0.33.

Figure 6.10: Circulation with a vertically walled island with length 0.2. δI/δS = 0.33.
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Figure 6.11: Circulation with a vertically walled island with length 1.95. δI/δS = 0.33.

Figure 6.12: Circulation with a vertically walled island and the forcing centered at (x, y) =
(1.5, 0.5). δI/δS = 0.33.
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Figure 6.13: Height contours of the topographic island. Contours are spaced 0.05 nondi-
mensional units apart to a maximum of 0.75. The total height of the fluid is 1.

Figure 6.14: A sketch of the expected flow in a basin with a topographic island. The open
figure is the outermost closed f/H contour defined by the island, the closed figure is the
forcing region.
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Figure 6.15: Circulation in a basin with the topographic island from figure 6.13. Black
contours denote potential vorticity f/H. The largest closed contour is the potential vorticity
contour enclosing the island. δI/δS = 0.33.

(a) (b) (c) (d)

Figure 6.16: Circulations for increasing non-linearity: (a) Circulation for topographic island
with anticyclonic forcing and δI/δS = 3.30 (b) Circulation for topographic island with
cyclonic forcing and δI/δS = 3.30 (c) Circulation for topographic island with anticyclonic
forcing and δI/δS = 7.37 (d) Circulation for topographic island with cyclonic forcing and
δI/δS = 7.37.
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Project 7

Stability analysis of two-layer
immiscible
viscous fluids in an inclined closed
tube
Zhan Wang

University of Wisconsin

The present investigation is concerned with the role of bottom slope in the stability prop-
erties of two-dimensional disturbances in sheared two-layer immiscible fluids with stepwise
densities. A linear analysis of normal mode instability of the interface in an inclined closed
tube is carried out using full Navier-Stokes equation using Chebyshev-tau method. It has
been observed that Reynolds number and the tilt angle both have destabilizing effect on
the interface eigenvalue problem of Orr-Sommerfeld equation. As a special example, Stokes
flow is proven to be stable for any angles. A weakly nonlinear model equation, which is
Kuramoto-Sivashinsky type, for the interface is given using multi-scale method, and the
long wave dispersion relation gives a sufficient condition for triggering the instability.

7.1 Introduction

When two fluids of different physical properties are superposed one over the other and are
moving with a relative horizontal velocity, the instability occurs at the interface. Two-layer
fluids are ubiquitous in both ocean and atmosphere such as the exchange of Atlantic Ocean
water with the saltier Mediterranean Sea water through the Strait of Gibralta, light water
entering the ocean space from a suddenly broken dam, rapid melting of continental ice,
mixing of clouds and etc. The seminal paper on experimental results for two-layer fluid
was carried out by Thorpe (1968,1971) for the continuously stratified mixing fluids with
acceleration share profile called Kelvin-Helmholtz instability, which revealed the relation-
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ship between the lab experiment and the real instability and turbulence in the ocean and
atmosphere.

Theoretical approaches for layered viscous channel flow often consider the stability of
a basic flow to normal mode type disturbances. The first theoretical study appears to
have been a paper by Yih (1967) who discussed the linear stability of two-layer Couette
and plane Poiseuille flows using a long-wave approach. He showed that both viscosity and
density stratification can generate an interfacial instability, recognized as Kelvin-Helmholtz
instability which was also called the interfacial mode, at any Reynolds number. A different,
shear type instability mechanism has been found by Hooper & Boyd (1983) occurring pri-
marily for short waves at small Reynolds number. The stability properties at intermediate
wavelengths are complicated by mode crossings. Accurate numerical stability studies for the
two-layer Orr-Sommerfeld equations (linearized Navier-Stokes) can be implemented recently
since the Chebyshev-tau method was developed by Dongarra et al (1996) and Boomkamp
et al (1997). There is a large number of literature in both mixing layers and immiscible
fluids for plane channel flows, reader is referred to Hooper & Grimshaw (1985), Yiantsios
& Higgins (1988), Pozrikidis (1997), Yecko et al (2002), Bague et al (2010), Bassom et al
(2010), Mählmann & Papageorgiou (2010) and the references therein.

Since the instability between two fluids is generated by unbalanced pressure resulting
from the perturbation of the velocity shear flow, the combination of external forcing and
topographic features, such as sloping bottom, on a two-layer baroclinic flow results in various
types of instabilities at the interface. The first paper for viscous fluid moving down an
inclined plane was proposed by Yin (1963), which firstly clarified the boundary conditions on
the free surface of one layer fluid. Kao (1965) gave the linear analysis for two-layer Poiseuille
flow with a sloping bottom in the presence of both interface and free surface using long wave
approximation. More recently, Defina et al (1999) considered the viscous effect in an inclined
tube for the fluid with continuously stratified density, and Negretti (2008) presented more
numerical results for an inclined stratified shear flow under Boussinesq assumption. On the
experimental side, besides Thorpe’s famous work in 70’s, Fouli & Zhu (2011) performed
a new experiment to understand the generation conditions and development of Kelvin-
Helmholtz instabilities in two-layer exchange flows downslope of a bottom sill. The low
frequency oscillation were observed to led to the development of large-scale downslope waves
that caused significant interfacial entrainment.

Reduced potential models for those fluids which the vorticity is identically zero, and the
velocity is thus given by the gradient of a harmonic potential, have also been developed
to study the interface stability problem in multi-layer fluids. Purely inviscid potential flow
is the simplest nonlinear model, and the vortex sheet method or called boundary integral
method is a successful numerical method to simulate the Kelvin-Helmohltz instability (see
[14] and the references therein). There are two theories of potential flow of a viscous fluid:
viscous potential flow and the dissipation method. In the viscous potential theory, the
effects of viscosity on the normal stress are not neglected but the effect of shear stresses
are neglected, in other words, the governing equation is Laplace while the viscosity enters
through normal stress balance and tangential stresses are not considered on the interface.
On the other hand, the dissipative method is a famous theory which was first introduced
by Stokes in his study of the decay waves, which based on the basic fact that the viscous
stresses of the irrotational flow are self-equilibrated and do not give rise to forces in the
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equations but they do work and give rise to energy and dissipation. In a recent paper, Kim
et al (2011) used the linearized versions of these models to the research of Kelvin-Helmohltz
instability.

This work concerns two-layer immiscible fluids in an inclined closed tube and has been
extended Thorpe’s classic work to the viscous and non-mixing case. The aim of the present
linear stability study is to examine the influence of a bottom slope on the stability of the
interface under the action of a shear advection. The bottom slope has destabilizing effect
of buoyancy at the interface and adds an additional acceleration term which results in a
parabola base shear flow. It is much natural than the plane channel flow which needs extra
force to maintain the base shear and more realistic in the case of oil & water interface. The
primary problem to which we shall address the following analysis is the investigation of the
static stability of the interface y=0 in the tilt coordinates between two parallel shear flows
U1,2(y) of a light viscous incompressible fluid in y>0 and a heavy one in y<0 when this
interface is subjected to the small periodic perturbation.

The rest of the paper is organized as follows. In Sec. II the base shear flow is calculated
and the governing equations and the connecting boundary conditions on the interface for the
perturbed system are presented. In Sec. III, the Chebyshev-tau method is applied to solve
the eigenvalue problem for two-layer Orr-Sommerfeld systems. The results for both Stokes
flow and general case are discussed for the additional effect of changing the density ratio,
tilt angle, surface tension and Reynolds number. In Sec. IV, a weakly nonlinear PDE model
for the long wave perturbation is derived via multi-scale method, and a sufficient condition
for generating instability is also obtained automatically. Finally, Sec. V summarizes the
results and includes conclusion.

7.2 Formulation

7.2.1 Governing equation

The flow is assumed to be viscous, incompressible fluids at uniform depth inclined tube at
an angle θ in a gravitational field with the coordinate axes x−y as shown in Fig.1 with origin
at the interface. The upper layer is a fluid of density ρ1 and the lower layer is of density ρ2

with ρ2 > ρ1. The governing Navier-Stokes equations (NSE) in the tilt coordinates read

∂ũi
∂t

+ ũi
∂ũi
∂x

+ ṽi
∂ũi
∂y

= − 1
ρi

∂P̃i
∂x

+ g sin θ +
µi
ρi
∇2ũi (7.1)

∂ṽi
∂t

+ ũi
∂ṽi
∂x

+ ṽi
∂ṽi
∂y

= − 1
ρi

∂P̃i
∂y
− g cos θ +

µi
ρi
∇2ṽi (7.2)

∂ũi
∂x

+
∂ṽi
∂y

= 0 (7.3)

where i = 1, 2 denotes two different fluids. ũ, ṽ are the velocities in x and y directions
respectively, P̃ is the pressure and µi represents the dynamic viscosity. For the closed tube,
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Figure 7.1: Schematic sketch in tilt coordinates of two-layer viscous fluids with parabolic shear
flow.

the base shear flow profiles take the form

ũ1 =
(1− γ)g

1 +m2 + 14m
ρ2

µ2
sin θ

[7 +m

2
y2 − 4Hy +

1−m
2

H2
]

(7.4)

ũ2 =
(1− γ)g

1 +m2 + 14m
ρ2

µ2
sin θ

[
− 7m+ 1

2
y2 − 4mHy +

1−m
2

H2
]

(7.5)

where m , µ1

µ2
is the dynamic viscosity ratio, and γ , ρ1

ρ2
is the density ratio. In the mean

time ṽ1 = ṽ2 = 0. Defining g′ , ρ2−ρ1
ρ2

g = (1 − γ)g as the reduced gravity, then we can
define the typical velocity scale as

U ,
g′

1 +m2 + 14m
ρ2

µ2
sin θ (7.6)

Introducing dimensionless variables that are constructed using the velocity scale, U, and
the length scale, H, we find that the problem is characterized by the Reynolds number,
Ri, the Froude number, F, the surface tension parameter, S. More precisely, rescaling the
system by

(
ũi, ṽi

)
= U

(
u′i, v

′
i

)
,
(
x, y
)

= H
(
x′, y′

)
, P̃i = ρiU

2P ′i , t =
H

U
t′ (7.7)
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With a little abuse of notation, we still use (t,x,y) as the time and space coordinates for
simplicity, then the governing equations are of the form

∂u′i
∂t

+ u′i
∂u′i
∂x

+ v′i
∂u′i
∂y

= −∂P
′
i

∂x
+

sin θ
F 2

+
1
Ri
∇2u′i (7.8)

∂v′i
∂t

+ u′i
∂v′i
∂x

+ v′i
∂v′i
∂y

= −∂P
′
i

∂y
− cos θ

F 2
+

1
Ri
∇2v′i (7.9)

∂u′i
∂x

+
∂v′i
∂y

= 0 (7.10)

Here Ri = ρiHU
µi

is Reynolds number, F = U
(gH)1/2

is Froude number, and for later use, the
dimenionless surface tension is defined as S = σ

ρ2HU2 , where σ is the coefficient of surface
tension (assumed constant). Furthermore, we have

R2

F 2
=
ρ2HU

µ2
· gH
U2

=
1 +m2 + 14m

1− γ
1

sin θ
(7.11)

R2S =
ρ2HU

µ2
· σ

ρ2HU2
=

(1 +m2 + 14m)σ
ρ2g′H2 sin θ

(7.12)

Finally, we can rewrite the base shear flow as

U1 =
ũ1

U
=

7 +m

2
y2 − 4y +

1−m
2

(7.13)

U2 =
ũ2

U
= −7m+ 1

2
y2 − 4my +

1−m
2

(7.14)

7.2.2 Linearization

Assuming small perturbations from the basic flow in the form,

u′i = Ui(y) + ui, v′i = vi, P ′i = Pi(x, y) + pi (7.15)

neglecting second order terms in the primed quantities, and making use of the fact that Ui
and Pi satisfy the basic flow equations, we have, upon substitution of (15) into (8)-(10), the
linearized equations governing the disturbance motion,

∂ui
∂t

+ Ui
∂ui
∂x

+DUivi = −∂pi
∂x

+
1
Ri
∇2ui (7.16)

∂vi
∂t

+ Ui
∂vi
∂x

= −∂pi
∂y

+
1
Ri
∇2vi (7.17)

∂ui
∂x

+
∂vi
∂y

= 0 (7.18)

where the operator D means the derivative with respect to y. No-slip and no-penetration
boundary conditions are posed on the two fixed walls for the perturbation

u1(t, x, 1) = Du1(t, x, 1) = u2(t, x,−1) = Du2(t, x,−1) = 0 (7.19)

Suppose the perturbation of the interface is designated as y = η(t, x), then on the interface,
the boundary conditions are as follows
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• contiunity of velocity: u′1 = u′2, v′1 = v′2

• contiunity of tangential stress: µ1

(
∂v′1
∂x + ∂u′1

∂y

)
= µ2

(
∂v′2
∂x + ∂u′2

∂y

)
• contiunity of normal stress:

(− P ′2 + 2
R2

∂v′2
∂y

)− γ(− P ′1 + 2
R1

∂v′1
∂y

)− S ∂2η
∂x2 = 0

For two-dimensinal incompressible Navier-Stokes equation, it is convenient to introduce the
stream function Ψi, such that ui = ∂Ψi

∂y and vi = −∂Ψi
∂x . We now assume a sinusoidal

disturbance and write

Ψi = ψi(y)eik(x−ct) + c.c. (7.20)

where c.c. denotes complex conjugate. ψ(y) is the complex amplitude, k is the dimensionless
real wave number and c = cR + icI is the dimensionless complex wave speed. The real part
cR is the phase velocity of the wave, while kcI is its growth rate. More precisely, the flow
is unstable if cI > 0, stable if cI < 0 and neutrally stable when cI = 0. Substitution of
(20) into (16) and (17) yields upon elimination of pi by taking the curl, the following two
Orr-Sommerfeld equations for the two fluids(

D2 − k2
)2
ψ1 = i

kγR2

m

[
(U1 − c)(D2 − k2)−D2U1

]
ψ1 (7.21)

for the upper phase 0 < y < 1, and(
D2 − k2

)2
ψ2 = ikR2

[
(U2 − c)(D2 − k2)−D2U2

]
ψ2 (7.22)

for the lower phase −1 < y < 0. The conditions at the interface are the continuity of the
velocity components and the balance of the stress components. Formally speaking, these
conditions must be evaluated at y = η(x, t), the location of the interface in the disturbed
situation, and not at the originally interface y = 0. This modification is taken into account
by means of a Taylor expansion in η around y = 0. The interface conditions then read
η = ψ1(0)

c−U1(0)e
ik(x−ct). Finally we can rewrite the boundary conditions in terms of ψi, k, c

and Ri correcting to the leading order in η, and the details of the derivation are presented
in appendix B.

at y = 1: ψ1 = Dψ1 = 0

at y = −1: ψ2 = Dψ2 = 0

at the interface y = 0:

• ψ1 = ψ2

• (Dψ1 −Dψ2

)
+
(
DU1 −DU2

) ψ1

c−U1
= 0

• (D2 + k2
)(
mψ1 − ψ2

)
+
(
mD2U1 −D2U2

) ψ1

c−U1
= 0

• m(D3−3k2D
)
ψ1−

(
D3−3k2D

)
ψ2 + ikγR2

[
(c−U1)D+DU1

]
ψ1− ikR2

[
(c−U2)D+

DU2

]
ψ2 + ikR2

[
(1− γ) cos θ

F 2 + k2S
]

ψ1

c−U1
= 0
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7.3 Linear stability analysis

Systems (21) and (22) with corresponding boundary conditions have an infinite number
of eigenvalues and associated eigenfunctions. Since the real part of the temporal growth
rate in (20) is e−ikc; c = cR + icI ; the eigenvalue which has largest imaginary part is most
dangerous in a linear instability analysis. In order to determine the complex eigenvalue c, the
eigenfunctions ψi are approximated by the Galerkin truncation of the Chebyshev polynomial
of first kind. Then the eigenvalue problem is discretized and formed a generalized matrix
eigenvalue problem (see details in Appendix C)

A~x = cB~x (7.23)

where ~x = (ψ1, ψ2)>. The matrices A and B are singular because some of the boundary
and interface conditions do not contain the eigenvalue c. This singularity is handled by de-
flating the infinite eigenvalues using the standard QZ-algorithm. Grid convergence has been
checked by varying number of collocation points, and in most calculations 100 collocation
points are used. Furthermore, the implemented algorithm has been validated by against
the tow-layer plane Poiseuille flow problem in [6] which is also presented in Appendix C.
Excellent agreement was found in all cases. The linear stability study will be discussed in
the following parts of the section. For simplicity, we assume that two fluid have the same
dynamic viscosity from now on.

7.3.1 Stokes flow

For an extreme example, it is interesting to study the inertialess stability and let the
Reynolds number be zero. Thus in the absence of the surface tension the linear equations,
i.e., the Orr-Sommerfeld equations can be reduced to



(
D2 − k2

)2
ψ1 = 0, 0 < y < 1(

D2 − k2
)2
ψ2 = 0, −1 < y < 0

ψ1(1) = Dψ1(1) = 0, at y = 1
ψ2(−1) = Dψ2(−1) = 0, at y = −1
ψ1 = ψ2, Dψ1 = Dψ2, at y = 0(
D2ψ1 −D2ψ2

)
c+ 16ψ1 = 0, at y = 0(

D3ψ1 −D3ψ2

)
c+ 16ik cot θψ1 = 0, at y = 0

(7.24)

It is easy to find the general solution for Stokes flow

ψ1 = a1e
ky + b1e

−ky + c1ye
ky + d1ye

−ky (7.25)
ψ2 = a2e

ky + b2e
−ky + c2ye

ky + d2ye
−ky (7.26)
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Figure 7.2: Growth rate versus wave number for Stokes wave at θ = π
3 . Solid line is the theoretical

prediction, the circle ones are numerical results, and the dash line is the asymptotic expansion when
wave number k is fairly small.

From the boundary conditions, we once more obtain a secular equation by setting the
determinant of the coefficients of ai, bi, ci and di to zero:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ek e−k ek e−k 0 0 0 0
kek −ke−k (1 + k)ek (1− k)e−k 0 0 0 0
0 0 0 0 e−k ek −e−k −ek
0 0 0 0 ke−k −kek (1− k)e−k (1 + k)ek

1 1 0 0 −1 −1 0 0
k −k 1 1 −k k −1 −1

k2c+ 16 k2c+ 16 2kc −2kc −k2c −k2c −2kc 2kc
k3c+ iNk −k3c+ iNk 3k2c 3k2c −k3c k3c −3k2c −3k2c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

where we define N , 16 cot θ. Direct computation yields the determinant

c = iN
4k2 sinh(2k) + 4k cosh(2k) + 2 sinh(2k)− sinh(4k)− 4k − 8k3

4k2 cosh(4k)− 4k2 − 32k4
(7.27)

Numerical computation shows that the above expression can not be positive for all wave
number k, which implies Stokes flow is always stable for any tilt angle < π

2 . Typical
relationship between the wave number k and the growth rate is plotted when the tilt angle
is π

3 , together with numerical results using the Chebyshev-tau method and the asymptotic
expansion as k is small in Fig.2.

7.3.2 General case

In this part, we consider the effects of density ratio, tilt angle, Reynolds number and surface
tension on the linear stability problem for the general Orr-Sommerfeld equation. Fig.3 shows
a typical profile of the unstable eigenmode and its velocity field.
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Figure 7.3: Typical steam function of the unstable eigenvalue and its velocity vector field. On the
right hand side, the red color means the right direction vector, while the blue color represents the
left direction vector.

In Fig.4, the effect density ratio, surface tension, Reynolds number and tilt angle are
plotted respectively. The upper left picture shows that the density ratio has little effect
on the stability property. We check the density ratio from 0.5 to 0.9, the basic behavior
of the growth rate curve does not change much. The upper right picture shows that the
surface tension would stabilize the system a little bit but not very significant especially
when the wave number k is very small, that is because for long wave approximation, the
surface tension is of order k4 in the Fourier space (See more details in the next section).
In the lower-half part of Fig.4, two plots show the Reynolds number and the tilt angle are
two main factors in stability analysis. Both of them have destabilizing effect. It is worth
mentioning that Reynolds number is not a good parameter in the lab, since

R2 =
ρ2HU

µ2
=

ρ2
2Hg

′

µ2
2(1 +m2 + 14m)

sin θ (7.28)

It is obvious that R2/ sin θ is an appropriate parameter for studying the effect of tilt angle.
In the lower right of Fig.4, we fix R2/ sin θ = 10 instead of fixing the Reynolds number.

Fig.5 plots the relationship between the tilt angle θ and R2/ sin θ, the parameter used
to replace the Reynolds number, for generating the instability. It shows that when R2/ sin θ
is rather small or big, the curve is quite smooth, but in between the points are a little bit
messy due to the modes crossings.

7.4 Weakly nonlinear model for long wave perturbation

In this section, we use multi-scale method to establish a weakly nonlinear model for the
interface evolution in long wave perturbation setting. The ansatz for slow-varying small
amplitude perturbation is

η = εA(X,T ) (7.29)
Ψ1 = εΨ10(X,Y, T ) + ε2Ψ11(X,Y, T ) +O(ε3) (7.30)
Ψ2 = εΨ20(X,Y, T ) + ε2Ψ21(X,Y, T ) +O(ε3) (7.31)
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Figure 7.4: Growth rate versus wave number k. Upper left: R2 = 200, S = 0, θ = π/3; Upper right:
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with X = εx, Y = εy and T = ε2t where ε is a small parameter. Due to the expression of
η, it is convenient to rewrite Ψ10 and Ψ20 as

Ψ10(X,Y, T ) = A(X,T )φ0(Y )
Ψ20(X,Y, T ) = A(X,T )χ0(Y )

Substitution of the above expressions into perturbed full Navier-Stokes equations and cor-
responding boundary conditions, taking m = 1 and collecting terms of first order of ε,
yield 

D4φ0 = D4χ0 = 0, governing equations
φ0(1) = Dφ0(1) = 0, no-slip conditions at y = 1
χ0(−1) = Dχ0(−1) = 0, no-slip conditions at y = −1
φ0 = χ0, Dφ0 = Dχ0, at the interface y = 0
D2φ0 −D2χ0 + 16 = 0, tangential stress at y = 0
D3φ0 = D3χ0, normal stress at y = 0

(7.32)

After direct calculations, the solutions of this ODE system are{
φ0 = 2y3 − 4y2 + 2y
χ0 = 2y3 + 4y2 + 2y

(7.33)

Then we turn to the second order of the expansion. The second order approximation is
obtained by collecting terms of order ε2, which yields the following inhomogeneous ordinary
differential system

D4Ψ11 = R1AX(U1D
2 −D2U1)φ0, governing equations

D4Ψ21 = R2AX(U2D
2 −D2U2)χ0, governing equations

Ψ11(1) = DΨ11(1) = 0, no-slip conditions at y = 1
Ψ21(−1) = DΨ21(−1) = 0, no-slip conditions at y = −1
Ψ11 = Ψ21, at the interface y = 0
DΨ11 −DΨ21 = 8A2, at the interface y = 0
D2Ψ11 = D2Ψ21, tangential stress at y = 0
D3Ψ11 −D3Ψ21 + (16AX cot θ − Sε2AXXX) = 0, normal stress at y = 0

(7.34)

Here the surface tension is supposed to be very large between oil and water interface, i.e.,
S = O(1/ε2). Observing the governing equations and boundary conditions carefully, we can
assume that

Ψ11 = m1(Y )AX +m2(Y )A2 +m3(Y )AXXX (7.35)
Ψ21 = n1(Y )AX + n2(Y )A2 + n3(Y )AXXX (7.36)

After a tedious computation, we substitute the solution of (34) into the kinematic boundary
condition and collect the O(ε3) terms, then obtain

AT + a1AAX + a2AXX + a3AXXXX = 0 (7.37)
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with

a1 =
(
2D2U1 + 2Dφ0 + 2m2

)
(0) = 8

a2 = m1(0) =
1
70

(R1 +R2)− 2
3

cot θ

a3 = m3(0) =
Sε2

24
This is a typical Kuramoto-Sivashinsky equation when a2 is big than 0, and its steady
solution, properties and globally well-posedness have been studied. When a2 < 0, it becomes
diffusion equation which is globally well-posed. If neglecting the nonlinear term, using
standard Fourier analysis, the dispersion relation reads

c = i
(
a2k − a3k

3
)

(7.38)

substitution of the dispersion relation into the Fourier mode eik(X−cT ), one obtains the
growth rate equals e(a2k2−a3k4)T . It shows that the surface tension has stabilizing effect on
the system. If neglecting the surface tension term, the sign of a2 determines the stability
property of the system, which gives a sufficient condition between Reynolds number and
tilt angle for generating the instability:

cot θ <
3

140
(
R1 +R2

)
(7.39)

7.5 Conclusion

By the end of the project, I hoped to have an answer, either analytic or numerical, for the
stability of the two-layer viscous fluid in an inclined closed tube subject to small perturba-
tions and find the effects of surface tension, tilt angle, Reynolds number, density ratio and
wave number in triggering the instability. For the linear stability analysis, Chebyshev-tau
method is applied to two-layer Orr-Sommerfeld equations. Tilt angle and Reynolds num-
ber both have the effect to destabilize the system, while the surface tension stabilize it.
Stokes flow is studied as an extreme example showing that it is stable for any tilt angle.
Except this, for any Reynolds number, one can find a tilt angle to generate the instability.
Furthermore, a weakly nonlinear model equation for long wave perturbation is derived and
found to be Kuramoto-Sivashinsky type. If neglecting the surface tension effects, it offers a
sufficient condition on Reynolds number and the tilt angle for generating linear instability,
which totally depends on the coefficient of AXX term.
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7.7 Appendix A. derivation of base shear flow

In this section the basic unperturbed flow pattern is obtained. The unperturbed flow is
parallel to the x-axis and the velocity is a function of y only. Both of the fluids have the
same depth H. The Navier-Stokes equations that govern the basic flow are

− 1
ρi

∂P̃i
∂x

+ g sin θ +
µi
ρi

∂2ũi
∂y2

= 0 (7.40)

− 1
ρi

∂P̃i
∂y
− g cos θ = 0 (7.41)

From equation (41), one obtains P̃i = −ρig cos θy+
(
function of x

)
. Since ∂2eui

∂y2
is a function

of y only, from (40) it is clear that ∂ eP1
∂x and ∂ eP2

∂x are both constants. Then the solutions for
ũi take the form

ũ1 = (−ρ1g

µ1
sin θ + c1)

y2

2
+ a1y + b1 (7.42)

ũ2 = (−ρ2g

µ2
sin θ + c2)

y2

2
+ a2y + b2 (7.43)

where ai, bi and ci are all constants need to be determined by the boundary conditions.
Using the boundary conditions at the interface y = 0: ũ1 = ũ2, µ1

∂eu1
∂y = µ2

∂eu2
∂y and P̃1 = P̃2,

one obtains a2 = ma1, b1 = b2 and c2 = mc1 respectively, where m = µ1

µ2
is the dynamic

viscosity ratio. For simplicity, let’s denote c1 , c, a1 , a and b1 , b. On the other hand,
because the tube is closed, then there is no flux across any place x = constant, which
implies ∫ 0

−H
ũ2dy +

∫ H

0
ũ1dy = 0

=⇒ b =
H2

12

[( γ
m

+ 1
)ρ2

µ2
g sin θ − (1 +m)c

]
− H

4
(
1−m)a (7.44)

Finally, applying the no-slip boundary conditions at the fixed walls, one obtains(
− γρ2g sin θ

mµ2
+ c
)H2

2
+ aH +

H2

12

[( γ
m

+ 1
)ρ2g sin θ

µ2
− (1 +m)c

]
− H

4
(
1−m)a = 0(

− ρ2g sin θ
µ2

+mc
)H2

2
− amH +

H2

12

[( γ
m

+ 1
)ρ2g sin θ

µ2
− (1 +m)c

]
− H

4
(
1−m)a = 0

Therefore, we solve the linear system for a and c

a =
4(γ − 1)

1 +m2 + 14m
ρ2

µ2
gH sin θ (7.45)

b =
(1−m)(1− γ)
1 +m2 + 14m

ρ2

µ2

gH2 sin θ
2

(7.46)

c =
7m+ γ +m2 + 7mγ
m(1 +m2 + 14m)

ρ2

µ2
g sin θ (7.47)



320

Finally, we get the base shear flow

ũ1 =
(1− γ)g

1 +m2 + 14m
ρ2

µ2
sin θ

[7 +m

2
y2 − 4Hy +

1−m
2

H2
]

(7.48)

ũ2 =
(1− γ)g

1 +m2 + 14m
ρ2

µ2
sin θ

[
− 7m+ 1

2
y2 − 4mHy +

1−m
2

H2
]

(7.49)

7.8 Appendix B. boundary conditions on the interface

In this part, we give the details of the derivation of the stress continuity on the interface in
terms of the stream functions. First of all, we know

ui =
∂Ψi

∂y
= Dψie

ik(x−ct) (7.50)

vi = −∂Ψi

∂x
= −ikψieik(x−ct) (7.51)

Furthermore, we assume the interface is designated as η(x, t) = η̂eik(x−ct). Following the
notation in section 2.1, the kinematic boundary condition ηt = v′1 − ηxu′1 can be linearized
as ηt = v1 − ηxU1, then one obtains

−ikcη̂ = −ikψ1 − ikη̂U1 =⇒ η̂ =
ψ1(0)

c− U1(0)
(7.52)

For the continuity of velocity at the interface, v′1 = v′2 is trivial, while u′1 = u′2 results in

U1 + ηDU1 + u1 + · · · = U2 + ηDU2 + u2 + · · ·
=⇒ (

Dψ1 −Dψ2

)
+
(
DU1 −DU2

) ψ1(0)
c− U1(0)

= 0 (7.53)

Then for the tangential stress, taking expansion about y = 0, one obtains

m
(∂v′1
∂x

+
∂u′1
∂y

)
=
∂v′2
∂x

+
∂u′2
∂y

=⇒ m
[∂v1

∂x
+
∂(u1 + U1 +DU1η + · · ·)

∂y

]
=
∂v2

∂x
+
∂(u2 + U2 +DU2η + · · ·)

∂y

=⇒ (
D2 + k2

)(
mψ1 − ψ2

)
+
(
mD2U1 −D2U2

)
η̂ = 0

=⇒ (
D2 + k2

)(
mψ1 − ψ2

)
+
(
mD2U1 −D2U2

) ψ1(0)
ω − U1(0)

= 0 (7.54)

For later use, we point out the following formula η̂ = ψ1(0)
c−U1(0) = − (D2+k2)(mψ1−ψ2)

mD2U1−D2U2
. In

order to obtain the normal stress formula, we need the expression of the presure. Assuming
pi = p̂ie

ik(x−ct), using equation (8), we can get

p̂i =
1

ikRi

(
D3ψi − k2Dψi

)
+ cDψi +DUiψi − UiDψi (7.55)
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Now we can rewrite the normal stress boundary condition in a suitable form,

(− P ′2 +
2
R2

∂v′2
∂y

)− γ(− P ′1 +
2
R1

∂v′1
∂y

)− S ∂2η

∂x2
= 0

=⇒ (− p2 −DP ′2η +
2
R2

∂v2

∂y
− · · ·)− γ(− p1 −DP ′1η +

2
R1

∂v1

∂y
− · · ·)− S ∂2η

∂x2
= 0

=⇒ (
γp̂1 − p̂2

)
+

2ik
R2

(
mDψ1 −Dψ2

)
+
[
(1− γ)

cos θ
F 2

+ k2S
]
η̂ = 0

=⇒ m
(
D3 − 3k2D

)
ψ1 −

(
D3 − 3k2D

)
ψ2 + ikγR2

[
(c− U1)D +DU1

]
ψ1

−ikR2

[
(c− U2)D +DU2

]
ψ2 + ikR2

[
(1− γ)

cos θ
F 2

+ k2S
] ψ1

c− U1
= 0 (7.56)

For numerical purpose, we need rewrite the normal stress in the following way

m
(
D3 − 3k2D

)
ψ1 −

(
D3 − 3k2D

)
ψ2 + ikγR2

[
(c− U1)D +DU1

]
ψ1 − ikR2

[
(c

−U2)D +DU2

]
ψ2 − ikR2

[
(1− γ)

cos θ
F 2

+ k2S
](D2 + k2)(mψ1 − ψ2)

mD2U1 −D2U2
= 0 (7.57)

7.9 Appendix C. numerical method

Step 1. Coordinate transformation

Chebyshev polynomials are orthogonal on the interval [−1, 1]. In order to use the Chebyshev-
tau QZ-algorithm to solve the generalized eigenvalue problem, we need transform the Orr-
Sommerfeld equations on either of the intervals [−1, 0] and [0, 1] to the interval [−1, 1] by
a change of the independent variable y. This is easily achieved by means of the linear
transformations {

z = 2y − 1 0 6 y 6 1
z = −2y − 1 −1 6 y 6 0

(7.58)

It is noted that z = −1 becomes the interface in both cases. Then the Orr-Sommerfeld
equations in new coordinates become

(
4D2 − k2

)2
ψi − ikRi

[
Ui
(
4D2 − k2

)− U ′′i ]ψi =
[
− ikRi

(
4D2 − k2

)
ψi

]
c (7.59)

Here D presents the derivative with respect to the new variable z and ′ means the deriva-
tive w.r.t the old variable y. Furthermore, the rigid wall boundary condition in the new
coordinates become

ψ1(1) = Dψ1(1) = ψ2(1) = Dψ2(1) = 0 (7.60)
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The interface boundary conditions are, on z = −1

ψ1 − ψ2 = 0 (7.61)(
2U1D − U ′1 + U ′2

)
ψ1 + 2U1Dψ2 =

(
2Dψ1 + 2Dψ2

)
c (7.62)(

4mD2 +mk2 −mU ′′1 + U ′′2
)
ψ1 −

(
4D2 + k2

)
ψ2 =

(
4D2 + k2

)(
mψ1 − ψ2

)
c(7.63)

m
(
8D3 − 6k2D

)
ψ1 +

(
8D3 − 6k2D

)
ψ2 + i

[
kγR2

(
U ′1 − 2U1D

)
ψ1

−kR2

(
2U2D + U ′2

)
ψ2 − k

(
cot θ +

k2T

sin θ

)(
4D2 + k2

)(
mψ1 − ψ2

)]
= −i

(
2kγR2Dψ1 + 2kR2Dψ2

)
c (7.64)

where T , σ
ρ2g′H2 is a new parameter.

Step 2. Galerkin truncation and point collocation

Approximating the eigenfunction ψ1 and ψ2 by the truncated Chebyshev expansions

ψ1(z) =
N∑
n=0

anTn(z), ψ2 =
N∑
n=0

bnTn(z) (7.65)

where Tn(z) is the nth order first-kind Chebyshev polynomial. The high order derivatives
of the eigenfunction can be found by differentiating the Chebyshev polynomial. Our goal
is to determine the coefficients an, bn and the eigenvalue ω. For this purpose, we need
2(N +1) conditions. We collocate the Galerkin truncation at the extrema of the Chebyshev
polynomial

z = cos
(jπ
M

)
, j = 1 · · ·M − 1 (7.66)

We pick M = N − 2, thus if we evluate the Orr-Sommerfeld equation at these extrema
points, we obtain 2N − 6 linear algbraic equations. The other eight conditions come from
the corresponding boundary conditions mentioned in step 1. Therefore we complete our
system.

Step 3. Generalized eigenvalue problem

We denote

AR ,


16D4 − 8k2D2 + k4 0

BC1 ∼ 4 BC1 ∼ 4
0 16D4 − 8k2D2 + k4

BC5 ∼ 8 BC5 ∼ 8

 (7.67)

AI ,


−kR1

[
U1(4D2 − k2)− U ′′1

]
0

BC1 ∼ 4 BC1 ∼ 4
0 −kR2

[
U2(4D2 − k2)− U ′′2

]
BC5 ∼ 8 BC5 ∼ 8

 (7.68)
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Figure 7.6: Eigenvalues for plane Poiseuille at Raynolds number 5772. The dots are for the general
Chebyshev method and the empty circles are for Chebyshev-tau method. Left picture uses 60
collocation points and the right one uses 100 points

BR ,


0 0

BC1 ∼ 4 BC1 ∼ 4
0 0

BC5 ∼ 8 BC5 ∼ 8

 (7.69)

and

BR ,


−kR1(4D2 − k2) 0

BC1 ∼ 4 BC1 ∼ 4
0 −kR2(4D2 − k2)

BC5 ∼ 8 BC5 ∼ 8

 (7.70)

where BC1 ∼ 4 represents the boundary conditions (60), while BC5 ∼ 8 the boundary
conditions (61)-(64). We therefore can write the system of equations as a generalized
eigenvalue problem [

AR + iAI

]
x = c

[
BR + iBI

]
x (7.71)

where x = (a0, · · ·, aN , b0, · · ·, bN )>. Using QZ-algorithm in MATLAB, it is easy to obtain
the eigenvalues and corresponding eigenvectors.

Step 4. Validation

Two examples are presented here for the purpose of validation. The first example is the
one-layer plane Poiseuille flow at Reynolds number 5772. The resulting eigenvalues using
general Chebyshev method presented in Page 150 of [17] and Chebyshev-tau method are
both plotted in Fig.6. It is clear that when collocation points are increased to 100 points,
the results for two methods coincide with each other perfectly. For our linear problem in
the paper, we use 100 points for all numerical experiments. Another numerical experiment
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Figure 7.7: Eigenvalues for two-layer plane Poiseuille flow. Left: Re = 104, a = 1, m = 2, n = 1.2,
un = 0. Right: Re = 25, a = 1, m = 2, n = 10, un = 3

is carried out for the two-layer Poiseuille flow and compared with the results in [6]. In Fig.7
the plots are the eigenvalues for different height ratios and Reynolds numbers. The results
agree with the Pic.7 and Pic.9 of paper [6] very well. And numbers in the following table
show the comparison of the leading eigenmodes between the left hand-side of Fig.7 and
Pic.7 in [6].

Model type Our codes Dongarra’s results

interface 0.00172758052977 0.00179188368
shear 0.00087962166886 0.0008778915187
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Project 8

Elliptic vortex patches: coasts and
chaos
Andrew Crosby

Cambridge University

We investigate the interaction of ocean vortex patches with boundaries via the elliptic
moment model of Melander, Zabusky & Stysek [13], under which vortex patches are ap-
proximated as elliptic regions of uniform vorticity. The interaction with a straight boundary
is shown to reduce to the problem of an ellipse in constant strain, as previously investigated
by Kida [9]. Interactions with more complicated geometries, where we might have expected
the motion to be chaotic, are found to be constrained by an adiabatic invariant arising
from a separation of time scales between the rotation of the patch and its motion along the
coast. A couple of examples where the presence of a background flow does produce clear
chaotic motion are also given. Finally a conformal mapping technique is developed to find
the motion of vortex patches in geometries where the flow is not so easily calculated.

8.1 Introduction

In many problems in geophysical fluid dynamics the flows of interest are quasi-two dimen-
sional due to the presence of rotation, stratification or shallow water, and a ubiquitous
feature of such flows are large-scale vortex structures. Examples include the famous Red
Spot of Jupiter’s atmosphere, which is thought to be well approximated by the shallow
water equations [3]. Closer to home the Atlantic Ocean plays host to Gulf Stream rings,
which are rings of hot or cold water formed by an instability of the gulf stream (see Fig-
ure 8.1a), and also to Meddies, which are formed by the flow of regions of warm salty
water from the Mediterranean into the Atlantic (see Figure 8.1b). Such structures are im-
portant for the transport of heat/salt across the Atlantic and, due to their relatively long
life-times (O(years) in the case of meddies), will inevitably interact with ocean boundaries;
indeed a study by Richardson & Tychensky [15] observed that meddies would interact with
sea-mounts and could sometimes be observed to breakup in the process.
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(a) Gulf stream rings visualized by depth in 100m of
15◦C isotherm, (Richardson, Cheney & Worthington
1976) [14]

(b) Mediterranean eddies visualized by
temperature at 1000m depth, (Richardson
& Tychensky 1998) [15]

Figure 8.1: Examples of vortices present in the Earth’s oceans

Previous work by Johnson and McDonald [8, 7] had mainly focused on the modelling
of such ocean vortices as point vortices and analysing their paths around islands or past
coastal gaps. To complement this work they did some contour dynamics calculations to
look at the motion of an initially circular patch of vorticity in such situations. The project
presented by Ted Johnson at the Woods Hole program was motivated by an observation
during this earlier work that, where the point vortex motion had a separatrix, it ought to be
possible to find chaotic motion of a patch of vorticity. The two problems presented by Ted
were that of motion around a pair of islands (see Figure 8.2a) where the vortex patch might
be expected to chaotically switch which island it goes around, and that of motion past a
coastal gap where the vortex patch might either go through the gap or continue along the
coast in a chaotic scattering problem (see Figure 8.2b).

In the end there was only time to consider the problem of motion around a pair of
islands but on route we discovered some interesting phenomena which are presented in the
following sections.

8.2 Problem description

We consider the two-dimensional Euler equations, and model regions of vorticity as finite
area patches of uniform vorticity. Under certain assumptions the motion of such patches is
well approximated by an elliptic moment model developed by Melander, Zabusky & Stysek
[13] (MZS from here on in). It is this model that we will utilise here so we begin by briefly
describing the important results from its derivation.
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(a) Two islands. (b) Coastal gap with background flow.

Figure 8.2: Contour dynamics simulations results by Johnson and McDonald where vortex
patch shape could affect motion near a separatrix.

8.2.1 Elliptic moment model

It is a remarkable result of Kirchoff [10] that an elliptic patch of vorticity in the absence of
background flow maintains its elliptical shape and simply rotates about its centre. For a
patch of vorticity ω and area A the rotation rate is given by

Ω =
ω

2 + r + r−1
(8.1)

where r ≥ 1 is the ratio of the major axis to the minor axis of the ellipse. Furthermore such
an elliptic patch remains elliptical under the application of some combination of uniform
advection, rotation and strain. It is these results that form the backbone of the model of
MZS.

It is worth noting that such elliptic vortex patches are not always stable: it was shown
by Love [11] that for r > 3 the ellipse becomes unstable in the absence of any background
flow, and Dritschel [4] extends this analysis to the case of an ellipse in a straining flow.

MZS considered a collection of uniform vorticity patches whose typical dimension, L,
was much less than their typical separation, R. This separation allows the use of a multipole
expansion when calculating the interaction between vortex patches. They then represented
each vortex patch in terms of its centroid and Fourier modes representing the shape. At
second order the model is particularly elegant as, under the extra assumption that the
patches are initially approximately elliptical i.e. higher Fourier modes � 1, the model is
closed (requires no knowledge of higher moments). Thus the patches and their motion can
be entirely represented in terms of their centroids and their elliptical shape.

Under these approximations patch centroids evolve due to the point vortex and elliptic
moments from all the other patches. Meanwhile the elliptic shape of each patch evolves due
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≈
R

L

Figure 8.3: Approximation of vortex patches as ellipses under the moment model of MZS.

to a self-contribution causing it to rotate (c.f. Kirchoff) and the strain flow generated by
the point vortex contributions from the other patches.

8.2.2 Representing an ellipse

It is useful at this stage to consider a couple of methods for representing an elliptical shape,
if we assume that the size of the ellipse is fixed then the shape needs two independent
quantities to represent it. Perhaps the simplest and most physically intuitive is the following:

(r, θ) (8.2)

where r ≥ 1 is the ratio of the major to minor axis and θ is the angle that the major axis
makes to the horizontal. In the following sections it will often be convenient to represent
the ellipse in terms of its quadrupole moment

q ≡
(
qxx qxy
qxy qyy

)
≡
∫

(x− xc)(x− xc) dS (8.3)

where xc is the centroid of the ellipse and the integral is over the area of the ellipse. This
can be written in terms of (r, θ) as follows:

q =
A2

4π

(
r cos2 θ + r−1 sin2 θ (r − r−1) sin θ cos θ
(r − r−1) sin θ cos θ r sin2 θ + r−1 cos2 θ

)
(8.4)

There are only really two independent quantities here as det(q) is a function only of the
area A and consequently is fixed. Finally we can also represent the ellipse via a complex
quadrupole moment

q ≡
∫

(z − zc)(z − zc) dS = (qxx − qyy) + 2iqxy (8.5)

where z = x+ iy.

8.2.3 Hamiltonian representation

The underlying two-dimensional Euler equations are Hamiltonian and it was observed by
MZS that their elliptic model preserved the Hamiltonian structure. Here we will sketch a
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derivation of the Hamiltonian in terms of complex variables, (the use of complex variables
allows for a much more compact representation of the quadrupole interactions).

The Hamiltonian for the two-dimensional Euler equations is given by the excess energy
[1]

H = −1
2

∫
ωψ dS −

∫
ωΨ dS (8.6)

where ψ is the stream function due to the vorticity in the flow and Ψ is the stream function
for an externally-imposed irrotational flow. For patches of uniform vorticity, and assuming
no background flow for the time being, we can rewrite the above expression as

H = −1
2

∑
i

ωi

∫
ψi dSi − 1

2

∑
i 6=j

ωi

∫
ψj dSi (8.7)

where
∫ · dSi is an integral over patch i, ωi is the vorticity of patch i, and ψi is the stream

function due to patch i.
The elliptic moment model of MZS is equivalent to integrating over elliptic regions, and

expanding ψj in the second term as a multipole expansion while keeping terms up to order
(L/R)2.

The stream function due to a point vortex of unit strength at x0 is given by

ψ(x) = − 1
2π

log (|x− x0|) . (8.8)

As the flow due to a point vortex is irrotational this can be written in terms of a complex
stream function φ which is an analytic function of z = x+ iy

φ(z) =
1

2πi
log(z − z0) (8.9)

from which the stream function can be recovered by taking the imaginary part.
The complex stream function due to patch i, φi can be written as

φi(z) =
ωi
2πi

∫
log(z − ẑ) dŜi, (8.10)

which can then be expanded about the centroid of the patch zi in a multipole expansion

φi(z) ≈ ωi
2πi

∫
log(z − zi)− ẑ − zi

z − zi −
(ẑ − zi)2

2(z − zi)2
dŜi (8.11)

the second term disappears as zi is the centroid of the patch and the third term can be
rewritten in terms of the complex quadrupole, q, defined earlier

φi(z) ≈ ωi
2πi

(
Ai log(z − zi)− q

2(z − zi)2

)
. (8.12)

The contribution to the Hamiltonian from the stream function of patch i evaluated at patch j
in Equation (8.7) is calculated by expanding this multipole expansion as a quadratic around
zj

φi(z) ≈ ωi
2πi

(
Ai log(zj − zi)− qi

2(zj − zi)2
+

Ai
zj − zi (z − zj)−

Ai
2(zj − zi)2

(z − zj)2

)
(8.13)



332

and then integrating over patch j to give

ωj

∫
ψi dSj = −ωiωj

2π
Re
(
AiAj log(zj − zi)− Aiqj +Ajqi

2(zj − zi)2

)
. (8.14)

Calculation of the self-interaction term is more complicated and here we will just quote
the result of MZS rewritten in terms of q:

ωi

∫
ψi dSi =

(ωiAi)2

4π
log

(
4π
A2
i

√
|qi|2 +

A4
i

4π2
+ 2

)
. (8.15)

These results can then be combined to give a full Hamiltonian

H = −
∑
i

(ωiAi)2

8π
log

(
4π
A2
i

√
|qi|2 +

A4
i

4π2
+ 2

)
−
∑
i 6=j

ωiωj
4π

Re

(
AiAj log(zj − zi)− Aiqj +Ajqi

2(zj − zi)2

)
.

(8.16)
To complete the model we need to know how to obtain the equations of motion from

the Hamiltonian: this can be achieved either by directly deriving the equations of motion
and working backwards [13] or directly from the Hamiltonian Euler equations [12]. The
resulting equations are as follows:

ẋi =
1

ωiAi

∂H

∂yi
(8.17)

ẏi = − 1
ωiAi

∂H

∂xi
(8.18)

q̇xi =
4
√
|qi|2 + A4

4π2

ωi

∂H

∂qyi
(8.19)

q̇yi = −
4
√
|qi|2 + A4

4π2

ωi

∂H

∂qxi
(8.20)

Finally we note that (qx, qy) do not form a canonical variable pair but MZS observe that
the following pair, written here in terms of r and θ do.(

ωiAi
16π

(ri − 1)2

ri
, 2θi

)
(8.21)

8.3 Motion along a coast

ω

-ω

ω

≡
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We begin by considering the simple case of a vortex patch moving along a coast or
ocean-ridge. Consider the coast to lie along the line y = 0. This problem can be solved
via a simple image system: the motion is the same as that of two vortex patches where
the image vortex is the reflection of the original vortex patch in the line y = 0. The image
patch will have opposite vorticity and a quadrupole q̄. Now from the previous section we
can construct the Hamiltonian as follows:

H = −(ωA)2

8π
log

(
4π
A2

√
|q|2 +

A4

4π2
+ 2

)
+
ω2

4π
Re

(
A2 log(z − z̄)− A(q + q̄)

2(z − z̄)2

)
(8.22)

H = −(ωA)2

8π
log

(
4π
A2

√
(q2
x + q2

y) +
A4

4π2
+ 2

)
+
ω2

4π

(
A2 log(2y) +

Aqx
4y2

)
(8.23)

Applying equations (8.17) then gives the following evolution equations:

ẋ =
ωA

4πy
− ωqx

8πy3
(8.24)

ẏ = 0 (8.25)

q̇x = − 2ωqy

2 + 4π
A2

√
(q2
x + q2

y) + A4

4π2

(8.26)

q̇y =
2ωqx

2 + 4π
A2

√
(q2
x + q2

y) + A4

4π2

− Aω

4πy2

√
(q2
x + q2

y) +
A4

4π2
(8.27)

The first thing to notice is that the vortex patch stays at a fixed height above the wall;
this is a consequence of the conservation of the y-component of the global centroid. Under
the elliptic model the strain experienced by the patch comes only from the point vortex
contribution of the image, this is of fixed magnitude and at a fixed distance hence the patch
experiences a constant strain rate. This problem of an elliptic patch of vorticity in constant
strain has previously been analysed by Kida [9]. By writing qx and qy in terms of r and θ
we can rewrite the Hamiltonian in a form similar to that given in the paper of Kida

H = −ω
2A2

8π
log(r + r−1 + 2) +

ω2A2

4π
log(y) +

ω2A

16πy2

A2

4π
(r − r−1) cos(2θ) (8.28)

and then defining e to be the constant strain rate

e ≡ Aω

8πy2
c

(8.29)

we have the following for some constant c (dependant on H):

cos(2θ) =
ω

e

r

r2 − 1
log
(

(r + 1)2

cr

)
. (8.30)

Kida showed that there were three types of motion possible: rotation, nutation and
extension in which respectively either the major axis of the ellipse oscillates about θ = 0, the
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Figure 8.4: e
ω = 0.2. Contour plots of 2θ vs r.

major axis continually rotates, or the ellipse gets stretched out indefinitely. For e
ω > 0.15 the

only possible motion is extension where the ellipse is stretched indefinitely (see Figure 8.4).
For our value of e this corresponds to A > 3.8y2 which for a circle would give radius > 1.2y.
So when vortex patches are sufficiently close to a coast we expect them to break up, although
we must be a little careful here because we have assumed that the vortex patch and its image
are separated by a large distance in the model derivation so we can not expect this value
to be quantitatively correct. There is a small range, 0.15 > e

ω > 0.13, where both nutation
and extension are possible, and then for e

ω < 0.13 all three types of motion can occur (see
Figure 8.5).

8.3.1 Comparison with contour dynamics code

The full solution for the evolution of a patch of uniform vorticity can be calculated numer-
ically using the method of contour dynamics [16]. This method makes use of the fact that
the velocity only needs to be known on the boundary in order to evolve the patch position
and that the velocity on the boundary can be calculated by an integral round the boundary
as follows:

∇ψ(x) = − 1
2π

∫
∇x log(|x− x̂|) dŜ (8.31)

=
1

2π

∫
∇x̂ log(|x− x̂|) dŜ (8.32)

=
1

2π

∫
log(|x− x̂|) dn̂. (8.33)
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Figure 8.5: e
ω = 0.08. Contour plots of 2θ vs r.

Figure 8.6: Motion of an initially circular patch with centroid at y = 1.5. Patch motion is
from left to right with time intervals of 5/ω. Contour dynamics solution is in blue and the
model in black.
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Figure 8.7: r against x for an initially circular patch with centroid at y = 1.5. For the
contour dynamics solution r is calculated from the quadrupole moment.

A comparison between the model and contour dynamics calculations is shown in Fig-
ure 8.6, here the patch has a unit radius and its centroid starts at a distance 1.5 above the
coast. The model and full solution agree very well at early times but at later times there
is a noticeable phase drift. A more quantitative comparison is made in Figure 8.7, which
again clearly shows the phase drift by also shows that the elliptic model overestimates the
maximum value of r by ∼ 10%.

The good agreement between the model and full solution when y = 1.5, despite the tech-
nical requirement in the model derivation for the patch and its image to be well separated,
raises the question of what happens if we use the model to calculate the motion of a patch
of vorticity right next to the wall. The result of such calculations is shown in Figure 8.8.
Whilst the elliptic model is clearly unable to capture the formation of a cusp it still does a
remarkably good job of predicting the overall shape.

8.3.2 Background tide

ω

U(y,t) ∝ g(t) y

A natural extension to the previous problem is to ask what happens if there is a back-
ground flow along the coast. We consider here what happens if a time dependent background
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(a) t = 0 (b) t = 2/ω

(c) t = 4/ω (d) t = 6/ω

Figure 8.8: Even when the vortex patch is right next to the wall and consequently the
model (black) should be completely invalid it still does a remarkably good job of capturing
the overall shape of the region of vorticity (blue).

shear flow is imposed
U(y, t) = g(t)y (8.34)

where we take the strength of the shear to vary sinusoidally with time

g(t) = f sin
(

2πt
T

)
. (8.35)

Such shear might be caused by the presence of a tidal flow along the coast. It is known
that, in the absence of a boundary, such background flows lead to chaotic behaviour [5].

We have to be a little careful when constructing the Hamiltonian for the motion of the
elliptic patch in this flow as the background flow has infinite energy and is being driven by
some unmodelled mechanism. The extra term that we add is

Hshear = −ω
∫

Ψshear dS (8.36)

where Ψshear is the (non-irrotational) stream function for the background flow

Ψshear = g(t)
y2

2
(8.37)

consequently we find that

Hshear = −ωg(t)
2

(Ay2 + qyy). (8.38)
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By neglecting any contribution due to the energy in the background flow we are effectively
assuming that the background flow is unaffected by the presence of the vortex patch.

As the Hamiltonian is now time dependent we expect to find chaotic behaviour. The
patch will still remain at a fixed height above the wall but we find more interesting behaviour
if we consider what happens to the shape of the patch; the motion is now determined by
three parameters: f , T and the initial distance from the wall y0 (unless otherwise stated
we will take A = π and ω = 1).

As an example we focus on the case of y0 = 3. The unforced behaviour (f = 0) for
this case is shown in Figure 8.9, for this value of y0 almost all the orbits in the range of
interest are rotations. We will consider what happens when we apply forcing with a period
T = 14, from Figure 8.9b we see that this corresponds to the time period of an orbit with
r ≈ 2 when θ = 0. Figures 8.10a & 8.10b show Poincaré sections of the resulting motion
with points plotted every period T (the quantities plotted are actually the earlier canonical
variables (Equation (8.21)) relabelled in terms of r and θ).

Initially a weak forcing of f = 0.001 is applied and a resonance opens up about the orbit
with matching period (Figure 8.10a). In fact a similar resonance opens up about every orbit
whose time period is a rational multiple of the forcing [2], but for this weak forcing they are
too small to be observable here. An increase in forcing by a factor of 10 to f = 0.01 does
little to affect the motion apart from increasing the size of the resonance (Figure 8.10b).
As the forcing is increased further to f = 0.05 many of the higher order resonances become
visible (Figure 8.11a). Finally by f = 0.1 a ‘sea of chaos’ has emerged (Figure 8.11b).

The development of resonances could have an impact on whether vortex patches are
likely to break up: a sufficiently large resonance can take a vortex patch that is initially
near circular and extend it well beyond r = 3 where the elliptic patch would become unstable
in the absence of background flow. Similarly the emergence of a ‘sea of chaos’ allows the
vortex patch to access all states within a large region of the Poincaré section including some
for which the value of r is very large.

We can also consider what happens when the frequency of the forcing is changed: Fig-
ure 8.12 shows a Poincaré section when the forcing has a period of T = 30. One notable
new feature here is that the sea of chaos that exists for most of the region r & 4 extends
out into a region where elliptic patches get extended indefinitely; this is why there aren’t
many points plotted in it as any solution that started there typically only survived a few
periods before being indefinitely extended. This Poincaré section also provides us with an
opportunity to observe one of the fundamental building blocks of chaos: the ‘heteroclinic
tangle’ (see Figure 8.12b). When f = 0 we have a two-dimensional Hamiltonian system
where the only type of fixed points are centres or saddles. A saddle point consists of the
intersection of a stable and unstable manifold; in a two dimensional Hamiltonian system
these manifolds can only intersect at a fixed point. However this saddle point structure is
unstable and once a perturbation is added (here by increasing f away from zero) the two
manifolds will typically intersect at a point away from the fixed point. The iterates of such
an intersection lead to an infinite number of intersections away from the fixed point. On
top of this the area-preserving property of a Poincaré section means that the area of the
‘nodes’, the regions formed by the two manifolds between intersections, must all be the
same. Consequently as the intersections approach the fixed point the nodes get increasingly
stretched out until eventually they start to wrap all the way around and overlap the fixed
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Figure 8.9: Behaviour for y0 = 3 in the unforced case (f = 0).

point in the perpendicular direction. It is this ‘stretching’ and ‘folding’ that guarantees the
presence of a Smale Horseshoe and consequently chaotic behaviour. The presence of such
tangles was predicted by Poincaré before we had the ability to calculate such structures
numerically!

Finally we note that if the period of the forcing applied is much less or greater than
the characteristic period associated with the rotation of the elliptic patch then, unless the
forcing is very strong, the motion remains near integrable.

8.4 Motion around a corner

≡

+

+

+

-

-

In the case of a patch moving above a straight coast the presence of a second conserved
quantity (y component of the global centroid) meant the motion remained integrable. We
will now consider what happens when a patch of vorticity moves in a quarter plane for
which this extra conserved quantity does not exist. Far away from the corner the patch will
remain at a constant distance from the coast but then the interaction with the corner will
allow the distance to change. As this is a four-dimensional system we would expect to find
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(a) f = 0.001

(b) f = 0.01

Figure 8.10: Poincaré sections for y0 = 3, T = 14.
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(a) f = 0.05

(b) f = 0.1

Figure 8.11: Poincaré sections for y0 = 3, T = 14.
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(a)

(b) Magnification of heteroclinic tangle.

Figure 8.12: Poincaré sections for y0 = 3, T = 30, f = 0.05.
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Figure 8.13: Typical behaviour of a vortex patch moving round a corner. Initial conditions
are x = 1.5, y = 100, r = 1 & θ = 0.

chaotic behaviour.
We can again use the method of images (this time we need three images) to construct

the Hamiltonian

H = Hself +
ω2

4π

(
A2 log(

2xy√
x2 + y2

) +
Aqx
4y2
− Aqx

4x2
+
A(qx(x2 − y2) + 2qyxy

4(x2 + y2)2

)
(8.39)

from which the motion of patches is easily calculated. Figure 8.13 shows an example of the
resulting motion; the distances from the wall before and after the corner are very similar
and consequently so is the behaviour of the elliptic shape. This example is typical and,
unless patches are started so close to the wall that they extend indefinitely, all patches exit
the corner at a similar distance from the wall as they entered, with the maximum deviation
being of order 10−4.

The explanation for this surprising behaviour comes from considering the time scales
involved in the problem: there is a time scale on which the patch rotates, Tself , and a second
time scale on which the strain rate experienced by the patch changes as the patch moves
through the corner, Tstrain. Tstrain is relatively long compared with Tself ; in Figure 8.13b
the ratio of the time scales can be seen to be Tstrain/Tself ≈ 5. This separation of time
scales is sufficient to lead to the phenomenon of adiabatic invariance [6].

If we view this problem as a patch of vorticity in a slowly varying strain field then the
theory of adiabatic invariance states that, whilst the Hamiltonian associated with the motion
can vary, there exists an adiabatic invariant that is constant to all orders in ε ≡ Tself/Tstrain.
A first-order approximation to this adiabatic invariant is given by the action

J ≡
∮
p dq where p =

ωA2

16π
(r − 1)2

r
, q = 2θ (8.40)

here p and q are a pair of canonical variables and the integral is over one period of the
motion. The variation of this action as the patch passes through the corner for the example
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given earlier is shown in Figure 8.14a. The presence of the adiabatic invariant means that
the action before the interaction with the corner and the action after the interaction, and
similarly the distance from the wall, should be the same to all orders. As we have no direct
control over the time scales in the problem checking that the distance from the wall is the
same to all orders in ε is a bit tricky. To get around this we instead consider the related
(but unphysical) problem whereby the speed at which the patch centroid moves is changes
by a factor a. In this new problem the separation of time scales is Tself/Tstrain = aε; so if
the patch centroid moves more quickly, a > 1, the strain experienced by the patch varies
more quickly and consequently there is less of a separation between the two time scales,
conversely if the patch moves more slowly, a < 1, there is more of a separation. To see
that the distance from the wall is constant at all orders we look at how the change in
distance from the wall varies as we vary a, see Figure 8.14b. As a is decreased there is a
clear exponential decrease in the deviation corresponding to the adiabatic invariant begin
constant at all orders.
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Figure 8.15: Path lines of point vortices in corner with background shear flow.

8.4.1 Corner trapping by an external flow

ω

ψ ∝ xy

It is possible to add an external straining flow

Ψ = βxy (8.41)

to the quarter-plane motion such that the vortex patch becomes trapped in the corner
provided β < 0; the motion of point vortices in such a flow is shown in Figure 8.15. For
elliptic vortex patches this results in the following extra term in the Hamiltonian:

HΨ = −ω
(
βqy
2

+Axy

)
. (8.42)

Poincaré sections can be calculated for the resulting motion by plotting all solutions
with a fixed value of β and a fixed energy H when they pass forwards through the plane
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θ = 0. The resulting Poincaré sections for the x-y plane are shown in Figure 8.16. Also
shown by blue lines are the energetically allowable regions of the plane; the asymmetry here
is due to the choice of plotting at θ = 0.

For low values of H there is a region of closed streamlines and a second energetically
allowable region near y = 0 where all patches extend indefinitely. As H is increased the
boundaries of these two regions become closer together and at the same time we see the
development of resonances in the central region (see H = 0.25). By H = 0.275 a ‘sea of
chaos’ has emerged around the edge of the central region and at H = 0.3, by which time
the two regions have merged together, this ‘sea of chaos’ extends into the region where all
patches are indefinitely extended.

The reason that we are able to observe chaotic behaviour here is that the presence of the
background straining flow is able to decrease the time scale upon which the vortex patch
experiences a change in strain. Unfortunately the emergence of interesting behaviour for
H > 0.25 also corresponds with the elliptic vortex patches intersecting with the boundaries
of the quarter plane, thus the solutions shown become unphysical. So whilst this may still
be an interesting mathematical problem we will not spend any more time analysing it here.

8.5 Application to more complicated geometries

ζ = f(z) z

Everything that we’ve considered so far has been for a ‘simple’ geometry in which we have
been able to construct the solution via the method of images. However the problems that
we initially set out to look at featured more complicated geometries in which such methods
can not be used. In this section we consider how to make use of conformal transformation
techniques to tackle such geometries.

Conformal transformations are a powerful tool for dealing with irrotational flows as for
such flows the stream function satisfies Laplace’s equation

∇2ψ(z) = 0 (8.43)

and under a conformal transformation ζ = f(z) such functions retain this property

∇2ψ(f−1(ζ)) = 0. (8.44)

Thus we can find the flow in a complicated geometry by finding a map to a simple geom-
etry and solving for the flow in that domain before transforming back. Furthermore such
transformations (with a slight caveat) preserve the Hamiltonian; the slight caveat is that,
if we have a flow with an infinite energy, such as that for a point vortex, we must take care
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Figure 8.16: Poincaré sections in the x-y plane plotted when θ = 0. The strength of the
external strain is fixed at β = −0.028 and sections are shown for 5 values of the energy H.
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over what happens to the ‘zero’ energy under the transformation. For point vortices Routh
showed that the following correction was required

H(z) = Ĥ(ζ(z)) + Re
(

Γ2

4π
log(f ′)

)
. (8.45)

We would like to make use of conformal transformations to calculate the motion of
elliptic vortex patches but if we conformally transform such a patch then we will be left
with a non-elliptical patch of non-uniform vorticity for which we do not know how to
calculate the flow! The solution is to observe that the Hamiltonian can be split into two
parts: a self contribution, Hself , and an interaction with other vortex patches, Hint. The
self-contribution does not care about the geometry so is easily calculated in the original
geometry. The interaction term represents the energy due to a point vortex and quadrupole,
of appropriate strength, located at the centroid of the patch. Such singularities transform
nicely under a conformal transformation: a point vortex becomes a point vortex of the
same strength and a quadrupole becomes a dipole and a quadrupole of different, but easily
calculated, strengths.

Let z be the coordinate of the complicated geometry where the complex stream function
is given by φ(z). Then consider a conformal transformation

ζ = f(z) z = f−1(ζ) = F (ζ) (8.46)

which takes this complicated geometry to a simpler one with coordinate ζ and stream
function Φ(ζ). Now the stream function in the complicated geometry with a point vortex
and quadrupole located at z0 can be written as follows:

φ(z) =
1

2πi

(
A log(z − z0)− q

2(z − z0)2

)
+ φz0(z). (8.47)

In order to calculate Hint we need to find φz0(z) and its first two derivatives up to sufficient
accuracy for the elliptic model.

A point vortex in the ζ geometry behaves like log(ζ − ζ0) and to find the corresponding
behaviour in the z geometry we expand this in terms of z (all derivatives of f are evaluated
at z0)

log(ζ−ζ0) = log(z−z0)+log f ′+
f ′′

2f ′
(z−z0)+

4f ′′′f ′ − 3f ′′2

24f ′2
(z−z0)2 +O((z−z0)3) (8.48)

from which we see that a point vortex in one geometry corresponds to a point vortex of
equal strength in the other geometry. Taking two derivatives with respect to z0 then gives

f ′2

(ζ − ζ0)2
+

f ′′

(ζ − ζ0)
= (z − z0)−2 +

4f ′′′f ′ − 3f ′′2

12f ′2
+O((z − z0)) (8.49)

which tells us that a quadrupole in the z geometry leads to a both a dipole, d̂, and a
quadrupole, q̂, in the ζ geometry

q̂ = f ′2q, d̂ =
f ′′q

2
. (8.50)
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Then the flow in the ζ geometry can be written as

Φ(ζ) =
1

2πi

(
A log(ζ − ζ0)− qf ′′

2(ζ − ζ0)
− qf ′2

2(ζ − ζ0)2

)
+ Φζ0(ζ) (8.51)

where we assume that the geometry is sufficiently simple for us to be able to calculate
Φζ0(ζ).

By conformal invariance φ(z) = Φ(ζ) and combining this with Equations (8.47) ,(8.48),
(8.49) & (8.51) gives the following expression for φz0(z) in which we have neglected terms
of too higher order for the elliptic model:

φz0(z) =
A

2πi

(
log f ′ +

f ′′

2f ′
(z − z0) +

4f ′′′f ′ − 3f ′′2

24f ′2
(z − z0)2

)
+

q

2πi
4f ′′′f ′ − 3f ′′2

24f ′2
(8.52)

+Φζ0(ζ0) + Φ′ζ0(ζ0)f ′(z − z0) +
Φ′ζ0(ζ0)f ′′ + Φ′′ζ0(ζ0)f ′2

2
(z − z0)2. (8.53)

It follows that∫
φz0(z) dS =

A2

2πi
log f ′+

Aq

2πi
4f ′′′f ′ − 3f ′′2

12f ′2
+AΦζ0(ζ0)+

q

2
(Φ′ζ0(ζ0)f ′′+Φ′′ζ0(ζ0)f ′2) (8.54)

which upon multiplication by a factor of −ω2

2 gives us the relation between the interaction
Hamiltonians in the two geometries

Hint(z, q) = Ĥint(ζ(z), d̂, q̂) + Re
(

(ωA)2

4π
log(f ′) +

ω2Aq

4π
4f ′′′f ′ − 3(f ′′)2

12(f ′)2

)
. (8.55)

All that then remains is to add on the self-interaction term to obtain the full Hamiltonian
for the motion in the complicated geometry

H(z, q) = Hint(z, q) +Hself (q). (8.56)

8.5.1 Flow around an island

ζ = f(z)

z

We illustrate this conformal mapping method by considering the evolution of a vortex
patch around an island. In this case we can conformally transform back to a half-plane
geometry via the following transformation:

z =
ζ + i

ζ − i , ζ = f(z) = i
z + 1
z − 1

. (8.57)
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The resulting dipole and quadrupole strengths in the simple geometry are then

d̂ =
iq

2
(ζ − i)3, q̂ =

−q
4

(ζ − i)4. (8.58)

The interaction Hamiltonian in the simple geometry is much the same as that for motion
above a coast (Equation (8.22)) but now with an added dipole contribution

Ĥint(ζ) =
ω2

4π
Re

(
A2 log(ζ − ζ̄) +

A(d̂− ¯̂
d)

ζ − ζ̄ − A(q̂ + ¯̂q)
2(ζ − ζ̄)2

)
. (8.59)

Then applying the result of the earlier derivation (Equation (8.55)) we can calculate the
interaction Hamiltonian in the original island geometry to be

Hint =
ω2A2

4π
log(x2 + y2 − 1)− ω2A

4π
(x2 − y2)qx + 2xyqy

(x2 + y2 − 1)2
. (8.60)

This Hamiltonian that we have just found corresponds to the case in which the island has
a circulation equal and opposite to that of the vortex patch. This circulation is a constant
of the motion (Kelvin’s circulation theorem) and if we imagine that our vortex patch has
been advected close to the island by some background flow then there is no reason to expect
there to be any circulation around the island. The Hamiltonian for this no circulation case
is easily found by placing a point vortex of opposite strength to the patch at the point in
the ζ plane which is mapped to infinity (ζ = i). The interaction Hamiltonian with this
extra point vortex is still easily calculated and the result in the island geometry is

Hint =
ω2A2

4π
log
(

1− 1
x2 + y2

)
− ω2A

4π
(x2 − y2)qx + 2xyqy

(x2 + y2 − 1)2

2x2 + 2y2 − 1
(x2 + y2)2

. (8.61)

This zero-circulation Hamiltonian has a more rapid decay with distance from the island as
we would expect.

As a consequence of the rotational symmetry of the island there is another constant of
the motion, this is the angular impulse

ω

∫
x · x dS = ω

(
A(x2 + y2) +

√
q2
x + q2

y +
A4

4π2

)
. (8.62)

So, whilst the distance of the centroid to the island is able to move, the motion, like the
case of a half-plane, is integrable.

An area for further investigation is what happens when we impose a background flow.
Such a flow could cause the vortex patch to impact with the island and lead to the break
up of the patch as observed in [15].

8.6 Motion around a pair of islands

ζ = f(z)

z
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We’re now in a position to consider one of the problems that we originally set out to
consider: the motion of a vortex patch around a pair of islands. This problem was previously
considered by Johnson and McDonald [8] for the case of a point vortex and they showed
that the following conformal transformation

z =
sinh((ζ + β)/2)
sinh((ζ − β)/2)

, ζ = f(z) = log
(

sinh((z + β)/2)
sinh((z − β)/2)

)
(8.63)

maps the 2πi periodic channel (0 < Re ζ < γ, −π < Im ζ < π) onto the exterior of two
islands with the values of γ and β setting the relative sizes and separation of the two islands.
The flow in this ‘simple’ geometry can be calculated via the method of images, where the
required images are as shown in Figure 8.17. Johnson and McDonald show that for a point
vortex in this geometry the resulting stream function is given by

Φ(ζ) =
κ

2πi
log
(
ϑ1(i/2(ζ − ζ0))
ϑ1(i/2(ζ + ζ̄0))

)
(8.64)

where ϑ1(ζ) is the first Jacobi Theta function with nome e−γ . Similar stream functions can
be calculated for the dipole and quadrupole by taking the appropriate derivatives. For a
dipole we get

Φ(z) =
−1
2πi

[
d

(Z(π)
π

(z − z0) + iZ(i(z − z0))
)

+d̄
(Z(π)

π
(z + z̄0) + iZ(i(z + z̄0))

)]
(8.65)

where Z(ζ) is the Weierstrass zeta function with half periods π and γi, and for a quadrupole

Φ(z) =
1

4πi

[
q

(Z(π)
π

+ ℘(i(z − z0))
)
− q̄

(Z(π)
π

+ ℘(i(z + z̄0))
)]

(8.66)

where ℘(ζ) is the Weierstrass elliptic function of the same half periods. From these func-
tions it is relatively easy to construct the function Φz0 for the stream function due to the
appropriate point vortex, dipole and quadrupole combination with the singularities at z0

subtracted off. Using this we can construct the interaction Hamiltonian

Ĥ =
ω2

4π
Re
(
A2 log(ϑ1(

i

2
(ζ + ζ̄)) +A(d+ d̄)

(Z(π)
π

(ζ + ζ̄) + iZ(i(ζ + ζ̄))
)

+
A(q + q̄)

2
℘(i(ζ + ζ̄)) +

A(q̄ − q)
2

Z(π)
π

+ 2A2 log

(
ϑ1( i2(ζ − β))
ϑ1( i2(ζ + β))

)
+ 2Ad

(
−2β

Z(π)
π

+ iZ(i(ζ − β))− iZ(i(ζ + β))
)

+Aq
(
℘(i(ζ − β))− ℘(i(ζ + β))

))
.

(8.67)

Here, as with the case of a single island, we have placed a point vortex of opposite strength
at the point that gets mapped to infinity (ζ = β) to ensure that the circulation around both
islands is zero.

Using the above Hamiltonian we were able to calculate some numerical solutions of an
elliptic vortex patch travelling around a pair of islands; the path of the centroid in one such
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Figure 8.17: Image system for periodic strip. White regions of vorticity have opposite sign
to the original patch.
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Figure 8.18: Motion of an initially circular patch around a pair of islands as represented by
the position of its centroid. O(10) orbits are shown with the first one in red.
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simulation is shown in Figure 8.18. We were not able to find any solutions that flipped
from going around one island to going around the other, a likely reason for this is that the
adiabatic invariance that we found back in the quarter-plane problem is still at work here
and consequently the motion is in some sense close to being integrable. We also found that,
whilst this elliptic model is much faster than calculating the full solution would be, it is still
quite slow to calculate due to the relatively large time taken to calculate the complicated
Hamiltonian.

8.7 Conclusion

The elliptic moment model of Melander, Zabusky & Stysek provides a powerful method
of analysing the interaction of ocean vortex patches with coastal boundaries, and appears
to do a good job of predicting the motion even outside the regime where it is technically
applicable. Under this simple model the problem of motion along a coast reduces to that
of an elliptic patch in constant strain as analysed by Kida leading to three distinct types
of motion depending on the distance of the centroid above the wall and the shape of the
patch. The application of a periodic shear flow, as might arise from a background tidal flow,
gives rise to chaotic behaviour which could play an important role in causing the break up
of vortex patches.

On investigating more complicated geometries where we might expect to find chaotic
behaviour we instead find the presence of an adiabatic invariant due to the separation
of time scales between the rotation of the patch and the longer time scale on which the
strain experience by the patch varies. In the case of motion in a quarter-plane the addition
of a background flow was able to reduce this separation and produce chaotic, although
unfortunately unphysical, behaviour.

We also demonstrated that, through the use of conformal mapping techniques, it is
possible to calculate the motion of an elliptical vortex patch in more complicated geometries.
This technique was applied to both the case of motion around a single island and motion
around a pair of islands. In the former the motion was found to still be integrable and in
the latter the probable presence of the adiabatic invariant meant that the expected chaotic
flipping of which island the patch orbited was not observed to occur.

8.8 Future directions

There are a wide range of other problems involving the interaction of elliptic vortex patches
with boundaries that we have the machinery to tackle. These include the problem of motion
of a vortex patch past a gap in the coast line which was one of the original aims of this project
that we ran out of time to investigate. Another possibility is looking at the interaction of
a patch with an island in the presence of a background flow, this has been observed to
break up actual vortex patches in the ocean. The adiabatic invariance observed could also
be investigated further by looking at the motion of a patch above a coastline with more
rapidly varying geometry.
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On Brownian Motion in a Fluid
with a Plane Boundary
Chao Ma

University of Colorado

9.1 Introduction

Brownian motion was discovered by the botanist Robert Brown in 1827. While studying
pollen grains suspended in water under a microscope, Brown observed that particles ejected
from the pollen grains executed a jittery motion. After he replaced the pollen grains by
inorganic matter, he was able to rule out that the motion was life-related, although its
origin was yet to be explained.

In 1905, Einstein[5] explained Brownian motion as the result of bombardment of fluid
molecules on the suspended particle. There are two main parts to his paper. First, he finds
the following relation of the diffusion coefficient to other physical quantities:

D =
kBT

6πηa
=
kBT

ζ
,

where D is diffusion coefficient, kB is Boltzmann’s constant, a is radius of the particle, η
is the dynamic viscosity, and ζ = 6πηa is the Stokes drag, which was first calculated by
Stokes. Then, Einstein related the diffusion coefficient to the mean square displacement of
the particle, 〈x2〉 = 2Dt, where D is diffusion coefficient. Specifically, Einstein found that
the density of the Brownian particles f(x, t) satisfies the heat equation

∂f

∂t
= D

∂2f

∂x2
,

and after solving the heat equation, he got that the mean square displacement is propor-
tional to time. However, Einstein also noticed when time is short (in ballistic time regime),
the mean square displacement should be different, since during very short times individual
particles become significant.

357
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In 1908, Langevin[12] used another point of view, he assumed the particles satisfy the
Newtonian equation:

m
dv(t)
dt

= −ζv(t) + X ,

where ζ = 6πµa is the Stokes drag and X is a random force describing the bombardment
by fluid particles. Using this equation, with the assumption that 〈X(t)x(t)〉 = 0, x(t) being
the position of particle, Langevin was able to derive the same relation that Einstein derived,
i.e.

〈x2〉 =
2kBT
ζ

t .

This is valid when t is large, but when t is small, a particle’s inertia becomes signifi-
cant. In this inertia dominated regime, termed the ballistic regime, the particle’s motion
is highly correlated. Langevin’s approach also applies to the ballistic regime. In the clas-
sical Langevin theory, it is assumed that the autocorrelation function of the random force
satisfies

〈X(t1)X(t2)〉 = 2ζkBTδ(t1 − t2) .

This means that the random force acting on the Brownian particle is memoryless. From
the Langevin equation, it can be shown that the velocity autocorrelation function has
exponentially decay,

Φ(t) := 〈v(t0)v(t0 + t)〉 = 〈v(t0)2〉e− ζtm .
However, in the 1960s, the famous ”tails” of the velocity autocorrelation function were
discovered[14]. It was experimentally obeserved that the velocity autocorrelation does not
exponential decay, but rather has an algebraic decay. Then, Langevin’s approach was
generalized to give a more accurate description. Instead of using the δ correlated random
force, it was figured out that one should include the memory effect of the fluid.

The long time behavior of velocity autocorrelation function (VACF) and mean square
displacement (MSD) have been observed by both experiment and computer simulation for
many years. The ballistic regime (where the inertia of Brownian particle will dominate) is
hard to observe in experiments, since it requires the position detector equipment to have
extraordinary spatial and temporal resolution. Only very recently has Brownian motion in
the ballistic regime been observed[9], and the experiment showed excellent agreement with
theoretical predictions[4].

There are two main steps that have been taken to derive the VACF and MSD. A deter-
ministic part where one calculates the response function ζ(ω) corresponding to a specific fre-
quency. This step is done by solving the linearized Navier-Stokes equations analytically. The
second step is a statistical part, where one uses the fluctuation-dissipation theorem to relate
correlation functions to the corresponding response functions. The fluctuation-dissipation
theorem is a main tool in statistical mechanics to predict behavior of non-equilibrium ther-
modynamic systems, as widely observed in nature: for example, the Brownian motion seen
in the irregular oscillation of a suspended mirror, the thermal noise in resistor, etc.

An important theorem of Nyquist was the first theorem in this area to be proved (to my
knowledge). The idea was discovered by J. Johnson and then proved by H. Nyquist. For
any network, the square of the voltage during the frequency range (ν, ν + dν) is given by:

E2
ν dν = 4RνkBT dν
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where Eν is the electromotive force and Rν is the real part of the impedance of the network.
Using this result, Nyquist proved the following formula that was given in Johnson’s paper:

I2 =
2
π
kBT

∫ ∞
0

R(ω)|Y (ω)| dω

where Y (ω) is the transfer admittance of any network from the member in which electro-
motive force in question originates to a member in which the resulting current is measured.

For Brownian motion, the random impact of surrounding molecules has two kinds of
effects: first, the molecules act as a random force and second, they give rise to the frictional
force. This means the frictional force and random force must be related. This is the essence
of the so-called fluctuation-dissipation theorem, which in formulas is given by

ζ(ω) =
1

kBT

∫ ∞
0
〈X(t0)X(t0 + t)〉eiωt dt (9.1.1)

µ(ω) =
1

kBT

∫ ∞
0
〈v(t0)v(t0 + t)〉eiωt dt , (9.1.2)

where ζ(ω) is the response function or friction constant for particular fluid system and µ(ω),
the admittance, is given by

µ(ω) =
1

ζ(ω)− imω .

If we let s = −iω, then above formulas are just Laplace transformations. Thus, if we
want to calculate the autocorrelation function for Brownian particles, we can first calculate
the friction constant of the corresponding system, and then use the fluctuation-dissipation
theorem to get the final result.

There are several papers[7, 11] that describe the fluctuation-dissipation theorem. Given
this theorem, we only need to calculate the response function by solving Navier-Stokes
equations. Many people contributed to this area to develop a general theory. The case
where Brownian particles are in a viscous, compressible fluid filling the whole of space R3

has been thoroughly solved[3],[17]. In [4] and [15], the asymptotic behavior of the velocity
autocorrelation function(VACF), mean square displacement(MSD), etc. up to higher orders
have also been calculated. In this paper, we consider the effect of a plane boundary, i.e.,
where the fluid occupies only half space, and compute the velocity autocorrelation function
for this case.

9.2 Behavior of Brownian particles in different time regimes

The behavior of the VACF and the MSD are different in the different time regimes. On the
very short time scale, the inertia of the Brownian particle dominates, while on the longer
time scale, the hydrodynamical memory effect plays an important role. There are several
characteristic times: tp = m/ζ, tν = a2/ν, and tc = a/c, where m is the mass, a is the
radius of the Brownian particle, ζ = 6πηa is again the Stokes drag, and c is the speed of
sound in the fluid. The case t < tp is the ballistic regime, where as noted above, the inertia
of the particle is significant. The case t � tp is the diffusive time regime. When t ' tν
hydrodynamical effects need to be taken into account, and when t < tc one must consider
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compressibility of the fluid. The two graphs of Figs. 9.1 and 9.2 show experiment data
from [9]. The first graph is the MSD vs. time, while the second one is the VACF vs. time.
Evidently, the experiment data fits the theory[4] very well. It worth noting that the model
of [4] only considers incompressible fluid dynamics. So if we want to test the behavior of
Brownian particle into the compressible regime, we need to both enhance the accuracy of
the detector into the nanosecond regime but alter the theory as well.

Figure 9.1: The mean square displacement (MSD) vs. time from the experiments of Ref. [9]

The mean square displacement in the ballistic regime is given by 〈x2〉 = t2kBT/m
∗.

Here m∗ = m + 1
2M is the virtual mass of the body and M = ρf4πa3/3 is the mass

of the displaced fluid. In ballistic time regime, the velocity autocorrelation function is
given by 〈v2〉 = kBT/m

∗, a result that seems inconsistent with the equipartition theorem
m〈v2〉 = kBT when t → 0. This discrepancy is explained as the effect of compressibility.
When t is smaller than the characteristic time t ≤ tc = a/c, the fluid cannot be regarded
as incompressible and, in this case, the particle is decoupled from fluid and the effective
mass is m. In Zwanzig and Bixon’s paper[18], they describe the decrease from kBT/m to
kBT/m

∗.

9.3 Brownian Motion in whole space R3

We consider a spherical particle oscillating in a fluid with velocity uω = ue−iωt. To find the
mean square displacement and autocorrelation function, we first to calculate the force F(ω)
of the fluid acting on the sphere as F(ω) = −ζ(ω)uω. This is done by solving the linearized
Navier-Stokes equations. After we obtain the solution, we use the fluctuation-dissipation
theorem to find the MSD and the VACF of the particle. We first consider the case where
the fluid fills all of R3, and then use the result to find an approximate solution when the
fluid is bounded by a plane and occupies half space.

To solve the NS equations in domain R3, we can fix the sphere to the origin for simplicity.
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Figure 9.2: The velocity autocorrellation function (VACF) vs. time from the experiments
of Ref. [9]

Then, in this frame, the velocity field of the fluid ṽ changes with time, and satisfies the
non-slip boundary condition at the surface of the sphere, i.e., ṽ = 0 on the sphere and
ṽ = −ue−iωt at infinity. Next we decompose the velocity field as ṽ = v − ue−iωt, where v
does not oscillate with time, and apply the boundary condition v = ue−iωt at the sphere
boundary (non-slip) and v = ue−iωt at infinity. For fluid motion v satisfies the following
Navier-Stokes (NS) equations:

ρ

(
∂v
∂t

+ (v · ∇)v
)

= −∇p+ η∇2v +
(η

3
+ µ

)
∇(∇ · v) (9.3.1)

∂ρ

∂t
+∇ · (ρv) = 0 , (9.3.2)

with boundary condition v = ue−iωt at the sphere and v = 0 at infinity. For Brownian
motion, the Reynolds is number is very small, so we can consider the linearized NS equations
instead

ρ0
∂v
∂t

= −∇p+ η∇2v +
(η

3
+ µ

)
∇(∇ · v) (9.3.3)

∂ρ

∂t
= −ρ0∇ · v , (9.3.4)

with the same boundary conditions as above. After solving these equations, we can calculate
the drag of the fluid acting on the sphere for arbitrary motion by Fourier decomposing as

v(t) =
∫ ∞
−∞

uωe−iωt dω and F(t) =
∫ ∞
−∞

Fωe
−iωt dω .

Because of the linearity assumption, the Fourier component of force is proportional to
Fourier component of velocity, Fω = −ζ(ω)uω. This means we can find the drag for
arbitrary motion if we know each Fourier component.



362

Now suppose v(x, y, z, t) = vω(x, y, z)e−iωt. To avoid clutter in what follows, we denote
vω by v, and similarly for other quantities. Thus we have

−iωρ0v = −∇p+ η∇2v + (
1
3
η + µ)∇(∇ · v) (9.3.5)

−iωρ = −ρ0∇ · v , (9.3.6)

with the pressure and density related by ∇P = C2∇ρ. Combining (9.3.5) and (9.3.6) gives

ω2v + C2
l ∇∇ · v − C2

t∇×∇× v = 0 , (9.3.7)

where C2
l = C2 − iωνl, C2

t = −iωνt, and νt = η/ρ0, νl = (4η/3 + µ)/ρ0. The boundary
conditions are now given by v = u at the sphere and v = 0 at infinity, where ue−iωt is the
velocity of the sphere in lab frame. Next we decompose as v = ∇φ +∇ ×A, and obtain
the following equations:

∇2φ+ β2φ = 0 and ∇×∇×A− α2A = 0 , (9.3.8)

where α2 = iωρ0/η, β2 = ω2/C2
l , and boundary condition ∇φ+∇×A = u on the sphere.

The exact solution of this problem is given in [3]:

vr =
[
2A
(
− 1
r3

+
iα

r2

)
eiαr +B

(
− 2
r3

+
2iβ
r2

+
β2

r

)
eiβr

]
u cos θ (9.3.9)

vθ =
[
A

(
− 1
r3

+
iα

r2
+
α2

r

)
eiαr +B

(
− 1
r3

+
iβ

r2

)
eiβr

]
u sin θ (9.3.10)

where x = iαa, y = iβa, ∆ = 2x2(3− 3y + y2) + y2(3− 3x+ x2),

P =
3
∆

(3− 3y + y2) , Q = − 3
∆

(3− 3x+ x2)

and
A = Pa3e−iαa , B = Qa3e−iβa .

The force of fluid acting on the sphere is given by integrating as follows:

F =
∮
da
[− p cos θ + 2ηerr cos θ − 2ηerθ sin θ + (µ− 2η/3) (∇ · v) cos θ

]
=

∮
da
[
(µ− 2η/3 + iC2ρ0/ω)(∇ · v) cos θ + 2ηerr cos θ − 2ηerθ sin θ

]
= 4πηax2u

[
(1− y)Q+ 2(x− 1)P

]
/3 .

9.4 Brownian Motion in the Half Space R+ × R2

Now we suppose the sphere is moving in a fluid that occupies a region bounded by a plane.
The perpendicular distance from the center of the sphere to the plane is given by l and the
radius of the sphere is given by a. We assume the velocity of sphere is given by ue−iωt,
as before, and again use the frame of sphere instead of the lab frame, i.e., we let sphere
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be fixed and the fluid have velocity ṽ. Then again we decompose as ṽ = v − ue−iωt. The
linearized Navier-Stokes equations are the same as Eqs. (9.3.3) and (9.3.4) that we used for
the R3 case, with boundary condition v = ue−iωt at the sphere and v = 0 at the plane and
at infinity.

If the sphere oscillates in an arbitrary direction, we lose symmetry, and the problem
becomes hard to solve. So we first consider the case where sphere oscillates perpendicular
to the plane. It seems that the most appropriate coordinate system to use to solve the
above equations with the sphere-plane boundary conditions is the bipolar coordinate system.
Actually, Brenner and several other authors [10],[2],[8] used bipolar coordinate to solve for
the drag force when a sphere is approaching a plane. For their problem this was equivalent
to solving a Laplace-type equation in bipolar coordinates. In our case, for simplicity, we
consider an incompressible fluid, so we can use a Stokes stream function Ψ. Defining the
Laplace-type operator L2 as

L2 =
sin2 θ

r

{
∂

∂ξ

(
1
r

∂

∂ξ

)
+

∂

∂θ

(
1
r

∂

∂θ

)}
,

where (ξ, θ) are the bipolar coordinates with

r :=
c sin θ

cosh ξ − cos θ
,

and (0,±c) being the foci of the bipolar coordinate system. For our problem the stream
function satisfies

L4Ψ + α2L2Ψ = 0 ,

where α2 = iωρ0/η. Defining Π = L2Ψ, we see Π satisfies a Helmholtz equation of the form

L2Π + α2Π = 0 .

If we let Π = f · √r, then we can simplify this equation as follows:

∂2f

∂ξ2
+
∂2f

∂θ2
− 3

4 sin2 θ
f +

α2r2

sin2 θ
f = 0 .

Unfortunately, in bipolar coordinate this kind of Helmholtz equation is not separable[13].
So instead, we resort to approximation.

Our approximation is based on the image method[8]. We first use this method to obtain
an approximate solution and then use the fluctuation-dissipation theorem to calculate the
VACF for the Brownian particle. As we will see later on, we don’t need to restrict to
the incompressible case or to perpendicular oscillation. However, the image method of
approximation makes the velocity field only satisfy the Neumann boundary condition at
the plane. So we have to assume slip boundary condition on the plane instead of the more
physical no-slip boundary condition. Using the image method, we can find approximate
solution up to some order of a

l , which will be a good approximation if the distance of the
sphere to the plane l is much larger than radius of the sphere a. Suppose the vector field
that satisfies equations (9.3.9) and (9.3.10) is v1, and v2 is the image velocity field of v1

obtained by reflecting through the plane (imagining the plane as a mirror). Then, suppose
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v3 is the velocity field satisfy v3 = −v2 at the sphere and vanishing at infinity, v4 is image
velocity field of v3, etc. We suppose that v = v1+v2+. . . would be the actual solution (with
Neumann boundary condition). However, even with this assumption the vi, i = 3, 5, . . . are
not easy to obtain. So, instead we seek v3 = −v2(2l, γ) at the sphere, where γ depends on
the direction of oscillation of the sphere. Solving for v3 is the same as solving for v1, so
this simplifies matters. Finally, we suppose that summation of vi will converge to actual
solution, but this eventually needs to be shown.

In the following, we only consider v = v1 + v2 + v3 + v4, which will be a good approx-
imation up to order O(a/l) or O((a/l)3), depending on whether the frequency is high or
low. Let Fi be the drag force of vi acting on sphere, and suppose the angle between the
normal component of plane and the velocity of sphere is γ. We calculate the drag force of
v in two cases: first, when the sphere oscillates perpendicular to the plane surface of fluid,
i.e., γ = 0, and then when the sphere oscillates parallel to the plane, when γ = π/2. The
general case is a linear combination of the two. Notice that |F2|/|F3| = O(a/l) and F4 is
even smaller than F2; therefore, we can just consider the contributions of F1 and F3, i.e.,

F ' F1 + F3 .

The drag force F1 was given in the previous section as

F1 = −ζ(ω)u

where
ζ(ω) := −4πηax2

[
(1− y)Q+ 2(x− 1)P

]
/3 .

So, to next order
F ' F1 + F3 = −ζ(ω)u + ζ(ω)v2(2l, γ) .

When the sphere is moving perpendicular to plane

v2(2l, 0) = −vr(2l, 0)
u
|u| ,

while when the sphere is moving parallel to plane

v2(2l, π/2) = vθ(2l, π/2)
u
|u| .

For the case of arbitrary motion, supposing the angle between normal component of plane
and the velocity of sphere is γ, we obtain

v2(2l, γ) = −n vr(2l, 0)u cos γ + t vθ(2l, π/2)u sin γ ,

where n and t are unit vectors normal and tangent to the plane, respectively.
Although in principle, we can use the fluctuation-dissipation theorem to find the VACF,

the complicated formula of the response function ζ makes it hard to find exact an expression
for the VACF. So, we simplify the response function by considering high frequency and low
frequency regimes. Let s = −iω. Define tν = a2ρ0/η, tν′ = a2ρ0/(4η/3 + µ), tc = a/C
to be three characteristic time scales. In order for

√
s to make sense, we place a branch
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cut along negative real axis, making the square root well defined. Below we make several
simplifications, the reasons for which will become clear later.

Low Frequency Case, s << 1 :

x2 = −α2a2 = stν , x = −√stν
y2 =

s2t2c

1 + s
(
tc
tν′

)
tc
' s2t2c (1− s (tc/tν′) tc) ⇒ y ' −tcs

4 = 2x2(3− 3y + y2) + y2(3− 3x+ x2) ' 6stν
P ' (3 + 3stc + s2t2c)/2stν , Q ' −(3 + 3

√
stν + stν)/2stν

ζ(s) ' 6πηa(1 +
√
stν)

vr(2θ, 0) '
[
− 2P

(2l)3
a3eiα(2l−a) − 2Q

(2l)3
a3eiβ(2l−a)

]
u

' −2
8

(a
l

)3
[(

3
2stν

+
3tc
2tν

)
−
(

3
2stν

+
3

2
√
stν

)]
u

' 3
8

(a
l

)3 u√
stν

vθ(2θ, π/2) '
[
− P

(2l)3 a
3eiα(2l−a) − Q

(2l)3 a
3eiβ(2l−a)

]
u

' 3
16

(a
l

)3 u√
stν

.

High Frequency Case, s >> 1 :

x = −√s tν , y ' −√stν′ , ∆ ' 3stνstν′

P ' 3s−3/2

tν
√
tν′

+
s−1

tν
, Q ' −3 s−3/2

tν′
√
tν
− s−1

tν′

ζ(s) ' 2ζ
[
(tν/tν′ + 2) + (

√
tν/tν′ + 2)

√
stν

]
/9

vr(2l, 0) '
[
−1

2

(a
l

)2
e−
√
stν2l/a 1√

stν
+
a

2l
e−
√
stν′2l/a

]
u

vθ(2l,
π

2
) '

[
− a

2l
e−
√
stν2l/a +

1
4

(a
l

)2
e−
√
stν′

2l
a

1√
stν′

]
u .

Now we use the above expressions to calculate the velocity autocorrelation function,
which is given by

Φ(t) = 〈vi(0)vi(t)〉 =
kBT

π

∫ ∞
−∞

dωe−iωtRe
1

−iωm+ (1 + c)ζ(ω)
(9.4.1)

=
kBT

2πi

∫ ε+i∞

ε−i∞
ds est

1
sm+ (1 + c)ζ(s)

, (9.4.2)
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where s = −iω and c is a correction term that depends on γ.
Let us first calculate the velocity autocorrelation in the low frequency case, s << 1,

without the plane (c = 0), which will we will use to compare with the plane case. We
obtain

Φ(t)
kBT

' L−1

(
1

6πηa+ 6πηa
√
tνs

)
(9.4.3)

=
1

6πηa
√
tν
L−1

(
1√

s+ 1/
√
tν

)
. (9.4.4)

From any table of inverse Laplace transforms, we obtain

L−1

(
1√
s+ a

)
=

1√
πt
− aea2terfc(a

√
t) (9.4.5)

where the erfc function is defined by

erfc(x) =
e−x

2

x
√
π

∞∑
n=0

(−1)n
(2n− 1)!!

(2x2)n
. (9.4.6)

From (9.4.5) we find for the case without the plane, that the asymptotic behavior of velocity
autocorrelation as t→∞ is given by

Φ(t) =
kBT

6πηa
√
tν

tν
2
√
π
t−

3
2 =

kBT

ζ

√
tν

2
√
π
t−

3
2 , (9.4.7)

where ζ := 6πηa, for simplicity.
Now, when the fluid is bounded by the plane, I couldn’t find a formula in any Laplace

inverse transformation table. Thus, we needed to directly calculate it. The following formula
will be useful for the case s << 1. Suppose R(

√
s) = a0 + a1

√
s+ a2s+ a3s

3/2. When t is
large, we obtain

Φ(t) =
kBT

2πi

∫ ε+i∞

ε−i∞
ds est

√
s

R(
√
s)

= − kBT

2a0
√
π
t−3/2 . (9.4.8)

The above follows because

Φ(t) =
kBT

2πi

∫ ε+i∞

ε−i∞
ds est

√
s

R(
√
s)

' −kBT
2πi

∫ ∞
0
dr

[
e−tr
√
ri

R(
√
ri)

+
e−tr
√
ri

R(−√ri)
]

= −2kBT
π

∫ ∞
0
d(s/
√
t)

e−s
2
s2/t(a0 − a2s

2/t)
(a0 − a2s2/t)2 + (a3s3/t3/2 − a1s/

√
t)2

' −2kBT
πa0

t−3/2

∫ ∞
0
ds e−s

2
s2

= − kBT

2a0
√
π
t−3/2 .
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We can switch the order of the limit and the integration in above calculation as long as
a0 6= 0 and a0/a2 6= a1/a3. The physics of the problem indicates that Φ should approach
zero when t → ∞, which means the poles of above integrand are located in the region
Re(s) < 0. These poles will contribute to exponential decay to Φ(t), which is much smaller
than the contribution from the branch point s = 0, which gives algebraic decay. Thus, if
we want to know the long time behavior of Φ(t), we can assume s << 1 to simplify our
calculation, because the contributions from a1, a2, a3 are much smaller than that from a0.

When a0 = 0, which corresponds to no plane case (l =∞), we cannot switch the order
of limit and integration. We should first set a0 = 0 in the integral, then take limit in t,
giving

Φ(t) =
kBT

2
√
π

a2

a2
1

t−
3
2 . (9.4.9)

Notice, by plugging in the ai, this gives the same formula as we derived above, Φ(t) =
kBT
√
tν t
−3/2/(2ζ

√
π).

Now, consider the long time behavior of Φ(t) when there is a plane and γ = 0, i.e., the
sphere is moving perpendicular to the plane. Again letting ζ = 6πηa, we have

Φ(t) = kBTL−1

(
1

ms+ ζ
[√
stν + (1− 3(a/l)3/8)− 3(a/l)3/(8

√
stν)

])

=
kBT

2πi

∫
Γ
ds

ets
√
s

ms3/2 + ζ
√
tνs+ ζ [1− 3(a/l)3/8]

√
s− 3ζ(a/l)3/(8

√
tν)

,

where Γ is a contour from −∞ to 0 and 0 to −∞ and a0 = −3ζ(a/l)3/(8
√
tν). So, when

t→∞ we obtain

Φ(t) =
4kBT

√
tν

3
√
πζ

(a
l

)−3
t−

3
2 . (9.4.10)

For γ = π
2 , i.e., when the sphere is moving parallel to the plane, a0 = 3ζ(a/l)3/(16

√
tν) and

Φ(t) = −8kBT
√
tν

3
√
πζ

(a
l

)−3
t−

3
2 . (9.4.11)

For general case, u = u[n cos γ + t sin γ] and

F = −u ζ(ω) [n (1 + vr(2l, 0)) cos γ + t (1− vθ(2l, π/2)) sin γ ] .

Notice, for general case, the direction of F is no longer parallel to the direction of u. So
must first specify a direction, then calculate correlation function along that direction.

For the short time behavior of Φ(t), we can perform calculations similar to those above
to find the approximate behavior. The branch point s = 0 contributes b0

√
t, while the

poles contribute
∑

i bie
tpi , where pi denotes the locations of the poles of R(

√
s). So, Φ(t) =

b0
√
t+
∑

i bie
tpi. To find exact values of bi and pi is very tedious, which we do not do here.

For the future work, the most natural goal would be to find the exact solution for the
linearized Navier-Stokes equation, at least for the case γ = 0. But, this is a difficult problem
due to the non-separability of Helmholtz equation in bipolar coordinate. If we try to use
another coordinate system, for example spherical coordinates, to find the coefficients of the
eigenfunctions that match the boundary condition at the sphere, then matching at the plane
will not be likely possible. So, instead of finding an exact solution, it is reasonable to seek
a better approximate solution than that provided by the image method.
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Project 10

Localized solutions for Plane
Couette Flow: a continuation study
John Platt

Harvard University

10.1 Introduction

There has been much interest in investigating the transition to turbulence of linearly

stable shear flows from a dynamical systems viewpoint [Lanford(1982), Kerswell(2005),

Eckhardt et al.(2007)]. Here an instantaneous velocity field is pictured as a point in an

infinite-dimensional phase space, with laminar flow being a linearly stable fixed point. Other

invariant solutions exist, forming a “scaffold” for turbulent dynamics. Turbulence is imag-

ined as a path in phase space moving between these invariant solutions. In this project

we focus on one such invariant solution for plane Couette flow, in which the shear flow is

established by moving two parallel plates past each other. A sketch of the geometry of the

plane Couette system is shown in Figure 10.1.

The first of these invariant solutions was found by Nagata [Nagata(1990)], though many

more have been found since [Gibson et al.(2009)]. Due to the vast computational expense

required to work with these solutions, the majority of these solutions have been found in

small domains that are periodic in both span-wise and stream-wise directions. However,

observations of turbulent flows show localized turbulent regions coexisting with laminar

regions [Emmons(1951), Tillmark(1992)]. A first invariant solution exhibiting this localized

371
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U
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2L

Figure 10.1: A sketch of the plane Couette system. Two plates separated by a distance of
2L are moved past each other with a velocity difference of 2U , establishing a shear flow in
the viscous fluid between the plates.

|

y

z

y

|

Figure 10.2: Plots of x-averaged streamwise velocity for the two localized solutions presented
in [Schneider et al.(2010b)].

nature was presented in [Schneider et al.(2010a)], with the solution remaining periodic in

stream-wise direction, but localized in the span-wise direction. In this project, building

on the work outlined above, we try to provide more insight into these localized invariant

solutions.

We aim to answer two main questions in this project. Our first goal is to determine

what behavior should be expected for localized invariant solutions of plane Couette flow.

To investigate this we first review the observations from for the first localized solution

[Schneider et al.(2010b)], which show a distinctive bifurcation behavior known as homo-

clinic snaking. We then use continuation methods to investigate the bifurcation structure
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Figure 10.3: A plot of the bifurcation diagram from [Schneider et al.(2010b)]. We clearly
see the homoclinic snaking structure, and the reattachment to the periodic solution from
[Nagata(1990)].

of the second solution, and compare the two solutions to see what similarities and differ-

ences they share. The second goal is to investigate how more localized solutions could be

generated. We analyze the symmetry breaking process during localization, and predict the

number of localized “versions” of a periodic solution that may exist. All of the numerical

calculations in this project are performed using the Channelflow package developed by John

Gibson, and approximately 25,000 hours of CPU time was used to produce the results.

10.2 Review of the first localized solution

[Schneider et al.(2010b)] presented a continuation study for the first localized solution ever

found for plane Couette flow. The periodic counterpart for this localized solution is the

original invariant solution presented in [Nagata(1990)], and there exist two distinct versions

of the solution, with flowfields shown in Figure 10.2. Continuing the pair of solutions in Re,

for a fixed value of the x-dimension of the periodic domain, Lx, produced the bifurcation

diagram shown in Figure 10.3. Here D is a volume normalized dissipation rate, and can be
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x
x

x

z

Figure 10.4: Plots showing the velocity field on the midplane. In-plane velocities are indi-
cated with arrows and streamwise velocity is indicated with color. The top pair of plots
show the flowfield at two adjacent saddle-node bifurcations on the snake, and the bottom
plot show the marginal eigenfunction at the upper bifurcation.

thought of as a measure of how turbulent the solution is. The two solutions intertwine in

a sequence of saddle-node bifurcations to form a structure that transitions to higher values

of D over a relatively short interval in Re. One of the solutions reattaches to the periodic

solution, shown in black, while the other solution follows the upper branch to high Re.

This sort of structure has also been observed in an entirely different system, the Swift-

Hohenberg equation,
∂u

∂t
= ru−

(
∂2

∂x2
+ q2

c

)2

u+ f(u), (10.2.1)

where r is the control parameter, qc is a parameter, and f(u) is a nonlinear function. The

phenomena is known as homoclinic snaking [Burke and Knobloch(2007)], and describes how

a spatially localized solution of the above equation expands to fill the periodic domain it

sits in. As the solution grows, structure is added at the edges, while in the internal region

the solution does not change. Thus, to further test the similarities between the results in

[Schneider et al.(2010b)] and homoclinic snaking in the Swift-Hohenberg equation, we can
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z
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Figure 10.5: A plot of x-averaged streamwise velocity for the new localized solution.

examine the flow fields at different points on the snake. Throughout this project we take

x = (x, y, z) with y being the direction perpendicular to the plates, x parallel to the direction

of shear, and z the spanwise coordinate. These coordinate directions are then used to define

the velocity vector u = (u, v, w). Figure 10.4 shows flowfields on the midplane for the first

two saddle node bifurcations in Figure 10.3, along with the marginal eigenfunction for the

second bifurcation. From the marginal eigenfunction we can clearly see that the solution

is adding structure at the edges of the localized solution, while the central part remains

relatively unchanged. As we move up the snake the solution achieves higher values of D by

expanding the non-laminar region, but keeping the magnitude of the local dissipation rate

roughly constant.

In the next section we present the results of a continuation study on a second localized

solution. We want to compare the observations of this second solution with the results sum-

marized above, to allow us to see what behavior is generic for localized invariant solutions,

and specifically if homoclinic snaking is a feature of all localized solutions of plane Couette

flow.

10.3 Continuation of second solution

We now use continuation methods to investigate a second localized solution. This localized

solution was found by [Gibson and Brand(2011)] based on an understanding of the func-

tional form of the fronts between laminar and turbulent regions. It is a localized version

of the periodic solution EQ7 from [Gibson et al.(2009)]. Figure 10.5 shows a plot of the

x-averaged streamwise velocity, allowing us to directly compare with the previous localized
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Figure 10.6: A plot of the bifurcation diagram generated by continuing in Re with Lx = 3π.

solution shown in Figure 10.2. We notice that the variations in velocity for the new local-

ized solution are less pronounced, in agreement with the observation that this new solution

exists at a much lower dissipation.

To allow us to plot the bifurcation diagrams, in the following we describe flowfields by

the simple measure,

D =
1

2Lx

∫ Lz/2

−Lz/2

∫ 1

−1

∫ Lx/2

−Lx/2
v(x)dxdydz, (10.3.1)

where v is the velocity perturbation found by subtracting the laminar profile away from the

full velocity field, and Lx, Lz are the streamwise and spanwise dimensions of the periodic

domain. We do not normalize by Lz since our solutions are localized in Lz, and thus any

measure of them should also be independent of Lz. Since the solution is independent of Lz,

we have just two controlling parameters Re and Lx to continue in.

10.3.1 Isolas

To begin we continue in Re, fixing Lx = 3π, producing the results shown in Figure 10.6.

We observe a closed isola in the (Re,D) plane, in sharp contrast to the homoclinic snaking
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Figure 10.7: A plot of the averaged energy as a function of z for three points on the Lx = 3π
isola. The solution with the lowest value of Re is plotted in red, the highest value of Re in
black, and the intermediate value of Re in blue.

observed with the first localized solution. We also note that the solution is relatively

constant over a wide range of Re. Such closed isolas have also been observed in studies of

localized solutions in the Swift-Hohenberg equation [Burke and Knobloch(2006)]. Recalling

that for the previous localized solution higher values of D were attained by approximately

fixing the maximum size of the velocity perturbations, but expanding the solution to fill

more of the domain, we now plot the energy in the velocity fluctuations, averaged in the

x and y-directions, as a function of z at three points on the closed curve; the two extreme

values of Re and one intermediate value. This is shown in Figure 10.7. We see that the

structure of the solutions remains relatively constant, while changes in D are achieved

by varying the amount of energy in each of the oscillations. This is in agreement with

the observations of isolas in the Swift-Hohenberg equation in [Burke and Knobloch(2006)],

which show that around an isola the number of oscillations in the solution is unchanged.

We can also compute the spectrum of the solution at a selection of points, finding that

at all points the solution has a low number of unstable directions. This is important for



378

2 4 6 8 10
0.5

1

1.5

2

L
x

D

Figure 10.8: A plot of the bifurcation diagram generated by continuing in Lx with Re = 400.

the dynamical systems view of turbulence since points in phase space with few unstable

directions may be approached more often than ones with many unstable directions.

Next we continue the original localized solution in Lx, producing the results in Figure

10.8. This time we do not observe a closed curve, instead seeing a relatively constant value

of D over a range of Lx with the two ends of the curve moving towards higher values of D.

Our previous continuation in Re with Lx = 3π had two values at Re = 400, corresponding

to the two points on the curve for Lx = 3π. As before, when we examine the flowfields along

the curve in Figure 10.8 we see relatively little change in the structure, with higher values

of D be attained by increasing the magnitude of the velocity fluctuations not increasing the

fraction of the domain the localized solution occupies.

Now we use the solutions found at different values of Lx to begin new continuations in

Re, shown in Figure 10.9. For Lx = 2.9π, 3π, 3.1π we see very similar behavior to before.

However, for Lx < 2.9π we see a region of higher curvature developing for low values of Re.

For these values of Lx we take the second solution at Re = 400, which exists at a higher

value of D, and continue in Lx. We discover that the reason for the change in behavior
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Figure 10.9: A plot of the bifurcation diagrams generated by continuing in Re for a range
of Lx values.

around Lx = 2.9π is due to the existence of another solution branch, shown in red in Figure

10.10. Continuing the new curve in one direction leads to a roughly constant value of D

extending to far higher values of Lx than previously observed. Extending the curve in the

other direction we see some curves before the solution branch rapidly moves to higher values

of D.

10.3.2 Searching for snaking

So far we have seen no evidence of homoclinic snaking, but the existence of the new curve

for Lx ∈ [2.9π, 3.1π] demonstrates the existence of further curves in the (Re,D) plane, to

go with the isolas already observed. Choosing Lx = 2.9π we track this new curve, shown in

red in Figure 10.11. We observe dramatically different results, with the new curve showing

snaking like behavior and moving to much higher values of D in a relatively narrow range of

Re. Similar results are seen when continuing solutions from the new branch in the (Lx, D)

plane in Re. Fixing Lx = 4π and continuing in Re we produce the results seen in Figure

10.12. As in Figure 10.11 the curve proceeds to high values of D in a narrow range of

Re, exhibiting some bends. To test if this could be another instance of homoclinic snaking

we examine the flow fields. Figure 10.13 shows the averaged energy as a function of z for

three points along the Lx = 4π curve. We observe that, while there is some evidence of

additional structure being added at the edge of the localized solution, as before the higher
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Figure 10.10: A plot of the bifurcation structure in the (Lx, D) plane, for Re = 400, with
the new branch included.

values of D are achieved by increasing the magnitude of the velocity fluctuations. A similar

investigation of the flowfields along the Lx = 2.9π curve gives the same result.

10.3.3 Bifurcation behavior summary

To summarize we have found that homoclinic snaking is not a feature of all localized so-

lutions of plane Couette flow. The bifurcation behavior shown by our localized solutions

very different to that observed in [Schneider et al.(2010b)]. For some continuations in Re

we see closed curves, as in some continuation studies of the Swift-Hohenberg equation

[Burke and Knobloch(2006)]. The physical properties of the solutions also vary consider-

ably. When compared with the first localized solution, our localized solution exists at much

lower dissipation values, and remains there for a wide range of Re and Lx. Our solutions

also retains the property of having a relatively low number of unstable directions, and im-

portant property for the dynamical systems view of turbulence. Several branches at higher
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Figure 10.11: A plot of the (Re,D) bifurcation diagram for Lx = 2.9π, showing the two
distinct branches.

values of D are still open for further continuation, and these may provide a route to the

values of D seen with the previous solution. Having discussed the bifurcation behavior

for localized solutions, we next discuss further work aimed at finding additional localized

solutions.

10.4 Symmetry breaking during localization

The localized solution discussed in this project is just the second one discovered, despite

the existence of many solutions in spanwise periodic domains. We will now address our

second goal of investigating how additional localized solutions could be generated. New

work examining the fronts between laminar and turbulent regions has shown how more

localized solutions could be constructed using the many periodic solutions currently known

[Gibson and Brand(2011)]. We now examine the symmetries of both localized solutions,

and try to find general relations between these and the symmetry groups of the periodic

parent solutions. We hope that this will provide useful guidance when attempting to find
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Figure 10.12: Bifurcation diagram generated by continuing in Re with Lx = 4π.

future localized solutions, and we also make a prediction for the number of localized versions

of each periodic solution.

First we define the symmetry groups for the exact solutions using the notation in

[Gibson et al.(2009)]. Plane Couette flow in a periodic box allows symmetries of the form

[u, v, w](x, y, z) = [sxu, syv, szw](sxx+ τxLx, syy, szz + τzLz). (10.4.1)

Here sx, sy and sz define the reflection symmetries in x, y and z respectively, with τx and

τz setting the shift in the x and z directions. An individual symmetry can then be fully

described using the notation

(1, sx, sy, sx; τx, τz).

Obviously solutions can satisfy multiple symmetries, which themselves can be combined to

form a symmetry group for the solution. We can analyze the symmetries of solutions by

investigating the generators of the symmetry groups.

First we examine the localized solution presented in [Schneider et al.(2010a)], which is

a localized version of the first periodic solution found in [Nagata(1990)]. The symmetry
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Figure 10.13: A plot of the averaged energy as a function of z for three points on the
Lx = 4π curve.

group for the periodic solution has two generators,

(1, 1, 1,−1; 0.5, 0)

(1,−1,−1,−1; 0, 0.5)

This led to two localized solutions, one a strict equilibrium, the other a travelling wave.

Each of these solutions has a symmetry group with a single generator,

(1, 1, 1,−1; 0.5, 0)

for the travelling wave, and,

(1,−1,−1,−1; 0, 0)

for the equilibrium.

Next we turn to the localized solution studied in this work. In this case the periodic

parent has a symmetry group with three generators,

(1,−1,−1, 1; 0, 0)
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(1, 1, 1,−1; 0, 0.5)

(1, 1, 1,−1; 0.5, 0)

This leads to a localized solution that has a symmetry group with just two generators,

(1,−1,−1, 1; 0, 0)

(1, 1, 1,−1; 0, 0)

From this limited set of examples we now extrapolate some general rules. The localiza-

tion process breaks one of the symmetry generators of the periodic parent solution, leading

to a symmetry group with one fewer generator. Any shift in the Lz direction is eliminated.

In [Schneider et al.(2010a)] two solutions were found, corresponding to breaking each of

the generators of the Nagata solution in turn. For the new solution discussed here we have

broken a single generator, allowing us to tentatively predict the existence of two more lo-

calized versions of the periodic solution, corresponding to breaking the other two periodic

generators. Even more speculatively we can predict the existence of three more, giving six

in total, if localized solutions can be formed from any subgroup of the periodic symmetry

group.

10.5 Discussion

In this project we analyzed the physical flowfields and bifurcation structure for a localized

exact solution for plane Couette flow. By making comparisons with the first such solution

we can begin to determine what behavior is generic for localized solutions of plane Couette

flow, and what is specific to individual solutions.

The previous localized solution showed a distinctive bifurcation behavior, identical in

form to the homoclinic snaking seen in the Swift-Hohenberg equation. Despite an extensive

parameter search we can find no evidence for homoclinic snaking in this solution, suggesting

that this bifurcation structure is not an essential feature of all localized solutions. However,

we did find closed curves in the bifurcation diagram, similar to the isolas observed in some

studies of the Swift-Hohenberg equation. In contrast to the previous study, for which

solutions existed in a narrow range of Re, we found relatively unchanged solutions over
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a wide range of Re and Lx. The solutions presented in this study also exist at far lower

dissipation values than previous observations.

To conclude, localized solutions for plane Couette flow can experience a wider range of

behavior than that reported in [Schneider et al.(2010b)]. Solutions can exist over a wider

range of Re, Lx and D then previously observed, and do not necessarily show the distinctive

homoclinic snaking bifurcation behavior. However, there may still be a link to the Swift-

Hohenberg equation, as shown by the isolas observed in this study.
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Project 11

Maximizing the heat flux in steady
unicellular porous media
convection
Lindsey T. Corson

St. Andrews University

11.1 Introduction

Convection in a horizontal porous layer heated from below is relevant to a variety of geo-

logical and engineering applications (Nield & Bejan [13]; Phillips [16], [17]). Porous media

convection has been studied extensively, beginning with the linear stability analyses of Hor-

ton and Rogers [9] and Lapwood [11], and the flow dynamics and bifurcation structure for

low to intermediate Rayleigh numbers (Ra) have been thoroughly explored both theoreti-

cally and numerically (Graham and Steen [7]). Asymptotic descriptions of steady porous

media convection have been proposed by Palm et al. [15], Robinson & O’Sullivan [18], and

Rudraiah & Musuoka [19], although there is a distinct lack of agreement among these and

other authors regarding the asymptotic form of the convection.

It has been firmly established that the classical marginally stable boundary layer argu-

ment of Howard [10] for Rayleigh-Bénard convection at high Rayleigh number also holds for

porous media convection (Horne & O’Sullivan [8]). This argument gives a scaling Nu ∼ Ra,

where the Nusselt number, Nu, represents the heat transport; a result supported by rigor-

ous upper bound theory (Doering & Constantin [5]). However, Graham and Steen [7] note
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that this scaling is only valid after the onset of plumes, at approximately Ra = 700; for

smaller Ra the appropriate scaling is Nu ∼ Ra2/3 (Cherkaoui & Wilcock [3]).

The high resolution two-dimensional (2D) direct numerical simulations (DNS) of Otero

et al. [14] in a horizontally periodic layer indicate that as the Rayleigh number is increased,

the heat transport shifts from being described by the classical Nu ∼ Ra scaling to being

better described by Nu ∼ Ra0.9. Crucially, their simulations show that the spacing between

the thermal plumes decreases as Ra is increased. From the data presented, it appears that

the inter-plume spacing may scale in direct proportion to the wavelength of the fastest

growing linear mode (∼ Ra−1/4). The experimental results of Lister [12], by contrast,

suggest the inter-plume spacing scales as (Ra+ C)−1/2, for some constant C.

Motivated in part by these prior investigations, the primary aim of the present study

is to determine the maximum heat transport attainable in steady 2D unicellular porous

media convection. By focusing on this restricted class of flows we are able to use an efficient

iterative numerical scheme to systematically probe the way in which the heat transport

depends on the inter-plume spacing. Guided by our numerical results, we also propose

a large-Ra asymptotic reduction of the governing equations that yields the asymptotic

structure of the solutions giving the maximum heat transport.

The remainder of this report is organised as follows. In §11.2 we formulate the standard

mathematical model of porous media convection and recall the key results of linear stability

theory for this system. The numerical method used to find (generally unstable) steady-state

high-Ra solutions is described in §11.3 along with a synopsis of our numerical results. In

§11.4 we propose a multi-region matched asymptotic description of the maximal Nusselt

number solutions, motivated by the numerical solutions described in §11.3. In §11.5 we use

our steady-state solutions as initial conditions in a time-dependent numerical model and

analyse the results. Finally, in §11.6 we summarise our findings and outline avenues for

future work.

11.2 Problem formulation

We consider a fluid-saturated porous layer heated from below at z = 0 and cooled from

above at z = 1. The evolution of the 2D velocity u(x, t) = (u,w), temperature T (x, t) and
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pressure p(x, t) fields is governed by the non-dimensional Darcy-Oberbeck-Boussinesq equa-

tions (Nield & Bejan [13]) in the infinite Darcy–Prandtl number limit. In streamfunction–

vorticity form, these equations can be expressed as

∇2ψ = −Ra∂T
∂x

, (11.2.1)

∂T

∂t
+
∂ψ

∂z

∂T

∂x
− ∂ψ

∂x

∂T

∂z
= ∇2T. (11.2.2)

Here ψ is the streamfunction describing cellular flow in the (x, z)–plane. The dimensionless

parameter Ra = KHgβ∆T/(νκm) is the Rayleigh number, where K is the permeability of

the medium, H is the depth of the layer, g is the gravitational acceleration, β is the thermal

expansion coefficient, ∆T is the temperature difference across the layer, ν is the kinematic

viscosity, and κm is the effective diffusivity of heat through the saturated medium.

The non-dimensional temperature at the top and bottom of the layer is held fixed at

0 and 1, respectively, and we seek steady unicellular solutions with discrete translational

invariance in the horizontal coordinate x and reflection symmetry about the planes x = nπ/k

for integer n and given cell width L = π/k, where k is the horizontal wavenumber. Since

we are interested in unicellular convection we will take n = 1 throughout. Therefore, we

impose the following boundary and symmetry conditions:

T (x, 0, t) = 1, T (x, 1, t) = 0, ψ(x, 0, t) = 0, ψ(x, 1, t) = 0,
∂T

∂x
(0, z, t) = 0,

∂T

∂x
(L, z, t) = 0, ψ(0, z, t) = 0, ψ(L, z, t) = 0.

(11.2.3)

It is useful to recapitulate a few results from linear stability theory (Nield & Bejan [13],

Chapter 6). If we define T = (1− z) + θ̃(x, z, t), where 1− z is the conduction solution, and

search for solutions of the linearised versions of (11.2.1) and (11.2.2) of the form

θ̃(x, z, t) = cos(kx) sin(πz)eσt, ψ(x, z, t) = Ψ sin(kx) sin(πz)eσt, (11.2.4)

we find that the (strictly real) growth rate σ is given by

σ =
Ra

k2 + π2
− (k2 + π2). (11.2.5)

From this relationship, it is easily shown that the critical wavenumber kcrit = π, implying the

critical cell width Lcrit = 1 and that the critical Rayleigh number Racrit = 4π2. Moreover,
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for large Rayleigh number, the wavenumber kf of the fastest growing linear mode is given

by

kf ∼
√
πRa1/4. (11.2.6)

A useful quantity in the study of convection is the normalised volume-averaged vertical

heat flux, or Nusselt number,

Nu = 1 +
1
L

〈∫
∂ψ

∂x
Tdxdz

〉
, (11.2.7)

where the angle brackets indicate the long-time average

〈f〉 = lim
T→∞

1
T

∫ T

0
f(t)dt. (11.2.8)

From the equations of motion we can derive an equivalent expression for the Nusselt number,

Nu = − 1
L

〈∫
z=0

∂T

∂z
dx
〉
. (11.2.9)

This expression shows that Nu can also be interpreted as the ratio of the horizontally-

integrated, time-averaged vertical heat flux to the corresponding value realized in the ab-

sence of convection.

11.3 Numerical simulations

We compute time-independent numerical solutions of (11.2.1)–(11.2.2), subject to the bound-

ary conditions (11.2.3), using a Newton–Kantorovich iteration scheme (Boyd [2], Appendix

C). We begin by rewriting the model equations as

∇2ψ = Fψ(Tx), (11.3.1)

∇2T = F T (ψx, ψz, Tx, Tz), (11.3.2)

where a subscript denotes a partial derivative with respect to the given variable. Suppose we

have iterates T (i)(x, z) and ψ(i)(x, z), which are good approximations to the true solutions

T (x, z) and ψ(x, z). Taylor expanding the functions Fψ and F T in (11.3.1) and (11.3.2)
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about the ith iterate gives

∇2ψ =Fψ(T (i)
x ) + FψTx(T (i)

x )[Tx − T (i)
x ] +O

(
[Tx − T (i)

x ]2
)

(11.3.3)

∇2T =F T (ψ(i)
x , ψ(i)

z , T (i)
x , T (i)

z ) + F Tψx(ψ(i)
x , ψ(i)

z , T (i)
x , T (i)

z )[ψx − ψ(i)
x ]

+ F Tψz(ψ
(i)
x , ψ(i)

z , T (i)
x , T (i)

z )[ψz − ψ(i)
z ] + F TTx(ψ(i)

x , ψ(i)
z , T (i)

x , T (i)
z )[Tx − T (i)

x ]

+ F TTz(ψ
(i)
x , ψ(i)

z , T (i)
x , T (i)

z )[Tz − T (i)
z ]

+O
(

[ψx − ψ(i)
x ]2, [ψz − ψ(i)

z ]2, [Tx − T (i)
x ]2, [Tz − T (i)

z ]2
)
, (11.3.4)

where, for example, F TTx denotes the Frechet derivative of the function F T (ψx, ψz, Tx, Tz)

with respect to Tx. By defining correction terms

ψ(i+1) ≡ ψ(i) + φ̂, T (i+1) ≡ T (i) + θ̂, (11.3.5)

and computing the Frechet derivatives, the linear differential equations for the corrections

are given by

∇2φ̂+Raθ̂x = Fψ(T (i)
x )−∇2ψ(i), (11.3.6)

∇2θ̂ + T (i)
z φ̂x − T (i)

x φ̂z − ψ(i)
z θ̂x + ψ(i)

x θ̂z = F T (ψ(i)
x , ψ(i)

z , T (i)
x , T (i)

z )−∇2T (i), (11.3.7)

subject to the boundary conditions

T = 1, ψ = 0, θ̂ = 0, φ̂ = 0 on z = 0, (11.3.8)

T = 0, ψ = 0, θ̂ = 0, φ̂ = 0 on z = 1, (11.3.9)

Tx = 0, ψ = 0, θ̂x = 0, φ̂ = 0 on x = 0, (11.3.10)

Tx = 0, ψ = 0, θ̂x = 0, φ̂ = 0 on x = L. (11.3.11)

Equations (11.3.6) and (11.3.7) can be rewritten in matrix form[
Dxx +Dzz RaDx

T
(i)
z Dx − T (i)

x Dz Dxx +Dzz − ψ(i)
z Dx + ψ

(i)
x Dz

] [
φ̂

θ̂

]
=

[
−RaT (i)

x −∇2ψ(i)

ψ
(i)
z T

(i)
x − ψ(i)

x T
(i)
z −∇2T (i)

]
,

(11.3.12)

where, for example, Dx denotes the partial derivative with respect to x.

We iterate the system of equations (11.3.12) for a given Rayleigh number Ra and

cell-width – or inter-plume spacing – L, subject to the boundary conditions (11.3.8)–

(11.3.11), using a pseudospectral collocation method. A convergence criterion requiring
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Figure 11.1: Surface plot of Nusselt number in (Ra,L) parameter space. Darker shading
represents higher values of Nu. The solid line marks the ridge along which Nu is maximum;
the dashed line is the linear stability boundary; the dashed-dotted line is L = 501/2Ra−1/2;
and the dotted line is L = 501/4Ra−1/4. The jagged contours at high Ra are resolution
artefacts.

max(|φ̂|) < 10−10 and max(|θ̂|) < 10−10 was employed. A Chebyshev tensor-product for-

mulation with 60 nodes in both the horizontal and vertical directions was used to provide

adequate resolution of the boundary layers.

Simulations were performed starting at Ra = 50, just above the critical Rayleigh number

Racrit = 4π2 ≈ 39.5, and initial cell width L = 1. Once convergence was achieved, Ra was

increased by a factor of 101/10 with the previous converged state used as the new “initial”

condition. This was repeated for cell widths from L = 1 to L = 0.01, reduced in steps of

101/10 in order to thoroughly explore (Ra,L) parameter space. At each point the Nusselt

number Nu was recorded.

The results of these simulations are summarized in figures 11.1 and 11.2. In figure 11.1

a surface plot of the Nusselt number in (Ra,L) parameter space is presented. The dashed

line indicates the linear stability boundary, L ∼ πRa−1/2. To the right of this line there

is no convection and so Nu = 1; the jagged contours at high Ra are resolution artefacts.

The solid line denotes the maximum value of Nu, and hence marks a ridge on the surface.
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Figure 11.2: Plot of Nu vs. Ra along different paths L = L(Ra). The asterisks are the data
along the maximum Nu ridge; the circles are the data along the curve L = 501/2Ra−1/2,
and the crosses are the data along the curve L = 501/4Ra−1/4. The solid line is the best fit
curve 0.18Ra0.59, and the dashed line is the best fit curve 0.25Ra0.52.

To elucidate scalings, the lines L = 501/2Ra−1/2 (dashed–dotted) and L = 501/4Ra−1/4

(dotted) are also plotted. The constants 501/2 and 501/4 were used so that L = 1 when

Ra = 50 in each case.

As noted in § 11.1, the DNS results presented in Otero et al. [14] suggest that the

inter-plume spacing scales with the wavelength of the fastest growing linear mode: from

(11.2.6), L ∼ π/kf =
√
πRa−1/4. However, the experimental results of Lister [12] suggest

that the inter-plume spacing scales as (Ra + C)−1/2. We can see in figure 11.1 that the

maximum Nu ridge satisfies the L ∼ Ra−1/4 scaling up to Ra ≈ 150, as it closely follows

the dotted line. Above Ra ≈ 150, the ridge shifts to the right and for Ra > 500 it follows

the relationship L ∼ 7.02Ra−0.52. With this scaling, however, the ridge would eventually

cross the linear stability boundary into the conduction Nu = 1 regime. Therefore, it seems

plausible that the maximum Nu ridge (at least for steady 2D unicellular convection) must

eventually scale as L ∼ Ra−1/2, in agreement with Lister’s results [12].

Figure 11.2 shows the variation of Nu with Ra along the ridge (asterisks) and along
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the curves L = 501/2Ra−1/2 and L = 501/4Ra−1/4 (circles and crosses, respectively). In

the range 50 ≤ Ra ≤ 350, all three curves lie on top of one another; however, at higher

values of Ra the L = 501/4Ra−1/4 curve drops below the other two. Across the range

1000 . Ra . 10000, the data along the curve L = 501/4Ra−1/4 scale as Nu ∼ 0.25Ra0.52

(dashed line), and the data along the curve L = 501/2Ra−1/2, as well as the ridge, scale

as Nu ∼ 0.18Ra0.59 (solid line). Although none of these steady-state unicellular solutions

exhibits the Nu–Ra scaling presented in Otero et al. [14], they do reveal a clear and non-

trivial dependence of the heat transport on the inter-plume spacing.

11.3.1 Solution structure

In this section, we examine the spatial structure of the numerical solutions across the range

1000 . Ra . 10000, where we obtain the clean Nu ∼ Ra0.6 relationship with a cell width

that scales as L ∼ 501/2Ra−1/2, to gain further insight into the steady unicellular flows that

maximize the heat transport.

Figure 11.3 shows contour plots of the temperature T (x, z) and streamfunction ψ(x, z)

for Ra = 997 and Ra = 9976. Note the aspect ratio distortion in each set of plots: when

Ra = 997, L ≈ 0.2239, and when Ra = 9976, L ≈ 0.0708. Clear evidence of a thermal

boundary layer, which thins as Ra is increased, can be seen in figure 11.3(a) and (c). In

figure 11.3(b) and (d) there is evidence of a momentum boundary layer that also thins as

Ra is increased but remains thicker than the thermal boundary layer. Furthermore, in the

centre of the cell, which we will denote the core, the streamlines become vertical as Ra

increases, suggesting ψ becomes independent of z there.

To extract scalings from the numerical results, it is convenient to decompose the to-

tal temperature into its horizontal mean, denoted with an overbar, and a fluctuation; i.e.,

T (x, z) = T (z) + θ(x, z), where θ(x, z) is the fluctuation. We note that with this decompo-

sition, (11.2.1) and (11.2.2) become

∇2ψ = −Ra∂θ
∂x
, (11.3.13)

− ∂

∂z

(
∂ψ

∂x
θ

)
=
∂2T

∂z2
, (11.3.14)

∂ψ

∂z

∂θ

∂x
− ∂ψ

∂x

∂θ

∂z
− ∂ψ

∂x

∂T

∂z
+

∂

∂z

(
∂ψ

∂x
θ

)
= ∇2θ, (11.3.15)
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Figure 11.3: Contour plots of (a) temperature T (x, z), (b) streamfunction ψ(x, z) for Ra =
997; and (c) temperature T (x, z), (d) streamfunction ψ(x, z) for Ra = 9976. In each plot
contours are evenly spaced. Note the aspect ratio distortion.

where an overbar again denotes a horizontal average.
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Figure 11.4: Vertical profiles of (a) T (z) and (b) θ and (c) ψ at x = L/2 for Ra = 9976.

Figure 11.4 shows vertical profiles of T , θ and ψ for Ra = 9976. The existence of two

distinct boundary layers is now very clear, with the momentum boundary layer being thicker

than the thermal boundary layer. In the core, both the temperature fluctuation θ and the

streamfunction ψ are independent of z, whereas the average temperature gradient is weakly
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Figure 11.5: Horizontal profiles of the temperature fluctuation θ (left column) and stream-
function ψ (right column) through the centre of the domain (a, b) and near the bottom of
the domain, within the thermal boundary layer (c, d), at Ra = 9976.

unstable.

Figure 11.5 shows horizontal profiles of θ and ψ in both the core (top row) and the

thermal boundary layer (bottom row). In the core, the solution appears to consist of a single

Fourier mode, whereas in the boundary layer the solution clearly involves a superposition

of many Fourier modes.

Using these numerical results, we can attempt to quantify the dependencies on Ra of the

boundary layer thicknesses and the amplitudes of θ and ψ in the core (figure 11.6). Since

neither boundary layer is uniformly thick across the domain, we plot both the maximum

(crosses) and minimum (asterisks) thicknesses of each layer. Figure 11.6 (a) and (b) shows

the results for the thermal and momentum boundary layer, respectively, with the best fit

curves for each case shown by the solid and dashed lines. In the thermal boundary layer

both the thickest and thinnest parts of the layer scale as δ ∼ Ra−0.6. However, in the

momentum boundary layer there is quite a difference between the scalings of the thinnest
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Figure 11.6: (a, b) Approximate location of the minimum (asterisks) and maximum (crosses)
thicknesses of the thermal and momentum boundary layers, respectively. The solid lines
represent the best fit curve for the minimum thickness: δ ∼ 5.0Ra−0.6 for the thermal
boundary layer, and ∆ ∼ 3.5Ra−0.5 for the momentum boundary layer. The dashed lines
represent the best fit curve for the maximum thickness: δ ∼ 5.9Ra−0.6 for the thermal
boundary layer, and ∆ ∼ 1.1Ra−0.2 for the momentum boundary layer. (c, d) Asterisks
represent the approximate maximum values of θ and ψ in the core, respectively. The solid
lines in each case indicate the best fit curves θ ∼ 0.48Ra−0.1 and ψ ∼ 1.3Ra0.3.

and thickest parts, with the minimum thickness scaling as ∆ ∼ Ra−0.5 and the maximum

thickness as ∆ ∼ Ra−0.2.

The amplitude scalings are estimated by plotting the maximum values of θ and ψ in the

core region versus Ra, as shown in figure 11.6 (c) and (d), respectively. The solid line in

each plot represents the best fit curve. In this way, we find that in the core ψ ∼ Ra0.3 and

θ ∼ Ra−0.1.

11.4 Asymptotic reduction

Motivated by the numerical results presented in §11.3, we seek a matched asymptotic de-

scription of steady unicellular convection in a cell of varying aspect ratio L = lRa−1/2,
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with l = O(1), in the large Rayleigh number limit. The numerics suggest that the flow can

be divided into three subdomains as shown in figure 11.7: a core, a momentum boundary

layer of thickness ∆, and a thinner thermal boundary layer of thickness δ. This nested

boundary layer structure is similar to that presented by Fowler [6] for unicellular porous

media convection in a cell of fixed, O(1) aspect ratio.

0 x L = lRa−1/2

δ

∆

TBL

MBL

TBL

MBL

COREz

1

Figure 11.7: Schematic showing hypothesized three-subdomain asymptotic structure for
porous media convection at high Rayleigh number.

Each of the subdomains is characterised by a different dominant balance of terms in

(11.3.13)–(11.3.15). The various dominant balances are fixed once the Ra dependencies of

the dependent and independent variables in the three subdomains is specified. Here, we

opt to determine these scalings a priori by insisting that four asymptotic constraints are

satisfied and subsequently compare our predictions with the scalings extracted from the

numerical results in §11.3.

Firstly, in the thermal boundary layer, the mean advective and diffusive heat fluxes are

both significant. Hence, (11.3.14) requires

ΨBΘB =
1

δRa1/2
, (11.4.1)

presuming T = O(1), where ΨB and ΘB are the magnitudes of ψ and θ, at leading order,

in the thermal boundary layer. Balancing wall-normal diffusion with advection of the mean

temperature in (11.3.15) yields

ΨB =
1
δ
Ra−1/2ΘB, (11.4.2)
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and combining (11.4.1) and (11.4.2) then gives

ΘB = 1, ΨB =
1

δRa1/2
. (11.4.3)

Secondly, given our hypothesized asymptotic structure, we require ψz to vary smoothly

everywhere within the momentum boundary layer. In particular, this implies

ΨM

∆
=

ΨB

δ
. (11.4.4)

Thirdly, the existence of the momentum boundary layer requires that z derivatives

become comparable to x derivatives in (11.3.13), and hence that ∆ = Ra−1/2. Equations

(11.4.2) and (11.4.4) then yield

ΨM = Ψ2
B =

1
δ2Ra

. (11.4.5)

The final constraint requires the convective heat flux to dominate the diffusive heat flux

in the core,

−ψxθ ∼ Q, (11.4.6)

where Q is the constant advective heat flux there. Since integration of (11.3.14) in z gives

the exact result

−ψxθ − T z ≡ Nu, (11.4.7)

Q ∼ Nu = O(1/δ), noting that 1/δ is an estimate of the magnitude of T z near z = 0 and

z = −1. Assuming ΨM = ΨC (see figure 11.4(c)), then (11.4.6) implies

ΘC = δRa1/2. (11.4.8)

Also, in the core, the leading order balance in (11.3.13) is

ψxx = −Raθx. (11.4.9)

Substituting the scalings for ΘC and ΨC gives δ = Ra−2/3, implying Nu ∼ Ra2/3.

The complete list of asymptotic scalings is presented in Table 11.1, along with the

numerical scalings found in §11.3.1 for finite Ra for comparison. Although they do not

match identically, there is general agreement between the numerical and asymptotic scalings.

Presumably, the discrepancies are attributable either to finite-Ra effects or to inherent

limitations in our method of data processing for the numerics.
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Numerical Asymptotic

Nu Ra0.59 Ra2/3

δ Ra−0.6 Ra−2/3

∆ Ra−0.2–Ra−0.5 Ra−1/2

ΘC Ra−0.1 Ra−1/6

ΘM – Ra−1/6

ΘB – 1

ΨC Ra0.3 Ra1/3

ΨM – Ra1/3

ΨB – Ra1/6

Table 11.1: Comparison of numerical and asymptotic scalings.

11.4.1 Core

In the core, the leading order versions of (11.3.13)–(11.3.15) are

ψCxx = −RaθCx, (11.4.10)

−ψCxθC = Q, (11.4.11)

−ψCxTCz = θCxx, (11.4.12)

where a subscript “C” again refers to a core field. Integrating (11.4.10) with respect to x

gives

ψCx = −RaθC + f(z), (11.4.13)

where f(z) = 0 from mass conservation, and substituting this expression into (11.4.11)

yields

Raθ2
C = Q. (11.4.14)

Thus, we deduce that both θC and ψC are independent of z, in accord with the results

of our numerical calculations. Substituting (11.4.13) into (11.4.12) reveals that the mean

temperature gradient within the core must be constant, i.e. TCz ≡ −g, say, and that θC

and hence ψC admit single mode solutions:

θCxx +RagθC = 0, (11.4.15)
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Figure 11.8: Comparison of the numerically computed T z at Ra = 9976 and l =
√

50
(asterisks) with the predicted value in the core given by TCz = (π/l)2 (solid).

and so

θC(x) = −ΘC cos(Ra1/2g1/2x). (11.4.16)

A similar asymptotic structure was found by Blennerhassett & Bassom [1] in their study

of strongly nonlinear, high wavenumber Rayleigh–Bénard convection. Because the lateral

boundary conditions require θCx = 0 at x = 0, L, g = (π/l)2. In figure 11.8, this prediction is

compared with the exact (numerically computed) mean temperature gradient at Ra = 9976

and l =
√

50; the evident excellent agreement provides strong support for the presumed

asymptotic structure of the flow within the core. Specifically,

θC(x) = −AΘC cos(Ra1/2π

l
x), (11.4.17)

ψC(x) =
l

π
Ra1/2AΘC sin(Ra1/2π

l
x), (11.4.18)

where A = O(1) is a constant to be determined, while

TC =
1
2
−
(π
l

)2
(
z − 1

2

)
. (11.4.19)
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11.4.2 Momentum boundary layer

In the momentum boundary layer, (11.3.13)–(11.3.15) become, at leading order,

ψMxx + ψMzz = −RaθMx, (11.4.20)

−ψMxθMz = 0, (11.4.21)

ψMzθMx − ψMxθMz = ψMxTMz, (11.4.22)

presuming TMz = O(ΘM/∆) – see figure 11.4. From (11.4.22) it follows that

θM = F (ψM )− TM (z). (11.4.23)

Noting that both θ and ψ must smoothly transform from their z-independent profiles in

the core to functions of both x and z such that θ = F (ψ) in the far-field of the momentum

boundary layer, we rewrite θC as a function of ψC :

θC(x, z) = F (ψC) = ∓AΘC

√
1−

(
π

lAΘC

)2

Ra−1ψ2
C . (11.4.24)

The positive square root applies on the left half of the domain, where θC < 0, while the

negative square root applies on the right half of the domain, where θC > 0. Furthermore,

moving from the core to the momentum boundary layer at, say, z = 0, TC → T
∞
M , where

T
∞
M is the limiting value of TM (z):

T
∞
M =

1
2

(
1 +

(π
l

)2
)
. (11.4.25)

Hence,

F (ψM ) = ∓AΘC

√
1−

(
π

lAΘC

)2

Ra−1ψ2
M + T

∞
M . (11.4.26)

Equation (11.4.20) becomes a nonlinear Poisson equation for ψM :

ψMxx + ψMzz = −RaF ′(ψM )ψMx

= −ψMx

ψM
AΘC

(π
l

)2
(

1−
(π
l

)2 ψ2
M

RaA2Θ2
C

)−1/2

, (11.4.27)

subject to the boundary conditions

ψM = 0 on x = 0, L and z = 0, and as Z ≡ z

∆
→∞, ψM → ψC . (11.4.28)

We can then use (11.4.23) to find θM (x, z) once TM (z) has been determined, presumably

by requiring θM = 0, in which case TM (z) = F (ψM ).
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11.4.3 Thermal boundary layer

In the thermal boundary layer, the leading order versions of (11.3.13)–(11.3.15) are

ψBzz = −RaθBx, (11.4.29)

−ψBxθBz = TBzz, (11.4.30)

ψBzθBx − ψBxθBz − ψBxTBz + ψBxθBz = θBzz. (11.4.31)

This system is equivalent to

ψBzz = −RaTBx, (11.4.32)

ψBzTBx − ψBxTBz = TBzz, (11.4.33)

which must be solved (e.g., at the bottom of the domain) subject to the boundary conditions

ψB = 0 on z = 0,

TBx = 0 on x = 0, TB = 1 on z = 0, (11.4.34)

and, as Ẑ ≡ z

∆
→∞, ψB → ψM and TB → TM .

11.5 Time-dependent numerical simulations

Our asymptotic reduction suggests that the heat transport is described by the scaling Nu ∼
Ra2/3, which differs from the classical scaling Nu ∼ Ra of Howard [10] and from that

exhibited in the DNS of Otero et al. [14]. Therefore, in this section, we employ time-

dependent simulations to find the heat transport when our steady-state solutions are used

as initial conditions.

As before, we consider (11.2.1)–(11.2.2) subject to the boundary conditions given by

(11.2.3). Numerical simulations were carried out using a pseudospectral collocation method

involving a Chebyshev tensor-product formulation with 70 nodes in both the horizontal

and vertical directions to provide adequate resolution of the boundary layers. A semi-

implicit time discretization scheme was employed, with the nonlinear and instability terms

advanced using a second-order Adams-Bashford method, and the linear diffusive terms

advanced using the trapezium rule. The resulting linear algebraic system was solved by

direct matrix inversion.
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Figure 11.12: Contour plots of (a) T (x, z), (b) ψ(x, z) for Ra = 5000 at a later time (denoted
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The results of these simulations are summarized in figure 11.9, which shows the variation

of the time-averaged Nu with Ra. In the range 1000 ≤ Ra ≤ 4000, the data scale as

Nu ∼ Ra0.6, identically to the steady state scaling found in §3. For Ra > 4000, however,

the data appear to scale as Nu ∼ Ra0.92, comparable to the Nu ∼ Ra0.9 scaling found by

Otero et al. [14] in a domain of fixed width L = 1. Of course, the accuracy of this scaling

may be suspect given the limited data in this region. Nevertheless, these preliminary results

are at least suggestive that Nusselt numbers comparable to those achieved in much wider

domains might be attained in narrow domains with aspect ratios shrinking according to

L ∼ Ra−1/2.

Figures 11.10–11.12 illustrate the behaviour of the model for Ra = 5000, at the start

of the Nu ∼ Ra0.92 regime. Figure 11.10 shows the evolution of the Nusselt number for

Ra = 5000, with the dashed line denoting the long-time average value of Nu given by

Otero et al. [14]. The initial steady solution is unstable, and the time-dependent solution

quickly deviates away from it, corresponding with the first increase in Nu(t). The Nusselt

number then peaks before settling into a roughly periodic dynamic. Eventually, the system

is again excited and the Nusselt number peaks a second time before settling back into a

time-periodic behavior.

The temperature and streamfunction fields just before the first peak in the Nusselt

number (at the time denoted by the circle in figure 11.10) are shown in figure 11.11. In the

temperature field (figure 11.11 (a)) there is evidence of a plume (as defined by Graham &

Steen [7]) in the lower (upper) thermal boundary layer at x ≈ 0.06 (x ≈ 0.04), corresponding

with a roll in the streamfunction field (figure 11.11 (b)). As noted in §1, Graham & Steen

[7] argue that the classical Nu ∼ Ra scaling corresponds to the onset of plume formation,

which they define to occur when the isotherms contouring the thermal boundary layer

become nearly vertical away from the downstream corner of the cell. Furthermore, both

DNS and upper bound theory suggest that convection cells within the thermal boundary

layer are required to achieve this scaling (Chini et al. [4]).

This simulation does not, however, achieve the same overall long-time average value of

Nu as Otero et al. [14]. Figure 11.12 illustrates the temperature and streamfunction fields

at a later time (denoted by the cross in figure 11.10). The simple unicellular flow has been

replaced with an irregular convective pattern. We postulate that this irregular flow pattern
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is a result of the way in which our lateral symmetry boundary conditions constrain the

system.

11.6 Conclusion

We have presented the results of a set of numerical experiments on a model of steady 2D

unicellular convection in a fluid-saturated porous medium and quantified the heat transport

over a range of Rayleigh numbers and aspect ratios. We observe that over the decade

Ra = 103–104 the maximum value of the Nusselt number occurs in a cell whose aspect ratio

scales as L ∼ Ra−1/2, and not as that of the fastest growing linear mode, i.e. L ∼ Ra−1/4,

which may be postulated from the data presented in Otero et al. [14]. Furthermore, in this

cell the heat transport is described by the scaling Nu ∼ Ra0.6.

Guided by our numerical results we have formulated an asymptotic reduction for the

structure of the solutions that maximize the Nusselt number. We divide the cell into

three subdomains: a central core region, and at both the top and bottom of the layer, a

momentum boundary layer with a thinner thermal boundary layer within it. With this

reduction the heat transport is described by the scaling Nu ∼ Ra2/3. To complete the

matched asymptotic analysis outlined here, the solutions in the boundary layers must be

numerically computed and matched between the layers.

Our heat transport results from both the steady state numerical solutions and the

matched asymptotic analysis differ from those given by the DNS of Otero et al. [14] and the

classical scaling of Howard [10]. Graham & Steen [7] show that this scaling corresponds to

the onset of plume formation; until then the appropriate scaling is Nu ∼ Ra2/3. However,

plume formation is a time-dependent process, and therefore is not realisable in our steady

model.

Furthermore, both the DNS and upper bound theory suggest that convection cells within

the thermal boundary layer are required to achieve the Nu ∼ Ra scaling (Chini et al. [4]).

Evidence of this can also be seen when we use our steady solution as the initial condition

in a time-dependent model. In this case, at high Ra, Nu periodically approaches values

reported by Otero et al. [14] and, in fact, appears to achieve the scaling Nu ∼ Ra0.92.

At these times, embryonic rolls in the thermal boundary layer can be seen. However,
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the overall behaviour of the temperature and streamfunction fields in this time-dependent

model is highly irregular, possibly as a result of the imposed lateral symmetry boundary

conditions.

It remains to complete the asymptotic analysis, and to repeat the time-dependent numer-

ical simulations with periodic lateral boundary conditions to see whether Nusselt numbers

found by Otero et al. [14] are attained more consistently. In addition, it would be inter-

esting to investigate whether a multicellular asymptotic structure, supporting convection

cells within the thermal boundary layer and achieving the maximal Nu–Ra scaling, can be

found.
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Lecture Schedule

GFD Lecture Schedule

Week 1

Introductory lectures will be a total of 2 hours each with a short break.

Monday, June 20 - 9:50 AM

Introduction

Norman Lebovitz and Philip Morrison, GFD Co-Directors

Lecture 1 - 10:00 AM

General Introduction and Overview

Fabian Waleffe, University of Wisconsin

Part 1: 10:00-10:50 AM, Part 2: 10:50-11:50 AM

Tuesday, June 21 - Lecture 2 - 10:00 AM

Viscous derivation of classic inviscid stability results for shear flows. Viscous instability.

Fabian Waleffe, University of Wisconsin

Part 1: 10:00-10:50 AM, Part 2: 10:50-11:50 AM

Wednesday, June 22 - Lecture 3 - 10:00 AM

Diffusion and damping in shear flows: a truly singular limit. Critical layers.

Fabian Waleffe University of Wisconsin

Part 1: 10:00-10:50 AM, Part 2: 11:00-11:50 AM

Thursday, June 23 - Lecture 4 - 10:00 AM

Origin and survival of 3D-ality.
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Fabian Waleffe, University of Wisconsin

Part 1: 10:00-10:50 AM, Part 2: 11:00-11:50 AM

Friday, June 24 - Lecture 5 - 10:00 AM

Instability of streaky flows. Asymptotics of self-sustaining process.

Fabian Waleffe, University of Wisconsin

Part 1: 10:00-10:50 AM, Part 2: 11:00-11:50 AM

Week 2

Monday, June 27 - Lecture 6 - 10:00 AM

Spatio-temporal complexity. Spots, puffs and slugs, snakes and spirals.

Fabian Waleffe, University of Wisconsin

Part 1: 10:00-10:50 AM, Part 2: 11:00-11:50 AM

June 27 (continued) - 2:30 PM

Structures of low-Reynolds-number turbulence in a rectangular duct.

Genta Kawahara, Osaka University

Tuesday, June 28 - Lecture 7 - 10:00 AM

Transition scenarios: normality vs non-normality.

Richard Kerswell, Bristol University

Part 1: 10:00-10:50 AM, Part 2: 11:00-11:50 AM

Wednesday, June 29 - Lecture 8 - 10:00 AM

Edge tracking – walking the tightrope.

Richard Kerswell, Bristol University

Part 1: 10:00-10:50 AM, Part 2:11:00- 11:50 AM

Thursday, June 30 - Lecture 9 - 10:00 AM

Triggering transition efficiently.

Richard Kerswell, Bristol University

Part 1: 10:00-10:50 AM, Part 2: 11:00-11:50 AM

June 30 (continued) - 2:30 PM

Vortex-wave interactions/self-sustained processes in shear flows.
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Phillip Hall, Imperial College London

Friday, July 1 - Lecture 10 - 10:00 AM

Turbulence: transient or sustained?

Richard Kerswell, Bristol University

Part 1: 10:00:10:50 AM, Part 2:11:00-11:50 AM

Week 3

Monday, July 4

HOLIDAY, INSTITUTION CLOSED

Tuesday, July 5

10:00-10:50 AM

Surface-wave mediated instability of submesoscale ocean fronts.

Greg Chini, University of New Hampshire

— 11:00-11:50 AM

Gravity currents in rotating fluid.

Jack Whitehead, Woods Hole Oceanographic Institution

Wednesday, July 6

10:00-10:50 AM

Ultimate state of two-dimensional Rayleigh-Bénard convection between free-slip fixed-temperature

boundaries.

Charles Doering, University of Michigan

— 11:00-11:50 AM

Global stability analysis of fluid flows using Sum-of-Squares of polynominals.

Sergei Chernyshenko, Imperial College, London

Thursday, July 7

10:00-10:50 AM

Generation of magnetic fields by convection in rotating spherical fluid shells.

Friedrich Busse, University of Bayreuth

Friday, July 8

10:00-10:50 AM
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Geographically localized coastal trapped waves.

Ted Johnson, University College London

Week 4

Monday, July 11

No lecture scheduled today.

Tuesday, July 12

10:00-10:50 AM

From Swift-Hohenberg to Navier-Stokes: Localization in Plane Couette Flow.

Tobias Schneider, Harvard University

Wednesday, July 13

10:00-10:50 AM

The nonhydrostatic balanced geostrophic equations: the interplay between convective and

barotropic dynamics.

Keith Julien, University of Colorado at Boulder

Thursday, July 14

10:00-10:50 AM

Landau damping as a universal description of dissipation.

George Hagstrom, University of Texas at Austin

Friday, July 15

10:00-10:50 AM

New modes of haline convection.

Raymond Schmitt, Woods Hole Oceanographic Institution

Week 5

Monday, July 18

10:00-10:50 AM

Zonostrophic turbulence, zonal jets and the mixing barriers.

Boris Galperin, University of South Florida

Tuesday, July 19
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10:00-10:50 AM Anisotropic inverse cascade towards zonal jets in shallow water dynamics.

Alexander Balk, University of Utah

Wednesday, July 20

10:00-10:50 AM

A hierarchy of PDE models for rotating stratified flows.

Leslie Smith, University of Wisconsin, Madison

— 11:00-11:50 AM

Determining macroscopic diffusivity from T, S data: an ongoing study.

George Veronis, Yale University

Thursday, July 21

10:00-10:50 AM

Pseudo spectral reduction of 2D turbulence.

John Bowman, University of Alberta

Friday, July 22

10:00-10:50 AM

Cross-equatorial transport of Antarctic Bottom Water under the complete Coriolis force.

Andrew Stewart, Corpus Christi College

Week 6

Monday, July 25

10:00-10:50 AM

Gyroviscous effects in Braginski magnetohydrodynamic flow between parallel planes.

Paul Dellar, University of Oxford

Tuesday, July 26

10:00-10:50 AM

Self-sinking capsules to investigate Earth’s interior and dispose of radioactive waste.

Jesse Ausubel, Rockefeller University

Wednesday, July 27

10:00-10:50 AM

Landau damping as a universal source of dissipation.
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George Hagstrom, University of Texas at Austin

Thursday, July 28

10:00-10:50 AM

Stability of vortex and wave flows from bifurcation diagrams exploiting a variational argu-

ment.

Paolo Luzzato-Fegiz, Woods Hole Oceanographic Institution

Friday, July 29

10:00-10:50 AM

Coherent vortices in plane Couette flow bifurcation, symmetry and visualization.

Tomoaki Itano, Kansai University

Week 7

Monday, August 1

10:00-10:50 AM

The spring bloom in the oceans.

Amala Mahadevan, Woods Hole Oceanographic Institution

Tuesday, August 2

10:00-10:50 AM

EZ-stability of beta-plane Kolmogorov flow with drag. Yue-Kin Tsang, The Chinese Uni-

versity of Hong Kong

— 11:00-11:50 AM

Stability of swirling flows.

Sherwin Maslowe, McGill University

Wednesday, August 3

10:00-10:50 AM

Questioning the question: The role of nonlinear optimal perturbations in the transition to

turbulence of plane Couette flow.

Colm-cille Caulfield, University of Cambridge

— 11:00-11:50 AM
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Spatio-temporal chaos in shear flows.

Bruno Eckhardt, Phillips Universitat Marburg

Thursday, August 4

10:00-10:50 AM

Optimal path to turbulence in shear flows.

Dan Henningson, KTH Royal Institute of Technology

— 2:00-5:00 PM: Public Lecture, Redfield Auditorium, reception to follow

On growth and form: geometry, physics and biology.

Lakshiminarayanan Mahadevan, Harvard University

Friday, August 5

10:00:10:50 AM

Simplifying the complexity of turbulent shear flow.

Dwight Barkley, University of Warwick

— 11:00-11:50 AM

On first looking into Chapman and Cowling.

Ed Spiegel, Columbia University

Week 8

Monday, August 8

10:00-10:50 AM

Instabilities and transitions of rotor-stator flows.

Patrice LeGal, IRPHE, France

Tuesday, August 9

10:00-10:50 AM

Topological detection of Lagrangian coherent structures.

Jean-Luc Thiffeault, University of Wisconsin, Madison

Wednesday, August 10

10:00-10:50 AM

Flow through a sudden expansion in a pipe.
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Tom Mullin, University of Manchester

— 11:00-11:50 AM

Unbalanced surface dynamics.

Gualtiero Badin, Boston University

Thursday, August 11

10:00-10:50 AM

Laminar-turbulent patterns in plane Couette flow.

Laurette Tuckerman, PMMH-ESPCI, France

Friday, August 12

10:00-10:50 AM

What Phil Morrison wouldn’t teach us: how to reduce the symmetry of pipe flows.

Predrag Cvitanovic, Georgia Institute of Technology

Week 9: No lectures scheduled this week

Monday, August 15 – Friday, August 19

Week 10: FELLOWS’ PRESENTATIONS

Monday, August 22

2:00 - 3:00 PM

Constraints on low order models: the cost of simplicity.

Martin Hoecker-Martinez, Oregon State University

— 3:00-4:00 PM

A one-fluid MHD model with electron inertia.

Keiji Kimura, Kyoto University

Tuesday, August 23 10:00-11:00 AM

Traversing the edge: how turbulence decays.

Matthew Chantry, University of Bristol

— 11:00- 12:00 PM

A low dimensional model for shear turbulence in Plane Poiseuille flow: an example to

understand the edge.
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Giulio Mariotti, Boston University

— 2:00-3:00 PM

Upstream basin circulation of rotating, hydraulically controlled flows.

Adele Morrison, Australian National University

Wednesday, August 24

10:00-11:00 AM Islands in locally forced basin circulations.

Samuel Potter, Princeton University

— 11:00 AM-12:00 PM

Two-layer viscus fluid in an inclined closed tube: Kelvin-Helmholtz instability.

Zhan Wang, University of Wisconsin, Madison

— 2:00-3:00 PM

Chaotic interaction of vortex patches with boundaries.

Andrew Crosby, University of Cambridge

— 3:00-4:00 PM

On Brownian motion in a fluid with a plane boundary.

Chao Ma, University of Colorado, Boulder

Thursday, August 25

10:00-11:00 AM

Localized solutions in plane Couette flow: continuation methods.

John Platt, Harvard University

— 11:00 AM-12:00 PM

Ascending the ridge: maximizing the heat flux in steady porous medium convection.

Lindsey Corson, University of Strathclyde
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Visitors

2011 GFD Staff and Visitors

Fellows:

Matthew Chantry, University of Bristol

Andrew Crosby, University of Cambridge

Martin Hoecker-Martinez, Oregon State University

Keiji Kimura, Kyoto University

Chao Ma, University of Colorado, Boulder

Guilio Mariotti, Boston University

Adele Morrison, Australian National University

John Platt, Harvard University

Samuel Potter, Princeton University

Lindsey Corson, University of Strathclyde

Zhan Wang, University of Wisconsin, Madison

Staff and Visitors:

Matthew Alford, University of Washington

Michael Allshouse, MIT

James Anderson, Stevens Institute of Technology

Alexander Balk, University of Utah

Dwight Barkley, University of Warwick

John Bowman, University of Alberta

John Burke, Boston University
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Friederich Busse, University of Bayreuth

Colm-cille Caulfield, University of Cambridge

Sergei Chernyshenko, Imperial College London

Gregory Chini, University of New Hampshire

Predrag Cvitanovic, Georgia Institute of Technology

Robert Deegan, University of Michigan

Diego Castillo-Negrete, Oak Ridge National Laboratory

Paul Dellar, University of Oxford

Charles Doering, University of Michigan

Bruno Eckhardt, Phillips-Universitat Marburg

Francesco Fedele, Georgia Institute of Technology

Jan Feys, McGill University

Boris Galperin, University of South Florida

John Gibson, University of New Hampshire

David Goluskin, Columbia University

Michael Graham, University of Wisconsin, Madison

George Hagstrom, Courant Institute of Mathematics

Phillip Hall, Imperial College London

Karl Helfrich, Woods Hole Oceanographic Institution

Daniel Henningson, KTH Royal Institute of Technology

Tomoaki Itano, Kansai University

Edward Johnson, University College London

Keith Julien, University of Colorado, Boulder

Genta Kawahara, Osaka University

Joseph Keller, Stanford University

Richard Kerswell, Bristol University

Norman Lebovitz, University of Chicago

Stefan Llewellyn Smith, University of California, San Diego

L. Mahadevan, Harvard University

Philip Morrison, University of Texas, Austin

Thomas Mullin, University of Manchester
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Joseph Parker, Brasenose College

Tobias Schneider, Harvard University

Leslie Smith, University of Wisconsin, Madison

Edward Spiegel, Columbia University

Andrew Stewart, University of Oxford

Jean-Luc Thiffeault, University of Wisconsin, Madison

Yue-King Tsang, Chinese University of Hong Kong

Laurette Tuckerman, PMMH-ESPCI

Lennaert van Veen, University of Ontario

George Veronis, Yale University

Divakar Viswanath, University of Michigan

Fabian Waleffe, University of Wisconsin, Madison

John Whitehead, Woods Hole Oceanographic Institution


