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Abstract

From a simplified analysis of adaptive methods, we de-
rive AvaGrad, a new optimizer which outperforms SGD on
vision tasks when its adaptability is properly tuned. We ob-
serve that the power of our method is partially explained
by a decoupling of learning rate and adaptability, greatly
simplifying hyperparameter search. In light of this obser-
vation, we demonstrate that, against conventional wisdom,
Adam can also outperform SGD on vision tasks, as long
as the coupling between its learning rate and adaptability
is taken into account. In practice, AvaGrad matches the
best results, as measured by generalization accuracy, de-
livered by any existing optimizer (SGD or adaptive) across
image classification (CIFAR, ImageNet) and character-level
language modelling (Penn Treebank) tasks. When training
GANs, AvaGrad improves upon existing optimizers.1

1. Introduction

Deep neural networks are notoriously difficult and costly
to train due to the non-convexity of the underlying objective
coupled with limitations of first-order methods, like vanish-
ing and shattered gradients [15, 16, 2]. Architectural designs
such as normalization layers [19, 1] and residual connections
[12] facilitate training by improving gradient statistics, and
are broadly used in practice. However, modern architectures
often contain modules with different functionalities, such
as attention heads [41] and gating mechanisms [17], whose
parameter gradients naturally present distinct statistics.

Adaptive gradient methods such as AdaGrad [8] and
Adam [21] are particularly suitable for training complex
networks, as they designate per-parameter learning rates
which are dynamically adapted based on individual gradient
statistics collected during training. Although widely adopted,
recent works have shown shortcomings in both theoretical
and practical aspects of adaptive methods, such as noncon-
vergence [34] and poor generalization [42].

Moreover, SGD is still dominant when training relatively

1AvaGrad is available at github.com/lolemacs/avagrad

simple architectures such as ResNets [12, 13] and DenseNets
[18], where model-based methods [19, 12] suffice to over-
come the obstacles of training deep networks.

A clear trend in the literature is that SGD is more com-
monly adopted in computer vision tasks, where convolu-
tional networks are prominent [35, 4, 40], while adaptive
methods are typically employed in natural language process-
ing tasks, where the most successful networks are either
recurrent [17, 30] or attention-based [7, 41]. This situation
persists despite the fact that considerable effort has been put
into the design of sophisticated adaptive methods, with the
goal of providing SGD-like performance in computer vision
tasks and formal convergence guarantees.

Newly-proposed optimizers typically offer convergence
guarantees for stochastic convex problems [34, 27, 37], but,
as we will see, either fail to match SGD’s performance when
training simpler networks, or behave similarly to SGD and
thus underperform Adam when training complex models.
The behavior of recently-proposed adaptive methods when
training deep networks is unclear due to the scarcity of non-
convex guarantees and analyses.

In this paper, we focus on the question of whether an
optimizer can be dominant in multiple domains. That is,
we are concerned with finding conditions and properties for
which an optimization method trains convolutional networks
as well as SGD, while at the same time being able to train
more complex models as well as Adam. We refer to this
property as domain-independent dominance.

We start in Section 3 by analyzing the convergence of
adaptive methods for stochastic non-convex problems, pro-
viding a sufficient condition to guarantee aO(1/

√
T ) conver-

gence rate – the same as SGD. Moreover, we later (Section 8)
propose a simple procedure that, given an arbitrary adaptive
method, produces a similar optimizer that satisfies said con-
dition and hence offers a guaranteed O(1/

√
T ) convergence

rate for stochastic non-convex problems. From this result,
we also show how Adam can provably achieve SGD-like
convergence in stochastic non-convex problems given proper
tuning of its adaptability parameter ε, and show how this
does not contradict [34].

Further inspecting the convergence rate of adaptive meth-

1

github.com/lolemacs/avagrad


ods and the relation with ε motivates AvaGrad, a new adap-
tive method that decouples the learning rate and the adapt-
ability parameter ε. In light of our theoretical results, Av-
aGrad (introduced in Section 4) is uniquely attractive as it
virtually removes the interaction between the learning rate –
the hyperparameter that requires the most tuning to achieve
strong generalization – and the adaptability parameter ε –
which we show to be strongly connected to convergence.

Section 5 demonstrates through extensive experiments
that, against conventional wisdom, Adam can be superior
to SGD when training ResNets, even in challenging tasks
such as ImageNet [36] classification. The caveat is that
achieving SGD-like performance on vision tasks requires
extensive tuning of both the learning rate and ε, inducing
high computational costs due to their interaction.

Our experiments also show that AvaGrad is not merely a
theoretical exercise, as it performs as well as both SGD and
Adam in their respectively favored usage scenarios without
requiring extensive hyperparameter tuning. Section 7 quanti-
fies these differences by measuring suboptimality w.r.t. hy-
perparameters given a fixed training budget.

Contributions. We offer marked improvements to adap-
tive optimizers, from theoretical and practical perspectives:

• We show that Adam can provably converge for non-
convex problems given a proper tuning of its adaptability
parameter ε. We address the apparent contradiction with
[34], providing new insights on the role of ε in terms of
convergence and performance of adaptive methods.

• Extensive experiments show that Adam can outperform
SGD in tasks where adaptive methods have found little
success. As suggested by our theoretical results, tuning ε
is key to achieving optimal results with adaptive methods.

• We propose AvaGrad, a theoretically-motivated adap-
tive method that decouples the learning rate α and the
adaptability parameter ε. Quantifying the hyperparame-
ter tuning cost using a zeroth-order method, we observe
that AvaGrad is significantly cheaper to tune than Adam.

Matching the generalization accuracy of SGD and other
adaptive methods across tasks and domains, AvaGrad
offers performance dominance given low tuning budgets.

2. Preliminaries

Notation. For vectors a = [a1, a2, . . . ], b =
[b1, b2, . . . ] ∈ Rd we use 1

a = [ 1
a1
, 1
a2
, . . . ] for element-wise

division,
√
a = [

√
a1,
√
a2, . . . ] for element-wise square

root, and a� b = [a1b1, a2b2, . . . ] for element-wise multi-
plication. ‖a‖ denotes the `2-norm, while other norms are
specified whenever used. The subscript t is used to denote
a vector related to the t-th iteration of an algorithm, while
i is used for coordinate indexing. When used together, t
precedes i: wt,i ∈ R denotes the i-th coordinate of wt ∈ Rd.

Stochastic Non-Convex Optimization. We consider
problems of the form

min
w∈Rd

f(w) := Es∼D [fs(w)] , (1)

where D is a probability distribution over a set S of “data
points”, fs : Rd → R are not necessarily convex and indi-
cate the instant loss for each data point s ∈ S . As is typically
done in non-convex optimization, we assume throughout the
paper that f is M -smooth, i.e. there exists M such that

‖∇f(w)−∇f(w′)‖ ≤M‖w − w′‖ (2)

for all w,w′ ∈ Rd.
We also assume that the instant losses have bounded

gradients, i.e. ‖∇fs(w)‖∞ ≤ G∞ for some G∞ and all
s ∈ S, w ∈ Rd.

Following the literature on stochastic non-convex opti-
mization [9], we evaluate optimization methods in terms of
number of gradient evaluations required to achieve small loss
gradients. We assume that the algorithm takes a sequence
of data points S = (s1, . . . , sT ) from which it sequentially
and deterministically computes iterates w1, . . . , wT , using a
single gradient evaluation per iterate.

The algorithm then constructs a distribution P(t|S) over
t ∈ {1, . . . , T}, samples t′ ∼ P and outputs wt′ . We say an
algorithm has a convergence rate of O(g(T )) if

E
[
‖∇f(wt)‖2

]
≤ O(g(T )) , (3)

where the expectation is over the draw of the T data points
S ∼ DT and the chosen iterate wt, t ∼ P(t|S).

Related Work and Adaptive Methods. We consider
methods which, at each iteration t, receive or compute a
gradient estimate gt := ∇fst(wt) and perform an update

wt+1 = wt − αt · ηt �mt , (4)

where αt ∈ R is the global learning rate, ηt ∈ Rd are the
parameter-wise learning rates, and mt ∈ Rd is the update
direction, typically defined in terms of momentum

mt = β1,tmt−1 + (1− β1,t)gt and m0 = 0 . (5)

Note that this definition includes non-momentum methods
such as AdaGrad and RMSProp, since setting β1,t = 0
yields mt = gt. While in (4) αt can always be absorbed
into ηt, our representation will be convenient throughout
the paper. SGD is a special case of (4) when ηt = ~1, and
although it offers no adaptation, it enjoys a convergence rate
of O(1/

√
T ) with either constant, increasing, or decreasing

learning rates [9]. It is widely used when training relatively
simple networks such as feedforward CNNs [12, 18].

Adaptive methods, e.g., RMSProp [6], AdaGrad [8],
Adam [21] use ηt = 1/(

√
vt + ε), with vt ∈ Rd as an expo-

nential moving average of second-order gradient statistics:

vt = β2,tvt−1 + (1− β2,t)g2t and v0 = 0 . (6)

Here, mt and ηt are functions of gt and can be non-trivially
correlated, causing the update direction ηt �mt not to be
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an unbiased estimate of the expected update. Precisely this
“bias” causes RMSProp and Adam to present nonconvergent
behavior even in the stochastic convex setting [34].

We summarize recent advances in adaptive methods as fol-
lows, where convergence rates are for stochastic non-convex
problems. [46] shows that Adam and newly-proposed Yogi
converge as O(1/T ) given a batch size of Θ(T ), a setting
that neither captures the small batch sizes used in practice
nor fits in the stochastic non-convex optimization framework
– their analysis does not yield convergence for a batch size
of 1. [5] proves a rate of O(log T/

√
T ) for AdaGrad and

AMSGrad given a decaying learning rate. [27] proposes
AdaBound, whose adaptability is decreased during training,
but its convergence is only shown for convex problems [37].

The correlation between mt and ηt is studied in [47],
which proposes making the two independent of the sample st:
the proposed method, AdaShift, is guaranteed to converge
in the convex case but at an unknown rate. [43] provides
convergence rates for a form of AdaGrad without parameter-
wise adaptation, also showing that AdaGrad converges but
at an unknown rate. [3] proposes PAdam, which matches or
outperforms SGD given proper tuning of a newly-introduced
hyparameter – in contrast with their work, we show that
even Adam can match SGD given proper tuning and without
introducing new hyperparameters.

3. The Role of Adaptivity

We start with a key observation to motivate our studies
on how adaptivity affects the behavior of adaptive methods
like Adam in both theory and practice: if we let αt = γε for
some positive scalar γ, then as ε goes to∞ we have

αt√
vt + ε

→ ~γ , (7)

where ~γ is the d-dimensional vector with all components
equal to γ, and d is the dimensionality of vt (i.e. the total
number of parameters in the system). This holds as long as
vt does not explode as ε → ∞, which is guaranteed under
the assumption of bounded gradients.

In other words, we have that adaptive methods such as
AdaGrad and Adam lose their adaptivity as ε increases, and
behave like SGD in the limit where ε → ∞ i.e. all compo-
nents of the parameter-wise learning rate vector ηt converge
to the same value. This observation raises two questions
which are central in our work:

1. How does ε affect the convergence behavior of
Adam? It has been shown that Adam does not gen-
erally converge even in the linear case [34]. However,
as ε increases it behaves like SGD, which in turn has
well-known convergence guarantees, suggesting that ε
plays a key, although overlooked, role in the conver-
gence properties of adaptive methods.

2. Is the preference towards SGD for computer vision
tasks purely due to insufficient tuning of ε? SGD
is de-facto the most adopted method when training
convolutional networks [38, 39, 12, 13, 45, 44], and
it is belived that it offers better generalization than
adaptive methods [42]. Morever, recently proposed
adaptive methods such as AdaBelief [48] and RAdam
[25] claim success while underperforming SGD on Im-
ageNet. However, it is not justified to view SGD as
naturally better suited for computer vision, because
SGD itself can be seen as a special case of Adam.

On the Convergence of Adam, Revisited. We focus on
the first question regarding how the convergence behavior of
Adam changes with ε. As mentioned previously, Reddi et
al. [34] has shown that Adam can fail to converge in the
stochastic convex setting. The next Theorem, stated infor-
mally, shows that Adam’s nonconvergence also holds in the
stochastic non-convex case, when convergence is measured
in terms of stationarity instead of suboptimality:

Theorem 1. (informal, full version in Appendix B) There
exists a stochastic optimization problem (which depends on
ε) for which Adam does not converge to a stationary point.

Note that the problem is constructed adversarially in
terms of ε. The problem considered in Theorem 3 of Reddi et
al. [34], used to show Adam’s nonconvergence, has no de-
pendence on ε because the proof assumes that ε = 0.

The next result, also stated informally, shows that for
stochastic non-convex problems that do not depend on ε,
Adam actually converges like SGD as long as ε is large
enough (or, alternatively, increases during training):

Theorem 2. (informal, full version in Appendix E) Adam
converges at a O(1/

√
T ) rate for stochastic non-convex

problems as long as ε is large enough (as a function of
the total number of iterations / desired stationarity) or is
increased during training (at a rate of

√
t or faster).

Together, the two theorems above give a precise charac-
terization of how ε affects the theoretical behavior of Adam
and other adaptive methods: not only is convergence ensured
but a SGD-like rate of O(1/

√
T ) is guaranteed as long as ε

is large enough. While Adam behaves like SGD in the limit
ε→∞, we show that it suffices for ε to be O(

√
T ) to guar-

antee a SGD-like convergence rate. We believe Theorem 2 is
more informative than Theorem 1 for characterizing Adam’s
behavior, as convergence analyses in the optimization litera-
ture typically consider non-adversarial examples.

4. AvaGrad: A New Adaptive Optimizer
We now introduce AvaGrad, a novel adaptive method

presented as pseudo-code in Algorithm 1. We describe Av-
aGrad in this section, but defer its principled motivation to
Section 6. Section 5 first presents an experimental study
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Algorithm 1 AVAGRAD

Input: w1 ∈ Rd, αt, ε > 0, β1,t, β2,t ∈ [0, 1)

1: Set m0 = 0, v0 = 0
2: for t = 1 to T do
3: Draw st ∼ D
4: Compute gt = ∇fst(wt)
5: mt = β1,tmt−1 + (1− β1,t)gt
6: ηt = 1√

vt−1+ε

7: wt+1 = wt − αt · ηt

‖ηt/√d‖
2

�mt

8: vt = β2,tvt−1 + (1− β2,t)g2t
9: end for

comparing different optimizers, demonstrating AvaGrad’s
effectiveness across a variety of tasks and domains.

The key difference between AvaGrad and Adam lies in
how the parameter-wise learning rates ηt are computed and
their influence on the optimization dynamics. In particu-
lar, AvaGrad adopts a normalized vector of parameter-wise
learning rates, which we later show to be advantageous in
multiple aspects: it yields better performance and easier hy-
perparameter tuning in practice, while in theory it results in
better convergence rate guarantees.

For convenience, we also account for the dimensionality
d of ηt (i.e. the total number of parameters in the system)
when performing normalization: more specifically, we divide
ηt by ‖ηt/

√
d‖2 in the update rule, which is motivated by

fact that the norm of random vectors increases as
√
d, and

also observed to be experimentally robust to changes in
d (e.g., networks with different sizes). Alternatively, this
normalization can be seen as acting on the global learning
rate αt instead, in which case AvaGrad can be seen as adding
an internal, dynamic learning rate schedule for Adam.

Lastly, AvaGrad also differs from Adam in the sense that
it updates vt, the exponential moving average of gradients’
second moments, after the update step. This implies that
parameters are updated according to the second-order esti-
mate of the previous step i.e. there is a 1-step delay between
second-order estimates and parameter updates. Such delay
is fully motivated by theoretical analyses, and our prelimi-
nary experiments suggest that it does not impact AvaGrad’s
performance on natural tasks.

5. The Value of Adaptive Gradient Methods
We turn focus to the second question raised in Section 3,

on whether tuning ε suffices to achieve SGD-like empirical
performance regardless of the underlying task and domain.

5.1. Image Classification

We study how adaptive methods perform in computer
vision tasks where SGD is the dominant approach – in partic-
ular, image classification on the CIFAR [22] and ImageNet

[36] datasets, tasks where the state-of-the-art has been con-
sistently surpassed by methods that adopt SGD. Unlike other
works in the literature, we perform extensive hyperparameter
tuning on ε (while also tuning the learning rate α): following
our observation that Adam behaves like SGD when ε is large,
we should expect adaptive methods to perform comparably
to SGD if hyperparameter tuning explores large values for ε.

For all experiments we consider the following popular
adaptive methods: Adam [21], AMSGrad [34], AdaBound
[27], AdaShift [47], RAdam [25], AdaBelief [48], and
AdamW [26]. We also report results of AvaGrad, our newly-
proposed adaptive method, along with its variant with decou-
pled weight decay [26], which we refer to as AvaGradW.

CIFAR. We train a Wide ResNet-28-4 [45] on the CIFAR
dataset [22], which consists of 60,000 RGB images with
32× 32 pixels, and comes with a standard train/test split of
50,000 and 10,000 images. Following [45], we normalize
images prior to training. We augment the training data with
horizontal flips and by sampling 32× 32 random crops after
applying a 4-pixel padding to the images.

We adopt the same learning rate schedule as [45], decay-
ing α by a factor of 5 at epochs 60, 120 and 160 – each
network is trained for a total of 200 epochs on a single GPU.
We use a weight decay of 0.0005, a batch size of 128, a
momentum of 0.9 for SGD, and β1 = 0.9, β2 = 0.999 for
each adaptive method.

We select a random subset of 5,000 samples from CIFAR-
10 to use as the validation set when tuning α and ε of each
adaptive method. We perform grid search over a total of 441
hyperparameter settings, given by all combinations of ε ∈
{10−8, 2·10−8, 10−7, . . . , 100} and α ∈ {5·10−7, 10−6, 5·
10−6, . . . , 5000}.

Results of our hyperparameter tuning procedure agree
with our hypothesis: for this specific setting, adaptive meth-
ods perform best with aggressive values for ε, ranging from
0.1 (Adam, AMSGrad) to 10.0 (AvaGrad, AdamW) – values
drastically larger then the default ε = 10−8. In terms of
the learning rate, Adam and AMSGrad perform best with
α = 0.1, a value 100 times larger than the default.

Next, we fix the best (α, ε) values found for each method
and train a Wide ResNet-28-10 on both CIFAR-10 and
CIFAR-100, this time evaluating the test performance. We
do not re-tune α and ε for adaptive methods due to the prac-
tical infeasibility of training a Wide ResNet-28-10 roughly
8000 times. We tune the learning rate α of SGD using the
same search space as before, and confirm that the learning
rate α = 0.1 commonly adopted when training ResNets
[12, 13, 45] performs best in this setting.

The leftmost columns of Table 1 present results: on
CIFAR-10, SGD (3.86%) is outperformed by Adam
(3.64%) and AvaGrad (3.80%), while on CIFAR-100 Adam
(18.96%), AMSGrad (18.97%), AdaShift (18.88%), Ava-
Grad (18.76%), and AvaGradW (19.04%) all outperform
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SGD (19.05%). These results disprove the conventional wis-
dom that adaptive methods are not suited for computer vision
tasks such as image classification. While tuning ε, a step typ-
ically overlooked or skipped altogether in practice, suffices
for adaptive methods to outperform SGD (and hence can be
a confounding factor in comparative studies), our results also
suggest that adaptive methods might require large compute
budgets for tuning to perform optimally on some tasks.

ImageNet. To further validate that adaptive methods
can indeed outperform SGD in settings where they have not
been historically successful, we consider the challenging
task of training a ResNet-50 [13] on the ImageNet dataset
[36]. The task consists of 1000-way classification given
1.2M training and 50,000 validation images. Following [11],
we perform scale/color transformations for training and use
single 224× 224 crops to compute the top-1 validation error.

We transfer the hyperparameters from our CIFAR experi-
ments for all methods. The network is trained for 100 epochs
with a batch size of 256, split between 4 GPUs, where the
learning rate α is decayed by a factor of 10 at epochs 30, 60
and 90, and we also adopt a weight decay of 10−4. Note
that the learning rate of 0.1 adopted for SGD agrees with
prior work that established new state-of-the-art results on
ImageNet with residual networks [12, 13, 44].

SGD yields 24.01% top-1 validation error, underper-
forming Adam (23.45%), AMSGrad (23.46%), RAdam
(23.60%), AvaGrad (23.58%) and AvaGradW (23.49%), i.e.
5 out of the 8 adaptive methods evaluated on this task. We
were unable to train with AdaShift due to memory con-
straints: since it keeps a history of past gradients, our GPUs
ran out of memory even with a reduced batch size of 128,
meaning that circumventing the issue with gradient accumu-
lation would result in considerably longer training time.

The third column of Table 1 summarizes the results.
In contrast to numerous papers that surpassed the state-
of-the-art on ImageNet by training networks with SGD
[38, 39, 12, 13, 45, 44], our results show that adaptive meth-
ods can yield superior results in terms of generalization
performance as long as ε is appropriately chosen. Most
strikingly, Adam outperforms AdaBound, RAdam, and Ad-
aBelief: sophisticated methods whose motivation lies in
improving the performance of adaptive methods.

5.2. Language Modelling

We now consider a task where state-of-the-art results
are achieved by adaptive methods with small values for ε
and where SGD has little success: character-level language
modelling with LSTMs [17] on the Penn Treebank dataset
[29, 31]. We adopt the 3-layer LSTM [17] model from
Merity et al. [30] with 300 hidden units per LSTM layer.

We first perform hyperparameter tuning over all com-
binations of ε ∈ {10−8, 5 · 10−7, . . . , 100} and α ∈ {2 ·
10−4, 10−3, . . . , 20}, training each model for 500 epochs

and decaying α by 10 at epochs 300 and 400. Since ε affects
AdaBelief differently and its official codebase recommends
values as low as 10−16 for some tasks 2, we adopt a search
space where candidate values for ε are smaller by a factor of
10−8 i.e. starting from 10−16 instead of 10−8.

We use a batch size of 128, BPTT length of 150, and
weight decay of 1.2×10−6. We also employ dropout with the
recommended settings for this model [30]. Not surprisingly,
our tuning procedure returned small values for ε as being
superior for adaptive methods, with Adam, AMSGrad, and
AvaGrad performing optimally with ε = 10−8.

Next, we train the same 3-layer LSTM but with 1000
hidden units, transferring the (α, ε) configuration found by
our tuning procedure. For SGD, we again confirmed that the
transferred learning rate performed best on the validation set
when training the wider model.

Results in Table 1 show that only AvaGrad and Ava-
GradW outperform Adam, achieving test BPCs of 1.179
and 1.175 compared to 1.182. Combined with the previous
results, we validate that, depending on the underlying task,
adaptive methods might require vastly different values for ε
to perform optimally, but, given enough tuning, are indeed
capable of offering best overall results across domains.

We also observe that AdaBound, RAdam, and AdaBelief
all visibly underperform Adam in this setting where adap-
tivity (small ε) is advantageous, even given extensive hyper-
parameter tuning. RAdam, and more noticeably AdaBound,
perform poorly in this task. We hypothesize that this is re-
sult of RAdam incorporating learning rate warmup (see Ma
& Yarats [28] for more details), which is not typically em-
ployed when training LSTMs, and AdaBound’s adoption of
SGD-like dynamics early in training [37].

5.3. Generative Adversarial Networks

Finally, we consider a task where adaptivity is not only
advantageous, but often seen as necessary for successful
training: generative modelling with GANs. We train a Geo-
metric GAN [24], i.e. a DCGAN model [33] with the hinge
loss, on the CIFAR-10 dataset to perform image generation.
We do not apply gradient penalties.

We adopt a batch size of 64 and train the networks for a to-
tal of 60,000 steps, where the discriminator is updated twice
for each generator update. We train the GAN model with the
same optimization methods considered previously, perform-
ing hyperparameter tuning over ε ∈ {10−8, 10−6, 10−4}
and α ∈ {10−5, 2 · 10−5, 10−4, . . . , 0.1} for each adaptive
method, and α ∈ {10−6, 2 · 10−6, 10−5, . . . , 1.0} for SGD.

The performance of each model is measured in terms of
the Fréchet Inception Distance (FID) [14] computed from
a total of 10,000 generated images. Results are summa-
rized in Table 1, showing that AvaGrad offers a signifi-
cant improvement in terms of FID over all other methods,
2github.com/juntang-zhuang/Adabelief-Optimizer, ver. 9b8bb0a
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Table 1: Test performance of standard models on benchmark tasks, when trained with different optimizers. Gray background
indicates the optimization method (baseline) adopted by the paper that proposed the corresponding network model. The
best task-wise results are in bold, while other improvements over the baselines are underlined. Numbers in parentheses
indicate standard deviation over three runs. Across tasks, AvaGrad closely matches or exceeds the results delivered by existing
optimizers, and offers notable improvement in FID when training GANs.

CIFAR-10
Test Err%

CIFAR-100
Test Err %

ImageNet
Val Err %

Penn Treebank
Test BPC ↓

Penn Treebank
Test BPC ↓

CIFAR-10
FID ↓

Model WRN 28-10 WRN 28-10 ResNet-50 3xLSTM(300) 3xLSTM(1000) GGAN

SGD 3.86 (0.08) 19.05 (0.24) 24.01 1.403 (0.000) 1.237 (0.000) 133.0
Adam 3.64 (0.06) 18.96 (0.21) 23.45 1.378 (0.001) 1.182 (0.000) 43.0
AMSGrad 3.90 (0.17) 18.97 (0.09) 23.46 1.384 (0.001) 1.187 (0.001) 41.3
AdaBound 5.40 (0.24) 22.76 (0.17) 27.99 4.346 (0.000) 2.891 (0.041) 247.3
AdaShift 4.08 (0.11) 18.88 (0.06) OOM 1.399 (0.006) 1.199 (0.001) 43.7
RAdam 3.89 (0.09) 19.15 (0.13) 23.60 1.401 (0.002) 1.349 (0.003) 42.5
AdaBelief 3.98 (0.07) 19.08 (0.09) 24.11 1.379 (0.001) 1.198 (0.000) 44.8
AdamW 4.11 (0.17) 20.13 (0.22) 26.70 1.398 (0.002) 1.227 (0.003) —

AvaGrad 3.80 (0.02) 18.76 (0.20) 23.58 1.375 (0.000) 1.179 (0.000) 35.3
AvaGradW 3.97 (0.02) 19.04 (0.37) 23.49 1.375 (0.001) 1.175 (0.000) —

achieving an improvement of 7.7 FID over Adam (35.3
against 43.0). Note that the performance achieved by Adam
matches other sources3 [20], and Adam performed best with
α = 0.0002, ε = 10−6 in our experiments, closely matching
the commonly-adopted values in the literature.

6. Decoupling α and ε with AvaGrad
The results in the previous section establish the impor-

tance of optimizing ε when using adaptive methods, and how
not tuning ε can be a confounding factor when comparing
different adaptive optimizers.

A key obstacle to proper tuning of ε is its interaction with
the learning rate α: as discussed in Section 3, ‘emulating’
SGD with a learning rate γ can be done by setting α = γε in
Adam and then increasing ε: once its value is large enough
(compared to vt), scaling up ε any further will not affect
Adam’s behavior as long as α is scaled up by the same
multiplicative factor. Conversely, when ε is small (compared
to components of vt), we have that

√
vt + ε ≈ √vt, hence

decreasing ε even further will not affect the optimization
dynamics as long as α remains fixed.

This suggests the existence of two distinct regimes for
Adam (and other adaptive methods): an adaptive regime,
when ε is small and there is no interaction between α and ε,
and a non-adaptive regime, when ε is large and the learning
rate α must scale linearly with ε to preserve the optimization
dynamics. The exact phase transition is governed by vt i.e.
the second moments of the gradients, which depends not
only on the task but also on the model.

3github.com/POSTECH-CVLab/PyTorch-StudioGAN
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Figure 1: Performance of Adam and AvaGrad with different
learning rate α and adaptability parameter ε, measured in
terms of validation error on CIFAR-10 of Wide ResNet 28-4.
Best performance is achieved with low adaptability/large ε.

By normalizing the parameter-wise learning rates ηt at
each iteration, AvaGrad guarantees that the magnitude of
the effective learning rates is independent of ε, essentially
decoupling it from α. With AvaGrad, α governs optimization

6

github.com/POSTECH-CVLab/PyTorch-StudioGAN


Random
Search

Particle
Swarm

Parzen
(SMBO)

CMA-ES GLD CGLD
0

10

20

30

40

50

60

70

80

90

100

I
t
e
r
s

t
o

g
e
t

0.
5%

s
u
b
o
p
t
i
m
a
l
i
t
y

AvaGrad

Adam

0 10 20 30 40 50 60 70 80 90 100

t

0

1

2

3

4

5

L
(α
t
,ε
t
)
−
L

(α
∗ ,
ε∗

)

Adam (GLD)

AMSGrad (GLD)

AvaGrad (GLD)

Adam (CGLD)

AMSGrad (CGLD)

AvaGrad (CGLD)

Figure 2: Left: Iterations to achieve 0.5% suboptimality, measured in terms of
validation accuracy on CIFAR-10, for Adam and AvaGrad when tuning α and ε
with various standard hyperparameter optimizers. Right: Suboptimality (gap in
validation accuracy) when optimizing α and ε with GLD/CGLD, as a function
of trials (i.e. validation accuracy evaluations for a value of (α, ε)): AvaGrad is
significantly cheaper to tune than Adam, being especially efficient when adopting
Coordinate GLD due to its hyperparameter separability.

0 1 2 3 4 5
t ×107

0.0

0.2

0.4

0.6

0.8

1.0

1 t

∑
t t′

=
1
‖∇

f
(w

t′
)‖

2

Adam

AMSGrad

Delayed Adam

Adam+dynamic εt

Figure 3: The mean gradient norm as
function of the iteration t when optimiz-
ing Equation (11). Matching our theo-
retical results, Delayed Adam and Adam
with dynamic εt both converge, while
Adam fails to converge.

dynamics in both regimes: when ε is small, changing its
value has negligible impact on ηt and ‖ηt‖, hence the updates
will be the same, while in the non-adaptive regime we have
that ηt ≈ [ 1ε ,

1
ε , . . . ] and ‖ηt/

√
d‖2 ≈ 1

ε , hence normalizing
ηt yields an all-ones vector regardless of ε (as long as it
remains large enough compared to all components of vt).

Figure 1 shows the performance of a Wide ResNet 28-4
on CIFAR-10 when trained with Adam and AvaGrad, for
different (α, ε) configurations i.e. the grid search employed
in Section 5.1. For Adam, the non-adaptive regime is indeed
characterized by a linear relation between α and ε, while its
performance in the adaptive regime depends mostly on α
alone. AvaGrad offers decoupling between the two parame-
ters, with α precisely characterizing the non-adaptive regime
(i.e. the performance is independent of ε) while almost fully
describing the adaptive regime as well, except for regions
close to the phase transition. For each of the 21 different
values of ε, AvaGrad performed best with α = 1.0.

7. Separability & Hyperparameter Tuning
To assess our hypothesis that AvaGrad offers hyperpa-

rameter decoupling, which enables α and ε to be tuned inde-
pendently via two line-search procedures instead of a grid
search, we compare tuning costs of Adam and AvaGrad with
prominent hyperparameter optimization methods such as
Parzen Trees and CMA-ES. We also consider Gradientless
Descent (GLD) [10], a powerful zeroth-order method.

We frame the task of tuning α and ε as a 2D optimization
problem with a 21×21 discrete domain representing all (α, ε)
configurations explored in Section 5.1, with the minimization
objective being the error of a Wide ResNet-28-4 on CIFAR-
10 when trained with the corresponding (α, ε) values.

Figure 2 (left) shows the number of iterations required
by different hyperparameter optimizers to achieve 0.5% sub-
optimality i.e. an error at most 0.5% higher than the lowest
achieved in the grid. AvaGrad is significantly cheaper to

tune than Adam, regardless of the adopted tuning algorithm,
including random search – showing that AvaGrad is able to
perform well with a wider range of hyperparameter values.

We also consider a variant of GLD where descent steps
on α and ε are performed separately in an alternating manner,
akin to coordinate descent [23, 32]. This variant, which we
denote by CGLD, is in principle well-suited for problems
where variables have independent contributions to the ob-
jective, as is approximately the case for AvaGrad. Results
are given in Figure 2 (right): AvaGrad achieves less than 1%
suboptimality in 13 iterations when tuned with CGLD, while
Adam requires 74 with GLD. As expected, coordinate-wise
updates result in considerably faster tuning for AvaGrad.

8. Theoretical Foundations
Finally, we present a theoretical analysis on the conver-

gence of adaptive methods, but taking a different approach
from the one considered in Section 3: instead of analyz-
ing how ε affects the convergence of Adam, here we focus
on better understanding why Adam can fail to converge for
problems that depend on its hyperparameter settings.

We first note that the ‘adversarial’ problems designed to
show Adam’s nonconvergence in Theorem 3 of Reddi et
al. [34] and our Theorem 1 exploit the correlation between
mt and ηt to guarantee that Adam takes overly conserva-
tive steps when presented with rare samples that contribute
significant to the objective.

While Reddi et al. already propose a modification for
Adam that guarantees its convergence, it relies on explicitly
constraining the parameter-wise learning rates ηt to be point-
wise decreasing which can harm the method’s adaptiveness.
We present a simple way to directly circumvent the fact that
mt and ηt are correlated without constraining ηt, guaran-
teeing a O(1/

√
T ) rate for stochastic non-convex problems

while being applicable to virtually any adaptive method.
Our modification consists of employing a 1-step delay
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in the update of ηt, or equivalently replacing ηt by ηt−1
in the method’s update rule for wt+1. Although there is
still statistical dependence between mt and vt, this ensures
that ηt is independent of the current sample st, which the
following result shows to suffice for SGD-like convergence:

Theorem 3. Assume that f is smooth and fs has bounded
gradients for all s ∈ S. For any optimization method that
performs updates following (4) such that ηt is independent
of st and L ≤ ηt,i ≤ H for positive constants L and H ,
setting αt = α′/

√
T yields

E
[
‖∇f(wt)‖2

]
≤ O

(
1

L
√
T

(
1

α′
+ α′H2

))
, (8)

where wt is uniformly sampled from {w1, . . . , wT }.
Moreover, if st is independent of Z :=

∑T
t=1 αt mini ηt,i,

then setting αt = α′t/
√
T yields

E
[
‖∇f(wt)‖2

]

≤ O
(

1√
T
· E
[∑T

t=1 1 + α′t
2 ‖ηt‖2∑T

t=1 α
′
t mini ηt,i

])
,

(9)

where wt is sampled from p(t) ∝ αt ·mini ηt,i.

The bound in (9) depends on the learning rate αt and on
both the squared norm and smallest value of the parameter-
wise learning rate ηt, namely ‖ηt‖2 and mini ηt,i, enabling
us to analyze how the relation between αt and ηt affects the
convergence rate, including how the rate can be improved by
adopting a learning rate αt that depends on ηt.

Setting α′t = ‖ηt‖−1 yields a bound on the convergence
rate of

O
( √

T
∑T
t=1

mini ηt,i
‖ηt‖

)
(10)

Note that such bound is stronger than the one in (8): given
constants L and H as in Theorem 3, we have L ≤ mini ηt,i
and ‖ηt‖ ≤

√
dH , yielding an upper bound of O(H/L

√
T )

that matches (8) when α′ = H−1.
Note that, for ηt = 1/(

√
vt + ε), having α′t = ‖ηt‖−1 is

equivalent to normalizing ηt prior to each update step, which
is precisely how we arrived at AvaGrad’s update rule (with
the exception of accounting the d, the dimensionality of ηt,
when performing normalization).

Additionally, Theorem 3 predicts the existence of two
distinct regimes in the behavior of Adam-like methods. Tak-
ing α′ = Θ(H−1) minimizes the bound in (8) and yields
a rate of O( 1√

T
H
L ) = O

(
1√
T

max
(
1, G∞ε

))
once we take

L = (G∞ + ε)−1 and H = ε−1, which can be shown to
satisfy L ≤ ηt,i ≤ H for Adam-like methods.

In this case, the convergence rate depends on G∞
ε , or,

informally, how vt compares to ε (G∞ is an upper bound on

the magnitude of the gradients, hence directly connected to
vt). This closely matches the empirical results presented in
Figure 1, which shows two visible phases with a transition
around ε = 10−3.

Lastly, we demonstrate our convergence results in Theo-
rems 2 and 3 experimentally by employing Adam, AMSGrad,
Adam with a 1-step delay (Delayed Adam), and Adam with
εt =

√
t3, on a synthetic problem with the same form as the

one used in the proof of Theorem 1:

min
w∈[0,1]

f(w), fs(w) =

{
999w

2

2 , w.p. 1
500

−w, otherwise
(11)

where f(w) := E [fs(w)].
This problem admits a stationary point w? ≈ 0.5, and

satisfies Theorem 5 for β1 = 0, β2 = 0.99, ε = 10−8. Fig-
ure 3 presents 1

t

∑t
t′=1 ‖∇f(wt′)‖2 during training, and

shows that Adam fails to converge (Theorem 1), while both
Delayed Adam and dynamic Adam converge successfully
(Theorem 3 and Theorem 2). We attribute the faster con-
vergence of Delayed Adam to the lack of constraints on the
parameter-wise learning rates.

9. Conclusion

Adaptive methods are widely used when training complex
architectures, but are far from being well-understood in the-
ory and practice. Our theoretical results show that adaptive
methods enjoy a SGD-like convergence under a constraint
on how parameter-wise learning rates are computed from
samples, motivating a simple and universal modification to
provide convergence guarantees to arbitrary adaptive meth-
ods. Our analysis also suggests a sensible connection be-
tween the learning rate α, the adaptability parameter ε, and
the magnitude of the stochastic gradients.

Experimentally, we show that, contrary to prior beliefs,
adaptive methods can outperform SGD even on challenging
tasks such as ImageNet – given a large enough budget for
hyperparameter tuning. We identify hyperparameter tuning
as a key concern in understanding and designing adaptive
methods, and propose AvaGrad, a theoretically-motivated
method that decouples α and ε.

AvaGrad enables cheap of tuning of α and ε with coordi-
nate zeroth-order methods, requiring a fraction of time taken
by other optimizers. Being able to outperform competing
methods while offering efficient hyperparameter tuning, Av-
aGrad can be a valuable tool for practitioners with limited
computational resources.
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Appendix
A. Additional Plots
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Figure 4: Performance of Adam and AvaGrad with different learning rate α and adaptability parameter ε, measured in terms of
validation BPC (lower is better) on PTB of a 3-layer LSTM. Best performance is achieved with high adaptability/small ε.

B. Full Statement and Proof of Theorem 1
Theorem 4. For any ε ≥ 0 and constant β2,t = β2 ∈ [0, 1), there is a stochastic optimization problem for which Adam does
not converge to a stationary point.

Proof. Consider the following stochastic optimization problem:

min
w∈[0,1]

f(w) := Es∼D [fs(w)] fs(w) =

{
C w2

2 , with probability p := 1+δ
C+1

−w, otherwise
, (12)

where δ is a positive constant to be specified later, and C > 1−p
p > 1 + ε

w1

√
1−β2

is another constant that can depend on δ, β2
and ε, and will also be determined later. Note that∇f(w) = pCw − (1− p), and f is minimized at w? = 1−p

Cp = C−δ
C(1+δ) .

The proof follows closely from [34]. We assume w.l.o.g. that β1 = 0. We first consider the difference between two
consecutive iterates computed by Adam with a constant learning rate α:

∆t = wt+1 − wt = −α gt√
vt + ε

= −α gt√
β2vt−1 + (1− β2)g2t + ε

, (13)

and then we proceed to analyze the expected change in iterates divided by the learning rate. First, note that with probability p
we have gt = ∇(C

w2
t

2 ) = Cwt, and while gt = ∇(−w) = −1 with probability 1− p. Therefore, we have

E [∆t]

α
=

E [wt+1 − wt]
α

= −E
[

gt√
β2vt−1 + (1− β2)g2t + ε

]

= pE




−Cwt√
β2vt−1 + (1− β2)C2w2

t + ε︸ ︷︷ ︸
T1


+ (1− p)E




1√
β2vt−1 + (1− β2) + ε︸ ︷︷ ︸

T2


 ,

(14)

where the expectation is over all the randomness in the algorithm up to time t, as all expectations to follow in the proof. We
will proceed by computing lower bounds for the terms T1 and T2 above. Note that T1 = 0 for wt = 0, while for wt > 0 we
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can bound T1 by

T1 =
−Cwt√

β2vt−1 + (1− β2)C2w2
t + ε

≥ −Cwt√
(1− β2)C2w2

t

=
−1√

1− β2
. (15)

Combining the cases wt = 0 and wt > 0 (note that the feasible region is w ∈ [0, 1]), we have that, generally, T1 ≥
min(0, −1√

1−β2
) = −1√

1−β2
.

Next, we bound the expected value of T2 using Jensen’s inequality coupled with the convexity of x−1/2 as

E [T2] = E

[
1√

β2vt−1 + 1− β2 + ε

]
≥ 1√

β2E [vt−1] + 1− β2 + ε
. (16)

Let us consider E [vt−1] now. Note that

vt−1 = β2vt−2 + (1− β2)g2t−1

= β2
(
β2vt−3 + (1− β2)g2t−2

)
+ (1− β2)g2t−1

= β2
2vt−3 + β2(1− β2)g2t−2 + (1− β2)g2t−1

= β2
2

(
β2vt−4 + (1− β2)g2t−3

)
+ β2(1− β2)g2t−2 + (1− β2)g2t−1

= β3
2vt−4 + β2

2(1− β2)g2t−3 + β2(1− β2)g2t−2 + (1− β2)g2t−1
...

= βt−12 v0 + βt−22 (1− β2)g21 + βt−32 (1− β2)g22 + · · ·+ (1− β2)g2t−1

= (1− β2)

t−1∑

i=1

βt−i−12 g2i ,

(17)

where we used the fact that v0 = 0 (i.e. the second-moment estimate is initialized as zero).
Taking the expectation of the above expression for vt−1, we get

E [vt−1] = (1− β2)

t−1∑

i=1

βt−i−12 E
[
g2i
]

= (1− β2)

t−1∑

i=1

βt−i−12

(
1− p+ pC2E

[
w2
t

])
,

(18)

where we can use the fact that wt ∈ [0, 1], so w2
t ≤ 1 to get

E [vt−1] ≤ (1− β2)

t−1∑

i=1

βt−i−12

(
1− p+ pC2

)

= (1− β2)
(
1− p+ pC2

) t−1∑

i=1

βt−i−12

= (1− β2)
(
1− p+ pC2

) t−2∑

i=0

βi2

=
(
1− p+ pC2

) t−2∑

i=0

(
βi2 − βi+1

2

)

=
(
1− p+ pC2

) (
1− βt−12

)

≤ (1 + δ)C2 ,

(19)

where
∑t−2
i=0

(
βi2 − βi+1

2

)
= 1− βt−12 follows from the fact that the sum telescopes.
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Plugging the above bound in (16) yields

E [T2] ≥ 1√
β2(1 + δ)C + 1− β2 + ε

(20)

Combining the bounds for T1 and T2 in (14) gets us that

E [∆t]

α
≥ 1 + δ

C + 1

−1√
1− β2

+

(
1− 1 + δ

C + 1

)
1√

β2(1 + δ)C + 1− β2 + ε
(21)

Now, recall that w? = C−δ
C(1+δ) , so for C sufficiently large in comparison to δ we get w? ≈ 1

1+δ . On the other hand, the
above quantity can be made non-negative for large enough C, so E [wt] ≥ E [wt−1] ≥ · · · ≥ w1. In other words, Adam will,
in expectation, update the iterates towards w = 1 even though the stationary point is w∗ ≈ 1

1+δ and we have ‖∇f(1)‖2 = δ

at w = 1. Setting δ = 1, for example, implies that limT→∞ 1
T

∑T
t=1 E

[
‖∇f(wt)‖2

]
= 1, and hence Adam presents

nonconvergence in terms of stationarity. To see that w = 1 is not a stationary point due to the feasibility constraints, check that
∇f(1) = 1 > 0: that is, the negative gradient points towards the feasible region.

C. Technical Lemmas
This section presents intermediate results that are used in the proofs given in the next sections.
For simplicity we adopt the following notation for all following results:

Ht = max
i
ηt,i Lt = min

i
ηt,i , (22)

where ηt ∈ Rd denotes the parameter-wise learning rates computed at iteration t (the method being considered and consequently
the exact expression for ηt will be specified in each result).

For the following Lemmas we rely extensively on the assumption that ‖∇fs(w)‖∞ ≤ G∞ for some constant G∞, and also
that this assumption implies that there exists G2 such that ‖∇fs(w)‖ ≤ G2 for all s ∈ S and w ∈ Rd, which can be seen by
noting that

‖∇fs(w)‖ =

(
d∑

i=1

(∇fs(w))2i

) 1
2

≤
(
d ‖∇fs(w)‖2∞

) 1
2

=
√
d · ‖∇fs(w)‖∞ ≤

√
d ·G∞ , (23)

hence such constant G2 must exist as any G2 ≥
√
d ·G∞ satisfies ‖∇fs(w)‖ ≤ G2.

Lemma 1. Assume that there exists a constant G∞ such that ‖∇fs(w)‖∞ ≤ G∞ for all s ∈ S and w ∈ Rd, and let G2 be a
constant such that ‖∇fs(w)‖ ≤ G2 for all s ∈ S and w ∈ Rd. Moreover, assume that β1,t ∈ [0, 1) for all t ∈ N.

Let mt ∈ Rd be given by
mt = β1,tmt−1 + (1− β1,t)gt and m0 = 0 ,

where β1,t ∈ [0, 1) for all t ∈ N.
Then, we have

‖mt‖∞ ≤ G∞ and ‖mt‖ ≤ G2

for all t ∈ N and all possible sample sequences (s1, . . . , st) ∈ St.
Proof. Assume for the sake of contradiction that ‖mt‖∞ > G∞ for some t ∈ N and some sequence of samples (s1, . . . , st).
Moreover, assume w.l.o.g. that ‖mt′‖∞ ≤ G∞ for all t′ ∈ {1, . . . , t− 1} and note that there is no loss of generality since
(mt′)

t
t′=0 must indeed have a first element that satisfies ‖mt′‖∞ > G∞, which cannot be m0 since we have m0 = 0 by

definition.
Then, we have that mt,i > G∞ for some i ∈ [d], but

mt,i = β1,tmt−1,i + (1− β1,t)gt,i
≤ β1,t ‖mt−1‖∞ + (1− β1,t) ‖gt‖∞
≤ β1,tG∞ + (1− β1,t)G∞
= G∞ ,

(24)
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where we used β1,t ∈ [0, 1) and the assumptions ‖mt−1‖∞ ≤ G∞ and ‖gt‖∞ ≤ G∞.

To show that ‖mt‖ ≤ G2, note that if we assume ‖mt‖ > G2 and ‖mt′‖ ≤ G2 for all t′ ∈ {1, . . . , t− 1}, we again get a
contradiction since, by the triangle inequality,

‖mt‖ = ‖β1,tmt−1 + (1− β1,t)gt‖
≤ β1,t ‖mt−1‖+ (1− β1,t) ‖gt‖
≤ β1,tG2 + (1− β1,t)G2

= G2 ,

(25)

therefore it must indeed follow that ‖mt‖ ≤ G2.

Lemma 2. Assume that there exists a constant G∞ such that ‖∇fs(w)‖∞ ≤ G∞ for all s ∈ S and w ∈ Rd, and let G2 be a
constant such that ‖∇fs(w)‖ ≤ G2 for all s ∈ S and w ∈ Rd. Moreover, assume that β2,t ∈ [0, 1) for all t ∈ N.

Let vt ∈ Rd be given by

vt = β2,tvt−1 + (1− β2,t)g2t and v0 = 0 ,

where β2,t ∈ [0, 1) for all t ∈ N.

Then, we have

‖vt‖∞ ≤ G2
∞ and ‖vt‖ ≤ G2

2

for all t ∈ N and all possible sample sequences (s1, . . . , st) ∈ St.

Proof. The proof follows closely from the one of Lemma 1. Assume for the sake of contradiction that there exists t ∈ N and
some sequence of samples (s1, . . . , st) such that ‖vt‖∞ > G2

∞ and ‖vt′‖∞ ≤ G2
∞ for all t′ ∈ {1, . . . , t− 1}.

Then vt,i > G2
∞ for some i ∈ [d] but

vt,i = β2,tvt−1,i + (1− β2,t)g2t,i
≤ β2,t ‖vt−1‖∞ + (1− β2,t) ‖gt‖2∞
≤ β2,tG2

∞ + (1− β2,t)G2
∞

= G2
∞ ,

(26)

where we used β2,t ∈ [0, 1) and the assumptions ‖vt−1‖∞ ≤ G2
∞ and ‖gt‖∞ ≤ G∞, which raises a contradiction and shows

that indeed ‖vt‖∞ ≤ G2
∞.

For the `2 case, assume that ‖vt‖ > G2
2 and ‖vt′‖ ≤ G2

2 for all t′ ∈ {1, . . . , t− 1}, which yields

‖vt‖ =
∥∥β2,tvt−1 + (1− β2,t)g2t

∥∥
≤ β2,t ‖vt−1‖+ (1− β2,t)

∥∥g2t
∥∥

≤ β2,tG2
2 + (1− β2,t)G2

2

= G2
2 ,

(27)
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where we used the assumption ‖gt‖ ≤ G2 which also implies that

∥∥g2t
∥∥ =

[
d∑

i=1

g4t,i

] 1
2

≤




d∑

i=1

g4t,i +

d∑

i=1

d∑

j=1

g2t,ig
2
t,j




1
2

=



(

d∑

i=1

g2t,i

)2



1
2

=



(

d∑

i=1

g2t,i

) 1
2



2

≤ G2
2 .

(28)

Checking that (27) yields a contradiction completes the argument.

Lemma 3. Under the same assumptions of Lemma 1, we have

‖mt′ � ηt‖ ≤ min (G∞ ‖ηt‖ , G2Ht) , (29)

for all t, t′ ∈ N and all possible sample sequences (s1, . . . , smax(t,t′)).

Proof. By definition,

‖mt′ � ηt‖2 =

d∑

i=1

m2
t,i · η2t,i

≤
d∑

i=1

(max
j∈[d]

m2
t′,j) · η2t,i

≤ ‖mt′‖2∞
d∑

i=1

η2t,i

= ‖mt′‖2∞ · ‖ηt‖
2
,

(30)

hence invoking Lemma 1 and taking the square root yields ‖mt′ � ηt‖ ≤ G∞ ‖ηt‖.
Additionally, we have

‖mt′ � ηt‖2 ≤
d∑

i=1

m2
t′,i(max

j∈[d]
η2t,j)

≤ ‖ηt‖2∞
d∑

i=1

m2
t′,i

= ‖ηt‖2∞ · ‖mt′‖2 ,

(31)

hence recalling that ‖ηt‖∞ = Ht and by Lemma 1 we get ‖mt′ � ηt‖ ≤ G2Ht.
Combining the two bounds completes the proof.

Lemma 4. Under the same assumptions of Lemma 1, we have

〈∇f(wt),mt � ηt〉 ≥ (1− β1,t) 〈∇f(wt), gt � ηt〉 − β1,tG2 ‖mt−1 � ηt‖ , (32)

for all t ∈ N and all possible sample sequences (s1, . . . , st) ∈ St.
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Proof. Using the definition of mt, we have

〈∇f(wt),mt � ηt〉 =
〈
∇f(wt),

(
β1,tmt−1 + (1− β1,t)gt

)
� ηt

〉

= (1− β1,t) 〈∇f(wt), gt � ηt〉+ β1,t 〈∇f(wt),mt−1 � ηt〉
≥ (1− β1,t) 〈∇f(wt), gt � ηt〉 − β1,t ‖∇f(wt)‖ · ‖mt−1 � ηt‖ ,

(33)

where we used Cauchy-Schwarz in the last step.
Next, by Jensen’s inequality and the fact that ‖·‖ is convex we have, for all w ∈ Rd,

‖∇f(w)‖ = ‖Es [∇fs(w)]‖ ≤ Es [‖∇fs(w)‖] ≤ Es [G2] = G2 . (34)

Applying this bound in (33) yields the desired inequality.

Lemma 5. Assume that there exists a constant G∞ such that ‖∇fs(w)‖∞ ≤ G∞ for all s ∈ S and w ∈ Rd, and let G2 be a
constant such that ‖∇fs(w)‖ ≤ G2 for all s ∈ S and w ∈ Rd. Moreover, assume that β1,t ∈ [0, 1) and β1,t ≤ β1,t−1 for all
t ∈ N.

If ηt is independent of st for all t ∈ N, i.e. P (ηt = η, st = s) = P (ηt = η)P (st = s) for all η ∈ Rd, s ∈ S, then

Est [〈∇f(wt),mt � ηt〉] ≥ (1− β1)Lt ‖∇f(wt)‖2 − β1,tG2 ‖mt−1 � ηt‖ , (35)

for all t ∈ N and all possible sample sequences (s1, . . . , st) ∈ St.
Proof. From Lemma 4 we have that

〈∇f(wt),mt � ηt〉 ≥ (1− β1,t) 〈∇f(wt), gt � ηt〉 − β1,tG2 ‖mt−1 � ηt‖ . (36)

Then, taking the expectation over the draw of st ∈ S and recalling that wt, and hence also ∇f(wt), is computed from
(s1, . . . , st−1),

Est [〈∇f(wt),mt � ηt〉] ≥ (1− β1,t) 〈∇f(wt),Est [gt � ηt]〉 − β1,tG2Est [‖mt−1 � ηt‖] . (37)

Now, note that since we assume that ηt is independent of st, we get

Est [gt � ηt] = ηt � Est [gt] = ηt � Est [∇fst(wt)] = ηt �∇f(wt) , (38)

and also
Est [‖mt−1 � ηt‖] = ‖mt−1 � ηt‖ . (39)

Combining (39) and (38) into (37) yields

Est [〈∇f(wt),mt � ηt〉] ≥ (1− β1,t) 〈∇f(wt),∇f(wt)� ηt〉 − β1,tG2 ‖mt−1 � ηt‖ . (40)

Moreover, we have

〈∇f(wt),∇f(wt)� ηt〉 =

d∑

i=1

(∇f(wt))i(∇f(wt))iηt,i

=

d∑

i=1

(∇f(wt))
2
i ηt,i

≥
d∑

i=1

(∇f(wt))
2
i (min

j
ηt,j)

= Lt

d∑

i=1

(∇f(wt))
2
i

= Lt ‖∇f(wt)‖2 ,

(41)
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which, when applied to (40) yields

Est [〈∇f(wt),mt � ηt〉] ≥ (1− β1,t)Lt ‖∇f(wt)‖2 − β1,tG2 ‖mt−1 � ηt‖ , (42)

where we also used that β1,t ∈ [0, 1) and Lt ≥ 0. Using the fact that β1,t ≤ β1,t−1 ≤ β1 for all t ∈ N and hence
1− β1,t ≥ 1− β1 yields the desired inequality.

D. Proof of Theorem 3
We organize the proof as follows: we first prove an intermediate result (Lemma 6) and split the proof of the bounds in (8)

and (9) in two, where the latter can be seen as a refinement of (8) given the additional assumption that Z :=
∑T
t=1 αt mini ηt,i

is independent of each st.
Throughout the proof we use the following notation for clarity:

Ht = max
i
ηt,i Lt = min

i
ηt,i . (43)

Lemma 6. Assume that f is M -smooth, lower-bounded by some f∗ (i.e. f∗ ≤ f(w) for all w ∈ Rd), and that there exists a
constant G∞ such that ‖∇fs(w)‖∞ ≤ G∞ for all s ∈ S and w ∈ Rd, and let G2 be a constant such that ‖∇fs(w)‖ ≤ G2

for all s ∈ S and w ∈ Rd.
Consider any optimization method that performs updates following

wt+1 = wt − αt · ηt �mt , (44)

where we further assume assume that for all t ∈ N we have αt ≥ 0, β1,t = β1√
t

for some β1 ∈ [0, 1), and ηt,i ≥ 0 for all
i ∈ [d].

If ηt is independent of st for all t ∈ N, i.e. P (ηt = η, st = s) = P (ηt = η)P (st = s) for all η ∈ Rd, s ∈ S, then

T∑

t=1

αtLt ‖∇f(wt)‖2 ≤
1

1− β1

(
T∑

t=1

(f(wt)− Est [f(wt+1)]) +

T∑

t=1

αtβ1,tG2 ‖mt−1 � ηt‖

+
M

2

T∑

t=1

α2
tEst

[
‖mt � ηt‖2

])
,

(45)

for all T ∈ N and all possible sample sequences (s1, . . . , sT ) ∈ ST .

Proof. We start from the assumption that f is M -smooth, which yields

f(wt+1) ≤ f(wt) + 〈∇f(wt), wt+1 − wt〉+
M

2
‖wt+1 − wt‖2 . (46)

Plugging the update expression wt+1 = wt − αt · ηt �mt,

f(wt+1) ≤ f(wt)− αt 〈∇f(wt),mt � ηt〉+
α2
tM

2
‖mt � ηt‖2 . (47)

Now, taking the expectation over the random sample st ∈ S, we get

Est [f(wt+1)] ≤ f(wt)− αtEst [〈∇f(wt),mt � ηt〉] +
α2
tM

2
Est

[
‖mt � ηt‖2

]
, (48)

where we used the fact that wt and αt are not functions of of st – in particular, recall that wt is deterministically computed
from (s1, . . . , st−1).

Using the assumption that ηt is independent of st and applying Lemma 5, we get

Est [f(wt+1)] ≤ f(wt)− αt(1− β1)Lt ‖∇f(wt)‖2 + αtβ1,tG2 ‖mt−1 � ηt‖

+
α2
tM

2
Est

[
‖mt � ηt‖2

]
,

(49)
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which can be re-arranged into

αtLt ‖∇f(wt)‖2 ≤
1

1− β1

(
f(wt)− Est [f(wt+1)] + αtβ1,tG2 ‖mt−1 � ηt‖

+
α2
tM

2
Est

[
‖mt � ηt‖2

])
,

(50)

where we used the assumption that β1 ∈ [0, 1), hence 1− β1 > 0 which was used to divide both sides of the inequality.
Now, summing over t = 1 to T ,

T∑

t=1

αtLt ‖∇f(wt)‖2 ≤
1

1− β1

(
T∑

t=1

(f(wt)− Est [f(wt+1)]) +

T∑

t=1

αtβ1,tG2 ‖mt−1 � ηt‖

+

T∑

t=1

α2
tM

2
Est

[
‖mt � ηt‖2

])
,

(51)

which yields the desired result.

D.1. Proof of the first guarantee (8)

Proof. We start from the bound given in Lemma 6:

T∑

t=1

αtLt ‖∇f(wt)‖2 ≤
1

1− β1

(
T∑

t=1

(f(wt)− Est [f(wt+1)]) +

T∑

t=1

αtβ1,tG2 ‖mt−1 � ηt‖

+
M

2

T∑

t=1

α2
tEst

[
‖mt � ηt‖2

])
.

(52)

Now, using Lemma 3 to upper bound both ‖mt−1 � ηt‖ and ‖mt � ηt‖ by G2Ht,

T∑

t=1

αtLt ‖∇f(wt)‖2 ≤
1

1− β1

(
T∑

t=1

(f(wt)− Est [f(wt+1)]) +

T∑

t=1

αtβ1,tG
2
2Ht

+
M

2

T∑

t=1

α2
tG

2
2H

2
t

)
,

(53)

where we used that Est
[
H2
t

]
= H2

t since Ht is deterministically computed from ηt, which in turn is independent of st.
Next, from the assumption in Theorem 3 that there are positive constants L and H such that L ≤ ηt,i ≤ H for all

t ∈ N, i ∈ [d] and sample sequences (s1, . . . , st), it follows that

L ≤ Lt = min
i∈[d]

ηt,i and H ≥ Ht = max
i∈[d]

ηt,i

for all t ∈ N, therefore

L

T∑

t=1

αt ‖∇f(wt)‖2 ≤
1

1− β1

(
T∑

t=1

(f(wt)− Est [f(wt+1)]) +G2
2H

T∑

t=1

αtβ1,t

+
MG2

2H
2

2

T∑

t=1

α2
t

)
.

(54)

18



Dividing both sides by L ≥ 0 and letting αt = α′/
√
T yields

T∑

t=1

α′√
T
‖∇f(wt)‖2 ≤

1

L(1− β1)

(
T∑

t=1

(f(wt)− Est [f(wt+1)]) +G2
2H

T∑

t=1

α′√
T
β1,t

+
MG2

2H
2

2

T∑

t=1

α′2

T

)
,

(55)

and, rearranging and using the fact that

T∑

t=1

β1,t = β1

T∑

t=1

1√
t
≤ β1

∫ T

0

1√
t
dt ≤ 2β1

√
T ,

which implies that
∑T
t=1

α′√
T
β1,t ≤ 2α′β1, we get

α′√
T

T∑

t=1

‖∇f(wt)‖2 ≤
1

L(1− β1)

(
T∑

t=1

(f(wt)− Est [f(wt+1)]) + 2α′β1G
2
2H

+
α′2MG2

2H
2

2

)
.

(56)

Now, taking the expectation over the full sample sequence (s1, . . . , sT ) yields

α′√
T

T∑

t=1

E
[
‖∇f(wt)‖2

]
≤ 1

L(1− β1)

(
T∑

t=1

(E [f(wt)]− E [f(wt+1)]) + 2α′β1G
2
2H

+
α′2MG2

2H
2

2

)
.

(57)

Note that, by telescoping sum,

T∑

t=1

E [f(wt)]− E [f(wt+1)] = E [f(w1)]− E [f(wT+1)] ≤ f(w1)− f∗ , (58)

where the last step follows since w1 (the parameters at initialization) is independent of the drawn samples, and also from the
assumption that f∗ lower bounds f .

Combining the above with (57) and dividing both sides by α′ ·
√
T ,

1

T

T∑

t=1

E
[
‖∇f(wt)‖2

]
≤ 1

L
√
T (1− β1)

(
f(w1)− f∗

α′
+ 2β1G

2
2H +

α′MG2
2H

2

2

)
, . (59)

Finally, we will use Young’s inequality with p = 2 and the conjugate exponent q = 2, which states that xy ≤ x2

2 + y2

2 for
any nonnegative numbers x, y.

In that context, let

x =
1√
α′

and y =
√
α′H , (60)

which yields

H = xy ≤ x2

2
+
y2

2
=

1

α′
+ α′H2 , (61)

and hence

2β1G
2
2 ·H ≤

2β1G
2
2

α′
+ 2β1G

2
2 · α′H2 . (62)
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Plugging the above in (59) yields

1

T

T∑

t=1

E
[
‖∇f(wt)‖2

]
≤ 1

L
√
T (1− β1)

(
2β1G

2
2 + f(w1)− f∗

α′
+ α′H2G

2
2(M + 2β1)

2

)
, . (63)

Verifying that the above is O
(

1
L
√
T

(
1
α′ + α′H2

))
in terms of T, α′, L and H finishes the proof.

D.2. Proof of the second guarantee (9)

Proof. As before, we start from Lemma 6, which states that

T∑

t=1

αtLt ‖∇f(wt)‖2 ≤
1

1− β1

(
T∑

t=1

(f(wt)− Est [f(wt+1)]) +

T∑

t=1

αtβ1,tG2 ‖mt−1 � ηt‖

+
M

2

T∑

t=1

α2
tEst

[
‖mt � ηt‖2

])
.

(64)

We then invoke Lemma 3 to upper bound ‖mt−1 � ηt‖ by G2Ht and ‖mt � ηt‖ by G∞ ‖ηt‖2:

T∑

t=1

αtLt ‖∇f(wt)‖2 ≤
1

1− β1

(
T∑

t=1

(f(wt)− Est [f(wt+1)]) +

T∑

t=1

αtβ1,tG
2
2Ht

+
M

2

T∑

t=1

α2
tG

2
∞Est

[
‖ηt‖2

])
.

(65)

Next, define the unormalized probability distribution p̃(t) = αtLt, so that p(t) = p̃(t)/Z with Z =
∑T
t=1 p̃(t) =∑T

t=1 αtLt is a valid distribution over t ∈ {1, . . . T}. Dividing both sides by Z yields

T∑

t=1

p(t) ‖∇f(wt)‖2 ≤
1

Z(1− β1)

T∑

t=1


f(wt)− Est [f(wt+1)] + αtβ1,tG

2
2Ht +

α2
tMG2

∞Est
[
‖ηt‖2

]

2


 (66)

Now, taking the conditional expectation over all samples S given Z:

E

[
T∑

t=1

p(t) ‖∇f(wt)‖2
∣∣∣Z
]
≤ 1

Z(1− β1)

( T∑

t=1

(
E [f(wt)|Z]− E [Est [f(wt+1)] |Z]

)

+

T∑

t=1

E


αtβ1,tG2

2Ht +
α2
tMG2

∞Est
[
‖ηt‖2

]

2

∣∣∣Z



)

≤ 1

Z(1− β1)

( T∑

t=1

(
E [f(wt)|Z]− E [f(wt+1)|Z]

)

+

T∑

t=1

E

[
αtβ1,tG

2
2Ht +

α2
tMG2

∞ ‖ηt‖2
2

∣∣∣Z
])

=
1

Z(1− β1)

(
f(w1)− f∗

+

T∑

t=1

E

[
αtβ1,tG

2
2Ht +

α2
tMG2

∞ ‖ηt‖2
2

∣∣∣Z
])

.

(67)
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where in the second step we used E [Est [·] |Z] = E [·|Z] which follows from the assumption that p(Z|st) = p(Z), and the
third step follows from telescoping sum and the assumption that f∗ lower bounds f .

Then, taking the expectation over Z and re-arranging:

E

[
T∑

t=1

p(t) ‖∇f(wt)‖2
]
≤ E

[
1

Z(1− β1)

T∑

t=1

(
f(w1)− f∗

T
+ αtβ1,tG

2
2Ht +

α2
tMG2

∞ ‖ηt‖2
2

)]
. (68)

Setting β1 = 0 for simplicity yields

E

[
T∑

t=1

p(t) ‖∇f(wt)‖2
]
≤ E

[
1

Z

T∑

t=1

(
f(w1)− f∗

T
+
α2
tMG2

∞ ‖ηt‖2
2

)]
. (69)

Now, let αt = α′t/
√
T

E

[
T∑

t=1

p(t) ‖∇f(wt)‖2
]
≤ E

[
1

Z

T∑

t=1

(
f(w1)− f∗

T
+
α′2t MG2

∞ ‖ηt‖2
2T

)]

=
1

T
· E
[

1

Z

T∑

t=1

(
f(w1)− f∗ +

1

2
α′2t MG2

∞ ‖ηt‖2
)]

.

(70)

Now, recall that Z =
∑T
t=1 αtLt = 1√

T

∑T
t=1 α

′
tLt, hence

E

[
T∑

t=1

p(t) ‖∇f(wt)‖2
]
≤ 1√

T
· E
[∑T

t=1 f(w1)− f∗ + 1
2α
′2
t MG2

∞ ‖ηt‖2∑T
t=1 α

′
tLt

]

≤ O
(

1√
T
· E
[∑T

t=1 1 + α′2t ‖ηt‖2∑T
t=1 α

′
tLt

])
.

(71)

Finally, checking that
∑T
t=1 p(t) ‖∇f(wt)‖2 = Et∼P(t|S)

[
‖∇f(wt)‖2

]
:

E S∼DT

t∼P(t|S)

[
‖∇f(wt)‖2

]
≤ O

(
1√
T
· E
[∑T

t=1 1 + α′2t ‖ηt‖2∑T
t=1 α

′
tLt

])
. (72)

Recalling that Lt = mini ηt,i completes the proof.

E. Full Statement and Proof of Theorem 2
We organize the formal statement and proof of Theorem 2 as follows: we first state a general convergence result for Adam

which depends on the step-wise adaptivity parameter εt and the learning rates αt in Theorem 5, and then present a Corollary
that shows how a O(1/

√
T ) rate follows from such result (Corollary 6). This section proceeds the proof of Theorem 3

(Appendix D) as the proof presented here is more easily seen as a small variant (although overall simpler) of the analysis given
in the previous section. Steps which also appear in the proof of Theorem 3 are not necessarily described in full detail, hence
the following arguments can be better understood with the previous section in context.

Throughout the proof we use the following notation for clarity:

Ht = max
i
ηt,i Lt = min

i
ηt,i . (73)

Theorem 5. Assume that f is smooth and fs has bounded gradients. If εt ≥ εt−1 > 0 for all t ∈ [T ], then for the iterates
{w1, . . . , wT } produced by Adam we have

E
[
‖∇f(wt)‖2

]
≤ O




1 +
∑T
t=1

αt

ε2t−1
(1 + αt + εt − εt−1)

∑T
t=1

αt

1+εt−1


 , (74)

where wt is sampled from p(t) ∝ αt

G∞+εt−1
.
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Corollary 6. Setting εt = Θ(T p1tp2) for any p1, p2 > 0 such that p1+p2 ≥ 1
2 (e.g. εt = Θ(

√
T ), εt = Θ(

4√
Tt), εt = Θ(

√
t))

and αt = Θ
(
εt√
T

)
on Theorem 5 yields a bound of O(1/

√
T ) for Adam.

Proof. Similarly to the proof of Theorem 3, we plug the update rule wt+1 = wt − αt · ηt �mt in

f(wt+1) ≤ f(wt) + 〈∇f(wt), wt+1 − wt〉+
M

2
‖wt+1 − wt‖2 . (75)

yielding

f(wt+1) ≤ f(wt)− αt 〈∇f(wt),mt � ηt〉+
α2
tM

2
‖mt � ηt‖2 . (76)

By Lemmas 3 and 4, we have

f(wt+1) ≤ f(wt)− αt(1− β1,t) 〈∇f(wt), gt � ηt〉+ αtβ1,tG
2
2Ht +

α2
tMG2

∞ ‖ηt‖2
2

. (77)

Now, note that we can write

〈∇f(wt), gt � ηt〉 = 〈∇f(wt), gt � ηt−1〉+ 〈∇f(wt), gt � (ηt − ηt−1)〉 ,
therefore we have that

f(wt+1) ≤ f(wt)− αt(1− β1,t) 〈∇f(wt), gt � ηt−1〉+ αtβ1,tG
2
2Ht +

α2
tMG2

∞ ‖ηt‖2
2

− αt(1− β1,t) 〈∇f(wt), gt � (ηt − ηt−1)〉

≤ f(wt)− αt(1− β1,t) 〈∇f(wt), gt � ηt−1〉+ αtβ1,tG
2
2Ht +

α2
tMG2

∞ ‖ηt‖2
2

+ αt(1− β1,t) |〈∇f(wt), gt � (ηt − ηt−1)〉|

(78)

We will proceed to bound |〈∇f(wt), gt � (ηt − ηt−1)〉|. By Cauchy-Schwarz we have

|〈∇f(wt), gt � (ηt − ηt−1)〉| ≤ ‖∇f(wt)‖ · ‖gt � (ηt − ηt−1)‖ ≤ G2 ‖gt � (ηt − ηt−1)‖ , (79)

and moreover

‖gt � (ηt − ηt−1)‖ =

(
d∑

i=1

g2t,i|ηt,i − ηt−1,i|2
)1/2

≤
(

d∑

i=1

G2
∞|ηt,i − ηt−1,i|2

)1/2

= G∞ ‖ηt − ηt−1‖ ,

(80)

therefore we get

f(wt+1) ≤ f(wt)− αt(1− β1,t) 〈∇f(wt), gt � ηt−1〉+ αtβ1,tG
2
2Ht +

α2
tMG2

∞ ‖ηt‖2
2

+ αt(1− β1,t)G∞G2 ‖ηt − ηt−1‖
(81)

Using the fact that ηt−1 is independent of st and that Est [gt] = ∇f(wt), taking expectation over st yields

Est [f(wt+1)] ≤ f(wt)− αt(1− β1,t) 〈∇f(wt),∇f(wt)� ηt−1〉+ αtβ1,tG
2
2Est [Ht] +

α2
tMG2

∞Est
[
‖ηt‖2

]

2
+ αt(1− β1,t)G∞G2Est [‖ηt − ηt−1‖]

≤ f(wt)− αt(1− β1) ‖∇f(w)‖2 Lt−1 + αtβ1,tG
2
2Est [Ht] +

α2
tMG2

∞Est
[
‖ηt‖2

]

2
+ αt(1− β1)G∞G2Est [‖ηt − ηt−1‖] ,

(82)
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where in the second step we used β1,t ≤ β1 and

〈∇f(wt),∇f(wt)� ηt−1〉 =

d∑

i=1

∇f(w)2i ηt−1,i ≥ min
j
ηt−1,j

d∑

i=1

∇f(w)2i = Lt−1 ‖∇f(w)‖2 .

Re-arranging,

αtLt−1(1− β1) ‖∇f(wt)‖2 ≤ f(wt)− Est [f(wt+1)] + αtβ1,tG
2
2Est [Ht] +

α2
tMG2

∞Est
[
‖ηt‖2

]

2
+ αt(1− β1)G∞G2Est [‖ηt − ηt−1‖] ,

(83)

Next, we will bound Lt−1, Ht, ‖ηt‖, and ‖ηt − ηt−1‖. Recall that, for Adam, we have

ηt =
1√

vt + εt
,

and since vt,i ≤ G2
∞, we also have that

1

G∞ + εt
≤ ηt,i ≤

1

εt
.

From the above it follows that
1

G∞ + εt−1
≤ Lt−1

and

Ht ≥
1

εt
,

which also implies that ‖ηt‖ ≤
√
d
εt

.
As for ‖ηt − ηt−1‖, check that

∣∣∣ηt,i − ηt−1,i
∣∣∣ ≤ 1

εt−1
− 1

G∞ + εt
=

G∞ + εt − εt−1
G∞εt−1 + εtεt−1

≤ G∞ + εt − εt−1
ε2t−1

, (84)

where we used the assumption that εt ≥ εt−1. The above implies that ‖ηt − ηt−1‖ ≤
√
d · G∞+εt−εt−1

ε2t−1
.

Applying the bounds given above to (83) yields

αt
G∞ + εt−1

(1− β1) ‖∇f(wt)‖2 ≤ f(wt)− Est [f(wt+1)] + β1,tG
2
2

αt
εt

+
α2
tMdG2

∞
ε2t

+ αt(1− β1)
√
dG∞G2 ·

G∞ + εt − εt−1
ε2t−1

,

(85)

Next, define the unormalized probability distribution p̃(t) = αt

G∞+εt−1
, so that p(t) = p̃(t)/Z with Z =

∑T
t=1 p̃(t) =

∑T
t=1

αt

G∞+εt−1
is a valid distribution over t ∈ {1, . . . T}. Adopting this notation and dividing both sides by Z(1− β1):

p(t) ‖∇f(wt)‖2 ≤
1

Z(1− β1)

(
f(wt)− Est [f(wt+1)] + β1,tG

2
2

αt
εt

+
α2
tMdG2

∞
ε2t

+ αt(1− β1)
√
dG∞G2 ·

G∞ + εt − εt−1
ε2t−1

)
.

(86)
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Taking the expectation over all samples and summing over t yields

T∑

t=1

p(t)E
[
‖∇f(wt)‖2

]
≤ 1

Z(1− β1)

T∑

t=1

(
E [f(wt)]− E [f(wt+1)] + β1,tG

2
2

αt
εt

+
α2
tMdG2

∞
ε2t

+ αt(1− β1)
√
dG∞G2 ·

G∞ + εt − εt−1
ε2t−1

)

≤ 1

Z(1− β1)

[
f(w1)− f∗ +

T∑

t=1

(
β1,tG

2
2

αt
εt

+
α2
tMdG2

∞
ε2t

+ αt(1− β1)
√
dG∞G2 ·

G∞ + εt − εt−1
ε2t−1

)]
.

(87)

where we used the fact that
∑T
t=1 E [f(wt)]− E [f(wt+1)] = f(w1)− E [f(wT+1)] ≤ f(w1)− f∗ by telescoping sum and

where f∗ lower bounds f .
For simplicity, assume that β1,t = 0 (or, alternatively, let β1,t = β1√

T
and apply Young’s inequality as in the proof of

Theorem 3). In this case, we get

T∑

t=1

p(t)E
[
‖∇f(wt)‖2

]
≤ 1

Z(1− β1)

[
f(w1)− f∗ +

T∑

t=1

αt
ε2t−1

(
αtMdG2

∞ + (1− β1)
√
dG∞G2 · (G∞ + εt − εt−1)

)]
,

(88)

and recalling that Z =
∑T
t=1

αt

G∞+εt−1
yields

Et∼P (t)

[
E
[
‖∇f(wt)‖2

]]
≤
f(w1)− f∗ +

∑T
t=1

αt

ε2t−1

(
αtMdG2

∞ + (1− β1)
√
dG∞G2 · (G∞ + εt − εt−1)

)

(1− β1)
∑T
t=1

αt

G∞+εt−1

≤ O




1 +
∑T
t=1

αt

ε2t−1
(1 + αt + εt − εt−1)

∑T
t=1

αt

1+εt−1


 ,

(89)

which completes the argument.

F. Details on Hyperparameter Optimization
This section contains additional details on the experiments performed in Section 7. We use Gradientless Descent (GLD

[10]), a recently-proposed zeroth-order optimization method to tune both α and ε for Adam, AMSGrad and AvaGrad. The
search space consists of 21 values for α and 21 values for ε, yielding a discrete search space composed of 441 hyperparameter
settings. We use a projected isotropic Gaussian constrained to [0, 21]× [0, 21] for sampling: we first sample (x, y) and then
round both x and y to the nearest integer to associate the continuous samples to elements in the discrete 21× 21 search space.
We use a search radius of 4 and 3 samples per iteration.

For the coordinate-wise hyperparameter optimization, we run GLD separately on α and ε, in an alternating fashion. In
practice, this amounts to using univariate Gaussians during sampling, where in one iteration the distribution is over α only, and
in the other it is over ε. We denote GLD when run in this manner by “CGLD”, standing for coordinate gradientless descent.
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