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Abstract—Maintaining a given level of data redundancy is a fundamental requirement of peer-to-peer (P2P) storage systems—to
ensure desired data availability, additional replicas must be created when peers fail. Since the majority of failures in P2P networks are
transient (i.e., peers return with data intact), an intelligent system can reduce significant replication costs by not replicating data
following transient failures. Reliably distinguishing permanent and transient failures, however, is a challenging task, because peers are
unresponsive to probes in both cases. In this paper, we propose Protector, an algorithm that enables efficient replication policies by
estimating the number of “remaining replicas” for each object, including those temporarily unavailable due to transient failures.
Protector dramatically improves detection accuracy by exploiting two opportunities. First, it leverages failure patterns to predict the
likelihood that a peer (and the data it hosts) has permanently failed given its current downtime. Second, it detects replication level
across groups of replicas (or fragments), thereby balancing false positives for some peers against false negatives for others. Extensive
simulations based on both synthetic and real traces show that Protector closely approximates the performance of a perfect “oracle”
failure detector, and significantly outperforms time-out-based detectors using a wide range of parameters. Finally, we design,
implement and deploy an efficient P2P storage system called AmazingStore by combining Protector with structured P2P overlays. Our
experience proves that Protector enables efficient long-term data maintenance in P2P storage systems.

Index Terms—Failure detector, P2P storage, availability, replication management.

Ç

1 INTRODUCTION

PEER-TO-PEER (P2P) storage networks aim to aggregate
today’s resource-abundant computers to form large,

decentralized storage systems. Of the numerous P2P
storage systems developed in recent years, prototypes
including CFS [14], TotalRecall [7], Friendstore [33] and
commercial services like Wuala [3] and CleverSafe [2], all of
them faced the long-standing problem of enforcing required
data availability from participating peers.

To reach availability target in unreliable networks,
storage systems replicate data across multiple peers (using
replication or erasure coding). Even if some replicas (or
fragments) become unavailable due to their hosts failing,
the object is still available by accessing other online
replicas.1 Over longer periods, the system must generate
new replicas as needed to compensate for others lost to peer
failures. Since replica generation consumes a large amount
of bandwidth, maintaining availability incurs a heavy cost

on storage systems [8]. Intuitively, aggressive replication
incurs high bandwidth costs that may cripple the entire
system, while reducing the number of replicas generated
might result in an unacceptably low level of availability.
Therefore, the challenge in building P2P storage systems is
to carefully navigate this cost-availability trade-off, by
reducing maintenance cost as much as possible while
maintaining the desired level of availability.

This challenge is further complicated by the fact that peer
failures can be either transient or permanent. Data are lost
following a permanent failure, and the expected level of
redundancy must be restored by creating new replicas. In
contrast, an object with sufficient replicas can tolerate
transient failures without sacrificing availability, since a
peer undergoing a transient failure will rejoin the network
and bring back its stored data. Hence, an ideal system
would identify peer failures and only replicate data
following permanent ones. Unfortunately, reliably distin-
guishing permanent and transient failures turns out to be a
daunting task, since they cannot be distinguished using
probes [12], [34].

To address this problem, this paper proposes Protector,
an algorithm that provides better protection against
transient failures. In particular, given a replica group (i.e.,
all peers hosting replicas of the same object) and downtime
of these peers, Protector can detect the number of remaining
replicas in the group, i.e., the number of replicas residing on
online peers or peers experiencing transient failures.
Storage systems can use this detected number of replicas
to determine whether data recovery is necessary to reach
the desired replication level.

In essence, Protector drastically improves detection
accuracy by exploiting two opportunities: First, we obtain
a failure probability function F ðdÞ that represents the
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1. For simplicity, we will use the terms replicas and fragments
interchangeably in the remainder of this paper.
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maintained in parallel with the data object so that when a
replica is recovered from a transient failure, the missing
updates are applied on the replica instead of regenerating a
new replica entirely. In this case, Protector can still be used
in the maintenance of data replicas while a separate
replication mechanism for strong consistency is used for
update log replications. In this section, we focus on the
detection and data recovery algorithm. We will present the
actual implementations in Section 5.

3.2 Failure Probability Function
The effectiveness of Protector revolves around the function
F ðdÞ, the conditional probability that a peer permanently fails
given that it has already been unavailable for d time units.

More formally, let TTRi be the random variable
representing “time-to-recover” of peer i, that is, the time
from when peer i fails to the time when it recovers. TTRi
could take value 1, which means peer i has failed
permanently, and will never recover. Let di be the
downtime of a peer i, and di ¼ 0 if peer i is online (e.g.,
d1 and d2 in Fig. 1 for peers 1 and 2 for the estimate at
time t1). The downtime of a peer begins when a low-level
failure detector declares a failure of a peer based on
message delay or lack of responsiveness. Such failure
detectors have been extensively studied (e.g., [4], [11],
[16]). When di > 0, we define function F ðdiÞ ¼ P ðTTRi ¼
1jTTRi > diÞ. Finally, F ð0Þ ¼ 0, i.e., if peer i is online, it
cannot be a permanent failure.

To derive function F ðdiÞ, we characterize the failure and
recovery behaviors of a peer using a continuous semi-
Markov chain [25]. Each peer always begins its existence in
an online state, then alternates between online and offline
states during its lifetime, and finally enters a dead state.
Unlike standard Markov chains used in [12], [15], the time
spent in online and offline states follows a general
distribution. Thus, a semi-Markov process is not Markovian
at an arbitrary point of time. However, one can create an
embedded Markov chain by sampling the original process
at the moments of transition to a new state.

Fig. 2 depicts the embedded Markov chain of peer
behavior. When a peer disconnects, it can go either
temporarily or permanently offline. The actual event is
governed by the probability p, which is the conditional
probability that a peer goes to dead state given that it is
leaving the online state, that is, p ¼ P ðTTRi ¼ 1jTTRi > 0Þ.
Since TTRi > 0 is always true, we can rewrite p as
p ¼ P ðTTRi ¼ 1Þ.

This probability can also be expressed in terms of well-
known parameters that describe the dynamic behavior of

peers, including the mean time to failure (MTTF) (given that
the failure is transient), the mean time to recovery (MTTR),
and the mean life time (MLT) of the peer. From the model,
we see that peer lifetime is the absorption time of the chain
in dead state. If the peer generates N number of transient
failures before it fails permanently (e.g., the chain visits
offline states N times before it reaches dead state), we have

MLT ¼ E½N �ðMTTF þ MTTRÞ þ MTTF: ð3Þ

Notice that N follows a geometric distribution, hence,
E½N � ¼ ð1 � pÞ=p. Since a peer’s MLT is usually sufficiently
larger than its MTTR in practical systems, we can solve p
from (3) and obtain

p ¼ MTTF þ MTTR
MLT

: ð4Þ

With the semi-Markov model, a simple application of the
Bayesian’s Theorem gives the function F ðdiÞ:

F ðdiÞ ¼ p
p þ ð1 � pÞP ðTTR > diÞ

: ð5Þ

Here, P ðTTR > diÞ is the complementary cumulative
distribution function (CCDF) of TTR.

When actual failure traces are available, we can derive
parameters p and P ðTTR > diÞ directly from the measure-
ment trace. In particular, we monitor the failure (disconnec-
tion) and recovery (reconnection) behaviors of all peers for a
period of time (e.g., one month), and obtain

p ¼ 1 � #of Reconnections
#of Disconnections

; ð6Þ

and P ðTTR > diÞ is the fraction of reconnections whose
spans are larger than di.

An important remark is now in order. In order to extract
the quantities used for our calculation (e.g., # of Reconnec-
tions), we need to identify permanent failures in the historical
traces. This essentially requires a threshold value T such that
failures lasting longer than this threshold are classified as
permanent failures. Although a larger threshold allows more
peers to recover, it requires the measurement of longer
period of trace and thus larger bootstrapping/adjusting
delays. To make this trade-off, the system can look at the
CCDF of TTR and derive a threshold where the curve is
getting flat. This would make Protector less sensitive to the
threshold since there will hardly exist reconnections after the
threshold. For our experiments and prototype, we derive a
30-day threshold by setting P ðTTR > T Þ � 0:001. We em-
phasize that this threshold cannot be used by a time-out-
based failure detector to determine permanent failures
online. Online detections cannot afford such a large time-
out, since it may put data availability in danger. Our
evaluation results show this distinction clearly.

3.3 Standard Estimation Function in Protector
Protector uses a probabilistic availability estimation algo-
rithm that improves its prediction accuracy by aggregating
its prediction across the entire replica group, i.e., all peers
hosting replicas for a given object.

Suppose that at the time of the estimate, there are n total
peers hosting replicas of the object, a subset of which may
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Fig. 2. The embedded Markov chain model of a peer life.



be online. Let the n peers be numbered as 1, 2, . . . n, and di
be the downtime of peer i (di ¼ 0 if peer i is online). As we
discussed in Section 3.2, we assume that F ðdiÞ is known for
any di. Let X be a random variable representing the number
of remaining replicas in the system at the time of estimation.
Given F ðdiÞ for all peers i ¼ 1; 2; . . . ; n, we can compute the
probability of X ¼ k as

P ðX ¼ kÞ ¼
X

S�f1;...;ng
jSj¼k

Y
i2S

1 � FiðdÞð Þ
Y
i62S

FiðdÞ; ð7Þ

which is the probability of finding exactly k out of n peers
are online or experiencing transient failures.

Protector picks the most likely number of remanning
replicas m, e.g., m ¼ arg0�k�n max P ðX ¼ kÞ, as the esti-
mated number of remaining replicas in the system.

Optimality in accuracy. We now show that Protector’s
estimate is optimal in terms of accuracy rate, which is the
probability that the estimate correctly matches the reality,
compared to all estimation functions based on function F ð:Þ
and current downtime di.

Ultimately, any estimation approach must compute the
number of replicas still alive in the system, which is then used
to determine if additional replication is necessary. For
example, approaches using time-out periods use a time-out
threshold TOi and mark a peer i as permanently failed when
di > TOi. An accurate function F ð:Þ may help the detector to
derive a good time-out value, but in the end it uses time-outs
to decide on the number of remaining replicas. Other
methods may determine this number in a probabilistic way.
In general, all these methods can be considered as giving an
estimate of X ¼ k with a probability pk, for k ¼ 1; 2; . . . ; n,
such that

Pn
k¼1 pk ¼ 1. Then, the accuracy rate r is

r ¼
Xn

k¼1

P ðX ¼ kÞpk

�
Xn

k¼1

max
i2f1;...;ng

fP ðX ¼ iÞgpk ¼ P ðX ¼ mÞ:
ð8Þ

Therefore, the accuracy rate of any estimate method
cannot exceed P ðX ¼ mÞ, which is what Protector achieves.
Hence, we have the following proposition.

Proposition. Among all detectors with the knowledge of
downtime di and function F ð:Þ for all peers 1 to n, standard
Protector achieves the best accuracy rate in estimating the
number of remaining replicas in the system.

Note that an important implication is that, no matter
how one tunes the time-out scheme to find the best time-out
threshold, ultimately it is still used to obtain the number of
remaining replicas, i.e., excluding the number of replicas on
peers to be judged as permanently failed by the time-out
thresholds. Therefore, any time-out scheme is covered by
the above proposition, and Protector performs as well or
better than any time-out-based approach in terms of
accuracy rate.

3.4 An Approximate Estimation Function
Given a replica group containing n peers, our standard
Protector algorithm incurs a time complexity of Oð2nÞ in the

worst case, since it examines every possible combinations
across the group. This high computational cost prevents its
practical application to cases where group size (n) is large.
We recognize that large n values can easily arise due to
many factors such as high target replication level tr, coding-
based replication as well as returning replicas reintegration,
especially in highly dynamic P2P systems. In cases where
large replica groups are desirable, we propose an approx-
imate estimation method.

We obtain an approximate estimation function of m
which runs in time complexity that scales linearly as a
function of group size n. In particular, we pick unavailable
peers from the replica group and take the mean of their
failure probabilities. Let nu be the number of unavailable
peers and F is their average failure probability, we can use
the following approximation to compute the probability of
X ¼ k (with accuracy/complexity trade-off):

P ðX ¼ kÞ ¼
0; k < n � nu;

nu
k�nþnu

� �
F n�kð1 � F Þk�nþnu ; n � nu � k � n:

(

ð9Þ

This formula is easy to understand: since any currently
available peer cannot be permanently failed, there are at least
n � nu number of remaining replicas. Therefore, in cases of
k � n � nu, the probability that exactly k replicas remain in
the system is the probability that exactly k � ðn � nuÞ peers
out of nu unavailable peers have remaining replicas. Note
that we use a binomial distribution Bðnu; 1 � F Þ to approx-
imate this probability, so it usually reaches its largest value at
bðnu þ 1Þð1 � F Þc, which is the mode of the binomial distribu-
tion. Thus, we can compute m that maximizes P ðX ¼ mÞ
using the following equation:

m ¼ n; nu ¼ 0;
n � nu þ bðnu þ 1Þð1 � F Þc; nu > 0:

�
ð10Þ

Like standard Protector, the approximate estimator
returns m as the estimated number of remaining replicas.
We demonstrate via simulations in the next section that
approximate Protector eliminates the high computation cost
of standard Protector while achieving similar accuracy levels.

In practical systems, one can adopt a hybrid scheme
which uses approximate Protector by default, but switches
to the standard one any time the group size n hits a lower
threshold. We use a hybrid Protector with a threshold
value of 7 in the prototype implementation we describe in
Section 5.

3.5 Extensions of Protector
Protector’s methodology uses a maximum a posteriori
(MAP) estimation rule to derive an estimate, since its
estimate is the most likely one that occurs in reality.
However, other estimation rules could also be explored as
alternatives, depending on how one defines the impact of
estimation errors in different application scenarios. Here,
we discuss possible Protector extensions for these scenarios.

Clearly, the performance of an estimator depends mainly
on the amplitude distribution of the estimation errors. Let
’ðxÞ be the penalty function, the estimator picks the
number mð0 � m � nÞ given by
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m ¼ arg
0�k�n

min
Xn

i¼1

’ðk � iÞP ðX ¼ iÞ; ð11Þ

and returns m as the estimated number of remaining
replicas. A penalty function ’ðxÞ allows us to customize
how estimation errors are penalized. In most cases, ’ðxÞ is
nonnegative, nondecreasing, and satisfies ’ð0Þ ¼ 0. This
penalty function can be tuned based on the needs of specific
scenarios.

We give some examples of estimators based on different
penalty functions. First, our basic Protector can be viewed
as putting the same penalty weight on all nonzero errors
(e.g., ’ðxÞ is a positive constant when x > 0). Second, if we
take ’ðxÞ ¼ jxj, the penalty function puts relatively
stronger weight on small errors and (11) reduces to the
minimum mean absolute error (MMAE) estimation. By the
median theorem for the Weber problem, the solution for m
is the weighted median of the sequence f1; 2; . . . ; ng with
weight fP ðX ¼ 1Þ; P ðX ¼ 2Þ; . . . ; P ðX ¼ nÞg. Finally, if we
take ’ðxÞ ¼ x2, the penalty function puts relatively
stronger weights on larger errors, and (11) reduces to the
minimum mean square error (MMSE) estimation. This is a
convex optimization problem and the solution is the
weighted mean of the sequence f1; 2; . . . ; ng with weights
fP ðX ¼ 1Þ; P ðX ¼ 2Þ; . . . ; P ðX ¼ nÞg.

4 SIMULATION-BASED EVALUATION

We evaluate the performance of Protector through simula-
tions based on both failure model and actual system
measurement trace. The two sets of simulations serve to
validate different aspects of the advantages of Protector. The
simulations based on the failure model validate whether the
optimality in estimating the number of remaining replicas in
the system leads to well-balanced trade-off between cost and
availability. The simulations based on actual system traces
further validate whether Protector still provides good
performance when the system behavior does not exactly
follow the failure model. Our results show that in both cases
the cost-availability trade-off provided by Protector is very
close to that of an oracle detector that always knows exactly
if a failure is permanent or not.

4.1 Evaluation Using Failure Model
The advantage of model-driven simulations is that they
allow Monte-Carlo simulations to evaluate the effectiveness
of Protector and other methods on different failure
environments (e.g., dynamic systems with frequent failures
and recoveries or stable systems with only occasional
transient failures and rare permanent failures), all under
the same stochastic model. For simplicity, we use a Markov
failure model like other studies (e.g., [15]), which assumes
exponentially distributed session and downtime (note that
the SMP model described in Fig. 2 can be applicable to
general failure scenarios).

System environments. We report two sets of simulations:
1) one for a peer-to-peer file-sharing environment such as
Maze [36], with MTTF ¼ 4:6 hours, MTTR ¼ 12:3 hours,
and MLT ¼ 58 days; 2) and one for a wide area collaboration
environment such as PlanetLab, with MTTF ¼ 8:5 days,
MTTR ¼ 3:5 days, and MLT ¼ 200 days. These parameters

are obtained either from the actual system trace, or the
existing measurement [34].

Workload. For each setting, we use Monte-Carlo simula-
tions to evaluate the bandwidth cost and availability of
three classes of detection/recovery mechanisms: 1) time-
out-based detection; 2) Our Protector method; and 3) an
oracle detector. Each run simulates 2,000 data objects
randomly scattered at start time across 1,000 peers.

Replica target. The initial number of replicas for each
object is the target replica threshold tr, which is computed
as follows: We first derive peer availability pc which in our
failure model is

pc ¼ MTTF
MTTF þ MTTR

: ð12Þ

Then, we substitute pc and target availability po into (1)
(under replication scheme) or (2) (under coding scheme
with b ¼ 6) to obtain the target replica threshold tr. Under
both schemes, we aim to obtain about one nine availability
for the Maze-like environment and two nine availability for
the PlanetLab-like environment. We use a lower target
availability level for the Maze-like system because the
system is more dynamic and it is desirable to mask more
transient failures, trading imperfect availability for low
replication cost and high scalability [17].

Further, in order to eliminate the artificial boosting or
depressing of the availability when taking the rounding
operation to obtain an integer tr, we revise the target
availability po in each setting as follows: 1) po ¼ 0:895 for
the Maze-like environment and po ¼ 0:9927 for the
PlanetLab-like environment under replication scheme;
2) po ¼ 0:909 for the Maze-like environment and po ¼
0:9940 for the PlanetLab-like environment under coding
scheme. The particular values we choose for the target
availability guarantees that when computing the target
number of replicas tr, the value before taking the rounding
operation is already an integer (7 for the Maze-like
environment and 4 for the PlanetLab-like environment
under replication scheme, 32 for the Maze-like environ-
ment and 14 for the PlanetLab-like environment under
coding scheme).

Simulators. We simulate replica maintenance for each
class of detectors. For time-out detectors, we simulate
different time-out values. Whenever a time-out causes the
number m of remaining replicas to fall below the threshold tr,
we generate tr � m replicas randomly on the remaining
online machines. For Protector, we use (4) and (5) to compute
F ðdiÞ, then simulate the behavior of Protector as described in
Section 3. For the oracle detector, we assume that it knows
exactly whether a failure is transient and permanent, and
only generates new replicas for permanent failures. Since
permanent failures reduce the number of peers in the system,
we also add a random process to add new peers into the
system with the same rate as permanent failures.

We run each simulation for a long simulated time period
(three months) and collect the synthetic trace. The actual
availability is obtained by sampling object availability at
regular time intervals (one hour) to compute the ratio
between the number of sampled time points at which the
object is available and the total number of sampled points,
then taking the average over 2,000 objects. The bandwidth
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cost is computed by obtaining the total number of replicas
recovered divided by the time period and by the number of
objects (In our simulation, we assume that a system using
coding keeps an additional complete copy for each object,
e.g., Wuala [3]).

Results. Figs. 3 and 4 show the evaluation results for the
Maze-like system under replication and coding schemes,
respectively. We summarize these results as follows:

Result 1: While time-out-based detector exhibit error-
prone behavior, Protector automatically balances cost and
availability. Figs. 3a and 4a show the cost-availability
trade-offs different detectors achieve under each scheme.
The x-axis represents unavailability (i.e., 1-availability) to
make the cost-availability trade-off clear. The y-axis
increases with cost, while the x-axis increases as availability
decreases. Time-out detectors ranging from 5 to 120 hours
are simulated.

The results show that time-out-based detectors are error-
prone: when time-out is set to be very small, both
availability and recovery costs are very high. But when
the time-out is set to be large, the availability falls below the
target availability even though the recovery cost is small.
Few existing systems are able to select the right time-out
value. Moreover, the time-out should be adjusted accord-
ingly if different replica targets or replication methods are
used, e.g., comparing Fig. 3a with Fig. 4a shows that the
best-tuned time-outs are quite different under two schemes
(60 and 50 hours, respectively).

In contrast, both standard and approximate Protectors
automatically provide good balance between availability
and recovery cost. Their availability is only slightly higher

than the target under both schemes (no more than 1 percent
of the target). Their costs are low and close to the best
results achieved by either the oracle detector or the best
possible time-out detector under both schemes (at most
6.3 percent higher than the cost of the oracle detector).

Result 2: Protector achieves the best accuracy. To show
the detailed performance of these detectors, we take
frequent snapshots over the trace, and look at whether
our estimator is accurately predicting the number of
remaining replicas for each object. At each snapshot, we
compute the fraction of data objects for which the estimator
was accurate, underestimated (false positives), or over-
estimated the actual replica count (false negatives). Figs. 3b
and 4b show the average results obtained at every snapshot
under two schemes (with replication and with coding).

Under the replication scheme, standard Protector
achieves the highest possible accuracy rate (0.73) of all
detectors shown in Fig. 3b. Further, approximate Protector
achieves performance very close to that of standard
Protector, e.g., approximate Protector’s accuracy rate is
0.72, only 1.4 percent lower than that of standard Protector.
Since approximate Protector distributes large failure prob-
abilities among peers, it has a relative lower number of false
positives and higher number of false negatives. Under the
coding scheme, both time-out detectors and Protector
achieve lower accuracy rate due to more possible values
of remaining replicas. Here, we only show the performance
of approximate Protector in that the standard one is not
suitable for cases with large tr. We see that the approximate
Protector also outperforms detectors shown in Fig. 4b in
terms of accuracy rate.
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Fig. 3. Performance of standard Protector (SP) and approximate Protector (AP) with the synthetic trace for the Maze-like environment (with
replication). (a) Cost-availability trade-off. (b) Percentage of availability estimates that are accurate, false positives, and false negatives. (c) Replica
maintenance with standard Protector (tr ¼ 7).

Fig. 4. Performance of standard Protector and approximate Protector with the synthetic trace for the Maze-like environment (under coding scheme).
(a) Cost-availability trade-off. (b) Percentage of availability estimates that are accurate, false positives, and false negatives. (c) Replica maintenance
with approximate Protector (b ¼ 6; tr ¼ 32).



derived by finding the value T making P ðTTR > T Þ � 0:001.
Fig. 7 plots the complementary cumulative distribution of
TTR in Maze system, which clearly shows that the curve is
getting flat after 30-day threshold. With this threshold, we
use a method similar to [20] and obtain MLT ¼ 58 days.

Workload and simulator. We use 1,000 peers in the
system to store 2,000 objects. The historical behavior of all
peers in March is used to bootstrap the Protector. In
particular, we use the trace data in March with (6) and (5) to
estimate F ðdÞ. Since the system is relatively stable, we use
this measured F ðdÞ to predict behavior of new peers joined
in the subsequent months. Given an object and its target
number tr of replicas, the system first places tr replicas on a
group of peers available on 4th April. Then, the simulator
added and removed peers based on their availability in the
trace. Protector estimates the number m of replicas
remaining in the system every hour. If m < tr, Protector
triggers data recovery and regenerates tr � m replicas on
other tr � m available peers at that time.

Results. The result of our simulation is summarized in
Fig. 8. An important observation is that time-out-based
detectors result in higher availability and higher cost,
compared with the same time-out values in Fig. 3. The main
reason is that the actual distribution of time to failures and
time to recovery are not exponential. In particular, the results
in [30] already show that the distribution of time to recovery
(TTR) tends to have heavier tail than the exponential fit. This
means that the actual transient failures may take longer time
to recover. Therefore, the time-out-based detectors should
increase the threshold appropriately to prevent higher false
positive rates and to maintain its best performance.

In contrast to time-out-based detectors that require
optimal parameter tuning to achieve good results, Protector

maintains optimal performance without any explicit para-

meter tuning. Using the actual TTR distribution to estimate

F ðdÞ, (we call this empirical F ðdÞ), Protector automatically

adjusts itself to obtain correct estimates of the number of

remaining replicas. Fig. 8c clearly shows that empirical F ðdÞ
is in general lower than the F ðdÞ computed based on the

exponential distribution assumptions, which we refer to as

exponential F ðdÞ. This means that Protector with empirical

F ðdÞ is less aggressive in declaring a failure as permanent

and beginning data recovery. Therefore, even when the

system behavior does not exactly follow the Markov model,

Protector still provides near-optimal trade-off between

availability and the recovery cost. Our results show that

the recovery cost of approximate Protector is at most

14.3 percent higher than the oracle, and 9.1 percent higher

than the best-tuned time-out detector under replication and

coding schemes (see Figs. 8a and 8b).

5 IMPLEMENTING PROTECTOR

In this section, we describe our experience in implementing

Protector for storage systems using a structured P2P

network or distributed hash tables (DHTs) [19], [28].

Moreover, we deploy a prototype called AmazingStore [1]

to validate the real-world implementation and effectiveness

of Protector.

5.1 Experience in Highly Dynamic P2P Networks
DHTs organize peers into an ID space and provide a simple

primitive for locating a peer. Given a query for a specific

key, the associated lookup operation can efficiently locate an

online peer whose ID is numerically closest to the key [19],

[28]. As a result, DHTs have become a general infrastructure

for building many P2P storage systems. In a DHT-based

storage system, each data object is associated with a “master

node” which implements the data maintenance algorithm:

the master node monitors the liveness of replicas, adds new

replicas according to the data maintenance algorithm

(below we center around Protector-based maintenance).
Implementing Protector requires each master node to

collect certain types of state information, including explicit

metadata on the replica-to-peer mapping of each object for

which it is responsible, failure state for the failure probability

function F ðdÞ, and downtime history of peers hosting the

replicas. Each master not only store state information
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Fig. 7. Complementary cumulative distribution of failure-recovery times.

Fig. 6. Performance of standard Protector and approximate Protector with the synthetic trace for the PlanetLab-like environment (under coding
scheme). (a) Cost-availability trade-off. (b) Accuracy rate and false positive/negative rate. (c) Replica maintenance with approximate Protector
(b ¼ 6; tr ¼ 14).



locally, but also continuously backs these data up to
successors for available in case it fails.

In general, the master node can be assigned to any peer
(e.g., as in TotalRecall [7]), but that may incur large
implementation overhead in networks with high churn
rates (as is the case with most P2P networks). Collection and
synchronization costs may be high in that 1) each peer has
to contact many master nodes responsible for different
objects it holds, and 2) network dynamics force master
nodes to constantly replicate state information to maintain
information availability. While developing prototype im-
plementation of Protector in practical P2P environment, we
found it necessary to assign master nodes to superpeers
(those peers satisfying certain criteria such as high avail-
ability, large bandwidth, and computation power), making
an intensive usage of the heterogeneous nature of the P2P
network.

Therefore, we use a superpeer topology for dynamic P2P
networks. Every peer joins the global DHT, and connections
between superpeers build up the superpeer DHT, as shown
in Fig. 9. Since we can easily construct this topology using
DHT algorithms [19], [28], we now focus on the efficient
implementation of Protector given this network topology.

The system first partitions peers into different groups
(called Storage Clusters), each of which consists of a
superpeer (as master) and multiple ordinary peers (as
storage hosts). These clusters are self-formed: the system
uses each superpeer as a master to initiate a cluster (the
superpeer ID is the cluster ID). Each ordinary peer only
joins one cluster in either of two ways: First, the master can
find ordinary peers to join its cluster, e.g., it first finds a peer

by issuing a random lookup in the global DHT, then adds
this peer to its cluster if the peer does not yet join a cluster.
Second, an ordinary peer can also join a cluster by asking
other peers about their masters.

Next, the system allows the write operation to be
performed within each storage cluster. This actually
partitions the whole set of data objects over different
clusters. In particular, any peer is eligible to receive client2

write requests. Upon receiving a write request, the peer
forwards this request to its master. The master asks a set of
peers in the cluster to store object data, and maintains
pointers to peers with the object’s replicas. By this way, the
system assigns the master node of each data object to the
master peer of that cluster (also a superpeer), and obtains
the replica-to-mapping of each data object.

After that, each master collects failure state and down-
time history of peers in its cluster. Each peer announces its
presence by periodically (e.g., every 5 minutes) sending
heartbeat to its master. The master logs the time when peer
leaves and returns (e.g., the start and end of each failure),
which are used later to compute the failure probability
function F ðdÞ. If no heartbeats are received from a
particular peer, the master would periodically compute its
downtime (that is, how long has this peer been unavailable
since its latest online check in). Since failures are usually
transient in P2P networks, a peer is excluded from a cluster
only when its downtime exceeds a very conservative
threshold (e.g., one month).

Finally, the master can maintain objects with Protector.
Knowing the replica-to-peer mapping and current peer
failure probabilities, the master periodically (e.g., every
hour) uses Protector to estimate the number of remaining
replicas m for each object stored in the cluster. When m falls
below the target tr, the master repairs m � tr new replicas
randomly among online peers within the cluster, and
updates the replica-to-peer mapping.

The superpeer DHT is used to handle master failures.
For fault tolerance, each master periodically synchronizes
all types of state information with its successors in the
superpeer DHT. In the case of a master failure, the closest
successor of the failed master in the superpeer DHT will
temporarily take over the management of cluster. Fig. 9
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Fig. 9. The cluster-based architecture. Peers are organized into storage
clusters, each of which has a master peer (locatable by searching for the
master ID in the globe DHT) which monitors and maintains replicas of
objects stored in the cluster, and resolves client queries.

2. A client performing a “read” on an object sends a two-part ID. The
receiving peer first locates the master using DHT routing on the object’s
Master ID (MID), then queries the master with the object’s Object ID (OID).
The master will direct the client to available replicas based on the replica-to-
peer mapping of this object.

Fig. 8. Performance of Protector with the real trace-driven simulation in the Maze environment. (a) Cost-availability trade-off under replication
scheme (tr ¼ 7). (b) Cost-availability trade-off under coding scheme (b ¼ 6; tr ¼ 32). (c) Comparison between empirical F ðdÞ and exponential F ðdÞ.



illustrates this process. When a peer A detects the failure of
its master M A using periodic probes, it first finds a
superpeer M C by asking other peers about their masters,
and then uses M C as a proxy to locate the closest successor
of M A in the superpeer DHT (e.g., M B). After that, peer A
contacts M B and takes it as the temporary master.

Notice that each peer only contacts one master and
superpeer network is highly stable, so both collection and
synchronization costs can be greatly reduced.

5.2 Deployed Prototype and Measurement
We turn the above design choices into a working prototype
called AmazingStore [1], a highly available P2P backup and
remote storage service. Beyond what the simulation can
offer, AmazingStore further validates our implementation
and provides us with performance measurements of
Protector under real-world workloads.

Users participating in our system provide some of their
resources (storage space, upload and download bandwidth)
in exchange for using the backup service. A first full
prototype of AmazingStore was released for public use on
April 3rd, 2009. As of early January 2010, more than 9,820
users had registered accounts. The daily peak of simulta-
neous online users is above 1,000, and is increasing on a
daily basis. In total, the number of objects (compressed
archive files or folders) currently stored in the system is
52,055 and continuously rising. The total amount of storage
currently occupied in the system is roughly 1.6 TB.

AmazingStore experiences the similar level of peer
dynamics as Maze file-sharing system [36] in that they are
both deployed over CERNET. Thus, AmazingStore employs
a replication scheme with target tr ¼ 7 to guarantee a target
availability of 0.9 (like configuration of maze-like system in
Section 4), trading imperfect availability for scalability. To
validate the effectiveness of our design, we are primarily
concerned with two system aspects associated with the
Protector, the capacity to deliver the level of availability
requested and the efficiency of data replication.

Service availability is the probability that the system is
able to satisfy client requests. In Fig. 10, we plot a real-world
request load (cumulative number of requests the system
received from September 15 to October 15, 2009) and
corresponding service availability (the ratio of cumulative
satisfied requests to cumulative number of requests). It is
encouraging to see that the measured availability was close
to our 0.9 availability target (up to 89 percent of the requests
was satisfied over the entire month), meaning a well
balanced cost-availability trade-off.

To demonstrate the efficiency of data replication, we take
a closer look at the average number of replicas per object
measured during a week stretch of our deployment
(September 15-22, 2009), as shown in Fig. 11a. To provide
better intuition for system workload and dynamics, we also
give the number of objects and online peers in the system
over this week period (see Fig. 11b). We see that the system
is able to maintain correctly the number of remaining
replicas even with substantial peer churn. In particular,
with our target replica count at 7, the system achieves an
average of 7.19 replicas per object (only 2.7 percent higher
than the target). More detailedly, Protector achieves an
overall accuracy rate of 65.2 percent (with a false positive
rate of 7.5 percent and false negative rate of 27.3 percent)
over the entire month (from September 15 to October 15,
2009). Therefore, Protector allows our system to tolerate
short-term fluctuations in peer availability, and to maintain
a constant number of live data replicas.

To examine another property of our system, durability, we
also show the measured probability density function (PDF)
of the number of remaining replicas per object in Fig. 12. We
see that the distribution resembles a Gaussian and the replica
count clusters around the target ( tr ¼ 7). Hence, only
0.06 percent of the objects were lost over an approximate
six-month deployment period (from April 4 to September 22,
2009). Notice that the participation of peers lasts only a
period of two months on average. Our system actually
provides high data durability for each peer over its
participation period, although Protector has a relative large
false negatives. As mentioned before, the reason for this lies
in two points: 1) the omitted repair actions (due to false
negatives) could be compensated quickly in the following
estimate interval to avoid further decrease in the number of
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Fig. 10. The service availability of AmazingStore under the real-world
request workload (measured from September 15 to October 15, 2009).

Fig. 11. The evolution of the remaining replicas over a week period
(September 15-22, 2009). (a) Average number of remaining replicas per
object. (b) Number of objects and online peers along with time (the ticks
on the x-axis correspond to midnight (00:00 am) on the days that are
labeled).



remaining replicas; 2) additional repair actions (due to false
positives) bring extra durability, further compensate the false
negatives. Thus, durability can also be guaranteed with
Protector in our system.

6 EXTENDED USE CASE

Existing replication maintenance strategies can be classified
as reactive maintenance or proactive maintenance. Reactive
maintenance is able to replace lost replicates after failures at
the expense of a bursty bandwidth costs. In contrast,
proactive maintenance evens out burstiness in maintenance
traffic by constantly replicating replicas as necessary.

While the previous sections focused on demonstrating
Protector’s usefulness in the specific context of reactive
maintenance, this section briefly shows that proactive
maintenance can also adopt Protector for fine-gained
replication scheduling.

6.1 Protector-Based Proactive Maintenance
Protector can be used in proactive maintenance systems such
as Tempo [27]. Each peer in Tempo sets an outgoing
bandwidth cap bi that appropriately limits the total number
of bytes sent per unit time. The peers cooperate and attempt to
maximize durability by constantly creating new replicas with
bandwidth bi, whether or not they are needed at the moment.

Since the proactive system operates constantly in the
background, the bandwidth cap bi should be low enough to
prevent network congestion and storage overflow, usually
around several kilobytes per second. However, it may take a
long time to produce a new replica. As a result, systems like
Tempo must prioritize the replication of different objects
based on how critical each object needs additional replicas.
Tempo puts objects with fewer number of available replicas at
high priority. However, this method overlooks the fact that
many departed peers can rejoin the network and bring back
their stored replicas. Thus, it can only provide an approx-
imate estimate of how badly each object needs replicas.

Intuitively, it makes sense to give priority to objects with
fewer remaining replicas, since they are more likely to be
destroyed by unpredictable future failures. Therefore,
Protector is particularly useful here, since the problem of
assigning replication priority to an object is directly tied to
the number of remaining replicas each object has. In
general, we can deem a priority assignment policy as a
monotonically decreasing function P ðmÞ, where m is the
estimate of remaining replicas given by Protector.

Given a subset of data objects S associated with the
same master, our method can be applied as follows: For
each object i in S, the master periodically updates mi based
on the current downtime of individual peers and the
Protector algorithm. Whenever a peer is idle (e.g., it has
excess storage and bandwidth resources), the master would
tell it to download a replica of the object with the lowest
value of m. Like reactive maintenance, we can implement
proposed proactive maintenance using the architecture
showed in Fig. 9.

6.2 Trace-Driven Evaluation
In this section, we present a simulation-based study that
measures the impact of our replication prioritization scheme
on durability. We first introduce our simulator and then
present simulation results and discuss their implications.

We construct the simulation environment with the Maze
log from March 1 to June 30, 2005. We exclude some
extremely unstable peers by only using those that have
appeared at least two times. We simulate 1,000 peers
maintaining 10,000 20 MB objects. In our simulation, we set
the recovery bandwidth cap b to 1 KB/s (including both
upload and download bandwidth) and storage cap to 1 GB
at each peer.

The simulations in this section proceed as follows: peers
join and leave the system, as dictated by the observed time in
the trace. We uses the first month trace to obtain the
parameters needed by the Protector. Then, objects are
randomly scattered across peers, and each with three replicas.
Once an idle peer is detected, the master finds the object with
the lowest replication level based on the Protector, and asks
the peer to download this file with a bandwidth b.

To evaluate our Protector-based method, we compare it
against the following two methods: 1) a crude heuristic that
only uses the number of available replicas as an indicator of
object’s replication level; 2) an oracle heuristic which knows
the exact number of replicas. The durability can be easily
evaluated through looking at the cumulative distribution of
the number of remaining replicas per object at the end of the
trace, as shown in Fig. 13.

From the figure, we see that the crude heuristic is quite
inefficient in a highly dynamic system. The result shows
that about 12 percent of the objects are lost and over
46 percent of the objects are underreplicated (e.g., less than
3 remaining replicas) at the end of trace. On the other hand,
there is a subset of objects that achieve much greater
replication level than the average (e.g., over 10 percent of
the objects have more than 10 replicas). This is because the
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Fig. 12. A snapshot of PDF of the number of remaining replicas (taken at
midnight on 22 September 2009). Fig. 13. CDF of the number of replicas per object at the end of the trace.



crude heuristic cannot find objects with fewer replicas due
to diurnal correlation between peers. Thus, many objects
have not been repaired and become underreplicated. Over
time, objects with few replicas lose the competition for
excess storage since they are often unavailable when there is
idle bandwidth.

In contrast, we observe that accurately putting rare
objects at high replication priority enables the system to
equalize the replication level of all objects and thus improve
the overall data durability. As Protector provides a more
accurate estimate of the rarity of each object, only about
0.1 percent of files are lost at the end of trace. This means
that the system has little trouble in achieving high
durability, and also clearly demonstrates the usefulness of
Protector. Further, by comparing the curves in Fig. 13, we
observe that the performance of Protector is only slightly
below that of the ideal oracle heuristic method.

Moreover, the fraction of underreplicated objects is
reduced to 3.5 percent after adopting the Protector. This
enables the system to provide a more durable storage
service, especially in the case of severe machine failure
correlations (e.g., disaster events). To confirm this benefit,
we remove a certain fraction of peers in the middle of the
trace to simulate a large correlated failure event. This burst
of permanent failures tend to destroy objects that only have
a few remaining replicas. Fig. 14 shows the durability at the
end of trace as a function of the fraction of the peers
removed. We see that our method produces a slower
decrease in durability as the number of simultaneous
failures increases. This suggests that Protector makes the
system more resilient to large correlated failure events.

7 CONCLUSION

Detecting permanent failures is the key to guaranteeing
high data availability while minimizing system mainte-
nance bandwidth in P2P storage systems. We have
presented a novel methodology that estimates the number
of remaining replicas rather than determining if a single
failure is permanent or transient.

The proposed Protector system is based on 1) leveraging
prior failure statistics, and 2) making estimates across a
group of replicas which balance false positives for some peers
against false negatives for others, thus providing high
estimation accuracy. We have proven that Protector provides
the best estimate on the number of remaining replicas in the
system among all methods including the time-out-based

methods. Moreover, we show how to tune Protector based on
history without setting manual parameters. We demonstrate
that Protector enables the system to maintain objects in the
most cost-efficient manner through an extensive simulation-
based evaluation. Both model-based and trace-driven simu-
lations verify that Protector achieves performance close to
that of the perfect oracle detector and outperforms most time-
out-based detectors.

Further, we present our experience in implementing
Protector in low-availability P2P environments. To verify
the actual implementation, we have built and deployed a
P2P storage system with the Protector called AmazingStore.
AmazingStore has been running for eight months, and the
daily peak of simultaneous online users is above 1,000.
Experience with this system shows Protector is a useful
method that enables efficient long-term data maintenance.
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