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ABSTRACT

Tomorrow's autonomous mobile devices need accurate, t@inas
real-time sensing of their operating environment. Todagtu-

tions fall short. Vision or acoustic-based techniques ataarable
against challenging lighting conditions or backgroundseoivhile
more robust laser or RF solutions require either bulky ezjen
hardware or tight coordination between multiple devices.

This paper describes the design, implementation and di@iua
of Ulysses, a practical environmental imaging system usiig-
cated 60GHz radios onsanglemobile device. Unlike alternatives
that require specialized hardware, Ulysses reuses lowemms-
modity networking chipsets available today. Ulysses' nexaging
approach leverages RF beamforming, operates on specinkatjd
re ection, and integrates the device's movement trajgctaith
sensing. Ulysses also includes a navigation componentuest
the same 60GHz radios to compute “safety regions” wherecdsvi
can move freely without collision, and to compute optimathga
for imaging within safety regions. Using our implementatiof
a small robotic car prototype, our experimental resultsastiat
Ulysses images objects meters away with cm-level precisiod
provides accurate estimates of objects' surface materials

1. INTRODUCTION

Autonomous devices are the future of mobile computing. To-
day, Amazon's drone-based home delivery system (Primehfsis)
already received regulatory approval in the UKI[20], andhitets
like 7-UP have performed drone deliveries on a smaller 83
Meanwhile, Uber has already deployed a pilot program fof- sel
driving passenger pickup vehicles in Pittsburghl [17]. Wit
proved hardware and advances in robotics, autonomoussrobnt
do even more. One might imagine more powerful versions of the
Roomba robot cleaning tables and countertops at home, aérso
robot companions that walk alongside the elderly or viguifi-
paired, and rst responder robots that identify and reseureigors
from natural or man-made disasters|[18, 23].

One of the signi cant roadblocks on the path towards thisovis
is object imaging and recognition. Autonomous devices irequ
knowledge about objects in their surroundings, includirsgachce
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Figure 1. Comparing existing commercial single-devicegimg
products.

to the object, size, surface curvature and other propertgsch
information allows devices to recognize and distinguistwieen
nearby obstacles and potential target objects for interactAd-
ditionally, a practical imaging system must be portableugoto
mount on mobile devices, and provide robust results in a védge
of environmental conditions.

Of the numerous imaging products available today, few if any
are appropriate for autonomous mobile devices. In Fiflineel,
classify potential imaging solutions based on their pienignd
cost, including products based on sonar [40], computeonifi],
radar [9/°34] and LIDAR[[2, B, 45]. Nearly all of these approes
require specialized hardware that make them too costly.,;>
$250) and unwieldly for mobile devicBs The only exception is
camera-based systems. Yet they are sensitive to lightindittons
and can fail badly when objects and their backgrounds haviesi
colors, g.g.,the likely cause of the recent fatal accident in a driver-
assisted Tesla[356. 30]).

Fortunately, researchers have made signi cant recentrae&
in radar systems, dramatically reducing their cost, sizevegight.
The rst group of efforts developed specialized hardwarerap
ing in the WiFi bands (Frequency-Modulated Continuous Wave
or FMCW radars). Leveraging the precise ranging capadslitf
FMCW radars, researchers developed novel systems that dett
measure subtle human dynamiesy.,heartbeats and body move-
ments[11 12, 13]. The second group of efforts (re)uses coulityn
networking devices (non-FMCW hardware) to recognize ctatbi
jects. Existing works use either two well-separated stafi€i ra-
dios [26] or two independently moving WiFi or 60GHz radib&|[2
57].

Imaging via a Single Networking Device. Our goal is to
further advance the state of imaging systems based on commod

The cheapest mmWave handheld imager costs $500, weighs
5lb [9], and the cheapest low-end LIDAR costs $250 and offers
1D imaging at a resolution of tens of cns [8].
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ity networking devices. Like[[57,_22. 26], we focus on imagin
static objects, but address the key limitation of requidogl sepa-
rate devices. We also integrate navigation with imagin@githe
same networking radio to avoid obstacles. The result is alsim
single-device imaging system that recognizes details jefodd me-
ters away, using only the device's onboard networking radidis
supports a low-cost solution deployable in crowded spaoésist
to a variety of lighting and acoustic conditions, while aling the
overhead and complexity of coordinating multiple devices.

Speci cally, our approach is to use a pair of 60GHz network-
ing chipsets, one transmitter (TX) and one receiver (RX)unted
on a single commodity mobile robot, separated by a (smaky x
distance (25-40cm). As the device moves by an object, the RX
picks up re ections of signals sent by the TX, and uses changi
angles of re ection along the path to reconstruct the serftape,
size, curvature, and material of the object. While the TX B)d
beamform and analyze re ected beams to enable imaging,ahe d
vice moves to emulate a large aperture antenna array. ¥ittadl
mobile device can scan an area with multiple objects and imap t
area and the objects by navigating over a carefully comppiial

Our Contributions.  This paper describes the design, implemen-
tation and evaluation dfllyssesan object imaging system using a
single compact mobile device and on-board 60GHz networiang
dios. Since phase noise from device tracking errors anctabim

of the TX/RX pair introduce changes that invalidate exigtiadar
and RF imaging algorithmsye mustdesign a new imaging algo-
rithm. Our work makes three key contributions:

A new imaging algorithm driven by specular re ection and
beamforming. Center to Ulysses is a new imaging algorithm
that operates oheamforming RS3\s the device moves nearby
an object, Ulysses captures thpecularre ection off the ob-
ject surface, uses the observed angular and amplitudesvafue
the re ection to recognize tiny segments on the object safa
and then leverages device trajectory to assemble them and re
construct the object surface details. In a nutshell, Ulyssau-
lates monostatic synthetic aperture radar (M-SAR) withusirig
phase (for robustness), but using angular and signal strémg
formation offered by the commodity 60GHz radios. Ulyssés di
fers fundamentally from existing 60GHz imaging designl [57]
which explicitly avoids segment assembly.

Navigation based on 60GHz beamformingUlysses also inte-
grates robot navigation with imaging, focusing on de nirsgfety
zones” where devices can move freely without collision,imga
using just the onboard 60GHz radios.

Prototype and evaluation using 802.11ad phased arrays and
robot. We prototype Ulysses using commodity 60GHz 802.11ad
radios with phased arrays, which are cost effective ($5)samall
enough (4.8cm 2.4cm) for mobile devices. We then integrate
Ulysses on a compact robotic car and evaluate it in multiple i
door and outdoor settings on objects of various sizes, st
materials. Our results show that Ulysses images objectsrmet
away with cm-level precision, provides accurate estimaféise
surface material, while safely and ef ciently navigating un-
known, crowded environments. Itis also robust againsttrvhe
jectory errors (up to 10cm). We also compare Ulysses to camer
based imaging]1] and dual-device 60GHz imaging radar [57].
Ulysses achieves similar accuracy but eliminates the thétysi

to lighting and the need of two mobile devices.

Our prototype is primitive and limited by both hardware aed d
vice constraints. However, we believe these results detraias
signi cant promise for this approach towards the developif

an accurate, low-cost, and portable imaging system folesimg-
bile devices. We discuss the limitations of our current glesn &4,
and potential solutions to be explored in upcoming work.

2. SINGLE DEVICE MOBILE IMAGING

As background, we describe in this section our target sganar
and constraints, the trade-offs for using 60GHz networkadjos,
the reason why existing imaging solutions cannot be appéed
the key challenges facing our single-device imaging design

2.1 Scenarios and Requirements

Our basic operating scenario includes a compact mobilecdevi
e.g.,a robot car or a drone, exploring an unknown environment by
imaging nearby objects. Figuré 2 shows two illustrativenegkes.
The rst is a robotic car tries to pick up speci ¢ objects idsian
unknown room. Target objects are de ned by size, shape and ma
terial, e.g.,a metal box of a speci c size. To locate the objects,
the robot navigates through the room while imaging eachabloje
obstacle (without bumping into them). The second scenari@ i
vehicle (or a robot) tries to image the back of parked carsiou-
door parking lot. For both scenarios, “imaging” an objectame
recognizing its size, shape and material.

The key requirements for our imaging system include:

To be suitable for mobile devices, our imaging solution seted
be lightweight and low-cost, and compact enough to be maounte
on a single compact mobile device like robot cars or dronés (3
40cm in width).

Our system must accurately image static objects, inclugiogg-
nition of object size, shape (curvature) and materials.s&luke-
tailed information will greatly help with object recograti, es-
pecially in unknown environments.

To satisfy today's application scenarios, our solution tatgin
accuracy (of location or size/shape) to a small number of cen
timeters, and image objects meters away.

2.2 A Case for 60GHz

Our goal is to achieve imaging using commodity networking ra
dios on a single device. Both WiFi and 60GHz networking radio
are attractive candidates because they are in unlicensets band
have commodity networking chipsets on the market todayaret
energy ef cient and low-cost ($5-$30). We choose 60GHzasdi
because they offer high directionality (via real-time béaming)
in a small form-factor, so we can place both TX and RX radioa on
single, compact mobile device. Furthermore, under highctiion-
ality, 60GHz propagation and re ection face minimum mustip
effect, and are stable and predictable for both indoor aridoau
scenarios, as shown by prior studies! [48, 55].

Figure[3 compares the sizes of a drone, a robot car, and our
60GHz array prototype. The 60GHz array uses a standartb8
rectangular array and is 2.4cm4.8cm in size. The compact and
light-weight design makes it feasible to deploy both traiten
and receiver on a single autonomous device. To achieve the sa
directionality using WiFi requires antenna size at leasttifries
larger. Furthermore, our initial prototype already offezal-time
ne-grained beamforming,e. switching beam every 0.4ms. Com-
mercial 60GHz chips offer beam switching at a higher speed of
50ns [51].

Compared to WiFi, the key limitations of 60GHz radios are re-
duced range and sensitivity to blockage and rain. But singe o
goal is to image objects a few meters away (rather than niainta
high-speed communications), these limitations are tblerander
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Figure 3: The actual size comparison of a drone, a robot @ar an
our 60GHz array prototype. The array (18) is compact and

an unknown room to image target objects, and a car drives by af s both TX and RX can be mounted on a single mobile device.

parked cars to image them.

our scenarios. Heavy rain only adds 0.2dB signal loss form 10
imaging range.

2.3 The Need for a New Imaging Algorithm

A key design question is “can we apply existing radar or RF
imaging algorithms to our system?” Unfortunately, our el
shows that existing solutions fail to apply. As starter, RM®Gased
solutions €.g., mmWave handheld imagefs [9.10]) do not apply be-
cause they require specialized frequency-modulated feasdeom-
ponents that do not exist on commodity networking radios, ian
will be dif cult and costly to port them into networking raof.
Next, prior design for WiFi mobile imagin@[22] leverages tthad-
owing effect of WiFi propagatiotetween two well-separated de-
vices. This approach is not applicable to our scenario sinee
quires two independently moving mobile devices, and alsaHi)
can hardly penetrate objects (thus there is no shadowiagtefFi-
nally, the most relevant solutions are the monostatic stitttaper-
ture radar (M-SAR) algorithm [46] and variations, and theARS
algorithm for 60GHz mobile imagind [57], which we discussine

M-SAR and phase-based solutions. Using colocated transmit-
ter and receiver, M-SAR [46] emulates a large antenna aryay b
moving the device and aggregating both signal strength aadep
measurements across locations. Unfortunately, M-SARiresju
accurate phase construction along the device path to atsdneb
measurements. For 60GHz radios, this is only feasible wheedé-
vice can track its trajectory to sub-millimeter-level ay. Prior
work [57] have shown that even millimeter-level trackingoes
translate into random, large phase noises and signi caaging
errors. Similarly, prior works on WiFi object imaging [26jear-
eld mmWave object imaging[[36] and tracking [53] all rely on
accurate phase construction, and fail to apply here.

RSA. Developed for dual-device 60GHz mobile imagingl[57],
RSA tolerates trajectory noises by operating only on RS$.tYe
fails to apply to our system because o@wrequirement of colo-
cating TX and RX breaks the fundamental assumption of itgydes
Speci cally, RSA images an object surface by capturing amdlm
eling thescatteringre ection contributed by the entire surface as
one unit. This methodology works when TX and RX are widely

separated and moving independently, but breaks down when TX

and RX are colocated and move in unison (discussed next).

2.4 Key Challenges

Challenge 1: Large phase noises. Like existing works on
60GHz mobile imaging[57], our system faces the challenge th
(random) errors in trajectory tracking translate into éaphase noises
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Figure 4: Colocated TX/RX leads to limited visibility of spdar
re ection, for both indoor and outdoor settings.

In addition to not using phase, we face several new challenge
by colocating TX and RX on a single mobile device, separated b
a small, xed distance.

Challenge 2: Moving TX. Colocation means that TX moves
with RX as the device travels. This breaks the foundation®AR57],
which assumed a static TX with xed beam direction (duringin
ing) that helped generate an “anchor point” for the entindase.
RSA fails when TX moves in unison with RX.

More importantly, while RSA assumed scattering (speculdfuse)
re ection due to static TX and mobile RX, our system operates
specular (or direct) re ection thanks to colocation. Aswhoby
Figure[34, signal re ected from a surface generally incluthesh
specularanddiffusecomponents — specular re ection is focused
on a single direction and diffuse re ections are scattereer @
range of directions. Since object surfaces are much lafgger t
60GHz's 5mm wavelength, specular re ection, when captuisd
much stronger than diffuse re ection. This and the fact (R&tRX
are in close proximity, co-moving and beamforming, indécttat
our system will operate on specular re ection along the detra-
jectory, both indoor and outdoor.

Challenge 3: Limited visibility. With colocation, the prox-
imity between TX and RX means (specular) re ections from the
object can only be detected in a small angular window, and thu
at a limited set of locations. Using a rectangular objectras»xa
ample, Figur€# also shows the measured re ection signahgth
around the object. Clearly the object is only “visible” ataad| set

across signal measurements. When phase measurementedre us©flocations, especially near the four object corners.

in imaging, we observe large imaging errors (similaf id }5Thus
like [57]), we chose not to use phase measurements in ouiirignag
design.

Challenge 4: Navigation via 60GHz beamforming. Since each
object is only “visible” at certain locationdue to specular re ec-
tions, the mobile device must travel to nd these visible location



to perform imaging. That is, the mobile device must integitg
navigation with its imaging process.

Rather than reinventing our own navigation algorithms, aeks
to leverage existing navigation algorithms from the rot®tom-
munity [15,[16/39]. These algorithms typically assume case
sonar or LIDAR as sensors. Instead, we develop methods te com
pute “safety zones” for navigation based on 60GHz beamfogmi
results, and to plan movement trajectories that facilitaeémaging
process. To the best of our knowledge, we are the rst to giyant
safety zones using 60GHz beamforming.

3. ULYSSES

To address the above challenges, we introdiigssesa single-
device imaging system that uses 60Gtizectional beamso de-
tect and image unknown objects in far- eld scenarios. Ouw ke
insight is that as TX and RX move in unison on certain trajecto
ries and perform ne-grained beamforming, RX caontinuously
capture specular re ection contributed by eahall segment of
object surface. The geometry of specular re ection creatssong
tie between its angular properties and the surface shapeeeét
segments. Ulysses then integrates these angular prapeitiethe
device trajectory to assemble the estimated “segmentsiraage
the object.

Since Ulysses operates on the signal strength and angtdar in
mation of 60GHz beamforming signals, it is robust agairget-
tory errors (up to a few cms)Me con rm this by performing signal
measurements on different trajectories. While thesedimajes can
deviate from each other by as much as 10cm, their RSS andaangul
values vary little This observation aligns with that of [67].

Core Concepts. Ulysses includes three core components:

a sensingmodule that uses 60GHz beamforming to detect and
extract specular re ection off objects;

animaging module that leverages the geometry of specular re-
ection and converts device trajectory into a reliable estte

of the surface shape; in essence, our design emulates MsSAR'
point aggregation process [46] without using phase;

a navigationmodule that uses 60GHz beamforming to safely
and ef ciently explore the unknown environment and to idignt
paths for capturing specular re ection off objects and iingg
them.

In the following, we present the core idea of each componedt a
leave their design details t6184.

1. Sensing specular re ection via beamforming. As shown
by Figure[®, at each location, Ulysses scans for objectgusai-
time ne-grained RF beamforming. This beamforming function is
de ned by the 802.11ad standard for 60GHz networking [27} a
supported by all commodity 802.11ad chipsets. Using beamfo
ing, Ulysses leverages the high directionality of 60GHzant ar-
ray to capture re ection signals in each ne-grained TX/R&am
directions. Thatis, without physically rotating the haede device,
Ulysses can sense surrounding objects in real-time.

Once the re ection signal is identi ed as specular (detail§4),
Ulysses extracts the angular and signal strength infoomatf the
re ection signal, producing a sensing map per location. urFéfg
shows an example sensing map, which records the signagttren
as a function of the TX and RX beam directions. The peak on the
map is used to extract the Angle of Arrival (AoA) and the Angfe
Transmission (AoT), representing the RX and TX beam diogsti
that lead to the strongest re ection signal, respectiv8ince the
strongest re ection comes from the center line directiorboth
the TX beam and the RX beam, each tuple of AoA, AoT and the

. TX /\ RX <& Beamforming

Sensing Map at loc.2

Strongest RSS|

RX Beam
Direction
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TX Beam Direction
Figure 5: At each location, Ulysses scans objects by néng
beamforming. The result is a per-location sensing map #gwards
the received signal strength as a function of TX and RX beaetdi
tions. The peak de nes theAoA; AoT; RSS g tuple for imaging.

corresponding received signal strength (RSS) capturespiseular
re ection off a very small segment of the surface

2. Imaging surface by projecting trajectory.  The basic con-
cept is shown by Figurlgl 6. As the device moves around an object
and “lights” up each small segment of the surface, the medsur

f AoA; AoT; RSS gsequence allows us to compute tigmal line

of each small surface segmeng. a line that is perpendicular to
the segment and represents its orientation.

Building an image of the object surface, however, requis b
the normal line (orientation) and the location of each sraali-
ment. Since each segment location is the incident pointefeh
ection, ideally it can be estimated by intersecting AoA aAdT.

Yet in practice the result is quite noisy due to both the gaatibn
noise in beam steerin@n inherent artifact of analog beamform-
ing hardware desigrgnd the trajectory noise in device movement.
One might consider conventional RF ranging/positionirigtsans,
such as the time-of- ight method [32]. But under our far-dece-
narios, these solutions only pinpoint the center of a serfather
than each tiny segment on a continuous surface.

Ulysses takes a different approach to image the surfacewith
pinpointing each segment. Speci cally, Ulysses rst esiies the
surface shape (size, curvature, orientation) withoutguering any
ranging. It then estimates the center location of the olgediace
using all the beamforming measurements on the trajectory (thus
achieving much higher accuracy), and “shifts” the estimateape
to the estimated surface center.

To estimate the surface shape, Ulysses leverages the dactih
ject surfaces are locally continuous, and thus the oriemisitof
two neighboring surface segments are similar. Ulyssevegsahe
surface shape by projecting the device trajectory alonghtimmal
lines of every two segments. As shown by Figlure 6, such projec
tion can successfully reveal not only at surfaces but alsoved
surfaces (details i §4).

3. Navigation by 60GHz beamforming.  With colocation, a
mobile device can only capture specular re ections at setboce-
gions near an object. To navigate to these (unknown) loesitio
while avoiding obstacles, Ulysses integrates 60GHz beamiifig
with prior work in robotic navigation[[50]. Speci cally, Wsses
leverages 60GHz re ection models to compute safety zone=nwh
re ection signal is present or absent, and uses them to glédiee
navigation. It also leverages beamforming sensing resuilpdan
ef cient trajectory around the object(s) to perform imagjin

4. ULYSSES DESIGN DETAILS

We present Ulysses' three modules in detail, starting frben t
sensing and imaging modules assuming a single object isqtres



(a) Planar (b) Convex (c) Concave

...... Normal Object Object Object
Object surface T 1 /] AN

Imaged surface

— g . :
A Rx
B X é i i
AOT/A0A i
Trajectory

Figure 6: Estimate surface shape by projecting trajectdirgach measurement location on the trajectory, the capfukeA; AoT; RSS g
is contributed by a small segment of the object surface. Bjepting the trajectory segment guided by the two normaldjiwe can estimate
the shape of this surface segment. We then stitch theseagssimp to build a continuous surface shape estimate.

Trajectory

Trajectory

We then discuss how Ulysses images multiple objects simeita  and ;.1 , creating a surface estimae. Finally, all the estimated

ously, followed by the navigation module. segments are assembled in space by aligning the starting gfoi
. . . §.1 with the end point ofs, creating a continuous surface shape
4.1 Sensing via Beamforming 8

The colocated TX/RX perform sensing using the ne-grained  As discussed earlier, Ulysses does not locate each indiladu-
beamforming module in 802.11ad [27]. TX steers its beam to- face segment. As each segment is smsall¢m), even sub-cm error
wards each direction for a small period of tingeg.,25ms in our in ranging will create unnecessary ambiguity in shape egton.
prototype, and sends out beacon packets repeatedly. R)$ d#fee  Instead, Ulysses assembles the estimated segments gateobth
beam at a faster speeelg.,0.5ms, and records the RSS value at ject surface is locally continuous. Doing so means the imggi

each scanned direction. Upon capturing re ection sigridlgsses result might miss subtle surface deta#sgy.,keys on a keyboard.
identi es whether specular re ection is present, and extsathe This is not a requirement for our target scenarios, and wesléa

f AoA; AoT; RSS g tuple. to future work.

Detecting specular re ection.  Being much stronger than dif-  Computing surface boundaries and curvature.  The surface
fuse re ection, specular re ection can be detected by exang curvature can be easily determined by intersecting all tirenal
the measured signal strength across locations. When méndng linesf igi2t. For at surfaces, these lines should not intersect;

a region where specular re ection is invisible to a regionengh for convex surfaces, they intersect at a location in the TAnbe
it becomes visible, the device will observe a sharp jump & th direction; and for concave surfaces, they intersect at atilme in

measured signal strength (at the strongest direction patitm). the reverse TX beam direction.

Such variation is signi cantly stronger than those withixch re- The estimate on surface boundaries, width, depends on the
gion. Thus Ulysses detects the presence of specular rereiftihe curvature. For at surfaces, the shape estim@tbas the same
signal strength variation (over space) exceeds some ticesh length of the true surface. For curved surfadess either an en-

Handling array sidelobes.  Unlike laser, the beams of 60GHz  larged (convex) or compressed (concave) version of thesimue
arrays are not perfectly “clean” — it contains a strong mabeland face (see Figuilg 6). But since the true and estimated sisfeqees
many weaker side lobes. The side lobes can be re ected teward share the same curvature cenieg, the intersection of igizr,
RX by the target object, other objects or backgrounds, tenth we can resizés properly by estimating the radii of the true and
noises in the sensing results. In Ulysses, we apply the metho estimated shapes.

in [25] to distinguish the contribution of the main lobe frdhose To compute the curvature center, we intersect every pairiafz ,
of the side lobes. Thus these side lobes have minimal impact o and take a majority vote to mitigate noise. We calculate Hukus
our system. of the estimated surface by applying majority vote on théadise
between each measurement location and the curvature ,cayaan
4.2 Imaging by Projecting Trajectory to mitigate noise. Finally, we compute the radius of the tuiace

After detecting the presence of specular re ection, thesgés as the distance between the curvature center and an estimtte

device will move following a scheduled trajectofy(see for ~ objectcenter (discussed below).

trajectory planning) to image the corresponding objecteWimov- One exception is when the device is further away from a con-
ing, the device performs the aforementioned beamformingisg. cave object than its curvature centiee, the curvature center is in
The sensing granularity depends on the beamforming setisieg bgtween the trajectory and the object center. Now the reoact .
and the moving speed, but should be at least once every 1cm towill appear as coming from a convex surface. This can beyeasil
ensure cm-level imaging accuracy. detected and corrected by ipping the estimated (conveape%.

Recovering surface shape from trajectory. The imaging mod- Estimating object surface center and material. We now esti-
ule takes as input the trajectofyand a sequence of measurement Mate the center location of the object surface, which allos$o
tuplesf AoT;; AoA;; RSS;igi» 7, Wherei is a measurement loca-  Not only determine the surface curvature and width, but place
tion on T. Each tuplei corresponds to a segment of the object the estimated shagieat the proper location. For robustness and ac-

surface, whose normal line is = ( AoT; + AoA;)=2. Similarly, curacy, we estimate the surface center using all the senssudts
the trajectoryT is also segmented, where each segnignstarts along the trajectory. Speci cally, we compute the intets®t of
from measurement locatidnand ends at + 1. Next, at each lo- each AoA and AoT pair and use the average over the trajectory a

cationi, T; is projected onto a line that is perpendicular to bath the estimate of surface center. After estimating the sartacva-
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ture and radius, we the re ne the center estimate accorgifgite
that when the radio hardware offers access to high-prectsiung
information,we can also leverage the time-of- ight methad[32],
which can achieve 10cm accuracy that is independent of object-
to-device distance.

Finally, given estimates of surface curvature, width andtee
location, we can determine the materials by computing theasi
re ection loss [57]. That is, we rst predict RSS (at the &afory
center) assuming signal re ection leads to zero loss, antbewe it
to the measured RSS value. The difference between the twe is t
re ection loss and the corresponding material can be founchf
the widely used material-loss table [31].

4.3 Imaging Multiple Objects

The above discussion assumes there is only one object in the

search space. When multiple objects (including backgrauaits,
etc) are present, the device may capture re ections fromtimul
ple surfaces along its trajectory. In this case, Ulyssdsvia the
same algorithm to image each object, but rst applies thie¥dhg
method to detect and extract re ection signals for eachaserf

Extracting per-object re ection signals. Here we leverage
two insights.First, thanks to 60GHz high directionality, the (spec-
ular) re ection seen by each individual RX beam generallyyon
comes from a single surfaceSecond along a continuous trajec-
tory, the re ection from each object maintains a strong efation
over space. That is, the correspondimyoT ; AoA; RSS g tuple
per object varies smoothly along the trajectory.

With these in mind, we apply a classi cation-based method to
separate contributions from different objects. Fidureldstrates

ing the on-board 60GHz beamforming radios rather than senso
like sonar, Lidar/laser and camera that were used in coinreait
navigation systems. Ulysses' key contributions includehods

to de ne safety zones for navigation and to schedule trajgdor
imaging once an object becomes “visible”.

De ning safety zones. A key input to robotic navigation is
the safety zone De ned with respect to the device's current lo-
cation, it allows the device to move freely without bumpimgoi
objects [[50]. While prior works compute safety zones usieig-s
sors like sonar and camera, we are the rst to de ne them using
just 60GHz beamforming radios.

1) Safety zone when no re ection is seé&tihile a Ulysses device
has limited view on specular re ection, it will still captei{weak)
diffuse re ections when in close proximity of an objectioithus
at locations where no re ection (above the noise oor) isrsese
build the safety zone as a circle whose radius the minimum
range that the device can capture any re ection in any beaetdi
tion from any object of reasonable size. That is, we detezmin
based on the object that leads to the heaviest re ection loss

We take an empirical approach to determinbased on the fol-
lowing condition:

Prx Grx Grx
I—palh ( )Lshape Lmaterial

= noise oor

@)

whereL path , Lshape @ndL maeriar  are the path loss, the re ec-
tion loss due to shape and material, respectively. We canput
by nding the heaviest shape andL maeriai  from any object. For
L shape , prior works have shown that for any given object, the sharp

the process. Given a sequence of sensing maps collecteg alon €dge of the object leads to the weakest re ection, refercedst

the trajectory, we rst remove the contributions of side dshus-
ing [25]. If the cleaned sensing maps still contain multipéaks,
then multiple objects are observed. Next, from each of thesaé&s,
we extract thd AoA; AoT; RSS g tuples and apply 1-nn (1 near-
est neighbor)[19] based classi cation to group the tuplesgthe
trajectory to individual surfaces. Currently our classiton uses
equally weighted AoT and AoA, but not RSS. This is because the
captured re ection signal per object can change from sgecual
diffuse re ection along the trajectory, creating large R&&ations
that disrupt the classi cation. We leave further optiminatof the
classi cation to future work.

4.4 Navigation for Imaging

As mentioned earlier, a Ulysses device needs to navigata in a
(unknown) environment safely to capture specular re etioff
objects. The navigation design leverages rich literatareobotic
navigation/mapping to move within the unknown environnierd.,
[15,[186,[39/50]), and instead focuses on enabling navigati

the wedge diffraction effect [14, 24]. Using testbed measents
on many household objects of different shapes and matevials
empirically validated this claim and found thaghape is bounded
by 24dB. FOr L maweriai  We use the widely known table of mate-
rial vs. 60GHz re ection loss'[31] and set it tt9:3dB. This is
the re ection loss of wooden objects which peaks among commo
household objects. We also manually measured other miatika
leather and a deck of paper sheets, and found that they aremo m
than 19.3dB. Given thEshape andL materia  , We usel[(lL) to derive
Im.

2) Safety zone when observing re ectidn.this case, RX will ob-
serve re ection signals (above the noise oor) at some beaete
tions. At the beam directions where re ection is absent, gty
zone is a round segment wiftm radius. At the beam directions
where re ection is seen, the safety zone is a region betweenur-
rent device and the object(s) since 60GHz waves cannot péaet
objects. Thus we approximate the safety zone as a round ségme
whose radius is the smallest separation between the davicthe
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Figure 8: An illustration of Ulysses's navigation path todge an
object and the corresponding safety zones.

object(s) that leads to the observed RSS value. For this usere
(@) but replace the noise oor with the observed RSS.
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Figure 10: Since the TX/RX has a xed height, the vertical gimay
range depends on the vertical beam coverage. At 10m distamge
object placed within the 1m beam coverage can still be okserv

arrays are placed on the robot front or top. We also do not mge a
software/hardware to synchronize the two radios.

Our robot car is from Nexus Robdt|[3]. We control its move-
ment using the on-board Arduino chip (with a maximum speed of
1m=s). The robot rotates at deg-level accuracy, thus we con gure
the robot to move in straight lines and avoid sub-deg-levtion.

One special case is that when an object is less than 1m aveay, th Most of our rotations ar60 and we check the need for rotation

diffuse re ection signal becomes suf ciently strong anchdae re-
liably captured at many RX beam directions. They can bezetili
along with the specular re ection to pinpoint the objectfaae,
e.g.,intersecting the AoAs and AoTs at many TX/RX beam direc-
tions. This is particularly useful when a robot rotateslitsed
suddenly faces an obstacle in close proximity and needsdiol av
them.

Planning trajectory for imaging. When detecting re ection
signals, a Ulysses device will move within its safety zone idi-
rection that is perpendicular to the normal liff&-—+2°T. This not
only allows Ulysses to identify the type of re ection (spéuvs.
diffuse) but also puts the device on an ef cient trajectaryimag-
ing (under specular re ection). Upon detecting diffuse eetion,
the device will explore in other directions.

While traveling, a Ulysses device will periodically redakte
the safety zone computation and adjust trajectory if neacgssn
particular, when the trajectory coverage passes the edipe ab-
ject, it will observe a signi cant continuous drop of sigrstitength
due to the aforementioned wedge diffraction effect. In ti@dse,
the device will re-compute the safety zone and rotate by(60the
closest value de ned by the safety zone) to go around thecbbje
Figure[® illustrates how a device navigates to discover arabe
an object and the corresponding safety zones along the guatih.
During the exploration segment of the trajectory, the yadene is
a full circle of 1m radius, which reduces into a partial argthen
the device starts to image the object.

Finally, when multiple objects are present, Ulysses witlate a
direction in the safety zone that is the average of the “oaltitna-
jectories across the objects, or even weighted by their RE&®s.
In some cases, it will image objects sequentially, sortedhiyr
RSS values.

Avoidingwalls.  During navigation, the device will likely capture
the re ection of a wall and attempt to image it by moving along
it. This can be minimized based on the intuition that the sl
much larger than our target objects. Thus Ulysses includeslla
avoidance feature that if enabled, will stop imaging an cthfehe
detected shape is at and more tham in width.

5. IMPLEMENTATION

Proof-of-concept hardware.  We build a Ulysses prototype by

every 0.5m. The trajectory error is random but bounded@mm.

The 60GHz radios were donated by Facebook's Terragrapbgir@]]
and follow the 802.11ad standBrdThe Effective Isotropic Radi-
ated Power (EIRP) is 32dBm, well-below the FCC regulatiamitli
of 82dBm [B]. Each radio has an 86 rectangular phased array
(6 horizontal andl2 vertical beamwidth), and is electronically
steerable in the horizontal direction at a granularity & 1.Each
round of beamforming sweep®8 range (left and righ#5 ), and
takes 1.6s due to th&4ms beam switching delay. To meet the
real-time requirement (0.4s per measurement round for awtr
car), we reduce the sweeping coverage f@into 45 . Note that
the beam switching delay will be much smaller for productiand-
ware,e.g.,50ns in[51].

The imaging range depends on the surface material. For rough
wood ¢ 12dB loss), the horizontal imaging range is more than
10m. The vertical range depends on the vertical beam cogerag
(since our radios are mounted at a xed height). Fidurk 1@splo
the vertical coverage of our array: 1m when the object is 1@aya
and 0.5m when 5m away.

Navigation. We con gure the robot to move at a speed of
2.5cm/s and performs beamforming sweep (which nishes iwith
0.4s) every 1cm. While moving, the robot keeps track of its lo
cation, scans the surroundings via beamforming, and updhée
planned path and its safety area. During bootstrapping, see u
an exploration algorithm known to the robotic community][39
Within the safety zone, it searches for the local RSS maxinth a
terminates when the device detects RSS above the noise oor.

Identifying specular re ection. As discussed in[84, Ulysses
examines the measured RSS over space to identify the type of r
ection (specular vs. diffuse). Our measurements have shihat
when the re ection transitions between specular and diffdemi-
nated scenarios, one in general observes a gradual, @mdR$S
change by 20dB over 10cm moving distance. Thus we empiri-
cally choose a 2dB threshold between any two consecutive-to d
tect such continuous RSS change. This works well acrosauall o
experiments on many objects and environments.

Complexity.  We implement all the computation in Matlab, run-
ning on a 2013 MacBook Pro laptop (2.4 GHz Intel Core i7 CPU
and 8GB RAM). After collecting re ection measurements ajon
a path segment, the imaging computation takes 0.5peflsneter
for the given path This can be further optimized by using a more

placing two GOGHz radios on a robot car as the colocated TX and 7 Facebook recently showcased similar devices at the Embed-
RX (see Figurél9(a)). Currently the two small 60GHz antennas geq | inux Conference [4] and deployed them in Downtown San
are hard-attached to two wooden boxes so the prototype Eppea Jose[[7]. We hope that these devices will become commeyciall

bulky. Yet it emulates a compact, mobile imaging robot witaee

available soon.
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ef cient implementation, which we leave to future work. Thav-
igation computation is nearly instantaneous.

6. EVALUATION

In this section, we use real-life experiments to evaluatdiysses
prototype, focusing on imaging accuracy, navigation efr@y and

the system to identify the normal line ef ciently. Thus welpn
show the results for 40cm separation for brevity.

We next experiment with Ulysses in an outdoor parking lot to
image the back of parked cars (Figlite 9(b)). We set the protot
on top of a mobile cart to emulate a vehicle, and move the car at
slow speed to compensate the beam switching delay.

All of our results are produced under (uncontrolled) devicee-
ment errors. While programmed to move in a straight line tthe

safety. We also compare Ulysses to camera based |mﬁ|ngq1] a jectory deviation is random and can reach 10cm. The oriemtat

dual-device 60GHz mobile imaging [57].

Experiment Con guration. We rst perform experiments in
three indoor environments (Figuré 9(b)): a building carridof
size2.5m  50m), a classroom (of siz8m  12m) with ran-
domly placed chairs as obstacles, and a standard of ce tiecep
area bm  5m) with leather seatings. We place one or multiple
objects in these environments, some as target objects, asmie-
stacles. In total, we experiment with 11 household objettan-
ous sizes (8-82cm in width), surface shapes ( at, convencawe,
complex), and materials (metallic, plastic, wood, glassdboard,
leather). Figurgl9 shows their physical pictures.

deviation is bounded by Iper run.

6.1 Imaging Accuracy

Our imaging system outputs the shape, orientation, and-mate
rial of the target object surface. We quantify the accuragyhe
absolute error in each metric.

Imaging a surface via a straight line.  Consider a simple sce-
nario where Ulysses images a speci ¢ object surface by liraye
on a straight line. In each experiment, we place an objedben t
center of the room and program the robot to move in a straiigét |

By default, we place our robot car based prototype either nea Due to random trajectory errors and measurement noiseiméee

the entry door of the classroom and the of ce or at the cerftér®
corridor. Since our prototype cannot vary the height of tXeéRIX,
we instrument the system to focus on imaging objects in thergt
level. When placing the objects, we vary their locations ariein-
tations to the starting location of the robot car. We chahgertitial
orientation of the robot to create differemst-views of the envi-
ronment, such as a door, walls, obstacles, target objecistbing.
This allows us to test our design under different startupit@ns.
We also vary the separation between the colocated TX and X fr

ing outcome varies slightly across multiple runs. We repuetme-

dian value over 6 runs per con guration. For sensitivity lgas,

we vary the object to robot distance between 1m and 5m, and the
object surface to trajectory angle between 0 and (B0 that the
robot can capture specular re ection).

For at (or planar) surfaces, the estimates of surface wattd
orientation are not affected by the object-to-device disteand ori-
entation. Thus Figule11 (a) shows the results for the 9 plsuma
faces that are 5m away from the robot. The median width error

25cm to 50cm (we are unable to go below 25cm due to the hard- ranges between 2—5cm except for the large ottoman (it is af82

ware case constraintyVe verify via experiments that in this range,
the amount of separation has minimum impact since theylaival

in width and the error is 7cm). The surface orientation ersor
bounded byl .
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Figure 12: Ulysses navigates around the object and imagdsautiet(s) accurately.

Our system can always identify the curvature type, planar,
convex and concave. For curved surfaces, the orientation isr
always bounded b§ across all the con gurations. Yet the accu-
racy of width estimation depends on the object-to-devistadice.
As discussed earlier, we need to estimate the location dhcir
center in order to resize the shape estimate. Since theaaycur
of our current ranging method decreases with the objecamtis,
the error in the ranging result propagates into the widtimest
tion. Figure 11 (b) shows the width and orientation errorstiie
three curved objects that are 3m away from the robot. With our
simple ranging method, the median width error of the metedtr
can (convex) is 7cm, which increases to 8.8cm when the ohject
device distance is 5m. But by improving the ranging accutacy
< 10cm, the width error at both 3m and 5m will reduce to 6cm and
6.7cm, respectively.

Finally, our material estimation is accurate. Across oysegx
iments, the ground-truth material always falls in the topa®di-
dates provided by our imaging algorithm. This level of aecyr
aligns with prior works that must place TX/RX on multiple de-
vices [56, 57].

Imaging objects via navigation. Next we consider practical
scenarios where the robot navigates around the object{s)age
them. For this we consider both single object and multipleab
scenarios. Figure 12 shows three examples of our real-teme n
igation for imaging and the corresponding imaging resukgy-
ure 12(a) shows that to image a metal desktop (of 40cm in Width
the Ulysses device takes a rectangular trajectory follgilie shape
of the object. This is because when reaching the edge of fleetpb
detected by observing a signi cant and consistent drop grfias,
the device will rotate 90to circle around the corner. Figure 12(d)
shows that the estimated object is almost a duplicate of riwengl
truth (< 3cm error in width). Another example in Figure 12(b)
shows the navigation path around a circular object (théntcas)
assuming the robot car can only rotatedfy . In this case, the tra-
jectory is rectangular, and does not follow the object sugrshape.
Yet the estimated object still closely aligns with the grdaruth.

Figure 12(c) shows the scenario where our Ulysses device im-

ages two objects simultaneously. The corresponding tajeplanned

single-object multi-object
error type : -
median| max | median| max
surface boundary 2cm 5cm | 2.5cm | 4cm
curvature radius | 3.5cm | 5cm - -
orientation 0.47 0.86 0.58 0.98
object center 2cm 7cm | 1.5cm | 4cm

Table 1: Overall imaging errors under single- and multiegbsce-
narios, when the device navigates around the object to irtiage
entire object.

moving direction slightly after identifying a differentsace. The
imaging result is accurate except it misses one side of wdnoa.
This is because the corresponding re ection from this safs
blocked by the metal desktop.

Finally, Table 1 summarizes the distribution of the objecag-
ing errors (surface boundaries, orientation, and objentecdo-
cation, and curvature radius for circular objects) acrdissefaur
experiments (using our simple ranging method). The maximum
errors are bounded by 5cm for surface boundariedpf orienta-
tion, and 7cm for object center location, while the mediamorsr
are bounded by 2.5cm, 0.58and 2cm, respectively. One inter-
esting observation is that when we assemble the estimat&tsu
segments to construct the entire object, the inherent geprde-
pendence across them also helps to correct the imaging @mror
individual surfaces. For example, the estimated surfageeats
for the trash can that is 5m away can have width errors up tm12c
which reduce to below 5cm after assembly.

Impact of measurement granularity.  Since each beamforming
sweep takes 400ms, the measurement granularity (on tlee-raj
tory) varies with the robot speed. So far we con gure the tobo
to move at 2.5cm/s, mapping to one measurement per 1cm. We
then increase the speed to 5cm/s, mapping to one measurgenent
2cm or half the granularity. In this case, the imaging resdb
degrade slightlyj.e. < 2cm error in size estimation. However,
this is only a limitation to our current hardware. Since coemm

by our system has a more complex shape, as the device rdtates i cial 60GHz chipsets will support a signi cantly faster befanming

sweep B0ns=beam[51]), this will no longer be an issue.



Ulysses vs. RSA and Camera-based imaging. We also com-
pare Ulysses to RSA, the dual-device 60GHz imaging systéiin [5
and the camera-based imaging system. First, we implement th
RSA algorithm on our platform, following the same scenawbs
Figure 11, except that we place TX on a separated device 4 awa
from the object and well-separated from RX. Ulysses and RSA p
vide similar imaging resultsg 5cm error in width, andk 1 er-

ror in surface orientationjhanks to 60GHz's directionality But
Ulysses outperforms RSA by using a single device, thus lgreat
simplifying navigation and eliminating device coordirmatiover-
head.

and attempts to image it. After moving 1m and nding the objec
is at least 1m in width, the robot gives up on that. It then mas

re ections and decides to image the one with stronger RSSerwh
approaching the wall, it turns left to avoid collision. Aftielenti-
fying the carton box, it senses new re ection signals and esao
image the other two object and locates the target.

Accuracy of safety zones. We also measure the safety zone at
individual locations and con rm that they all do not overlajith
any object or obstacle. Figure 14(c) shows a speci ¢ exanple
the narrow corridor of 2.5m in width where the device is in the
middle of three objects. Although being conservative, thtety

Second, we use a smartphone app called 123D Catch [1], @ popzone accurately captures the impact of the walls, the ahjectd

ular camera-based imaging solution from Autodesk. It aasta
series of photos, analyzes them on the cloud, and recotsthe
captured environment. Like Ulysses, this is a single-deiritaging
solution. Since 123D Catch does not offer navigation, wettset
smartphone to follow the same navigation paths of Ulysség- F
ure 12 compares the imaging results of both systems, whieh ar
very close to each other. But when we turn off the light,use

it in a foggy day 123D Catch fails completely and Ulysses is not
affected. We also noticed that the camera app takes minates a
even hours to produce imaging results. Instead, Ulysseklavo
computational cost and runs in real-time1(s).

Outdoor Results.  We also evaluate Ulysses in an outdoor park-
ing lot, with the goal of imaging the back of parked cars tanide
tify shape, size and material. Our results are promisirgjcating
cm-level accuracy in this scenario. Figure 13 shows an el@amp
imaging result of a parked car, where Ulysses correctlyticen
the shape, size (to the cm-level accuracy) as well as thacurf
material.
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Figure 13: Imaging result of the back of a parked car.

6.2 Safe and Effective Navigation

Next we evaluate the safety and ef ciency of our navigatien d
sign using 60GHz beamforming. We run experiments in three in
door environments with obstacles and objects on the oore Th
device has zero start-up knowledge of the environment andata
“see” the target object initially. In each experiment, waqd three
objects with 1m to 5m distance from each other, and perform 10
experiments per indoor environments. Across all 30 expants)
our prototype successfully navigates around all the obetaamnd
objects without any collision.

Figure 14(a) illustrates an example of the overall navaragath.
The robot car starts in the center of the classroom facingy énween
all three objects, and seeks to “ nd the carton box”. It rsipdores
local areas in four directions within the 1m safety circledale-
tects re ection in one direction and then adjusts its trajgcto go
around the object to image it. The device then identi es thaged
object as a plastic monitor. This is not its target, thus thieot
moves to discover and image the other two objects together.

Figure 14(b) shows another example in the corridor, a smalle
environment due to the walls on the side. The robot's missida
nd the “metal desktop”. At rst the robot sees the wall re gon

even the small pillars on the wall (5cm in width). As futurenko
we plan to compare our 60GHz based safety zone estimations to
those using sonar and/or camera [15, 16, 42, 43].

7. LIMITATIONS AND FUTURE WORK

Handling large trajectory errors. Operating on angular and
RSS measurements of re ections, Ulysses is robust againdt m
erate trajectory tracking errors (our robot achiexedOcm devia-
tions over straight lines)n this paper we limited our experiments
to 2D movements where the trajectory tracking error is matger
Under 3D movements.g.,drone ying, the tracking error might
be (much) larger, leading to noisy angular and RSS measuteme
thus affecting imaging and navigation performance.

A potential solution is to integrate SLAM into Ulysses [28]4
which iteratively estimates the robot's current movemand the
corresponding imaging outcome, using prior trajectoryacdand
imaging results.

Handling device rotation errors.  Moving in straight lines, our
robot makes small rotation errox (1 ). Thus in our experiments,
we did not observe any impact on Ulysses imaging and naviga-
tion. But under larger rotation errors, the accuracy of Aa@ AoA
computation may be affected. We plan to empirically exantiie
potential artifact, and improve our design if necessary.

Handling multipath re ection. 60GHz's high directionality
and colocation of RX/TX effectively limit the chance that RAp-
tures multiple re ections in a single beam. Yet, this canpeapif
two objects are placed in close proximity and have the saiea-or
tation with respect to the Ulysses device. Separating thiggels
requires very high channel sampling rate which is costly fzaudi
to achieve.

Multipath re ection will have much less impact on imagingath
navigation, because multipath is location-dependent ailicap+
pear on very few locations along a trajectory. One can piatignt
identify these “noisy” locations and compensate accotglingav-
igation requires computing safety zone for each locatibus the
impact of multipath will be more visible. As multipath is laton-
speci ¢ (within a few cms), one potential solution is to deriper-
location safety zones by integrating measurements at yéach-
tions.

Duty cycling 60GHz radios. Currently Ulysses assumes 60GHz
radios are always available for imaging. In practice, welrteedu-
tycycle/schedule imaging tasks on 60GHz radios to redueeggn
consumption and/or allow radios to perform necessary conicati
tion tasks. We plan to study the tradeoff between imagingraoy
and the amount of 60GHz radio usage, with and without communi
cation tasks.

Improving image resolution.  Our current prototype achieves
an image resolution of a few cms. We think this is partiallye du
to the beam width, the beam steering accuracy and graryutrit
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Figure 14: Ulysses navigates in (a) the classroom and (bdhéor without colliding into objects/walls. In (c) wegilan example of the

estimated safety zone (the shaded region) at a speci citotat

our 60GHz prototype, and the lack of precise timing inforiorat
from the radios. Moving forward, we expect imaging accuraxy
improve with better hardware availability and better safitevac-

face the challenge of being sensitive to lighting condiiand not
being able to distinguish objects of similar colors.
In terms of imaging techniques, existing vision-basedesyst

cess to radio data. Finally, Ulysses does not assume TX and RXassume a stationary lighting source (TX) like [54, 28]. dsiiX's

are tightly synchronized. We plan to study whether addingR»X
synchronization can help improve imaging performance.

8. RELATED WORK

Re ection-based RF imaging and tracking. Recent works
have leveraged signal re ection to perform imaging andeatgck-
ing in both WiFi and 60GHz bands. In the WiFi bands, reseasche
have used commodity WiFi chips [22, 26, 29, 47] or specidlize
FMCW hardware [11, 12, 13] to localize/image static objeots

location as a reference, these systems construct imagdgeuft®
by exploiting either special illumination patterns or theeige cor-
relation of multiple re ection points observed at varioggations.
Our system uses a similar spatial correlation based apipyddt
differs by leveraging the directional 60GHz signals on a imgv
TX. One of our key contributions is the geometric method that
tegrates a sequence of observations (and spatial pattaifejted
under a moving TX source.

Robotic navigation. Ulysses leverages the rich literature on
robotic navigation in unknown environments.q., [15, 16, 39,

measure human body dynamics as well as hand/ nger motions. 50]). Our (new) contribution here is to de ne safety zonemgs

Others use commodity WiFi radios to recognize prede neddhan
gestures [41, 49], often leverage machine learning mettwdis-
tinguish different gestures and motions.

Existing efforts in 60GHz applied radar design to achieve- pr
cise object imaging and motion tracking of small target§] [Bes

FMCW hardware and applies SAR with sparse measurements in
absence of device movement noises, while [53] uses three sep

rate, static 60GHz radios to track subtle pen movements ablett
Both designs assume short object-device distance (30)50etn

on phase and do not face any device movement noise. Another

direction is to use two mobile 60GHz radios to image static ob
jects meters away at cm-level accuracy [57, 56], focusingeing
robust to device path noises. Finally, the most relevant nar@N
handheld imager i8Valleye[9], which uses specialized hardware,
costs $500, and weighs 5Ib.

Acoustic-based tracking and imaging. Recentworks use smart-
phone's speaker-mic pair to localize targets with cm- and-ievel
accuracy [38, 52], while another develops new measurindgpoaist
to image objects using an audible frequency [37]. Thesesiimou
systems are very appealing in short distance scenarioay&sen-
sitive to environmental noises. On the other hand, todaydsistic
imaging products use ultrasound and are costly,,$45K [40].

LIDAR and vision-based solutions.  Today, the state of the art
in mobile imaging products is LIDAR, used by Google selivirg
cars [45], with costs up to $75,000. Low-cost LIDAR protatgp
are in the works, but must sacri ce range, precision and e
(from 2D imaging to 1D). To our best knowledge, the cheapest v
sion [8] still costs $250 per device, providing 1D imagingw10s
of centimeter precision; another recent version [2] impsopreci-
sion to a few cms but costs $400.

Another widely studied area is vision-based solutions thsst
commodity camera®.g.,the commercial app 123D Catch [1], which
we compare with in this work. As discussed earlier, theseat&wis

the onboard 60GHz beamforming radios rather than sonaraane ¢
era[15, 16, 42, 43].

9. CONCLUSION

This paper describes our experiences in designing, implgnte
and evaluating an object imaging system for mobile devis#sgu
commodity 60GHz radios. Experiments on our prototype eéd
the feasibility of our colocated radio design, and con rnattlour
imaging and navigation algorithms can leverage onboardHs0G
radios for robust and accurate results. While the curreatopr
type is limited by hardware constraints, we believe ourltssinow
signi cant promise for a low-cost, compact, single-devicgging
system. We hope this work and followups will play a role in au-
tonomous devices in the near future.
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