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ABSTRACT
Edge video analytics is becoming the solution to many safety

and management tasks. Its wide deployment, however, must

first address the tension between inference accuracy and re-

source (compute/network) cost. This has led to the devel-

opment of video analytics pipelines (VAPs), which reduce

resource cost by combining deep neural network compression

and speedup techniques with video processing heuristics. Our

measurement study, however, shows that today’s methods for

evaluating VAPs are incomplete, often producing premature

conclusions or ambiguous results. This is because each VAP’s

performance varies largely across videos and time, and is

sensitive to different subsets of video content characteristics.

We argue that accurate VAP evaluation must first char-

acterize the complex interaction between VAPs and video

characteristics, which we refer to as VAP performance clar-
ity. Following this concept, we design and implement Yoda,
the first VAP benchmark to achieve performance clarity. Us-

ing primitive-based profiling and a carefully curated bench-

mark video set, Yoda builds a performance clarity profile
for each VAP to precisely define its accuracy vs. cost trade-

off and its relationship with video characteristics. We show

that Yoda substantially improves VAP evaluations by (1) pro-
viding a comprehensive, transparent assessment of VAP per-

formance and its dependencies on video characteristics; (2)

explicitly identifying fine-grained VAP behaviors that were
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previously hidden by large performance variance; and (3) re-

vealing strengths/weaknesses among different VAPs and new

design opportunities.
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1 INTRODUCTION
Edge video analytics is becoming the modern solution to

many critical tasks [8]. With the ability to accurately detect,

recognize and track objects on the fly, it can quickly detect and

respond to traffic accidents and hazard events [1, 7, 10, 14, 15,

18, 19], monitor and enforce physical distance during COVID-

19 [5, 16], auto-manage retail stores and factories [12], and

perform surveillance functions to make the world safer [3, 4].

Deployment of edge video analytics at scale, however, must

address the tension between inference accuracy and resource

cost, i.e., compute cost to run inference tasks and/or band-
width cost to transfer data from cameras to servers [29, 74].
This tension continues to grow as video sources proliferate at

the network’s edge [3, 4, 9, 17, 21], separated from the heavy

compute power necessary to run large deep neural networks

(DNNs) by a bandwidth-constrained mobile network.

In response, researchers have developed numerous video
analytics pipelines (VAPs) to optimize the accuracy and cost
tradeoff [30, 37, 44, 50, 51, 53, 54, 56, 63, 76, 81, 93–95], by
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Figure 1: Illustration of a video analytics pipeline (VAP).

combining DNNmodel compression/speedup techniques with

video processing heuristics such as frame sampling and image

downsizing (see Figure 1). For instance, Chameleon [54]

shows that intelligently subsampling traffic video frames at

the cameras can effectively reduce network and compute costs

without degrading inference accuracy.

As edge video analytics and VAPs continue to evolve, ac-

curate and transparent evaluation of VAPs becomes critical.

For instance, operators of edge video analytics need to know

what the optimal VAP is for a given video input, how often

the network/compute usage exceeds a budget, or how often

accuracy drops below a threshold.

Evaluating VAPs: Today, VAPs are evaluated using some
corpus of past video samples that represent the target sce-

nario(s). After running VAPs on these videos, their perfor-

mance (i.e., the accuracy and cost tradeoff) is analyzed and

compared against each other. Following this method, we run

an empirical study to evaluate seven VAPs from recent papers,

using a large chunk (14.5 hours) of traffic videos. Our study

shows that today’s evaluation method is insufficient to charac-

terize VAPs, often leading to partial/premature conclusions on

the efficacy of a VAP and across VAPs. This is because VAP

performance has a strong dependency on video content – it

can vary substantially across videos even in the same scenario

(e.g., highway traffic cameras), and drift dramatically over
time when operating on the same camera. Therefore, today’s

evaluation is either biased by the use of short video clips or

produces vague results over long videos, i.e., an excessively

wide distribution of possible cost-accuracy outcomes.

Our measurement study suggests that an ideal evaluation of

VAPs must have high performance coverage and low perfor-

mance variance. Here, “high coverage” means the evaluation

reveals both good and bad performance of a VAP, whereas

“low variance” means the evaluation could accurately estimate

the VAP’s performance on individual videos. And the strong

dependency of VAP performance on video content suggests

such ideal evaluation must characterize the complex inter-

actions between video workloads and a VAP’s performance.

Doing so presents three distinct benefits for VAP design and

deployment: (1) providing a comprehensive assessment of

VAPs under diverse video characteristics; (2) understanding

how/why each VAP’s performance varies across videos; (3) re-

vealing relative strengths among VAPs under different video

content characteristics. We refer to this new evaluation re-

quirement as VAP performance clarity.
Achieving performance clarity: A direct approach would
test VAPs exhaustively on a large collection of mobile video

workloads, e.g. existing video collections developed for test-
ing DNN models [32, 33, 35, 45, 49, 61, 97]. Yet these are

designed to evaluate DNN architectures rather than VAPs,

thus lack sufficient coverage of video characteristics that will

affect VAP performance. An alternative is to build a database

of empirical workloads that covers all possible video feature

value combinations, and use them to test VAPs. This is in-

tractable, however, since it would require a large database

capturing an exponential number of video feature combina-

tions.

Instead, we propose to characterize VAP performance us-

ing a carefully curated set of videos that serve to evaluate

different aspects of VAPs. Our design is based on the observa-

tion that each VAP is inherently modular and can be broken

into a set of “global” primitives. Each primitive leverages

a distinct set of video processing heuristics to optimize the

accuracy/cost tradeoff, and thus can be profiled independently

(against its associated video features) and then (re)assembled

to profile full VAPs. This modular structure allows us to effi-

ciently profile each full VAP by combining its corresponding

primitive-specific profiles. Note that some prior works also

observe independent VAP modules but use it to refine par-

ticular VAP designs [50, 54]. In contrast, we leverage this

observation to design accurate evaluation of many VAPs.

We present Yoda, the first VAP benchmark designed to
achieve performance clarity. Using a carefully curated set

of benchmark videos (67 minutes in length), Yoda focuses
on characterizing the complex dependencies of VAP perfor-

mance on mobile video content characteristics, and does so

efficiently. For each VAP v, Yoda builds a performance clarity
profile (Pv ) by running v on a set of benchmark videos pa-
rameterized by a set of video features, both chosen based on

v’s design primitives. The resulting Pv is a lookup table that
lists v’s performance (the accuracy/cost relationship) under
different video feature values. This provides a comprehensive

and transparent assessment of v’s performance and its de-
pendencies on video features. We show Yoda’s contributions
towards VAP evaluation, in three concrete aspects.

• Performance clarity – Yoda accurately captures existing
VAPs’ performance and their dependencies on video features.

It largely outperforms existing VAP evaluations with higher

coverage (the completeness of the evaluation) and lower

variance (the ambiguity of the evaluation outcome).

• Performance prediction – Using Pv , Yoda can efficiently
estimate v’s performance for videos not included in the
benchmark set, without running v. This takes 2 orders of
magnitude less computation than running v on the video.
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VideoStorm (NSDI’17), 
Chameleon (SIGCOMM’18)

AWStream
(SIGCOMM’18)

NoScope
(VLDB’18)

Glimpse (Sensys’15), 
Reducto (SIGCOMM’20)

Vigil
(Mobicom’15)

Glimpse NoScope

(c) Type 3(a) Type 1 (b) Type 2

DDS (SIGCOMM’20), 
EAAR (Mobicom’19)

DeepDecision
(INFOCOM’18)

Figure 2: Schematic illustration of some example VAPs grouped into three general types. (Differences within each general
scheme are omitted here.) Our goal is not to list all VAPs; instead, we seek to identify common techniques and their performance.

• Practical insight for VAP deployment – Yoda’s VAP pro-
files expose strengths and weaknesses among existing VAPs,

and the underlying deployment scenarios and video fea-

tures associated with these conclusions. These insights allow

us to identify previously hidden gaps and opportunities to

guide/motivate future VAP designs.

Though Yoda serves well on the seven VAPs considered
in this work, it is not without limitations. Currently, Yoda’s
content features and benchmark videos are not future-proof

(e.g.,Yoda does not support multi-stream/multi-query VAPs).
For distributed VAPs that handle bandwidth-constrained con-

nections, Yoda only evaluates reductions in average network
bandwidth usage but not the impact of bandwidth fluctuation.

Nonetheless, as the first attempt at benchmarking VAPs’

performance clarity, Yoda suggests a viable path towards
profiling the dependencies of VAPs’ performance on video

content via a modularized approach. Our goal is not to realize
an “ideal” benchmark; rather, we provide a concrete imple-

mentation of the proposed benchmark, which validates the

need for performance clarity and initial feasibility on accurate

performance evaluations of VAPs, and provides new insights

for VAP design and deployment. We release the Yoda toolkit
in https://yoda.cs.uchicago.edu and plan to expand our study

to include other VAPs and additional video features.

2 BACKGROUND
In this section, we present an overview on existing VAPs,

focusing on their design objectives and evaluations.

2.1 VAP Design
Computer-vision DNNs are generally optimized for high accu-

racy. However, the compute and network cost to achieve such

accuracy can be high1. This tension between accuracy and

cost has stimulated many ongoing efforts to develop video

1For instance, running state-of-the-art object detector at 30fps requires one

NVidia GTX Titan X GPU (>$1.1K) [49] and streaming the video at 720p

analytics pipelines (VAPs) [36, 53, 54, 56, 59, 63, 93–95].

VAPs reduce network/compute cost while maintaining high

inference accuracy, by combining DNN compression/speedup

methods and video processing heuristics such as frame sam-

pling and image downsizing.

Existing VAPs fall in three general types (Figure 2).

• Type 1: Saving network cost when the camera has low lo-
cal compute power. The camera only encodes video frames
and runs simple tracking algorithms, but does not perform

any inference that requires accelerators such as GPUs. In-

stead, a VAP saves network cost by selecting a subset of

frames/pixels to send to the server for DNN inference. For

example, AWStream [93] adapts video frame rate, resolution
and quality.Glimpse [30] and Reducto [59] send only frames
that contain new objects (e.g., identified by measuring inter-
frame difference). Similarly, EAAR [63] and DDS [36] only
encode regions that are likely relevant to the inference task.

• Type 2: Saving network cost when the camera and the
server split the inference task. Here the camera device is
equipped with some inference power (e.g., with a low-power
GPU) and thus can run a cheap DNN. For example, Vigil [95]
runs a cheap object detector on the camera to identify regions

containing most objects and sends only these regions to the

server for full DNN inference. NoScope [56] first identifies
frames with significant pixel changes and runs a cheap DNN

(fine-tuned per video stream) on these frames. Only when

the cheap DNN has low confidence will the frames be sent

to the server for further inference.

• Type 3: Saving compute cost of a resource-constrained
edge device. The third type of VAPs reduces compute cost,
when a camera device (or edge server) has moderate com-

pute power to run some inference locally. Videostorm [94]
and Chameleon [54] uniformly sample frames, downsize

(∼ 5Mbps) costs $2K/day for AT&T 4G LTE network ($50 for 30GB data

before the speed drops to a measly 128kbps [2]).
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VAP Target scenarios (sources of videos)
“YT” = YouTube, “P” = proprietary

Total duration
(# of videos)

Glimpse [30] Moving traffic cams (YT) + Face (P) 65min (30)
AWStream [93] Fixed traffic cams (MOT16) + AR (P) 6.3min (4)
Vigil [95] Campus cams + Indoor (P) 3min (3)
Reducto [59] Fixed traffic cams (YT) 250min (25)

Chameleon [54] Fixed traffic cams + Indoor (P) 525min (15)
DDS [36] Fixed & Moving traffic cams (YT) 30.7min (16)

Table 1: Today, VAPs are evaluated on videos of one or two
scenarios as a whole. For consistency, we only list object
detection datasets.

the sampled frames to a lower resolution, and process them

using a less accurate yet cheaper DNN model. We note that

Glimpse (Type 1), NoScope (Type 2) can also be applied
here to reduce compute cost, and thus fall into this type.

2.2 How Are VAPs Evaluated Today?
Today’s evaluation empirically tests and compares the VAPs’

performance (accuracy, cost) on a set of videos collected from

the target scenario(s) [50, 54, 56, 94], e.g., some traffic videos
recorded by fixed cameras in urban crossroads. Table 1 lists

the target scenarios and videos (sources and lengths) used to

evaluate some recent VAPs.

Such evaluation relies on an implicit assumption:

Today’s evaluation assumption: A VAP’s performance
under a target scenario can be represented by its perfor-
mance seen on a set of long videos of the same scenario.

Unfortunately, this is not always true. Our own measurement

study shows that a VAP’s performance can vary dramatically

among videos of the same scenario (see §3.2).

3 OUR EMPIRICAL STUDY ON VAP
EVALUATION

As video analytics and VAPs continue to evolve, accurate and

transparent evaluation of VAPs is crucial to their real-world

adoption. In this work, we are interested in understanding

whether today’s VAP evaluation methods (§2.2) can fulfill

this requirement. Since existing VAP proposals generally run

evaluation using different datasets, one cannot directly assess

and compare their performance from their reported results.

Instead, our empirical study evaluates 7 popular VAP designs

using the same video datasets (14.5 hours in total) that consist

of a much larger and more diverse collection of traffic videos.

Our analysis reveals significant VAP performance variability

across videos of the same target scenario, suggesting that

today’s evaluation method is insufficient to characterize VAPs.

We then discuss its implications for a better VAP evaluation,

which lead to the development of Yoda.

3.1 Methodology and Dataset
We start by discussing the methodology behind our measure-

ment study.

VAPs studied:We study and compare the performance of 7
recent VAPs on the task of object detection. These include
AWStream [93], Glimpse [30], Vigil [95], NoScope [56]2,

Videostorm [94], Reducto [59], and DDS [36]. They cover a

wide range of today’s VAP design techniques illustrated in

Figure 2.

For consistency, we configure all these VAPs to operate

on videos of (30fps, 720p) and all use the same pre-trained

DNN model as their full DNN model. To choose the full
DNN model, we experimente with several popular choices

(e.g., FasterRCNN-ResNet101 [13], Yolo [80]) and select

FasterRCNN-ResNet101 since it produces the highest accu-

racy in object detection. Later we also repeat our experiments

using Yolo, and find that while the absolute VAP performance

varies slightly, the key findings remain the same. Finally,

we consider the scenario where VAPs are “optimally config-

ured” to eliminate potential inconsistency or errors introduced

by imperfect system configuration. For each video segment

(≈30s), we configure each VAP by picking its best parameter

values (e.g., frame sampling rate of VideoStorm, or inter-
frame difference threshold of Glimpse) that minimize cost

while achieving over 0.9 inference accuracy in the first 1/3 of

the segment. We then test and report the VAP performance

on the rest of the video segment. We believe this considera-

tion helps increase the fairness and transparency of our VAP

evaluation.

Our “coverage” dataset: To show a more complete picture
of VAP performance, we compile a coverage set of public
traffic videos from a diverse video sources at a much larger

scale than existing works. We target specifically traffic videos

since they are commonly used in VAP evaluation (see Ta-

ble 1). When compiling our dataset, we seek to include public

traffic videos from diverse sources, covering different scenar-

ios (fixed or moving cameras; day or night; highway, city or

rural streets), and videos displaying a wide range of content

characteristics and dynamics, e.g., object speeds, sizes, object

arrival rate.

With these in mind, our final coverage set consists of 14.5

hours of traffic videos from multiple sources: YouTube (32

long videos, 10-47 minutes each), Waymo [83] (5 hours),

KITTI [42] (20 minutes), and MOT [70] (8 minutes). All

videos are split into 2112 segments (≈30s per segment).

Performance metrics used: We measure each VAP’s perfor-
mance using the following three metrics:

2We include NoScope in our study since it is also applicable to object

detection, although it was only evaluated on binary classification.
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Figure 3: Significant performance variability of the same VAP among videos of the same scenario. Each ellipse outlines the 1-σ
range of VAP performance across the segments of a video.
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Figure 4: Significant performance variability across video segments. Each dot shows the accuracy and cost of a segment.

• Accuracy is measured by the F1 score of a VAP’s de-
tected objects [38]. We obtain the “ground truth” results by

running the full DNN on the uncompressed video frames

(rather than the human-annotated labels). This way, any

inaccuracy will be due to VAP designs (e.g., video com-
pression, DNN distillation), rather than errors made by

the full DNN itself. This is consistent with recent work

(e.g., [54, 56, 72, 93–95]).
• Normalized network cost defines the data size sent by the
camera to the server divided by the size of the original

video. Reducing network cost is crucial when deploying

VAPs in bandwidth-constrained networks [74].

• Normalized compute cost is the average GPU usage (on a
NVidia GTX Titan Xp) per frame divided by that of the full

DNN model. Since the cost is normalized against running

the full DNN model on the same GPU, it is less dependent

on the particular choice of GPU. Note that when a VAP

(e.g., Glimpse) reduces both compute and network costs,
we will specify which is being considered.

We acknowledge that there are other aspects of VAP per-

formance beyond these metrics. Our choice of these metrics

is based on two reasons. First, these metrics are directly re-

lated to video content. For example, evaluating things like

how adaptive a VAP is to bandwidth variations is important

but deviates from our main goal of understanding the impact

of video content. Similarly, metrics like throughput, process-

ing delay or energy consumption are crucial but also highly

sensitive to the implementation details (e.g., pipelining or
parallelization) and hardware platform. Second, these metrics

can be translated into practical objectives. The feasibility of

deploying a VAP depends on whether its costs fit the provi-

sioned compute/network resources or the deployment budget.

Although we do not evaluate other performance metrics (e.g.,
throughput, latency) explicitly, we believe they are highly

correlated with the network and compute cost considered by

our study. For example, when a VAP reduces network cost

by 2x, this saving can translate into serving 2x video streams

while meeting the same inference accuracy target (i.e., 2x

throughput).

3.2 Key Findings

Finding 1: Performance of a VAP can vary dramatically
even among videos of the same scenario.

Following the traditional assumption (§2), we test each VAP’s

performance (cost vs. accuracy) in one of the four scenarios:
{fix-positioned traffic monitoring cameras, moving dashboard

cameras} × {on urban streets, or on highway}. Figure 3 sum-

marizes each VAP performance range in each video (each

over 20 minutes) in one ellipse. We see each VAP’s perfor-

mance can vary dramatically across videos in the same sce-
nario. Such performance heterogeneity is prevalent across all
7 VAPs and four scenarios considered by our study.

To reveal the full range of performance variability, Figure 4

plots the performance distributions of the 5 VAPs on all the

video segments in the coverage dataset (each dot shows the

performance on one segment). While the overall trends align

with findings of prior work (VAPs trade accuracy drop for

saving network/compute cost), we do see that each VAP has

a significant performance variability across video segments.

Even when we restrict the accuracy to a small range ([0.90,

0.95]), the relative standard deviation of cost across segments
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Cost when acc.
is in [0.9, 0.95]

VAP type 1 VAP type 2 VAP type 3
AWStream Glimpse Vigil NoScope Glimpse VideoStorm

Mean 0.34 0.27 0.15 0.67 0.41 0.20

Relative StdDev 73% 64% 102% 48% 45% 68%

Table 2: Even when we narrow the range of accuracy in
Figure 4 to [0.90,0.95], the cost (network or compute) across
segments could vary significantly. This can be seen from the
relative standard deviation values in the table.

can be 45-102% and the gap between 5th and 95th percentiles

is always over 90% (shown in Table 2). Here, relative standard

deviation is defined as the ratio of the standard deviation to

the mean, which is a popular metric to measure the dispersion

of a distribution.

Finding 2: Choice of optimal VAP is content-dependent.

Performance variance does not always lead to suboptimal

choice of VAP, if one VAP always outperforms others. Un-
fortunately, that is not true for VAPs. We illustrate this by

comparing VAPs in pairs. In each pair, one VAP acts as a “ref-

erence”, and we subtract the other VAP’s cost and accuracy on

each video segment by those of the reference. Figure 5 shows

the results of three VAP pairs and marks the region where

one VAP is strictly better than the other (higher accuracy and
lower cost). Clearly, the choice of best VAP varies across

video segments and is content-dependent. Thus, it is crucial

for VAP operators and developers to understand under what
videos would one VAP perform better than others.
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Figure 5: Each VAP outperforms the other on many video seg-
ments. each dot shows the relative accuracy & cost between
two VAPs on one video segment.

Together, these findings cast doubt over the current VAP

evaluation methodology:

Key Takeaway: Empirically testing and comparing VAPs
on some specific video workloads can be incomplete.

3.3 Discussion
Our measurement has shown that if a VAP is evaluated on

only a handful of videos, the results may fail to reveal its

true performance range and variance in a target scenario. An

immediate response is “why not using a better test dataset?”

Terminology Definition
Video content

features

Features that measure content-level characteristics

of a video (e.g., avg object speed). See §5.2.
Performance

Clarity (PC)

Comprehensive performance assessment of VAPs

under different video content features. See §4.1.

PC Profile

(Pv )

A lookup table that maps video content features to

performance of VAP v (e.g., Figure 6)
Cost-saving

Strategy

A particular heuristic to save computer/network

cost. See §5.1.

VAP

Primitives

A set of cost-saving strategies that seek to reduce

same type of redundancies. See §5.1.

Table 3: Definition of terminologies used in Yoda.

Why not using a representative dataset? Intuitively, with
a set of “representative” videos per scenario, we can get the

most common VAP performance by testing VAPs on these

videos. Unfortunately, this solution is impractical for two rea-

sons. First, cameras deployed at different locations or future

locations will likely generate video workloads with different

content characteristics beyond those captured by the empirical

tests. Second, since video analytics applications are contin-

uously evolving, representative workloads do not yet exist.

Thus, these tests might overestimate/underestimate the VAP

performance and lead to wrong choice of VAP in deployment.

Why not using a larger dataset? Testing a VAP on a larger
number of videos might offer a more complete view of its

performance range and variance. Yet a “just adding data” ap-

proach will provide little insight on performance distribution

on videos outside of the test dataset, and why a VAP’s perfor-

mance varies across videos.

4 ACHIEVING PERFORMANCE CLARITY
Different from prior work that evaluates VAPs using only

empirical tests, we propose a new methodology for VAP

evaluation: achieving performance clarity. The goal of per-
formance clarity is to not only identify a VAP’s performance

under a wide range of video content, but also characterize

how video content characteristics affect its performance. This

produces a comprehensive and transparent assessment of VAP

performance. In the following, we first present the key con-

cept behind performance clarity and its benefits, and then

discuss potential solutions to achieve performance clarity.

To facilitate the discussion below, Table 3 summarizes the

key terminologies and notations used by our work.

4.1 Defining Performance Clarity (PC)
The performance clarity (PC) of a VAP defines how video
content features affect the VAP’s performance3. Formally, PC

3While performance clarity reveals correlations between content features

and VAP performance, it does not equal to interpretation of DNNs or VAPs.
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Figure 6: An abstract illustration of a VAP v’s performance
clarity (PC) profile. Compared to either testing a VAP on few
videos or reporting its performance distribution over many
videos, this profile provides a more complete picture of the
VAP’s performance by describing its relationship with video
content features, which drastically reduces the ambiguity of
performance compared to those in Figure 4.

of a VAP v is a lookup table Pv that maps from a point x
in the space of video content features to v’s performance (in
cost and accuracy) on videos that match x . This is illustrated
by Figure 6. Compared to existing evaluations that are either

incomplete (e.g., single-scenario tests in Figure 3) and/or
ambiguous (e.g., high performance variability in Figure 4),
PC offers a comprehensive and clear characterization of VAP

performance and its variation.

The key insight behind PC is the following. It is the VAP
performance’s dependencies on video content features that
cause the VAP performance variabilities. As these content

features vary across videos (in the same scenario), so does

VAP performance. To illustrate this, we featurize each video

in our coverage dataset along four content features (more

features discussed later in §5.2), and plot in Figure 7 the

Pearson’s correlation coefficients between individual features

and cost of VAPs when keeping accuracy between 0.9 and

0.95 (to avoid cost variance caused by accuracy variance).

We single out the impact of each feature by restricting other

features to a small range less than 50% of their respective

value ranges. The results show a strong correlation between

each VAP’s performance and the content features.

Benefits of PC: A VAP v’s performance variation and its
content dependency come from the v’s design, i.e. they are in-
herent to v. Thus v’s PC profile (Pv ) can offer useful insights
on its design and deployment. Below are two usage cases.

1. To estimatev’s performance on any target video, we can
directly combine Pv with the content feature distribution

of the video, which can be quickly obtained by scanning

through the video. The computation cost is significantly

less than running v on the video (verified in §6).

2. To identify when one VAP outperforms another, we can
directly compare two VAPs’ PC profiles to identify in which

parts of the content feature space is one VAP better. Again

there is no need to run VAPs on any video.

Later in §6 we use these two tasks to evaluate the accuracy

and benefits of our PC profiler Yoda.

4.2 Feature-based Profiling: Why It Fails
Building an accurate PC profile is challenging. A straight-

forward solution is to create a corpus of videos that span

all combinations of relevant content feature values, and test

VAPs on these videos. Unfortunately, this can be prohibitively

expensive due to the complex relationship between VAP per-

formance and content features. Specifically, our measurement

study (e.g. Figure 7) lead to two observations.
• Heterogeneity impact of features: Different VAPs are af-
fected by different sets of features. For example, VideoStorm
is sensitive to average object speed (f1) but not per-object
area (f3); yet NoScope is highly sensitive to f3 but not f1.

• Combinatorial impact of features: A VAP can be affected
by multiple features. For instance, Glimpse is highly corre-
lated with the features of object speed (f1) and fraction of
frames with objects (f2), and AWStream is sensitive to f1
and f3. Therefore, it is insufficient to test VAPs on videos
that vary along only one feature at a time.

Thus, to cover all possible feature value combinations, we

need O(n |F | ) videos, where F is the list of content features

and n is the number of possible values per feature. To put it
into perspective, let us assume that there are 7 content fea-

tures, each having 4 distinct value buckets (e.g., low, median,
high and very high), and we need three 30-second videos to

measure VAP performance for each of the 47 feature value

combinations. These are not overestimation: there are at least

7 content features that might affect DNN accuracy or VAP per-

formance (see §5.2), and in our dataset we split each feature in

four buckets as well. The resulting dataset would be over 400
hours, much longer than any VAP test datasets ever created.
Since many VAPs do not reduce compute cost, evaluating

their performance on this hypothetical dataset would take 400

hours even when using one NVidia GTX Titan X GPU card

running the state-of-the-art object detector at 30fps [49].

4.3 Proposed: Primitive-based Profiling
Instead of profiling a VAP as a monolithic entity, we modu-

larize it into multiple primitives (§5.1), each of which can be

profiled separately. The rationale is two-fold.

1. A primitive is affected by fewer features than a VAP.
Each primitive only leverages, and is thus affected by, a

particular set of video content characteristics. For example,
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Figure 7: Strong correlation between video content features
and VAP performance. The four features are: (f1) avg. object
speed, (f2) % of frames with objects, (f3) 10%ile of per-object
area, and (f4) avg. confidence score per object.

many VAPs reduce video frame rates to save cost, and its ef-

ficacy depends only on temporal-related features like object

speeds. Yet these features have little impact on “orthogonal”

techniques like image downsizing or model compression.

2. Primitives have independent impacts on a VAP’s per-
formance. As we will show in §5.1, the performance of a
VAP can be approximated by multiplying the performance

of each primitive when other primitives are set to their cor-

responding most accurate, expensive strategies. In other

words, these primitives can be profiled individually, based

on which the full VAP performance can be constructed.

Reducing profiling cost: Since each primitive is profiled us-
ing only the video features relevant to its cost-saving strategy,
the VAP profiling overhead can be drastically reduced, from

O(n |F | ) to O(n |F1 | + n |F2 | + · · · ) = O(nmaxi |Fi | ) � O(n |F | ),

where Fi is the feature set related to the i
th primitive. Using

primitive-based profiling, our eventual dataset consists of only

67.5 minutes of videos, more than two orders of magnitudes
less than that of feature-based profiling (400 hours)!

5 YODA: PRACTICAL VAP PROFILING
We now describe our design of Yoda, the first VAP benchmark
to achieve performance clarity. Yoda builds a PC profile for
each VAP, by applying the aforementioned primitive-based

profiling. In the following, we first present how Yoda modu-
larizes a VAP into independent primitives (§5.1) and chooses

content features and benchmark videos to profile each primi-

tive (§5.2), followed by two core functions offered by Yoda:
VAP profiler and VAP performance predictor (§5.3).

5.1 Modularizing VAPs into Primitives
A VAP may employ one or more cost-saving strategies to
reduce redundancies in video frames, pixels, and DNN param-

eters. Observing this inherent modularity, Yoda categorizes
these strategies into three primitives (see Table 4).4

4Some prior work also reduces redundancies across multiple concurrent

queries [53] or camera streams [51]. We leave them to future work.

VAP
Temporal
pruning

Spatial
pruning

Model
pruning

VideoStorm[94] � (uniform sampling) �(quality downsize) � (model selection)

NoScope[56] � (diff-triggered) �(specialization)

AWStream[93] � (uniform sampling) �(quality downsize)

Glimpse[30] � (diff-triggered) �(fixed tiny model)

Vigil[95] � (diff-triggered) � (region cropping)

Chameleon[54] � (uniform sampling) �(quality downsize) �(model selection)

VideoEdge[50] �(uniform sampling) �(quality downsize)

DDS[76] � (region cropping)

EAAR[63] � (diff-triggered) � (region cropping)

Reducto[59] � (diff-triggered)

WEG[81] �(specialization)

Table 4: Modularizing some example VAPs into primitives.

• Primitive #1: Temporal pruning drops frames to reduce
inter-frame redundancies using at least two strategies. Uni-
form frame selection (e.g., [93, 94]) uniformly samples a
fraction of frames for further analysis and then carries over

their detected objects to future unsampled frames (e.g., via
object tracking). It works well if neighboring frames are

similar. Trigger-based frame selection (e.g., [30, 56]) skips
frames until a heuristic (e.g., significant difference between
frames) signals potential arrivals of new objects. It works

well when most frames have few objects of interest.

• Primitive #2: Spatial pruning reencodes video to reduce
redundancies among pixels. Specifically, image quality
downsizing (e.g., [54, 93]) reduces the video quality (e.g.,
from 1080p to 360p), which still achieves high accuracy if

objects are large. Another strategy, region cropping (e.g., [76,
95]), saves bandwidth by encoding only pixels relevant to

the task. It can be very effective in, for instance, traffic

videos where most vehicles/pedestrians appear small.

• Primitive #3: Model pruning leverages the fact that videos
often have specific object classes/scenes (e.g., traffic videos
contain mostly vehicles/pedestrians with static background),

and trims the full DNN to reduce compute cost while still

achieving high accuracy. Model selection (e.g., [54, 94])
picks a simple yet accurate DNN model from a few pre-

trained models with various capacities.Model specializa-
tion (e.g., [56, 81]) trains a smaller DNN just for particular
scenes/objects and if it fails, falls back to the full DNN.

Finally, for each primitive, Yoda also defines an oracle strat-
egy that does no cost reduction: 100% frame selection (for
temporal pruning, original video quality (for spatial pruning),

and full-size DNN (for model pruning). Since the primitives

essentially trade accuracy for cost savings, these oracle strate-

gies serve as the most accurate yet most costly strategies.

Independence across primitives: As different primitives
seek to remove agnostic redundancies in video/model, we
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Figure 8: Empirical validation of the cross-primitive independence on AWStream, NoScope and Vigil: VAP performance can
be approximated by the product of individual cost-saving strategies’ performance. Each dot is a video segment in our dataset.
Table 5 validates the independence property on more strategy pairs.

Model pruning + Temporal pruning Spatial pruning + Temporal pruning Spatial pruning + Model pruning
M1 +T1 M2 +T1 M1 +T2 M2 +T2 S1 +T1 S2 +T1 S1 +T2 S2 +T2 S1 +M1 S2 +M1 S1 +M2 S2 +M2

Accuracy 0.994 0.997 0.991 0.994 0.992 0.993 0.989 0.993 0.955 0.914 0.993 0.999

Cost 1 1 1 0.999 0.996 0.987 0.999 0.996 1 1 1 1

Table 5: Independence property between any pair of strategies from model-pruning strategies (M1: model selection, M2: model
specialization), temporal-pruning strategies (T1: uniform sampling, T2: trigger-based frame selection), and spatial-pruning
strategies (S1: image downsizing, S2: region cropping). Each value shows the Pearson’s correlation coefficient between the
performance (accuracy or network cost) when the two strategies are combined and the product of the performance when each
strategy is used separately. The high correlations suggest the cross-primitive independence is common.

empirically observe that individual primitives affect VAP per-

formance independently. For instance, the efficacy of spatial-

pruning strategies is largely dependent on object sizes/shapes,

whereas the efficacy of model-pruning strategies depends on

the scene complexity or skewness in object class distributions,

both of which are agnostic to object sizes/shapes.

Figure 8 and Table 5 empirically validate the property of

cross-primitive independence on existing VAPs. For a VAP v,
we first measure performance of each individual strategy by

replacing other strategies with their respective oracle strate-

gies. For instance, we measure the performance (cost and

accuracy) of v’s spatial-pruning strategy by running it on all
video segments in the coverage set while setting v’s temporal-
pruning primitive to the oracle strategy (full frame rate). We

then compare the performance of the full VAP and the mul-
tiplication of performance of its individual primitives. We
do so using Pearson’s correlation. Using this methodology,

Table 5 shows that the independence property largely holds on

different pairs of strategies from two distinct primitives. Fig-

ure 8 shows three concrete examples (AWStream, NoScope

and Vigil), where each VAP’s performance (both accuracy

and cost) closely matches the multiplication of its primitives.

We acknowledge that the cross-primitive independence is

empirical and there can be exceptions to it. For instance, when

spatial pruning downsizes video frames to an extremely low

resolution, no object can be detected regardless of the tem-

poral pruning strategy. In this case, the efficacy of temporal

pruning is affected by spatial pruning, though this is unlikely

to occur in practice as VAPs aim to maintain a high accuracy.

Nevertheless, we believe cross-primitive independence prop-

erty is still valuable. By breaking down each VAP to individ-

ual primitives (strategies) each related to a subset of content

characteristics, we can dramatically reduce the cost of profil-

ing VAPs in an exponential feature space. Likewise, develop-

ers of new strategies can apply the same method (of Figure 8)

to verify if the independence assumption holds.

5.2 Selecting Benchmark Features and Videos
Following the above discussion, Yoda profiles a VAP by first
profiling its individual primitives and assembling them to

construct the full VAP profile. To profile a primitive, Yoda
first selects its associated video features and video datasets.

Feature selection:We first create a set of 43 candidate con-
tent features based on 7 general content-level features (sum-

marized in Table 6) known in the computer vision community

to influence object detection accuracy (e.g., [38, 61]) and
potentially VAP performance. Among them, 6 features are de-

fined either per object, per frame, or per second. We pair them

with 7 statistics per video segment: mean, standard devia-

tion, and {10, 25, 50, 75, 90}th percentiles. Thereby, together

with one per-segment feature (i.e.,% frames with objects), each
video segment can be represented by 43 content features.

For each primitive, we then select the subset of features

(from the candiate set) that correlate with its strategies. Specif-

ically, we pick features that have strong correlations (over 0.3
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Video content feature Definition

Per object

object speed
the reciprocal of IoU between the

bounding boxes of the same object

detected in two consecutive frames

object area
the bounding box size of each object

divided by the frame size

confidence
score

the confidence score of each detected

object given by the full DNN

Per frame

total area of
objects

fraction of pixels covered by all object

bounding boxes in a frame

object count the number of objects per frame

Per second
object arrival
rate

# of new arrival objects per second

Per segment
% frames
with objects

percentage of frames containing

objects

Table 6: Summary of video content features

Primitives Selected features

Temporal
pruning

% of frames with objects, avg. object speed ,
avg. confidence score

Spatial
pruning

% of frames with objects, avg. total area of objects,
10%ile of per-object area

Model
pruning 10%ile of per-object area, avg. confidence score

Table 7: Yoda selects a subset of features for each of the three
primitives, from the 43 candidate video features.

absolute Pearson correlation, a threshold suggested in [71])

with at least one strategy of the four VAPs studied in §3. Here

we intentionally leave out three VAPs (AWStream, Reducto,

DDS) and use them as a holdout to test the generalizability of

Yoda (§6.2). To avoid selecting strongly correlated features
while capturing as many distinct factors as possible, we itera-

tively select a new feature only when it has a low correlation

with those already selected. Table 7 summarizes the selected

features of each primitive. These features can characterize the

PC profiles of existing VAPs at a sufficient fine granularity.

We observe only diminishing improvements with more fea-

tures. That said, Yoda can be expanded with more features as
more VAPs are developed.

Video selection: For each primitive, Yoda selects a subset of
video segments from our coverage set (§3) to cover all of its

feasible5 feature value combinations. We first evenly split the

range of values per feature into n = 4 feature value buckets
(we use feature value and feature value bucket interchange-

ably). For each combination of feature values, we pick at most

k = 4 video segments from our coverage set. n and k can be
increased if more videos are added. As a result, Yoda selects
29 minutes of videos for temporal pruning, 19 minutes for

spatial pruning, and 21 minutes for model pruning.

5Some feature value combinations may be infeasible; e.g., large per-object
area but small total area of objects.

We should stress that the goal of video selection is not to be
representative of a certain scenario (in fact it includes videos

from different scenarios); instead, it finds videos to cover each

important feature value combinations that heavily influence

VAP performance. This process enables PC profiling which

ultimately helps produce accurate performance estimation of

any particular scenario and workload (explained in §4.1). On

the other hand, Yodameets this goal with only a small fraction
of the coverage video set, because there is a highly uneven

distribution of content features across video segments (e.g.,
highway traffic videos contain mostly fast objects).

Potential selection bias and mitigation: The features se-
lected by Yoda might be biased, since we only pick the fea-
tures relevant to the existing four VAPs. We partially examine

Yoda’s generality by showing that it can successfully profile
AWStream, the VAP held out from our feature/video selec-

tion process (§6.2). As future work, we plan to expand/refine

Yoda by applying the above feature/video selection process to
additional and future VAPs.

5.3 YODA’s Workflow
Using the proposed primitive-based profiling, Yoda offers two
key functions for its users: VAP profiler that produces a PC
profile Pv for each VAP v, and VAP performance estimator
that directly estimatesv’s performance on a target video using
Pv without the need to run v on the video.
In the following, we use v = (t , s,m) to denote a VAP, with

t , s andm being its temporal-pruning strategy, spatial-pruning
strategy, and model-pruning strategy, respectively. The PC

profile of v = (t , s,m) is a lookup table Pv (or Pt,s,m) that

maps a feature value combination x in the feature space of F
to the expected performance in accuracy and cost Pt,s,m(x).

VAP profiler: Leveraging the property of cross-primitive in-
dependence (§5.1), Yoda builds the PC profile of v = (t , s,m)

in two steps. First, we build a per-primitive profile of each of

its strategies. The temporal-pruning profile of v, for instance,
is Pt,s∗,m∗ , where t∗, s∗ and m∗ denote the oracle strategies

(see §5.1) of temporal pruning, spatial pruning and model

pruning, respectively. That is, we build Pt,s∗,m∗ by setting

v’s spatial and model pruning strategies to their oracle ones
and testing it on the benchmark videos for temporal pruning

(introduced in §5.2). Second, we build the full PC profile as

Pt,s,m(x) = Pt,s∗,m∗ (x) · Pt ∗,s,m∗ (x) · Pt ∗,s∗,m(x) (1)

VAP performance estimator: In practice, operators often
need to estimate a VAP’s performance on a new (long) video.

The challenge is that naive featurization will require anno-

tating every object (by human annotation or running a full

DNN), which can be painstakingly slow. Fortunately, obtain-

ing the distribution of feature values over an entire video does
not require accurate results on each single frame. Instead, we
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Figure 9: Yoda achieves a much higher level of performance clarity (higher coverage and lower variance), compared to existing
evaluation methods. A high coverage means Yoda reveals both good and bad performance of a VAP, whereas a low variance
means Yoda accurately estimates a VAP’s performance on new videos.

show that running a low-cost object detector (e.g.,MobileNet-
SSD) on aggressively sampled frames can still yield reliable

estimate of the overall feature value distribution. For instance,

to get the distribution of per-object area, we run Mobilenet-
SSD on 10x uniformly sampled frames to get the area of

each detected object and use the distribution of these areas

as the result. This way, Yoda can quickly scan a long video
and produce reliable estimation of the distribution of each

feature value. Once the feature distribution is known, Yoda
then uses Pv to directly map the feature value distribution to

v’s performance on the video.
We implement Yoda as a ready-to-use toolkit for profiling

and evaluating VAPs, and plan to release the toolkit to the

research community. The toolkit provides a shared library

(API) for emulating and benchmarking VAPs.

6 EVALUATION
We evaluate the efficacy of Yoda in achieving VAP perfor-
mance clarity. Specifically, we conduct experiments to answer

the following questions:

• Does Yoda achieve higher VAP performance clarity, com-
pared to existing solutions that emprically test VAPs on a

corpus of videos? (§6.1)

• Is Yoda’s primitive-based profiling accurate and efficient?
Can it generalize to new VAPs? (§6.2)

• Can Yoda accurately predict a VAP’s performance on new
videos at a low computation cost? (§6.3)

• Does Yoda provide new insights for VAP design and deploy-
ment? (§6.4)

6.1 Yoda’s Performance Clarity
As defined in §4.1, performance clarity aims at providing a

comprehensive characterization of VAP performance. Here,

we measure the level of achieved performance clarity by two

dimensions: coverage (the completeness of the evaluation,
the higher the better) and variance (the ambiguity of the
evaluation outcome, the lower the better). The intuition is

that an ideal VAP performance evaluation should have high

performance coverage and low variance. A high coverage

means Yoda reveals both good and bad performance of a VAP,

whereas a low variance means Yoda accurately estimates a

VAP’s performance on new videos. The specific metrics of

coverage and variance are defined as follows. Given a VAP
v’s PC profile Pv (measured from our benchmark dataset of
67-minute videos), Yoda first uses Pv to estimate v’s cost at
a specific accuracy range ([0.9,0.95]) for all videos in the

coverage dataset excluding our benchmark videos. Then, we

compute Yoda’s coverage as the observed cost value range,
normalized by the observed cost value range when testing v
on the whole coverage dataset (14.5 hours of videos). Next,

we compute the standard deviation of Yoda’s cost values as
Yoda’s variance. Figure 9 shows the results of 7 pipelines in
the blue boxes: Yoda achieves high coverage (>90%) and low
variance (<0.2). The figures show one scenario per VAP, but
the conclusion holds in other scenarios.

158

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on September 22,2023 at 01:39:54 UTC from IEEE Xplore.  Restrictions apply. 



0

0.1

0.2

0.3

VideoStorm Glimpse Vigil NoScope AWStream Reducto DDS

E
st

im
at

io
n 

er
ro

r Yoda Existing evaluation 
 (representative workload)

Figure 10: Yoda provides more accurate estimation of VAP
performance on new videos than traditional profiling using
representative workload per scenario.

Yoda vs. existing methods: Figure 9 also compares the (cov-
erage, variance) results from the traditional evaluation method,

which tests the performance on a long video (or a set of

videos) from the target scenario (represented by the red dots).

For fairness, each test video is no shorter than our bench-

mark video. We see that the coverage fluctuates significantly

across videos and the variance per video is much higher. This

confirms that traditional evaluations lead to either incom-

plete/partial conclusions or ambiguous results (as we have

shown in §3.2). As a reference point, when the traditional

evaluation uses the entire coverage dataset (14.5 hours), the

variance exceeds 0.25, again significantly larger than Yoda.

Microscopic study on VAP performance estimation: We
take a further step to examine the benefit of elevated perfor-

mance clarity, using the task of per-video VAP performance

estimation. Given Yoda’s Pv , we directly estimate a VAP v’s
performance on any video, and compare it to the ground truth

result obtained by running v on the video. Again we keep the
accuracy to [0.9,0.95] and measure the absolute difference

between the cost value predicted by Pv and the ground truth,

which we refer to as cost “estimation error”. As reference, we

apply an “traditional profiler” to estimate v’s cost in the same
accuracy range by running v on a representative long work-
load under the same scenario of the test video, and compare

it against the ground truth.

Figure 10 plots the median estimation errors of both Yoda’s
profiler and the traditional profiler, across all the long videos

in the coverage dataset (that are not used for profiling). We see

that Yoda’s profiler is much more accurate than the traditional
profiler at estimating VAP performance on new videos.

6.2 Primitive-based Profiling: Accuracy, Cost,
and Generality

Yoda’s efficiency partly stems from its primitive-based pro-
filing, which tests a VAP on only videos that vary along the

primitive-related features. To evaluate it, we compare Yoda
with an expensive profiler built on the whole coverage set.

Accuracy:We measure the discrepancy between the PC pro-
file built on the whole coverage set and Yoda’s PC profile.
The average differences between the profiled performance

Glimpse Vigil VideoStorm AWStream NoScope Reducto DDS

Profile diff (Yoda

vs. coverage set)
0.043 0.005 0.048 0.063 0.083 0.030 0.058

Table 8: Discrepancy between the PC profile built on Yoda se-
lected videos and the PC profile built on coverage set videos.

curves (cost differences at same accuracy levels) are listed

in Table 8 for each of the seven VAPs, and are all very low.

This corroborates our intuition in §5.2 that a small subset of

videos is sufficient to profile PC, since the feature distribution

in the coverage set is highly uneven.

Profiling cost: Profiling a VAP is a one-time cost (i.e., no
need to repeat unless the VAP changes its design). The compu-

tation cost of profiling depends on the VAP design. Intuitively,

VAPs that do not optimize/reduce compute cost will incur a

higher overhead. Thus we present the result of AWStream, a

VAP that does not optimize for compute cost. To profile AW-

Stream, Yoda needs to run the VAP process on ∼72k frames
using the full DNN model for object detection, at four differ-

ent video quality levels and twelve different frame sampling

rates. When running on an Amazon EC2 machine (instance

p2.16xlarge that has 16 GPUs and costs $14.4/hr), the pro-

filing takes 8.5 minutes and cost $2. Even a VAP, such as

VideoStorm, that needs to profile all three primitives takes

only 22.2 minutes and cost $5.3.

Generality: Can Yoda accurately profile a new VAP not con-
sidered by Yoda’s feature and benchmark video selection
process? As mentioned earlier, we intentionally held out three

of the seven VAPs (AWStream, Reducto, and DDS) from the

feature/video selection process (§5.2). Nonetheless, Figures 9

& 10 and Table 8 show that Yoda achieve similar profiling
effectiveness on these holdout VAPs as on other VAPs. While

this does not prove that Yoda generalizes to all future VAPs, it
does indicates that Yodamight profile new VAPs as accurately
as the other VAPs used in its feature selection process.

6.3 Fast-yet-accurate Performance Estimation
Recall that Yoda offers a useful function of directly estimating
a VAP v’s performance on any video, without running v on
the video. We have validated the quality of performance esti-

mation in Figure 10 (§6.1), using the task of estimating cost

at a specific accuracy range ([0.9,0.95]). Below we provide

more results on its estimation accuracy and computation cost.

We consider the task to understand the variability of VAP

accuracy throughout a target video. For this we define two

metrics on accuracy variability: (1) fraction of video segments

whose accuracy is above 0.85, denoted by α ; and (2) fraction
of video segments whose accuracy is below 0.7, denoted by

β . Such metrics are useful in practice since operators often
need to maintain accuracy at an acceptable level. We use

the accuracy distribution of actually running the VAP on the
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Figure 11: Yoda estimates VAP performance faster and more
accurately than actually running VAP on the test videos.

video as the ground truth and define the estimation error by

|αest imated − αr eal | and |βest imated − βr eal |.
We also evaluate Yoda against a “resource friendly” base-

line that actually runs v on a sample set of video frames,
whose estimation accuracy and overhead depend on the sam-

pling rate. Note that as explained in §5.3, Yoda’s performance
estimator also needs to scan a sample set of video frames

to measure the video’s feature value distribution. Thus its

accuracy and overhead also vary with the sampling rate.

Figure 11 shows the estimation errors of Yoda and baseline
on VideoStorm and AWStream, as a function of the estimation

overhead (amount of GPU cycles consumed), for 5 hours of

dashcam videos (not used during profiling). Here Yoda uses
MobileNet-SSD [13] as the cheap object detector to scan the

videos. For clarity, we normalize the estimation overhead

by the amount of GPU cycles consumed by running each

VAP on the full video. We see that Yoda achieves nearly
perfect estimation at a much lower cost, i.e., nearly 2 orders
of magnitude faster than running the VAP on the video.

6.4 Practical Insights for VAP Deployment
By providing a comprehensive profiling on VAP performance,

Yoda also identifies new insights for guiding VAP design and
deployment. We highlight two concrete use cases here.

Conditional correlations among features: Figure 12 shows
the performance of Glimpse’s temporal pruning strategy against

two features: x1 (% of frames with objects) and x2 (average
object speed). For better visualization, we only show the min-
imum cost while maintaining accuracy over 0.9 (i.e., a slice
of the cost-accuracy tradeoff). Figure 12(a) and (b) show that

both compute and network costs are strongly correlated with
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x1 when x2 >= 1.6.
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Figure 12: Impact of feature x1 (% of frames with objects) on
performance depends on the value of feature x2 (avg. object
speed). Each box shows the mean and 25th and 75th %iles.

(a) Temporal pruning: Uniform
vs. frame diff-triggered selection

(b) Spatial pruning: Image quality
downsizing vs. region cropping

Figure 13: In both primitives, there is no single strategy that
fits in all type of content. The coloring indicates that where
one strategy is likely better than the other.

x1 when x2 is over 1.6 (which is a typical vehicle speed in
highway videos). But when x2 is below 1.6 (Figure 12(c)),
the correlation becomes remarkably weaker.6

This result implies that when testing VAPs that use this

pruning strategy (e.g., NoScope, Glimpse), the traditional
method may either miss this correlation (if most test videos
have slow moving objects) or claim a strong correlation (if
most test videos have fast moving objects). In contrast, Yoda
reveals not only both correlation patterns, but also when they
emerge, which helps to decide if a VAP should be deployed

in certain video content.

Informed choices of VAP strategies: As a case study, let
us consider two temporal-pruning strategies (uniform frame

selection vs. frame difference-triggered frame selection) and

two spatial-pruning strategies (image quality downsizing vs.

image region cropping). Figure 13(a) shows the operating
regime of each temporal-pruning strategy: frame difference-
triggered selection is better when only a small fraction of

frames contain objects and these objects move fast (magenta).

Otherwise, uniform frame sampling is better (green). Simi-

larly, Figure 13(b) shows that image quality downsizing is

likely to be better if the objects are large and occupy more

6A closer look at the selected frames shows that frame difference-triggered

selection is no longer effective when the object speeds are so low that the

frame difference triggered by their movement can easily be confused with

pixel differences caused by noises in the background.
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space in frames (green), and otherwise the image cropping

strategy is better (magenta). These differences stem from

how various strategies interact with videos. For instance, im-

age quality downsizing eliminates redundant pixels in large
objects of interest (which can be detected with less pixels),

whereas image cropping eliminates redundant pixels outside
of objects of interest by subtracting background.
These results have significant practical implications. For in-

stance, for urban traffic videos during peak hours, AWStream

(uniform frame sampling and image downsizing) is better

than Glimpse (frame difference-triggered frame selection),

because the vehicles appear frequently and in large numbers

and move slowly and often in relatively big sizes (crossroad

cameras tend to be closer to the road than highway cameras),

so it falls in the green regions of both graphs. In contrast, for

urban traffic videos during off-peak hours, where many large-

size objects move quickly (i.e., magenta in Figure 13(a) and
green in Figure 13(b)), we should create a new VAP that com-

bines Glimpse’s temporal-pruning strategy and AWStream’s

spatial pruning strategy.

7 RELATED WORK
Video analytics pipelines: Besides the VAPs described in §2,
there are other VAPs that utilize the same three primitives:

temporal pruning (e.g., [27, 63, 73, 79, 85, 88]), spatial prun-
ing (e.g., [63, 68, 79, 89]) and model pruning (e.g., [40, 73, 79,
90, 91]). Some work also reduces the compute/communication

cost of computer-vision inference pipelines, through super

resolution (e.g., [31, 82, 87]), splitting the DNN between
camera and server (e.g., [37, 44, 47, 51, 84]), DNN-aware
cloud/edge resource scheduling (e.g., [44, 55, 62, 75, 92]),
cross-camera or cross-application correlations (e.g., [28, 52,
65, 78, 92]), scalable data management and execution frame-

works (e.g., [58, 64, 67, 77]), and DNN architectures tailored
to balance throughput and accuracy (e.g., [26, 39, 48, 53, 60,
80, 86]). Many of these techniques leverage content-level

characteristics, such as the ones we have discussed. We hope

that by revealing the importance (and feasibility) of PC, fu-

ture work can extend Yoda to support these VAPs. While a
few prior works have mentioned the issue of performance

variability on some VAPs, the results were limited and only

based on a handful of video features (e.g., object size [36]).
To the best of our knowledge, our work is the first to system-

atically study (using measurements & building benchmarks)

how video content features affect VAP performances.

Edge/video analytics benchmarks: Several benchmarks of
video analytics systems have been proposed for various fo-

cuses, including throughput of video database (e.g., [45, 77]),
video encoding efficiency (e.g., [20, 66]), and shared library
to implement video inference pipelines (e.g., [11]). More
general benchmarks catered for edge network environments

are proposed as well [24, 57, 69]. Also related to Yoda are
those benchmarking vision-task accuracies (e.g., [6, 43]) and
their tradeoffs with throughput/latency (e.g., [49]). While
most benchmarks focus on average performance across im-

ages/videos, some did observe that vision models perform

differently across content [25] and can be sensitive to video

encoding [46] or training data quality [96]. Yoda takes one
step further to systematically reveal the influence of video con-

tent features on VAP performance. Recent efforts in computer

vision similarly demonstrate that features of the test data af-

fect the performance of a classification model (e.g., [23, 41]),
though they focus on perturbing the features to improve model

robustness whereas Yoda seeks to reveal the hidden relation-
ship between VAP performance and content features.

Traditionally, the systems community has benefited from

thorough performance benchmarking of data analytics sys-

tems under a wide range of workloads (e.g., [22, 34]), and
our work is one example of this line of work in the context of

video analytics.

8 CONCLUSION
Our work is a response to the recent trend of building efficient

mobile video analytics systems, at the expense of significant

performance variability caused by video content dependency.

We present a measurement study to shed light on this issue

for the first time, and propose the first VAP benchmark that

elevates performance clarity (how video content affects per-

formance). Although Yoda only scratches the surface of VAP
performance clarity, it is shown to be effective and capable of

identifying hidden design tradeoffs.
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