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Abstract

We identify two new clusters of proof complexity measures equal up to poly-
nomial and log n factors. The first cluster contains the logarithm of tree-like
resolution size, regularized clause and monomial space, and clause space,
ordinary and regularized, in regular and tree-like resolution. Consequently,
separating clause or monomial space from the logarithm of tree-like resolu-
tion size is equivalent to showing strong trade-offs between clause space and
length, and equivalent to showing super-critical trade-offs between clause
space and depth. The second cluster contains width, Σ2 space (a general-
ization of clause space to depth 2 Frege systems), ordinary and regularized,
and the logarithm of tree-like R(log) size. As an application, we improve a
known size-space trade-off for polynomial calculus with resolution. We fur-
ther show a quadratic lower bound on tree-like resolution size for formulas
refutable in clause space 4, and introduce a measure intermediate between
depth and the logarithm of tree-like resolution size.

Keywords: Proof Complexity, Resolution, Size-Space Trade-offs

1. Introduction

With the rise of computer science, questions like “can we solve a prob-
lem?” got a quantitative counterpart: “how hard is it to solve a problem?”.
Proof complexity deals with the quantitative version of “can we prove a the-

∗Corresponding author
Email addresses: papamakarios@uchicago.edu (Theodoros Papamakarios),

razborov@uchicago.edu (Alexander Razborov)

Preprint submitted to Journal of Computer and System Sciences July 16, 2023



orem?”, namely, the question “how hard is it to prove a theorem?”. The sys-
tematic study of the latter question for propositional proof systems started
with Cook and Reckhow [1], where its fundamental role in complexity theory
was identified.

The most natural, arguably also the most important, measure of the
complexity of a proof is its size, and indeed, much of the research in propo-
sitional proof complexity has concentrated on proof size lower bounds. But
given in particular their role in proof systems of practical significance, sev-
eral other natural complexity measures have been considered, and that has
led to a considerable line of study about relations between them (simula-
tions), lack of relations thereof (separations) and the inherent impossibility
of optimizing two different measures at once (trade-offs). To aid further
discussion, let us review those measures and previous results that are most
pertinent to this work.

A measure that directly emerged from the study of proof size lower
bounds is width; the width of a resolution proof is the number of literals in
the largest clause occurring in the proof. Its importance was accentuated by
Ben-Sasson and Wigderson [2], who, building on the earlier works of Clegg et
al. [3] and Impagliazzo et al. [4] showing an analogous result for polynomial
calculus, showed that a short resolution proof can be transformed into a
narrow one. Namely, we have

W (F ` ⊥) ≤ logST (F ` ⊥) +W (F ), (1)

W (F ` ⊥) ≤ O
(√

n logSR(F ` ⊥)
)

+W (F ). (2)

Here W (F ` ⊥), ST (F ` ⊥) and SR(F ` ⊥) stand for the minimum width,
tree-like size and DAG-like size respectively of refuting an unsatisfiable CNF
F in resolution;1 similar notation is employed throughout the paper. W (F )
is the maximum width of a clause in F .

Space complexity for propositional proofs was introduced in [5, 6]. Es-
teban and Torán [5] showed that a short tree-like resolution proof can be
transformed into a resolution proof of small clause space:

CSpace(F ` ⊥) ≤ logST (F ` ⊥). (3)

Atserias and Dalmau [7] demonstrated the first instance of the relation-
ship between space and width, showing that a resolution proof having small

1Table 1 in Section 2 contains precise definitions of all complexity measures used in
our paper.
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clause space can be transformed into a narrow one:

W (F ` ⊥) ≤ CSpace(F ` ⊥) +W (F ). (4)

Constructive versions of their result were given by Filmus et al. [8] and
Razborov (unpublished), see also Kraj́ıček [9, Theorem 5.5.5]. It is worth
noting that (3) and (4) taken together provide a refinement of (1) and that,
viewed this way, we relate two sequential measures (tree-like size and width)
with a space measure as an intermediate. We will see more examples of such
an interplay in this paper.

More recently, Bonacina [10] showed that for total space in resolution
(measured as the sum of widths of clauses in a configuration) we have

W (F ` ⊥) ≤ O
(√

TSpace(F ` ⊥)
)

+W (F ), (5)

and Galesi et al. [11] showed a weakened version of (4), but for the analogue
of clause space in stronger proof systems operating with polynomials (or in
fact even arbitrary Boolean functions of monomials):

W (F ` ⊥) ≤ O
(

(MSpace(F ` ⊥))2
)

+W (F ). (6)

Regularized2 versions µ∗ of space complexity measures are defined by
multiplying the measure in question µ by the logarithm of the proof length;
these were considered e.g. by Ben-Sasson [13] and Razborov [12]. The latter
paper also contains the suggestion that the “right” level of precision when
comparing measures of this kind is up to polynomial and log n factors. We
will henceforth say that, for complexity measures µ1, µ2, µ1 simulates µ2,
and write µ1 � µ2, if µ1(F ` ⊥) ≤ (µ2(F ` ⊥) log n)O(1) for any CNF F in n
variables.3 We call µ1 and µ2 equivalent, and write µ1 ≈ µ2, if µ1 � µ2 and
µ2 � µ1. Clearly � is transitive, and this implies that ≈ is an equivalence
relation and � imposes a partial order on its equivalence classes.

This notion of simulation brings structure to the framework of compar-
ing proof complexity measures that is faithful to both previous research
(say, results (1)-(6) look quite natural) and open problems (cf. Section 5).
Regarding the choice to include log n factors in �, log n factors appear nat-
urally e.g. in simulations involving regularized space measures, so that we

2The paper [12] used the word “amortized” but Sam Buss pointed out to us that it is
somewhat misleading in this context.

3Note that the size/length measures appear in this set-up under a logarithm. Hence
this corresponds to quasi-polynomial simulations in the Cook-Reckhow framework.
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wouldn’t want to consider for example a separation of O(1) vs. Ω(log n)
involving such measures to be a true separation. We also note that this
aligns well with standard practice in computational complexity, where in
most major results about space, a log n lower bound on it is included as an
assumption.

The paper [12] identified a big cluster of ordinary and regularized space
complexity measures, including total space TSpace(F ` ⊥) and variable
space VSpace(F ` ⊥), that are all equivalent to proof depth in resolution:

D(F ` ⊥) ≈ TSpace(F ` ⊥) ≈ TSpace∗(F ` ⊥) ≈ V Space∗(F ` ⊥). (7)

One notable measure that defied this classification was (regularized) clause
space.4

Our contributions

In this paper we identify two other big clusters of equivalent complexity
measures not covered by the results in [12]. The cumulative picture com-
bining both previously known and new results is summarized in Figure 1.
There, an arrow from µ1 to µ2 means that µ1 � µ2. A solid arrow from
µ1 to µ2 indicates that a separation between µ1 and µ2 is known, that is,
it additionally indicates that there exists a sequence {Fk(x1, . . . , xnk

)} of
unsatisfiable CNFs such that µ2(Fk ` ⊥) ≥ (µ1(Fk ` ⊥) log nk)

ω(1).
Let us briefly explain this picture. The first new cluster is centered

around the logarithm of tree-like resolution size logST . Given the proof
method of the simulation (3) in [5], it can be obviously strengthened in two
directions: by replacing the left-hand side with clause space in tree-like
resolution or by replacing it with regularized clause space. Tree-like clause
space in resolution (TCSpace in Figure 1, see also Table 1) was shown to be
equivalent to the logarithm of tree-like size in the same paper [5, Corollary
5.1]; in other words, after this replacement in the left-hand side, the bound
(3) becomes tight, within the precision we are tolerating.

We show that the second variant, that is regularized clause space, is also
equivalent to the logarithm of tree-like resolution size, and this result extends
to also include regularized monomial space to the same cluster. Given that
[5, Corollary 5.1] also holds for (ordinary) clause space in regular resolution
RCSpace(F ` ⊥) [5, Corollary 4.2], this means that all these space measures
turn out to be equivalent to each other and to the log of tree-like resolution

4A technical remark: [12, Theorem 3.2] does not apply to clause space as it is not
bounded from below by the number of variables.
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logSR

W ≈ logST,R(log) ≈ Σ2Space ≈ Σ2Space∗

MSpace

CSpace

logST ≈ TCSpace ≈ RCSpace

≈ CSpace∗ ≈ MSpace∗

DP

D ≈ TSpace ≈ TSpace∗ ≈ VSpace∗

VSpace

Figure 1: Simulations

size. We also remark (given the results above, this readily follows from
definitions) that regularized versions of clause space in tree-like or regular
resolution are also in this cluster.

The question of whether (ordinary) clause space also belongs here is what
we consider to be a major, and most likely very difficult, open problem. But
since it has turned out to be closely related to several other threads in proof
complexity, we prefer to keep the momentum and defer further discussion
to the concluding Section 5.

Our second cluster is presided over by resolution width. First, we intro-
duce a natural analogue of clause space in DNF resolution that we call Σ2

space. This can be seen as an extension of clause space to depth 2 Frege sys-
tems; indeed, the restriction of Σ2 space to depth 1 Frege is precisely clause
space, and its restriction to k-DNF resolution, for constant k, coincides,
up to a constant factor, with the concept of space that has been studied
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before for such systems (see e.g. [14, 15]). In our model, configurations
are arbitrary sets of DNFs, and we charge k for every individual k-DNF in
the memory. Clearly, Σ2Space ≤ CSpace and Σ2Space∗ ≤ CSpace∗. Then
we strengthen the Atserias-Dalmau bound (4) by replacing CSpace with
Σ2Space and continue to show that both ordinary and regularized versions
of Σ2 space are actually equivalent to resolution width.

Thus, remarkably, the difficult open question on whether we have a
strong trade-off between space and length for clause space gets a relatively
easy negative solution for a stronger proof system. We have also been able
to locate in this cluster another interesting size measure: the size of tree-like
proofs in the system R(log), which gives a somewhat unexpected general-
ization of (1). We have not been able to retrieve the equivalence of width
and tree-like size in R(log) from the literature in exactly this form but it is
implicit in Lauria [16] and, with a bit of effort, can be traced back as far as
Kraj́ıček [17].

It is worth noting that some of the simulations in this cluster work only in
the syntactical setting. This comes in contrast with what happens with the
other two clusters: all simulations involving clause, monomial, variable and
total space, also work in a purely semantic setting. For example, in the case
of monomial space we can allow arbitrary Boolean functions of monomials
as memory configurations and allow any number of sound inferences to be
performed at once in each step.

We use (some of) these simulations to prove:

1. There are unsatisfiable CNF formulas F of size O(n) with
S(F ` ⊥) ≤ O(n), W (F ` ⊥) ≤ O(1) and MSpace∗(F `
⊥) ≥ Ω(n/ log n) (Theorem 4.1).

This is an improvement on the previously known bounds MSpace∗(F `
⊥) ≥ Ω(n2/11) [18], MSpace∗(F ` ⊥) ≥ Ω(n1/4) [19] and MSpace∗(F `
⊥) ≥ n1/2/(log n)O(1) [20]. Unlike these previous results, our proof is
remarkably simple.

2. There are unsatisfiable CNF formulas F of size O(n) with
CSpace(F ` ⊥) = 4 and ST (F ` ⊥) ≥ Ω(n2/ log n) (Theo-

rem 4.6).

This is a first, admittedly modest, step toward separating clause space
and, say, tree-like size; as we already said, we will discuss this question
in more details in Section 5. It is for this proof that we need the last
unexplained entry DP on Figure 1: it stands for positive depth, and it
is a one-sided version of depth. We also remark that the space bound
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in this result is optimal. More precisely, we make a relatively simple
observation (Theorem 4.2) that CSpace(F ` ⊥) ≤ 3 if and only if F
is “essentially Horn” in which case it will possess a linear size tree-like
resolution refutation.

Finally, let us briefly summarize what is known (to the best of our knowl-
edge) in terms of separating the measures in Figure 1. Let us start with
“true” separations, i.e. separations that work modulo polynomial overheads
and log n factors.

Bonet and Galesi [21] proved that W 6� logSR. More precisely, there
are constant width formulas F of size O(n3) such that SR(F ` ⊥) ≤ O(n3)
and W (F ` ⊥) ≥ Ω(n). Ben-Sasson [13] proved that VSpace 6� CSpace,
and after negating the variables in his formulas, this works two more levels
up on Figure 1. Namely, there are constant-width formulas F of size O(n)
such that VSpace(F ` ⊥) ≥ Ω(n/ log n) while DP (F ` ⊥) ≤ O(1). This
also provides a separation between DP and D that, though, is much easier
to prove directly [22, Theorem 4.6]. Without negating the variables, it is
easy to see that Ben-Sasson’s proof actually gives DP (F ` ⊥) ≥ Ω(n/ log n),
thus separating DP from logST and hence from the whole middle cluster.
Again, it is also easy to see this directly. Ben-Sasson, H̊astad and Nord-
ström [23, 24] separated clause space from width; while it is believed that
their formulas should also have large monomial space complexity, the ques-
tions of separating clause space from monomial space, as well as monomial
space from width are widely open.

Separating space complexity measures from their own regularized ver-
sions appears to be a very daunting task in general. As follows from Fig-
ure 1, for variable space this is equivalent to separating it from depth [22]. A
quadratic separation between VSpace and VSpace∗ was proved in [12, Sec-
tion 6], with a disappointingly elaborate proof. Nothing is known in terms
of separating CSpace from (the cluster of) CSpace∗: Theorem 4.6 makes
a progress in that direction, but it is admittedly rather modest. Nothing
seems to be known for CSpace vs. MSpace, and our structural picture pro-
vides a good heuristic explanation of the difficulty of this question: it would
also separate MSpace from MSpace∗. Finally, in [25] a quadratic separation
between width and monomial space has been established using methods very
different from those in [24].

The paper is organized as follows. After giving the necessary definitions
in Section 2, in Section 3 we refine (many simulations do not actually involve
a polynomial overhead or extra log n factors) and prove the relations of
Figure 1. In Section 4 we prove items 1 and 2 above. The paper is concluded
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with a few remarks and open problems in Section 5.

2. Preliminaries

A literal is a propositional variable x or its negation x. We let x
def
= x.

A clause is a disjunction (possibly empty) of literals over distinct variables,
and a term is a conjunction (possibly empty) of such literals. For a clause

C = `1 ∨ · · · ∨ `w, we define the term C
def
= `1 ∧ · · · ∧ `w; similarly for a

term t = `1 ∧ · · · ∧ `w, t
def
= `1 ∨ · · · ∨ `w. The width of a clause or a term

is the number of literals it contains. A CNF formula is a conjunction of
clauses, and a DNF formula is a disjunction of terms. The width, W (F ),
of a CNF or DNF formula F is the width of the largest clause or term in
it. A CNF or DNF formula of width at most w is called w-CNF or w-DNF
respectively. Clauses may be alternatively viewed as 1-DNFs, but the latter
class is slightly larger as tautological 1-DNFs like x ∨ x are allowed.

A partial (truth) assignment (often called restriction) is a mapping from
a subset V of all propositional variables to {0, 1}; it is naturally extended to

the negations of the variables in V by α(x)
def
= α(x). The result of applying

a partial assignment α to a CNF formula F is another CNF formula F |α,
obtained by deleting from F all literals ` such that α(`) = 0 and deleting
all clauses containing a literal ` such that α(`) = 1. Similarly for DNF
formulas. For a formula F , we write α |= F if every total extension of α
satisfies F or, in other words, if F |α is semantically equal to 1. For a set of
formulas S, α |= S means α |=

∧
F∈S F , and for two sets of formulas S and

T , we write S |= T if all total assignments satisfying every formula in S also
satisfy every formula in T . For a clause C, we denote by αC the minimal
partial assignment such that αC |= C. Dually, for a partial assignment α let
Cα be the maximal clause with the property α |= Cα.

Resolution is a proof system operating with clauses. Its inference rules
are:

C

C ∨D
,

C ∨ x D ∨ x
C ∨D

. (8)

The leftmost one is called the weakening rule; the rightmost one is called
the resolution rule. We refer to the variable x in an application of the
resolution rule as the variable being resolved. One of the reasons to include
the (redundant) weakening rule is that it makes resolution proofs closed
under restricting by a partial assignment.

The width W (π) of a resolution proof π is defined as the maximum width
of a clause in it. W (F ` ⊥) is usually defined as the minimum width W (π)
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of a resolution refutation π of F . This definition, however, is ill-suited for
those CNFs that themselves have large width, like the pigeonhole principle.
We have found it way more natural and convenient to work with its slightly
modified version used in [26] (definitions of similar flavor have been given
in [27, 28], see also [29]) that we will denote by W (`F ⊥). It is defined as
follows.

Instead of just allowing the clauses of F as axioms, we allow them to
participate in the following more general F -cut rule:

D ∨ `1 . . . D ∨ `r
D

, (9)

where `1∨ . . .∨`r is a clause of F . In case some D∨`j contains contradictory
literals, it is removed from the premises. In particular, when D = `1∨· · ·∨`r,
the list of premises becomes empty so the clauses of F are still available as
axioms. W (`F ⊥) is the minimum width of refutations that, along with the
resolution rule, also use the F -cut rule.

It is easy to see that

W (`F ⊥) ≤W (F ` ⊥) ≤W (`F ⊥) +W (F )− 1,

hence the difference between the standard definition and ours becomes im-
material when W (F ) is small, and it does not have any noticeable impact
on the size of a refutation.

One immediate advantage of this definition is that if we replace W (F `
⊥) with W (`F ⊥) in (1), (2), (4), (5) or (6), we need not keep the annoy-
ing terms W (F ) any more, they just disappear. Simulations on Figure 1
will work without any restrictions on the width of the refuted CNF. More
advantages of a similar flavor will become clear later, see Theorems 3.4 and
4.2 in particular.

Let us also remark that resolution with the F -cut rule is nothing else
but Gentzen’s sequent calculus with only atomic cuts, restricted to proving
sequents of the form C1, . . . , Cm →, where C1, . . . , Cm are clauses (see [25]).

DNF resolution, or depth 2 Frege, is the straightforward extension of
resolution where we allow, apart from variables in the resolution rule, also
formulas of depth 15 to be resolved. DNF resolution operates with DNF

5For this reason, some authors use the term “depth 1 Frege” for DNF resolution; we
prefer to stick to the convention under which depth refers to lines in a proof.
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formulas. Its axioms and inference rules are:

x ∨ x
,

G

G ∨H
,

G ∨ t1 H ∨ t2
G ∨H ∨ (t1 ∧ t2)

,
G ∨ t H ∨ t

G ∨H
,

where G and H are DNF formulas and t, t1, t2 and t1 ∧ t2 are terms. The
leftmost rule is the weakening rule in this context, and the rightmost rule is
called the cut rule. The remaining rule allows us to deal with ∧ connectives,
and is called ∧-introduction.

For a non-decreasing function f : N→ N, R(f) is the subsystem of DNF
resolution where each DNF in a proof of size s is required to have width
at most f(s). R(k) for k a constant is usually denoted by Res(k) (thus,
resolution is Res(1)). DNF resolution and R(f) were first introduced in
[30].

Next, we would like to consider systems for manipulating terms. The
syntactic details of such systems will not matter for our results, but for con-
creteness, let us present a prominent system of algebraic flavor originally
introduced in [3]. We will actually use an extension, proposed in [6], called
polynomial calculus with resolution and abbreviated as PCR. PCR works
with a fixed field F. Clauses/terms are represented as monomials. The syn-
tactic objects PCR operates with are polynomials in F[x1, . . . , xn, x1, . . . , xn],
represented as linear combinations over F of monomials, and a proof line P
is to be interpreted as asserting that P = 0. The axioms and inference rules
of the system are:

`2 − `
,

`+ `− 1
,

P Q

αP + βQ
,

P

`P
,

where ` ∈ {x1, . . . , xn, x1, . . . , xn}, P,Q ∈ F[x1, . . . , xn, x1, . . . , xn] and α, β ∈
F.

In each of the above systems, non-logical axioms are given as a set of
clauses S, viewed as a CNF formula F (in PCR, a clause C = `1∨· · ·∨`k ∈ S
is represented as the monomial `1 . . . `k). A proof of the unsatisfiability of
F , or a refutation of F , is a derivation of a syntactic contradiction, denoted
by ⊥, from the clauses of F . In resolution and DNF resolution ⊥ is the
empty clause; in PCR, it is the polynomial 1.

We can view proofs as DAGs, by drawing edges from premises to con-
clusions in applications of the inference rules. If a proof DAG is a tree, that
is every formula or polynomial in it is used as a premise at most once, then
we say that the proof is tree-like. The size of a tree-like proof is the number
of its leaves, and its depth is the length of its longest root-to-leaf path. We
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denote tree-like size and depth by ST and D respectively. Let us note that
one could define the size of a tree-like proof in a couple of different ways:
as the number of nodes of the proof tree, as the total number of symbols in
the proof in the case of resolution proofs, or the total number of monomials
occurring in the proof in the case of PCR proofs, to name some reason-
able choices. For the tree-like versions of the systems we are considering
(warning: this is no longer true for DAG-like PCR), the particular choice is
inessential, as all these measures are polynomially related.

We will also consider a one-sided version of depth, which we call pos-
itive depth. (The analogue of this notion in the context of computational
complexity was recently defined in [31].) The positive depth of a tree-like res-
olution proof is the maximum number of negative literals introduced along
a root-to-leaf path: With a slight abuse of notation,6 the positive depth of
the root clause C is DP (C)

def
= 0, and for each occurrence C ∨ x,D ∨ x `

C ∨ D of the resolution rule in the proof, DP (C ∨ x)
def
= DP (C ∨ D) and

DP (C ∨ x)
def
= DP (C ∨D) + 1. The positive depth of the proof itself is the

maximum of DP (C) over leaves C in the proof.
To define space complexity measures, we need to consider a different

topology, namely view a proof as a sequence of memory configurations [5, 6].
A memory configuration will be a set of clauses in resolution, a set of DNF
formulas in DNF resolution, or a set of polynomials in PCR. In a proof from
a CNF F then, to go from a memory configuration to the next we may do
one of the following:

Axiom Download: add a clause of the formula F , or a logical axiom of
the system we are working with;

Erasure: delete a clause/DNF formula/polynomial, or

Inference: add the result of applying an inference rule to formulas in the
current configuration.

A proof in configurational form is said to be tree-like if, whenever a formula
is used as a premise in an inference rule, it is immediately erased from the
memory.

The clause space of a configuration in resolution is the number of clauses
it contains, its variable space the number of distinct variables it contains, and
its total space the total number of literals, counting repetitions, it contains.

6Strictly speaking DP is a function of a node in the proof, not of the clause sitting at
it.
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For DNF resolution, we will be interested in what we call Σ2 space of a
configuration. The Σ2 space of a configurationM = {G1, . . . , Gs} is defined

as the sum of widths: Σ2Space(M)
def
= W (G1) + . . . + W (Gs). (Recall that

the width of a DNF G is the number of literals in its largest term.) For
PCR, we will consider the monomial space of a configuration, which is the
number of distinct monomials in it.

For a space measure µ on configurations and a proof π = M1, . . . ,Mt,
we naturally let µ(π)

def
= max {µ(Mi) | 1 ≤ i ≤ t}. As in [12], we will also

consider regularized versions µ∗ defined as µ∗(π)
def
= µ(π) · log |π|, where |π| def=

t is the length, that is the number of configurations, of π. All logarithms in
this paper have base 2.

Finally, for a complexity measure µ on proofs, we write µ(F ` G) for
the minimum value of µ(π), taken over all proofs of G from F ; if such a
proof does not exist, we set µ(F ` G) to be ∞. In most cases, the mea-
sure µ clearly suggests what the underlying proof system should be. For
example, W (F ` ⊥) is the minimum width of a resolution refutation of F ,
and MSpace∗(F ` ⊥) is the minimum regularized monomial space of a PCR
refutation (in configurational form) of F . ST (F ` ⊥) shall mean the mini-
mum size of a tree-like resolution refutation of F . We shall use the notation
ST,R(f)(F ` ⊥) to mean the minimum size of a tree-like R(f)-refutation of
F . TCSpace(F ` ⊥) is the minimum clause space taken over all tree-like
configurational refutations of F in resolution. Likewise, RCSpace(F ` ⊥)
stands for the clause space in regular resolution, i.e. the subsystem of resolu-
tion where we require that a variable cannot be resolved more than once on
any path in (the DAG resulting from the expansion of) the configurational
proof π.

Table 1 summarizes the complexity measures considered in this paper.

3. Simulations

3.1. Tree-like resolution size and regularized monomial space

First we show that logST in resolution, TCSpace, RCSpace, CSpace∗

and MSpace∗, are all equivalent. Our main new contribution is the following
simulation.

Theorem 3.1. For any unsatisfiable CNF formula F over n variables,

logST (F ` ⊥) ≤ 2MSpace∗(F ` ⊥) log(n+ 1),

TCSpace(F ` ⊥) ≤ 2 (MSpace∗(F ` ⊥) + 1) .
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Tree-like
resolution

ST (π) = number of leaves in π;
TCSpace(π) = max {|M| |M ∈ π }

Regular
resolution

RCSpace(π) = max {|M| |M ∈ π }

Resolution

W (π) = max {W (C) | C ∈ π };
CSpace(π) = max {|M| |M ∈ π };

VSpace(π) = max {|Vars(M)| | M ∈ π };
TSpace(π) = max

{∑
C∈MW (C) | M ∈ π

}
;

C/V/TSpace∗(π) = C/V/TSpace(π) log |π|

DNF resolution
Σ2Space(π) = max

{∑
G∈MW (G) | M ∈ π

}
;

Σ2Space∗(π) = Σ2Space(π) log |π|

PCR
MSpace(π) = max {number of monomials in M|M ∈ π };

MSpace∗(π) = MSpace(π) log |π|

Table 1: Complexity measures in different proof systems

Proof. The proof is analogous to the construction in [12] showing that depth
is upper bounded by regularized variable space. Let M1, . . . ,Mt be a refu-
tation of F in configurational form, of monomial space s. We show, by
induction on d, that for every interval [i..j] ⊆ [1..t] with j > i, j − i ≤ 2d,
and for every clause D such that αD |= Mi and αD |= ¬Mj , it holds that
ST (F ` D) ≤ (n+1)ds and, moreover, the assumed tree-like resolution proof
can be carried out in clause space at most ds + 2. The theorem follows by
taking [i..j] := [1..t], d := dlog te and D := ⊥.

Suppose that d = 0, so that j = i + 1. The statement is vacuously
true except when the step consists in downloading an axiom C from F ,
simply because in all other cases we have Mi |= Mi+1 and hence D with
the specified properties does not even exist. Let D be a clause for which
αD |= Mi and αD |= ¬(Mi ∪ {C}). Then we necessarily must have αD |=
¬C, which is equivalent to saying that D is a weakening of C.

For the inductive step, suppose that d > 0, let [i..j] ⊆ [1..t] be any
interval with j− i ≤ 2d, j > i+1, and let D be a clause such that αD |=Mi

and αD |= ¬Mj . Set k := i + d(j − i)/2e, so that k − i ≤ 2d−1 and
j − k ≤ 2d−1. Let the list m1, . . . ,ms contain all monomials occurring in
Mk. For a clause A and a monomial m = `1 . . . `r, consider the tree shown
in Figure 2 designating a derivation of A in resolution; it is obtained from
the obvious decision tree deciding m by reversing edges and weakening the
result by A. Denote this tree by TA;m.

Let us now describe the required tree-like resolution proof of D. Start
with TD;m1 . To every leaf of TD;m1 labelled by a clause D′, append the tree
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A

A ∨ `1 A ∨ `1

A ∨ `2 A ∨ `1 ∨ `2
...

A ∨ `1 ∨ · · · ∨ `r−1

A ∨ `r A ∨ `1 ∨ · · · ∨ `r

Figure 2: The tree TA;m

TD′;m2 . Continue this process for all m1, . . . ,ms. If at any point during this
construction, a forbidden disjunction containing a variable and its negation
occurs, then we delete that node and merge its sibling with its parent. The
resulting tree T has at most (n+1)s leaves, and each of its leaves is labelled
by a clause E such that αE |= Mk or αE |= ¬Mk. From the induction
hypothesis, there are tree-like resolution proofs of all those clauses from F ,
of size (n + 1)(d−1)s. Therefore, there is a tree-like resolution proof of D
from F of size (n+ 1)ds.

To see that this proof can be carried out in clause space at most ds+ 2,
notice that the proof designated by T can be carried out in clause space
s+ 2. Proceed with this proof, and whenever a clause at its leaves is down-
loaded, keep all current clauses in memory (there are at most s of them — the
maximum clause space is hit when the parent of two leaves is brought to
memory), and derive it in clause space at most (d− 1)s+ 2. The fact that
such a derivation exists is guaranteed by the induction hypothesis. The
resulting proof has clause space at most s+ (d− 1)s+ 2 = ds+ 2.

Remark 3.1. As we already remarked in the introduction, the above con-
struction works for any sound system whose configurations are Boolean func-
tions of monomials. In particular, it works for the purely semantic system
called functional calculus [6]. Even more generally, it works for any proof
system in which small configurations have low decision tree complexity.

For the rest of the relations, we claim that for an unsatisfiable CNF
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formula F over n variables, we have

RCSpace(F ` ⊥) ≤ TCSpace(F ` ⊥)

≤ logST (F ` ⊥) + 2

≤ 2 (MSpace∗(F ` ⊥) log(n+ 1) + 1)

≤ 2 (CSpace∗(F ` ⊥) log(n+ 1) + 1)

≤ 2 (RCSpace∗(F ` ⊥) log(n+ 1) + 1)

≤ 2
(

(RCSpace(F ` ⊥))2 log(n+ 1) log(2n) + 1
)
.

The first inequality follows from the observation that every tree-like refuta-
tion can be pruned to the regular form, and this operation does not increase
its space. The second inequality is [5, Theorem 2.1], and the third is The-
orem 3.1. The fourth and the fifth inequalities are obvious. Finally, the
last inequality follows from [5, Corollary 4.2]. Namely, Esteban and Torán
showed that if π is a resolution refutation, in configurational form, of clause
space s and depth d, then

|π| ≤
(
d+ s

s

)
. (10)

Taking π to be a regular resolution refutation of minimum clause space, we
get, since a regular refutation must have depth at most n,

RCSpace∗(F ` ⊥) ≤ (RCSpace(F ` ⊥))2 log(2n).

As a byproduct, we get that TCSpace ≈ RCSpace. This comes in sharp
contrast with the situation for size, where there is an exponential separation
between tree-like and regular resolution [32].

We also see from (10) that, somewhat surprisingly, instead of regularizing
clause space by multiplying it by the logarithm of size, we could have as well
used a much weaker regularization multiplying by the logarithm (!) of depth,
and the resulting measure would still be in this cluster. This allows us to
rephrase the main open problem of whether CSpace ≈ CSpace∗ as whether
there exists a super-critical (in the sense of [33]) trade-off between clause
space and depth, that is, whether restricting clause space must necessarily
result in proofs of depth � n. See Section 5 for more details.

The remaining (non-trivial) simulation on Figure 1 involving this cluster
is:

Theorem 3.2. For any unsatisfiable CNF formula F ,

TCSpace(F ` ⊥) ≤ DP (F ` ⊥) + 2.
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Proof. The argument is a refinement of the argument in [5] showing that
tree-like clause space is bounded by depth. We show, by induction on T,
that if T is a tree-like resolution proof of a clause E from F of positive
depth d, then there is a tree-like resolution proof, in configurational form,
of E from F of clause space at most d+ 2.

If T has size at most 2, then d ≤ 1, and TCSpace(F ` ⊥) ≤ 3. Other-
wise, let T1 and T2 be the subproofs of T proving the two clauses E1 and
E2 respectively from which E is derived via an application of the resolution
rule and possibly applications of the weakening rule. One of T1 and T2, say
T1, must have positive depth at most d−1. From the induction hypothesis,
there is a tree-like proof π1 of E1 of clause space at most d+1, and a tree-like
proof π2 of E2 of clause space at most d+ 2. Deriving first E2 using π2, and
then, keeping E2 in memory, deriving E1 using π1, we get a proof of E of
clause space at most d+ 2.

3.2. Resolution width and Σ2 space

The simulations for our second cluster will depend upon the following
“locality” property of DNF resolution.

Lemma 3.3. Let α be a partial assignment. For each of the inference rules
of DNF resolution, if both premises contain a term satisfied by α, then α
satisfies some term in the conclusion.

The main theorem of this section says that as long as we transition
from depth 1 Frege to depth 2 Frege, then not only width continues to
be smaller than space, but in fact it becomes (almost) equal to it. As a
historical remark, an extension of the Atserias-Dalmau bound (4) for the
case of Res(k) is sketched in [8], and, although it is not stated explicitly, it
is also apparent in [14].

Theorem 3.4. For any unsatisfiable CNF formula F ,

1

5
Σ2Space(F ` ⊥) ≤W (`F ⊥) ≤ Σ2Space(F ` ⊥).

Proof. Let M1, . . . ,Mt be a DNF resolution refutation of F , of Σ2 space
s. We will construct a sequence T1, . . . ,Tt of derivations in the system
“resolution plus the F -cut rule (9)”. The property we are going to maintain
is that for every clause D labelling a leaf of Ti, either D is a weakening of
a clause C in F (call such a leaf an axiom leaf ) or the following hold:

1. for every G ∈Mi, αD satisfies some term of G;
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2. W (D) ≤ Σ2Space(Mi).

T1 has one vertex labelled by the empty clause. Now suppose we have
constructed Ti−1 such that 1 and 2 hold for all non-axiom leaves. For every
such leaf v labelled by a clause D, do the following.

• Axiom Download : Suppose that Mi = Mi−1 ∪ {C}, where C = `1 ∨
· · ·∨`r is either a clause of F (viewed as a 1-DNF) or a logical axiom x∨
x. If C and D contain conflicting literals, then item 1 is automatically
satisfied and we do nothing at this leaf. Next, C ⊆ D would have
implied that C is a clause of F which is impossible since we have
assumed that the leaf is non-axiom. Thus, there must exist a j ∈ [r]
such that `j 6∈ D. For each such j, we add to v a child labelled by
D ∨ `j . This will be an application of the F -cut rule if C is a clause
or of the resolution rule if C is x ∨ x.

• Erasure: Suppose that Mi ⊆ Mi−1. Add to v a single child labelled
by a clause E ⊆ D such that W (E) ≤ Σ2Space(Mi) and for every
G ∈Mi, αE satisfies some term of G.

• The case of an inference is immediately taken care of by Lemma 3.3,
D does not change.

Since ⊥ ∈ Mt, Tt cannot contain any non-axiom leaves and hence de-
fines a refutation of F . Also, it is clear from the construction and prop-
erty 2 above that any clause D appearing in it must satisfy W (D) ≤
max1≤i≤t Σ2Space(Mi) = s. Hence W (`F ⊥) ≤ s.

For the converse inequality, suppose that C1, . . . , Ct is a refutation in the
system “resolution plus the F -cut rule”, of width w. For every i ∈ [t − 1],
set Gi :=

∨i
j=1Cj . Each Gi is a w-DNF. For our small space refutation, we

start by deriving Gt−1 and Gi−1 ∨ Ci for each i ∈ [t − 1]. Having derived
these formulas, we can use a series of cuts to derive the empty clause: From
Gt−1 = Gt−2∨Ct−1 and Gt−2∨Ct−1 we can derive Gt−2 by cutting on Ct−1,
then from Gt−2 and Gt−3∨Ct−2 we can derive Gt−3, and so on. Notice that
Gt−1 contains a tautology of size O(w), and hence has a derivation whose
complexity depends only on w; one can sees in particular that Gt−1 has
a tree-like proof of Σ2 space at most 3w. To derive Gi−1 ∨ Ci, notice that
either Ci is a clause of F , in which case we can immediately derive Gi−1∨Ci,
or Gi−1 ∨ Ci is a tautology. In the case Gi−1 ∨ Ci is a tautology, then Ci
will be the result of applying either the resolution rule or the weakening rule
or F -cut rule to some clauses among C1, . . . , Ci−1. In either case, it can be
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checked that Gi−1 ∨ Ci has a tree-like proof of Σ2 space at most 3w. We
therefore see that that the overall refutation of F can be carried in Σ2 space
at most 5w.

Remark 3.2. In the refutation of Σ2 space at most 5w constructed in the sec-
ond part of the proof above, there is a constant number of formulas in every
configuration. This implies that a posteriori, DNF resolution will retain its
power in terms of space even if we restrict the formula space (the maximum
number of DNFs in a configuration) to a constant. This in turn immediately
implies, also a posteriori, that we can balance our definition of Σ2 space re-
placing in it W (G1) + . . .+W (Gs) with s ·max(W (G1), . . . ,W (Gs)) (since
s is a constant, these expressions differ by at most a constant multiplicative
factor), and the resulting measure will still be equivalent to Σ2 space. We
are not aware of a direct proof of this simulation by-passing width.

We get from Theorem 3.4 that strong length-space trade-offs conjectured
for variable, clause and monomial space, are ruled out for DNF resolution.
In particular, we get:

Corollary 3.5. For any unsatisfiable CNF formula F with n variables,

Σ2Space∗(F ` ⊥) ≤ O
(

(Σ2Space(F ` ⊥))2 log n
)
.

Proof. Let s := Σ2Space(F ` ⊥). By the first part of Theorem 3.4, F has a
width O(s) resolution refutation with the additional F -cut rule. We apply
to this refutation the construction from the second part of Theorem 3.4 in
which we can clearly assume t ≤ nO(s) (since all clauses in the sequence
can be assumed to be different). By an easy inspection, the length of the
resulting refutation will still be nO(s). Therefore,

Σ2Space∗(F ` ⊥) ≤ O(s2 log n).

Corollary 3.6. If F has a constant Σ2 space refutation, then it has a refu-
tation of constant Σ2 space and polynomial length.

Proof. The refutation constructed in the proof of Corollary 3.5 will in our
case also have constant Σ2 space.

Let us finally deal with the remaining measure, tree-like proofs in R(log).

Theorem 3.7. Let F be an unsatisfiable CNF formula over n variables.
Then

Σ2Space(F ` ⊥)1/2 ≤ logST,R(log)(F ` ⊥) ≤ O(W (`F ⊥) log n).
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Proof. For the upper bound, let π be a resolution refutation of F of width
w := W (`F ⊥). Apply to it the construction in the second part of the proof
of Theorem 3.4 once again. By inspection (cf. the proof of Corollary 3.5),
this refutation is tree-like, has size nO(w) and every term occurring in it
has width at most w. Padding it with dummy formulas if necessary, we can
assume that it has size ≥ 2w which makes it into a tree-like R(log) refutation
of the required size.

For the lower bound, the argument is an adaptation of the argument
in [5] showing (3). Namely, by pebbling, a tree-like proof T of size s > 1
can be turned into a proof in configurational form, where each configuration
contains at most log s formulas occurring in T. If T is a refutation in R(log),
then all terms occuring in T have width at most log s, so the resulting
refutation has Σ2 space (log s)2.

Remark 3.3. For the more conventional system Res(logn), the subsystem
of DNF resolution where each DNF in a refutation of F is required to have
width O(log n), n being the number of variables of F , the second inequality
in Theorem 3.7 is false (see Figure 4 in the concluding remarks section).
This follows from an easy adaptation of the proof of [14, Corollary 14].

4. Size-space trade-offs and tree-like size lower bounds

4.1. A lower bound on regularized monomial space

One application of the results of the previous section is that they easily
allow us to show trade-offs7 between regularized clause or monomial space
and size.

It is known [19, 20] that there are formulas F of size Θ(n) that have a
resolution refutation of size O(n) (and thus a O(n) refutation in the stronger
system PCR), but MSpace∗(F ` ⊥) ≥ n1/2/(log n)O(1). Theorem 3.1, com-
bined with the lower bounds of [32] and [34] on logST and TCSpace imme-
diately gives the following improvement.

Theorem 4.1. For every n ≥ 0, there is a formula F of size Θ(n) that has
a resolution refutation of size O(n), width O(1), and such that MSpace∗(F `
⊥) ≥ Ω (n/ log n) .

7We would like to stress that, following the (perhaps, unfortunate) convention estab-
lished in the previous papers, we mean potential trade-offs. In other words, we prove lower
bounds on the regularized space and we only know that our method fails to extend them
to the ordinary monomial space. As we explained in Section 1 and will further elaborate
in Section 5, proving actual trade-offs in this setting is a major and difficult open problem.
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Proof. [32] demonstrates the existence of an O(1)-CNF F that has resolu-
tion refutations of size O(n), width O(1), and such that logST (F ` ⊥) ≥
Ω(n/ log n). In fact, [32] shows that Ω(n/ log n) is also the lower bound on
the number of points the Delayer can score in the Prover-Delayer game of
[35] played on F . Now, it is proved in [34] that this number of points is
precisely equal to TCSpace(F ` ⊥) and then the result immediately follows
from the second inequality in Theorem 3.1.

4.2. Trade-offs between positive depth and tree-like size for Horn formulas
and tree-like size lower bounds

We would like next to focus on tree-like size lower bounds for resolution
attained for formulas with small clause space. We will show that a tree-
like resolution refutation of a Horn formula actually describes a pebbling
strategy, the space and time of the strategy being the positive depth and
size respectively of the proof. This gives a more transparent version of the
result of [32] used in the proof of Theorem 4.1, which moreover has a natural
generalization allowing us to prove some tree-like lower bounds for formulas
of small clause space.

4.2.1. Horn formulas — basics

Horn formulas, that include pebbling formulas, have seen a plethora
of applications in proof complexity over the past two decades, including
separating resolution size from tree-like resolution size [32], separating width
from variable space and clause space [13, 24, 15], separating depth from tree-
like clause space [22], and giving trade-offs [13, 15, 19, 18], to name a few.

A CNF formula is called Horn if every clause in it has at most one
non-negated variable. Equivalently, a Horn formula is a set of implications
involving variables, with at most one variable at the right hand side of the
implication. An implication of the form x1, . . . , xk → y is asserting that if
all the xi’s are true, then y is true; x1, . . . , xk → is asserting that one of the
xi’s is false, → y is asserting that y is true, and → is a contradiction.

The following result states that Horn formulas make up, in a certain
sense, the easiest class of formulas for proof complexity. For its purposes,
it is convenient to define a slightly modified version CSpace(`F ⊥) of the
clause space, in the same vein we defined W (`F ⊥) above. Namely, we
replace the three standard rules with the following

Three-in-one rule: from a configurationM, infer any configurationM∗ ⊆
M∪ F ∪ {C}, where C is obtained from clauses in M, F via a single
application of the resolution or weakening rule.
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Theorem 4.2. Let F be a CNF formula. The following are equivalent:

1. F contains an unsatisfiable CNF sub-formula resulting from a Horn
formula by negating some of its variables;

2. CSpace(F ` ⊥) ≤ 3;

3. CSpace(`F ⊥) ≤ 1;

4. W (`F ⊥) ≤ 1.

Note that in order for the statement W (`F ⊥) ≤ 1 to make sense, the
weakening rule has to be incorporated to the F -cut rule. That is, we use
the F -cut rule in this theorem in the form:

D ∨ `1 . . . D ∨ `r
D ∨ E

.

Proof. For 1 =⇒ 2, we can w.l.o.g. assume that F itself is an unsatisfiable
Horn formula. We show, by induction on the number of variables n, that it
can be refuted in clause space 3. The base case is trivial. Now, suppose that
n > 0, and let y be a variable such that F contains the clause → y. Such a
clause must exist, for if every clause contained a negated variable, then we
could satisfy F by setting every variable to false. Setting y := 1, we get an
unsatisfiable Horn formula F |y:=1 with n− 1 variables. From the induction
hypothesis, there is a clause space 3 refutation of F |y=1. Weakening every
clause in it by y gives us a space 3 proof of y from F . Now we only have to
download y and infer ⊥.

For 2 =⇒ 3, let M1, . . . ,Mt be a space 3 refutation of the formula
F . We can assume that this refutation does not contain applications of
the weakening rule (if it does we can simply erase them; it is easy to see
that after this we will still get a legitimate refutation). Consider a path
in the corresponding refutation tree of maximum possible length, say Ci ∈
Mti (0 ≤ i ≤ h) are such that t0 < . . . < th = t, C0 is an axiom, Ch = ⊥
and for i ≥ 1, Ci is obtained by resolving Ci−1 with some Di−1 ∈ Mti−1.
It remains to show that Di−1 is actually an axiom for any i ≥ 1. For
i = 1 this follows from the maximality of the chosen path. For i ≥ 2,
we have Mti−1 = {Ci−2, Di−1, Ci−1}. Therefore Ci−1 is consistent (and
hence not resolvable) with the two other clauses in Mti−1 . All clauses that
may have been inferred inMti−1+1, . . . ,Mti must have Ci−1 as one of their
premises and, as a consequence, are also not resolvable with Ci−1. Hence
the only clauses in those configurations that may be resolvable with Ci−1

(in particular, Di−1) are the axioms.
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The implication 3 =⇒ 4 is proven by an argument similar to the
first part of the proof of Theorem 3.4. Namely, a space 1 refutation of
minimum length in the three-in-one model must necessarily be a sequence
{D1}, . . . , {Dt}, where Di+1 is obtained by resolving Di with a clause Ci in
F . We construct a sequence T1, . . . ,Tt of width 1 derivations using only
the F -cut rule, such that the non-axiom leaves of Ti are all those literals
among `i,1, . . . , `i,ri , where Di = `i,1 ∨ . . . ∨ `i,ri , that are not axioms of F .
To get Ti+1 from Ti, we add to every non-axiom leaf v of Ti a child labelled
by ` for every literal ` of Ci that does not conflict with the label of v.

Finally, for 4 =⇒ 1, we again proceed by induction on the number of
variables n of F . The base case is trivial. Suppose that n > 0. The fact
that there is a width 1 refutation of F , forces F to have a one literal clause
(since the refutation must start somewhere), say `. Setting ` := 1, we get a
width 1 refutation of F |`:=1. From the induction hypothesis, a sub-formula
G of F |`:=1 is unsatisfiable Horn up to negating some variables. Let Ĝ be
the corresponding sub-formula of F ; Ĝ is obtained from G by restoring `
to some of its clauses. Then Ĝ ∧ ` is an unsatisfiable Horn sub-formula of
F .

4.2.2. Tree-like resolution proofs as pebbling strategies

The paper [13] shows that a configurational resolution refutation π of
the so-called pebbling contradiction PebG on a graph G defines a pebbling
strategy on G, of time at most |π| and space equal to the variable space
VSpace(π). These are strategies in the so-called black-white game of [36].
We shall show that a tree-like resolution proof T of any Horn formula H
defines a pebbling strategy of time equal to the size of T and space essentially
equal to the positive depth of T. These are strategies in the more basic
black-only pebbling game that in the case H = PebG corresponds to the
black-only pebbling game on G. Urquhart [22] showed how to relate them
to ordinary depth. In a sense, our Proposition 4.3 below can be viewed as a
(far-reaching) refinement of his result.

The rules of the black-only pebbling game, played on a Horn formula H,
are as follows. There is a limited amount of pebbles. Pebbles are placed on
the variables of H according to the rules:

1. A pebble can be placed on a variable y if x1, . . . , xk → y is a clause
of H, and all x1, . . . , xk have pebbles on them. In particular, a pebble
can be always placed on any variable y such that → y is a clause of
H.

2. A pebble can be removed from a variable at any time.
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A configuration of the pebbling game is a set of the variables of H. A
pebbling strategy is a sequence of configurations, each resulting from the
previous one by one of the rules above. We say that a pebbling strategy
refutes H if it ends with a configuration where for some clause x1, . . . , xk →
of H, all variables x1, . . . , xk are pebbled. Note that if H is unsatisfiable,
then such a clause x1, . . . , xk → must exist.

Proposition 4.3. Let H be an unsatisfiable Horn formula. A tree-like res-
olution refutation T of H of size s and positive depth d can be converted
into a pebbling strategy that, starting with the empty configuration, refutes
H in at most s steps and using at most d+ 1 pebbles.

Proof. We begin by modifying the original refutation in such a way that
as a first step, suitable weakenings of the clauses in H are derived so that
the original refutation can be carried out from these using the symmetric
resolution rule:

C ∨ x C ∨ x
C

. (11)

More precisely, every leaf of T naturally corresponds to a partial assignment
α, and we replace the axiom sitting at that leaf with its weakening Cα.

This refutation need not necessarily consist of Horn formulas even if
the original one did so. Nonetheless we will still represent clauses in the
sequential form S → T , where S, T are disjoint sets of variables. Note that
due to the symmetry of the rule (11), the positive depth DP (S → T ) as
defined in Section 2 (that is, relative to T) is equal to |S|. In particular,
|S| ≤ d for any clause S → T appearing in T.

We shall now show by induction that every subtree of T deriving a
clause S → T , describes a pebbling strategy that, starting with pebbles
on all variables of S and using at most d + 1 pebbles, either refutes H, or
ends with a configuration which has pebbles on all variables of S and on
one variable of T . Thus, if T is empty then the former must occur and, in
particular, the strategy corresponding to the empty sequent → will start
with no pebbles on the variables of H and will refute H.

Suppose that S → T is at a leaf. If there are variables x1, . . . , xk in S
such that x1, . . . , xk → is a clause of H, then that leaf describes a strategy
that, starting with pebbles on all variables in S, immediately refutes H.
Otherwise, since H is Horn, there must be variables x1, . . . , xk in S and a
variable y in T such that x1, . . . , xk → y is a clause of H. Then the strategy
of that leaf is to put a pebble on y. Since |S| ≤ d, the number of pebbles
used is at most d+ 1, as required.
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If S → T is not at a leaf, then consider its left and right subtrees T1

and T2 proving S, x→ T and S → T, x respectively (cf. (11)). The strategy
corresponding to S → T is defined as follows. First follow T2’s strategy.
If that strategy either refutes H or places a pebble on one of T ’s variables,
then we are done. Otherwise, when the strategy of T2 is concluded, there
are pebbles on S and x. Remove all other pebbles and follow the strategy of
T1. The bound d+ 1 on the number of pebbles used at any moment follows
from the same bound for T1 and T2.

Clearly, the number of steps of the pebbling strategy corresponding to
→ is at most the size of T, and the required bound on the number of pebbles
was already noticed.

Remark 4.1. The proof of Proposition 4.3 relies on an intuitionistic interpre-
tation of the resolution rule. In the intuitionistic tradition, the denotational
view of assigning truth values is, philosophically, nonsense. A proposition is
“true” if it is provable, and a proof of e.g. a formula S → T is a construction
that given proofs of all the elements of S produces a proof of some element
in T . What Proposition 4.3 says is that a tree-like resolution derivation of
S → T precisely describes such a construction, assuming that proofs of all
the clauses of H are known. Moreover this construction will be economi-
cal in the number of steps and memory if the size and the positive depth
respectively of the proof are small. Let us further notice, that although
Proposition 4.3 is stated for Horn formulas, it really is general; it could be
stated, with minimal modifications, for arbitrary CNFs.

4.2.3. Tree-like size lower bounds

The following theorem turns pebbling time-space trade-offs for a Horn
formula H into tree-like size lower bounds for its substituted version H[∨2].
We formulate it in a somewhat general form, to account for various kinds
of pebbling trade-offs in the literature. The substituted version F [∨2] of
a CNF F (x1, . . . , xn) is defined by replacing xi with yi ∨ zi for mutually
distinct variables {y1, z1, . . . , yn, zn}, followed by converting the result back
to the CNF form in the straightforward way.

Theorem 4.4. Let H be an unsatisfiable Horn formula on n variables.
Suppose that every pebbling strategy that refutes H in s steps and using d
pebbles, starting with no pebbles on its variables, satisfies (d−1)f(s) ≥ g(n)
for non-decreasing positive functions f, g. Then f(t) log t ≥ g(n), where
t := ST (H[∨2] ` 0).

Proof. Let T be a tree-like resolution refutation ofH[∨2] of size t represented
as in the proof of Proposition 4.3. That is weakenings appear at the leaves
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only and are omitted from the resolution rule, so that all applications of the
resolution rule have the form (11). Recall that this implies that the positive
depth of a clause in this proof is exactly the number of negated variables in
it.

Create a probability space of partial assignments by choosing indepen-
dently for every variable x of H, which was substituted by y ∨ z, one of y
and z with probability 1/2 and setting it to zero. Note that for any α from
this space, H[∨2]|α is identical to H up to renaming its variables and hence
T|α is a refutation of H, again up to renaming variables. Let D1, . . . , Dk

be all clauses of positive depth at least g(n)/f(t) occurring in T, that is, all
clauses that contain at least g(n)/f(t) negated variables. We have that

P

[
k∨
i=1

(Di|α 6= 1)

]
≤

k∑
i=1

P [Di|α 6= 1] ≤ k2−g(n)/f(t) ≤ t2−g(n)/f(t).

If f(t) log t < g(n), then the above probability is smaller than 1, which
means that there is a point α in our sample space such that T|α is a tree-
like resolution refutation of size at most t and positive depth ≤ g(n)/f(t).
This, from Proposition 4.3, gives a pebbling strategy that refutes H in t
steps using d pebbles, where (d− 1)f(t) < g(n).

For a DAG G, the pebbling contradiction PebG is defined as the Horn
formula consisting of all clauses S → x, where x ∈ V (G) and S is the
set of all its immediate predecessors, as well as the clauses x → for any
sink x. Plugging into Theorem 4.4 various DAGs from the literature with
known bounds on their pebbling complexity and various functions f , we can
get several corollaries. The first is a simplified proof of the separation by
Ben-Sasson et al.

Corollary 4.5 [32]. For every n, there is a formula F of size O(n) that has
DAG-like resolution refutations of size O(n), and such that every tree-like
resolution refutation of F requires size exp(Ω(n/ log n)).

Proof. First notice that a constant width and linear size refutation of an
unsatisfiable Horn formula always exists from Theorem 4.2, and such a refu-
tation remains of constant width and linear size after substituting each xi
with yi ∨ zi. Hence there is always a linear size refutation of H[∨2]. The
lower bound follows by setting f := 1 in Theorem 4.4, and using the graphs
of [37] having constant in-degree and requiring g(n) = Ω(n/ log n) pebbles
to pebble.
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The next result was promised in the introduction. It should be compared
with Theorem 4.2.

Theorem 4.6. For every n, there is a formula F of size O(n) that has tree-
like resolution refutations of clause space 4, and such that every tree-like
resolution refutation of F has size Ω(n2/ log n).

Proof. The lower bound follows by setting f(t) := t in Theorem 4.4, and
using the graphs of [38, Theorem 2.3.2] having linear size and exhibiting a
ds ≥ g(n) = Ω(n2) time-space trade-off. These graphs can be pebbled using
3 pebbles, and that immediately gives that CSpace(PebGn [∨2] ` ⊥) ≤ O(1).
By being more careful however, we can bring the space down to the minimum
possible value for which a super-linear lower bound on tree-like resolution
size is possible, which is 4 by Theorem 4.2.

More precisely, the above graphs have the following form. They contain
two directed vertex-disjoint paths, let us call them U and L, and there are
additional edges from vertices of U to vertices of L (see Figure 3). Moreover,
there are no two vertices in U both with edges to the same vertex in L.

u1 u2 u3 u4 u5
· · ·

un−1 un

v1 v2 v3 v4 v5

· · ·
vn−1 vn

Figure 3: The form of the graphs giving the trade-off in Theorem 4.6

Let G be such a graph, and let H
def
= PebG be the corresponding Horn

formula. Call the variables of the path U , u1, . . . , un and the variables of L,
v1, . . . , vn as in Figure 3, and suppose that to obtain H[∨2], ui is substituted
by xi ∨ yi and vi by zi ∨ wi. We first note that any clause xi ∨ yi can be
derived in clause space 3.

Indeed, after assigning xi := 0, yi := 0 in H[∨2], we will get an unsat-
isfiable formula F such that if we additionally negate all its variables, the
result will be Horn. Hence, by Theorem 4.2, CSpace(F ` ⊥) ≤ 3. To get
the desired derivation, we simply weaken all clauses in this refutation by
appending xi ∨ yi.

Notice that the derivations provided by Theorem 4.2 are tree-like. To
show the bound CSpace(H[∨2] ` ⊥) ≤ 4, we need to show, having derived
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zi−1 ∨ wi−1, how to derive zi ∨ wi. Suppose that uj ∨ vi−1 ∨ vi is a clause
of H, so that xj ∨ zi−1 ∨ zi ∨ wi, xj ∨ wi−1 ∨ zi ∨ wi, yj ∨ zi−1 ∨ zi ∨ wi and
yj ∨ wi−1 ∨ zi ∨ wi are clauses of H[∨2]. Notice that

CSpace


(zi−1 ∨ wi−1) ∧

(xj ∨ yj) ∧
(xj ∨ zi−1 ∨ zi ∨ wi) ∧
(yj ∨ zi−1 ∨ zi ∨ wi)

` wi−1 ∨ zi ∨ wi

 ≤ 4.

In this derivation, all premises are immediately removed from memory after
they are used as premises in an inference. Similarly, we have

CSpace


(wi−1 ∨ zi ∨ wi) ∧

(xj ∨ yj) ∧
(xj ∨ wi−1 ∨ zi ∨ wi) ∧
(yj ∨ wi−1 ∨ zi ∨ wi)

` zi ∨ wi

 ≤ 4.

Running the first derivation, deleting everything from memory except wi−1∨
zi ∨ wi and then running the second derivation, deriving xj ∨ yj in clause
space 3 whenever it is downloaded in these derivations, we get the desired
clause space 4 derivation of zi ∨ wi.

By using the construction from [38, Theorem 4.2.6], Theorem 4.6 can
be further generalized to a lower bound (n/ log n)Ω(k) on the tree-like res-
olution size of refuting formulas with clause space k. Let us further notice
that the fact that the space 4 refutation in Theorem 4.6 is tree-like might
be interesting, as typically tree-like resolution size lower bounds have been
proven in the literature based on the prover-delayer game of [35], which also
gives a lower bound for the clause space of tree-like resolution refutations
(cf. Theorem 4.1).

5. Concluding remarks

We showed that logST , CSpace∗ and MSpace∗ are equivalent up to poly-
nomial and log n factors, demonstrating a picture perfectly analogous to the
picture involving D, VSpace∗ and TSpace∗ in [12]. The most important
question remains (widely) open:

Problem 5.1. Is it true that CSpace ≈ logST or MSpace ≈ logST ? Recall
for comparison that logST ≈ CSpace∗ ≈ MSpace∗.
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Equivalently, do there exist strong trade-offs between clause (or monomial)
space and length? Strong trade-offs here means that restricting, let’s say
clause space, must necessarily give rise to refutations π of F of length |π| �
exp(CSpace(F ` ⊥) log n). Trade-offs of this kind should be contrasted with
trade-off results in e.g. [15, 18]. Moreover, the existence of such trade-offs
is a perfect analogue of Urquhart’s question [22] about variable space vs.
depth studied in [12, Section 6]. Let us make a few more remarks about this
problem.

Firstly, for very small space essentially this question was already asked
in the literature before. Namely (see e.g. [39, Open Problem 16]), are there
formulas having constant clause space refutations and with the property
that any such refutation must necessarily have super-polynomial length?
Suitably adjusting it to our framework:

Problem 5.2 (small space variant). Are there formulas that have (log n)O(1)

clause or monomial space refutations and with the property that any such
refutation must be of super-quasi-polynomial length exp((log n)ω(1))? Equiv-
alently, any tree-like resolution refutation must have super-quasi-polynomial
length.

In terms of the perceived difficulty, we do not discern too much of a
difference between Problems 5.1, 5.2 and Nordström’s question [39, Open
Problem 16]. In fact, we would like to cautiously conjecture that there are
formulas F with CSpace(F ` ⊥) ≤ 5 and CSpace∗(F ` ⊥) ≥ exp

(
nΩ(1)

)
.

But the only result we were able to prove in that direction is the rather weak
Theorem 4.6.

Secondly, as suggested by Figure 1, any strong separation between mono-
mial space and clause space would immediately solve Problem 5.1 for mono-
mial space. As we consider the latter to be most likely very difficult, we take
it as a good heuristic explanation of why we have not seen any progress on
the former problem as well. But let us ask this, and one obviously relevant
question, explicitly anyway:

Problem 5.3. Is it true that CSpace ≈ MSpace? Is it true that MSpace ≈W?

We note that by the result from [23, 24], at least one of these must
be false. A quadratic separation between width and monomial space has
been recently proved by the first author (manuscript in preparation). For a
discussion on related topics, see also [40, Section 7.5.5].

Finally, while all these conjectured trade-offs are very strong, they are
still not super-critical in the sense of [33], at least not according to our
framework. A super-critical trade-off is a trade-off between two complexity
measures in which restricting one measure causes an increase in the second
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measure that goes well beyond a worst case upper bound for it. Here, a
worst case upper bound on proof length is 2n, and every proof of clause
space s can be assumed to have length 2O(sn), as this is an upper bound on
the total number of different configurations of clause space at most s. This
still leaves us with a potential gap between 2n and 2n

2
and, in fact, a result

along these lines is known [41]. But from the perspective we are trying to
advocate in this paper, their logarithms are polynomially related.

However, as we pointed out in Section 3.1, in all these questions refuta-
tion length can be replaced with depth. Since the depth, as a stand-alone
measure, is always bounded by n, the question e.g. of whether CSpace ≈
CSpace∗ is actually the same as the question of whether there exists a super-
critical trade-off between clause space and depth.

We have (somewhat surprisingly) proved that DNF resolution behaves
very differently from resolution with respect to space (Theorems 3.4 and 3.7
and Corollaries 3.5 and 3.6). Intermediate systems based on Res(k) for a
constant k were studied in a similar context before, and it is very natural
to wonder what is the situation for those systems.

Let us first remark that for Res(k)-refutations, the definition of space
from [14, 15] (formula space) coincides with ours up to a factor of k so we
need not distinguish between the two. Then Theorem 3.1 readily generalizes
to this regime and gives logST,Res(k) ≈ Res(k)Space∗, extending the bottom
half of Figure 1 as shown in Figure 4. The proof of Corollary 3.5, however,
fails for a constant k as badly as it fails for k = 1. Hence we have one more
question to ask:

Problem 5.4 (Res(k)-variant). Is there a constant k > 0 such that logST,Res(k)

≈ Res(k)Space or at least logST,Res(k) � CSpace?

Let us also mention that as k increases, both hierarchies, logST,Res(k)

(and, hence, also Res(k)Space∗) and Res(k)Space are proper ([14] and [15]
respectively). This excludes the dual version of Remark 3.2: while the
formula space of DNF resolution refutations can be reduced to constant,
this is not true for the widths of individual formulas in the memory.

The relation between VSpace and CSpace is also unknown in one direc-
tion (the opposite one is taken care of by [13]). Let us re-iterate the problem
posed e.g. in [12]:

Problem 5.5. Is it true that CSpace � VSpace?

Just as with the questions of similar nature discussed above, a negative
answer would also imply a separation between VSpace and VSpace∗, hence
we can expect it to be very difficult.
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W ≈ logST,R(log) ≈ Σ2Space ≈ Σ2Space∗

CSpace

logST ≈ CSpace∗ ≈ MSpace∗ ≈ · · ·

Res(2)Space

Res(3)Space

logST,Res(2) ≈ Res(2)Space∗

logST,Res(3) ≈ Res(3)Space∗

...

MSpace

...

logST,Res(logn) ≈ Res(log n)Space∗

Res(log n)Space

Figure 4: Σ2 space and tree-like size for subsystems of DNF resolution
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[20] M. Göös, T. Pitassi, Communication lower bounds via critical block
sensitivity, SIAM Journal of Computing 47 (2018) 1778–1806.

[21] M. L. Bonet, N. Galesi, Optimality of size-width tradeoffs for resolution,
Computational Complexity 10 (2002) 261–276.

[22] A. Urquhart, The depth of resolution proofs, Studia Logica 99 (2011)
349–364.

[23] J. Nordström, J. H̊astad, Towards an optimal separation of space and
length in resolution, Theory of Computing 9 (2013) 471–557.

[24] E. Ben-Sasson, J. Nordström, Short proofs may be spacious: An opti-
mal separation of space and length in resolution, in: Proceedings of the
49th Annual IEEE Symposium on Foundations of Computer Science,
2008, pp. 709–718.

[25] T. Papamakarios, A super-polynomial separation between resolution
and cut-free sequent calculus, Electronic Colloqium on Computational
Complexity, Report No. 176 (2021).

[26] N. Galesi, N. Thapen, Resolution and pebbling games, in: Proceedings
of the 8th Theory and Applications of Satisfiability Testing Conference,
Vol. 3569, 2005, pp. 76–90.

[27] H. K. Büning, On generalized horn formulas and k-resolution, Theoret-
ical Computer Science 116 (1993) 405–413.

32



[28] O. Kullmann, Investigating a general hierarchy of polynomially decid-
able classes of cnf’s based on short tree-like resolution proofs, Electronic
Colloqium on Computational Complexity, Report No. 041 (1999).

[29] O. Beyersdorff, O. Kullmann, Unified characterisations of resolution
hardness measures, in: Proceedings of the 17th Theory and Applica-
tions of Satisfiability Testing Conference, 2014, pp. 170–187.
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