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Abstract
Real-world data-parallel programs commonly suffer from
great memory pressure, especially when they are executed to
process large datasets. Memory problems lead to excessive
GC effort and out-of-memory errors, significantly hurting
system performance and scalability. This paper proposes a
systematic approach that can help data-parallel tasks survive
memory pressure, improving their performance and scalabil-
ity without needing any manual effort to tune system param-
eters. Our approach advocates interruptible task (ITask), a
new type of data-parallel tasks that can be interrupted upon
memory pressure—with part or all of their used memory
reclaimed—and resumed when the pressure goes away.

To support ITasks, we propose a novel programming
model and a runtime system, and have instantiated them
on two state-of-the-art platforms Hadoop and Hyracks. A
thorough evaluation demonstrates the effectiveness of ITask:
it has helped real-world Hadoop programs survive 13 out-
of-memory problems reported on StackOverflow; a second
set of experiments with 5 already well-tuned programs in
Hyracks on datasets of different sizes shows that the ITask-
based versions are 1.5–3× faster and scale to 3–24× larger
datasets than their regular counterparts.

1. Introduction
A key challenge in grappling with the explosion of Big Data
is to develop scalable software systems that can efficiently
process massive amounts of data. Although much work has
been done to improve scalability at the architecture level
for distributed systems [19, 30–33, 41–43, 48], a common
problem in practice is memory pressure [26, 47] on individual
nodes—the execution pushes the heap limit soon after it starts
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and the system struggles to find memory to allocate new
objects throughout the execution. These problems are further
exacerbated by the pervasive use of managed languages such
as Java and C#, which often blow up memory usage in
unpredictable ways [44, 53, 54]. Large memory pressure
leads to not only poor performance (e.g., with more than 50%
of time spent in garbage collection [26]), but also execution
failures due to out-of-memory errors (OMEs).

Motivation No existing technique can systematically ad-
dress the individual node memory pressure problem. Practical
solutions center around making “best practice” recommen-
dations for manual tuning of framework parameters [18].
For example, the developer could reduce input size for each
task (i.e., finer granularity) and/or degree-of-parallelism (i.e.,
fewer threads). However, it is impossible to find a one-size-
fits-all configuration even for a single data-parallel program
when considering data skewness and different behaviors of its
tasks, not to mention finding an optimal configuration across
different programs.

In a real example [17], the program analyzes all posts on
StackOverflow. There exists a small number of popular posts
with extremely long discussion threads. Memory pressure
occurs when such a long post is processed in a Reducer in
Hadoop: the execution of one single thread can use up almost
the entire heap. If another thread is running simultaneously
to process other posts, the program is bound to run out
of memory. This problem can be solved by changing the
framework parameter to always run one single-threaded
task instance on each node. However, shorter posts can be
processed perfectly in parallel; making the entire framework
sequential to handle few long posts is clearly an overkill.

Since manual tuning is difficult and requires highly-
specialized expertise, much work has been done to develop
automated tuning tools, including efforts from both indus-
try (e.g., YARN [3]) and academia (e.g., Mesos [37] and
Starfish [36]). These intelligent schedulers allocate resources
by predicting a task’s future resource usage based on its past
utilization. However, memory behaviors are very difficult to
predict. In the example discussed above, YARN schedules
a task to process a long post on a node where other tasks
are already running, based on the observation that a “normal”



task did not take much memory in the past. Precise prediction
of memory behaviors is almost impossible when considering
the wide variety of datasets and the rich semantics of tasks.

Many frameworks now support out-of-core computations
(such as spilling in Hadoop and Spark or dumping stale
objects to disk [23, 50]) to reduce memory pressure. However,
those out-of-core algorithms are framework-specific and not
designed to help general data-parallel tasks survive when they
are about to run out of memory.

Our contributions We propose a novel, systematic ap-
proach, called interruptible task (ITask), that can help data-
parallel programs survive memory pressure without needing
(1) additional hardware resources (e.g., memory, nodes, etc.)
or (2) manual parameter tuning. Inspired by how processors
handle hardware interrupts, our idea is to treat memory pres-
sure as interrupts: a data-parallel task can be interrupted upon
memory pressure—with part or all of its consumed memory
reclaimed—and re-activated when the pressure goes away.

ITask provides the following unique features unseen in
existing systems. First, ITask works proactively in response
to memory pressure. We take actions to interrupt tasks and
reclaim memory when we observe the first signs of pressure.
Hence, ITask can quickly take the system back to the memory
“safe zone” before much time is spent on garbage collection
(GC) and way before an OME occurs. As a result, ITask
improves both scalability (because out-of-memory crashes
are avoided) and performance (because GC time is reduced).

Second, ITask uses a staged approach to lower memory
consumption for an interrupted task t. It consists of five
steps, covering all components of a running task’s user-level
memory usage with varying cost-benefit tradeoffs: (i) heap
objects referenced by local variables during t’s execution are
all released; (ii) the part of the input data already processed by
t is released; (iii) final results generated by t are pushed out;
(iv) intermediate results that need to be aggregated before
being pushed out will be aggregated by a follow-up task
in an out-of-core manner; and (v) other in-memory data
are serialized (e.g., to disk). Not all of these steps will be
performed at every interrupt: the handling is done lazily and
it stops whenever memory pressure disappears.

Third, ITask consists of a new programming model and
a runtime system that can be easily implemented in any
existing data-parallel framework. The programming model
provides interrupt handling abstractions for developers to
reason about interrupts. The ITask runtime system (IRS)
performs task scheduling and runtime adaptation. The amount
of work needed to implement ITask is minimal: the user
simply restructures code written for existing data-parallel
tasks to follow new interfaces, and the framework needs to be
slightly modified to delegate task scheduling to the IRS. The
IRS sits on top of the framework’s job scheduler, providing
complementary optimizations and safety guarantees.

Summary of results We have instantiated ITasks in the
widely-used Hadoop framework [21] as well as Hyracks [24],

a distributed data-parallel framework. We reproduced 13
Hadoop problems reported on StackOverflow and imple-
mented their ITask versions. ITask was able to help all of
these programs survive memory pressure and successfully
process their entire datasets. For a diverse array of 5 prob-
lems, we performed an additional comparison between their
ITask versions under default configurations and their original
programs under the recommended configurations; the results
show that the ITask versions outperform the manually-tuned
versions by an average of 2×.

For Hyracks, we selected 5 well-tuned programs from its
repository and performed a detailed study on performance and
scalability between their original versions and ITask versions:
the ITask versions are 1.5–3× faster and scale to 3–24×
larger datasets than their regular counterparts. In fact, the
scalability improvement ITask provides can be even higher
(e.g., hundreds of times) if further larger datasets are used.

2. Memory Problems in the Real World
To understand memory problems and their root causes in real-
world data-parallel systems, we searched in StackOverflow
for the two keywords “out of memory” and “data parallel”.
The search returned 126 memory problems, from which we
discarded those that can be easily fixed or whose problem
description was not sufficiently clear for us to reproduce.
We eventually obtained 73 relevant posts with clear problem
descriptions. A detailed investigation of them identified two
common root-cause patterns:

Hot keys In a typical data-parallel framework, data are
represented as key-value pairs, and some particular keys may
have large numbers of associated values. 22 problems fall
into this category, including the example discussed in §1—
a join operation in the program builds an XML object that
represents a post (with all its comments) on StackOverflow.
Certain posts are much longer than others; holding one
such long and popular post can consume an extremely large
amount of memory. Consequently, the OME can only be
avoided if the processing of a long post does not occur
simultaneously with that of other posts, which, in an existing
framework, can only be done by making the entire framework
sequential.

Large intermediate results For 51 problems, the semantics
of their programs require intermediate results to be cached in
memory, waiting for subsequent operations before the final
results can be produced. In many cases, developers hold these
results in large Java collections (e.g., HashMap or ArrayList),
which have non-trivial space overhead [45]. One post [10]
describes a scenario in which the developer uses the Stanford
Lemmatizer (i.e., part of a natural language processor) to
preprocess customer reviews before calculating the lemmas’
statistics. The task fails to preprocess a dataset of 31GB at
a very early stage. The large memory consumption of the
lemmatizer is the cause: due to the temporary data structures



used for dynamic programming, for each sentence processed,
the amount of memory needed by the lemmatizer is 3 orders
of magnitude larger than the sentence. Furthermore, the
Stanford Lemmatizer is a third-party library: the developer
is unlikely to know either its memory behavior or how to
control it.

Among the 73 posts we studied, only 25 have recom-
mended fixes. We also investigated these recommendations
and classified them into two major categories:

Configuration tuning There are 16 problems for which the
recommended fixes are to change framework parameters.
However, framework parameters in data-parallel systems
are extremely complex. For example, Hadoop has about
190 framework parameters, such as data split size, number
of workers, buffer size, etc. Even experienced developers
may have difficulties finding the appropriate configurations.
The tuning process is often labor-intensive, consisting of
repetitive tests and trials. In fact, almost every discussion
thread contains multiple proposed parameter changes and
there is no confirmation whether they have actually worked.

Skew fixing There are 9 posts in which the recommended
fixes are to fix skews in the datasets. For instance, to fix the
lemmatizer problem, one recommended a thorough profiling
to find all long sentences in the dataset and break them into
short sentences. However, it is nearly impossible to manually
break sentences in such a large dataset. While there exist
tools that can manage skews [40], it is difficult to apply them
to general datasets, where there is often huge diversity in data
types and distributions.

The complexity of real-world memory problems as well as
the difficulty of manually coming up with fixes strongly call
for system support that can automatically release memory
upon extreme memory pressure. The design of ITask is moti-
vated exactly by this real-world need. We have implemented
ITask versions for a representative subset of the problems we
have studied. Without any manual parameter tuning or skew
fixing, the ITask versions successfully processed the datasets
on which their original versions crashed with OMEs.

3. Design Overview
The high level idea behind ITasks is shown in Figure 3. When
the system detects memory pressure, a selected task is inter-
rupted, with part or all of its consumed memory reclaimed.
This process is repeated until the pressure disappears to direct
the execution of other tasks on the same node back to the
“safe zone” of memory usage.

We present below three key challenges in carrying out this
high-level idea, our high-level solutions to these challenges,
as well as the ITask system architecture.

How to lower memory usage when a task is interrupted?
As shown in Figure 1 (a) and (b), the memory consumption
of a data-parallel task instance consists of the following four
components: (1) local data structures created by the task, (2)
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Figure 1. A graphical illustration of (a) an ITask execution
at an interrupt with numbers showing different components
of its memory consumption; and (b) how these components
are handled.

the processed input data before the interrupt, (3) the unpro-
cessed part of the input, and (4) the partial results produced.
Simply blocking a thread running the task without swapping
data would not change the task’s memory consumption at
all; naı̈vely terminating the thread can completely eliminate
the task’s memory consumption, but would also completely
waste the computation already performed by the thread.

Our design carefully handles different memory compo-
nents differently when terminating the task-running thread,
as shown in Figure 1. For Component 1 and Component 2,
it is safe to discard them when the corresponding thread is
terminated. For Component 3, we will try to keep the unpro-
cessed input in memory and serialize it (lazily) when needed.

For Component 4, we differentiate two sub-types of result
data, represented by 4(a) and 4(b) in Figure 1. Immediately
useful results, referred to as final results, can be pushed
to the next operator in the data pipeline immediately (e.g.,
another set of MapReduce tasks). Where that next operator is
executed is determined by the framework scheduler and may
be on a different node. Results that are not immediately useful
and need further aggregation, referred to as intermediate
results, will stay in memory and wait to be aggregated until
all intermediate results for the same input are produced. These
results can be lazily serialized under severe memory pressure.
Which result is final and which is intermediate depends on
the task semantics. For example, in MapReduce, an interrupt
to a Map task generates a final result, which can be forwarded
immediately to the shuffle phase; an interrupt to a Reduce
task generates an intermediate result, which cannot be used
until all intermediate results from the same hash bucket are
aggregated.

When to interrupt a task? The best timing has to consider
two factors: per-process system memory availability and per-
thread/task data processing status. Specifically, we want to
interrupt a task when the overall memory pressure comes
and when its execution arrives at a safe state where it is not
in the middle of processing an input data item. The former
avoids unnecessary interrupts. The latter allows terminating
a task by recording only minimum local information of the
execution. During task re-activation, a new task instance can
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Figure 2. The architecture of the ITask Runtime System.

simply work on the unprocessed part of the original input
without missing a beat.

To handle the first factor, our system leverages an observa-
tion that long and useless GC (LUGC)—that scans the whole
heap without reclaiming much memory—is a good indicator
of memory pressure, and uses an LUGC as a signal to trigger
interrupts. To handle the second factor, we need to understand
the data processing status, which is related to the semantics
of a task.

How to interrupt a task? Interrupting in our system in-
volves much more than terminating a random thread in a
memory-pressured process. In a system with many tasks run-
ning, determining which thread(s) to terminate is challenging
and requires precise global runtime assessment. Even if we
know which task to interrupt, conducting the interrupt is still
non-trivial, involving recording the progress of the task, such
as which part of the input has been processed and what re-
sults have been generated. Like the two challenges stated
above, addressing this challenge requires both whole-system
coordination and understanding of per-task semantics.

ITask system architecture The ITask system includes two
main components that work together to address the challenges
discussed above: an ITask programming model and an ITask
runtime system (IRS).

The ITask programming model provides abstractions for
developers to program interrupt logic and allows the IRS to
conduct operations that require semantic information about
tasks. Our programming model is carefully designed to pro-
vide a non-intrusive way to realize ITasks, making it possible
to quickly modify existing data-parallel programs and enable
ITasks in different frameworks. Specifically, developers only
need to implement a few additional functions by restructuring
code from an existing task. The details of the programming
model are discussed in §4.

The IRS is implemented as a Java library. This library-
based implementation makes ITask immediately applicable
to all existing Java-based data-parallel frameworks. The same
idea can be easily applied to other managed languages such
as C# and Scala. More details of the IRS implementation are
presented in §5.

Figure 2 shows a snapshot of a running ITask-based data-
parallel job. The IRS sits on top of the distributed runtime on
each node. Whenever the job scheduler assigns a job, which
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Figure 3. A high-level memory footprint comparison be-
tween executions with (in red) and without (in blue) ITasks.

contains a set of ITasks implementing a logical functionality,
to a machine, it submits the job to the IRS instead of directly
running the ITasks. The IRS maintains a task scheduler that
decides when to interrupt or re-activate an ITask instance. As
a result, the number of running ITask instances dynamically
fluctuates in response to the system’s memory availability.
Each task instance is associated with an input data partition.
Running tasks have their inputs in the deserialized form in
memory (e.g., map, list, etc.), while interrupted tasks may
have their inputs in the serialized form (e.g., bytes in memory
or on disk) to reduce memory/GC costs.

Figure 3 illustrates an over-the-time memory-usage com-
parison between executions with and without ITasks. In a
normal execution, the memory footprint keeps increasing;
after a few LUGCs, the program crashes with an OME. In an
ITask execution, the IRS starts interrupting tasks at the first
LUGC point; the memory usage is brought down by the ITask
interrupt and stays mostly constant until the next re-activation
point at which new task instances are created. Without any
manual configuration tuning, ITask-enhanced data-parallel
jobs can keep their memory consumption in the safe zone
throughout their executions, effectively avoiding wasteful GC
effort and disruptive OMEs.

Other design choices Besides the proposed approach, there
are several other design choices. The first one is to develop a
language with new constructs to allow developers to express
interrupt logic. However, as with all language design efforts,
there is an inherent risk that developers lack strong motivation
to learn and use the new language. Another choice is to
develop a data-parallel system from scratch with all the
ITask-related features embedded. This choice shares a similar
risk to language design: migrating programs from existing
frameworks to a new framework is a daunting task that
developers would be reluctant to do. Hence, it is clear to us
that the most practical way to systematically reduce memory
pressure is to combine an API-based programming model
with a library-based runtime system—as proposed in the
paper—that can extend the performance benefit to a large



1 // The DataPartition abstract class in the library
2 abstract class DataPartition {
3 int tag, cursor; // Partition state
4 abstract boolean hasNext();
5 abstract Tuple next();
6 abstract void serialize();
7 abstract DataPartition deserialize();
8 }
9 // The ITask abstract class in the library

10 abstract class ITask {
11 // Initialization logic
12 abstract void initialize();
13 // Interrupt logic
14 abstract void interrupt();
15 // Finalization logic
16 abstract void cleanup();
17 // Process a tuple; this method should be side-effect-free
18 abstract void process(Tuple t);
19 // Scalable loop
20 boolean scaleLoop(DataPartition dp) {
21 initialize();
22 while (dp.hasNext()) {
23 if (Monitor.hasMemoryPressure() &&
24 ITaskScheduler.terminate(this)) {
25 // Invoke the user-defined interrupt logic
26 interrupt();
27 // Push the partially processed input to the queue
28 ITaskScheduler.pushToQueue(dp);
29 return false;
30 }
31 process(dp.next());
32 }
33 cleanup();
34 return true;
35 }
36 }

Figure 4. The DataPartition and ITask abstract
classes; abstract methods that the user needs to implement
are highlighted in red.

number of existing systems and programs independently of
their computation models.

4. The ITask Programming Model
This section describes the ITask programming model as well
as how it is implemented in two state-of-the-art data-parallel
frameworks: Hyracks [24] and Hadoop [21].

4.1 Programming Model
To turn an existing data-parallel task into an ITask, the
developer needs to make the following three changes to
the task’s original implementation. First, implement the
DataPartition interface (shown in the upper part of Fig-
ure 4). DataPartition objects wrap around the frame-
work’s existing data representation (e.g., key-value buffer)
and are used as an ITask’s input and output. Second, make
the original task’s Java class inherit the ITask abstract class
(shown in the lower part of Figure 4) and implement its four
abstract methods. This can be easily done by restructuring ex-
isting code and adding a small amount of new code to handle
interrupts. Third, add a few lines of glue code to specify the
input-output relationships between data partitions and ITasks.
The development effort is insignificant because most of the
work is moving existing code into different methods. For in-
stance, for the 13 StackOverflow problems we reproduced, it
took us only a week in total to implement their ITask versions
although we had never studied these programs before.

Input and output For a data-parallel task, the input dataset
is a vector of data tuples. A DataPartition object wraps
around an interval of tuples in the input and different parti-
tions never overlap. Existing data-parallel frameworks al-
ready have their own notions of partitions; to use ITask,
the developer only needs to wrap an existing partition in
a DataPartition object.

The DataPartition class provides a unified interface
for the runtime to track the state of data processing. The
internal state of a partition object (Line 3) has two major
components: (1) a tag that specifies how partial results should
be aggregated, and (2) a cursor that marks the boundary
between the processed and unprocessed parts of the input.
We will discuss these two components shortly.

The DataPartition class also provides an interface
to iterate over data items through the next and hasNext
methods as well as serialize and deserialize meth-
ods to convert data format. It is up to the developer how to
implement serialize and deserialize: the data par-
tition can be serialized to disk and the deserialization brings
it back into memory; for applications that cannot tolerate disk
I/O, the partition can be serialized to large byte arrays and
the deserialization recovers the object-based representation.
These two methods will be invoked by the IRS to (de)serialize
data in response to memory availability (see §5).

The ITask abstract class An existing task needs to extend
the ITask abstract class to become an interruptible task, as
shown in Figure 4. The extension forces the task to implement
four new methods: initialize, interrupt, cleanup,
and process. As we will show shortly, the implementation
can be easily done by simply re-structuring existing code.
Rather than changing the original core semantics of a task
(e.g., map or reduce in Hadoop), these methods provide a
way for the developer to reason about interrupts.

The initialize method loads the input and creates
local (auxiliary) data structures before starting data pro-
cessing; interrupt specifies the interrupt handling logic;
cleanup contains the finalization logic when the entire in-
put is processed; and process implements the main data
processing logic. The scaleLoop method is implemented
in the library. It iterates over the input data tuples and invokes
the process method to process a tuple in each iteration
(Line 31). It checks memory availability at the beginning of
each iteration, ensuring that interrupts can only occur at safe
points (i.e., not in the middle of processing a tuple).

When a running task is interrupted, its input and output
data partitions still stay in memory unless explicitly released
by the developer (such as Line 12 in Figure 6). Serialization
is not immediately performed. Instead, it is done in a lazy
manner by the partition manager (§5.3) when needed.

Input-output relationship The invocation of an ITask
has a dataflow semantics, which aligns with the dataflow
nature of the framework: as long as (1) there exists a
DataPartition object in the partition queue, which con-
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tains the inputs of all tasks, and (2) the cursor of the partition
does not point to the end, the task will be automatically in-
voked to process this partition. To illustrate, consider the
following code snippet,

1 ITaskA.setInputType(DataPartitionA.class);
2 ITaskA.setOutputType(DataPartitionB.class);
3 ITaskB.setInputType(DataPartitionB.class);
4 ITaskB.setOutputType(DataPartitionC.class);

in which ITaskA and ITaskB are two ITask classes;
and DataPartitionA and DataPartitionB are
two DataPartition classes. These four statements
make ITaskB a successor of ITaskA: whenever a
DataPartitionB is produced by ITaskA, it can be im-
mediately processed by ITaskB.

ITask state machine Putting it all together, Figure 5
shows the ITask state machine. The input of the ITask is
a DataPartition object in the partition queue (see §5.3).
The object represents either a new, unprocessed partition or a
partially processed partition that was pushed into the queue at
a previous interrupt. As shown in Figure 4, after initialization
(Line 12), the data is forwarded to scaleLoop (Line 20),
which invokes the user-defined process (Line 18) method
to process tuples. Each iteration of the loop processes one tu-
ple and increments the input cursor. If there are no more data
items to process (i.e., the cursor points to the end of the parti-
tion), the execution proceeds to cleanup (Line 16), which
releases resources and outputs a new DataPartition ob-
ject. This partition will become the input of the next ITask in
the pipeline.

Upon memory pressure (Line 23), if the IRS deter-
mines that the current ITask instance needs to be terminated
(Line 24, based on a set of priority rules discussed in §5),
the user-defined interrupt logic is executed (Line 14) and the
input data partition is pushed into the partition queue. The
scaleLoop is then exited, and this terminates the thread
and produces an output partition representing a result. The
input partition cursor marks the boundary between processed
and unprocessed tuples. Future processing of this partition
will start at the cursor when memory becomes available.

An important requirement here is that the process
method cannot have side effects: it is only allowed to write
the output partition and internal objects, which guarantees
that the processing of a partially-processed data partition can

be resumed without needing to restore a particular external
state. Note that this is not a new requirement since side-effect
freedom has already been enforced in many existing data-
parallel tasks, such as Map/Reduce in Hadoop.

ITask with multiple inputs It is necessary to allow an ITask
to process multiple inputs at the same time, especially when
a task produces an intermediate result that cannot be directly
fed to the next task in the pipeline, as shown by component 4
(b) in Figure 1. As discussed earlier, an interrupt to a Reduce
task in MapReduce would produce such an intermediate
result; an additional follow-up task is needed to aggregate all
intermediate results before a final result can be produced
and further processed. To enable aggregation, we design
an abstract class called MITask, which takes multiple data
partitions as input. This class differs from ITask only in the
definition of the scaleLoop method:

1 abstract class MITask {
2 boolean scaleLoop(PartitionIterator<DataPartition> i) {
3 initialize();
4 while (i.hasNext()) {
5 DataPartition dp = (DataPartition) i.next();
6 while (dp.hasNext()) {
7 if (...) { // The same memory availability check
8 interrupt();
9 ITaskScheduler.pushToQueue(i);

10 return false;
11 }
12 process(dp.next());
13 } }
14 cleanup();
15 return true;
16 } ... }

In MITask, scaleLoop processes a set of
DataPartition objects. Since the partition queue
may have many partition objects available, a challenge
here is how to select partitions to invoke an MITask. We
overcome the challenge using tags (Line 3 in Figure 4):
each instance (thread) of an MITask is created to process
a set of DataPartition objects that have the same tag.
Tagging should be done in an earlier ITask that produces
these partitions. Obviously, multiple MITask instances can
be launched in parallel to process different groups of data
partitions with distinct tags. Note that a special iterator
PartitionIterator is used to iterate over partitions. It
is a lazy, out-of-core iterator that does not need all partitions
to be simultaneously present in memory; a partition on disk
is loaded only if it is about to be visited.

4.2 Instantiating ITasks in Existing Frameworks
Hyracks Hyracks [4] is a carefully crafted distributed
dataflow system, which has been shown to outperform
Hadoop and Mahout for many workloads [24]. In Hyracks,
the user specifies a dataflow graph in which each node rep-
resents a data operator and each edge represents a connec-
tion between two operators. Processing a dataset is done by
pushing the data along the edges of the graph. For example,
given a big text file for WordCount (WC), Hyracks splits
it into a set of (disjoint) partitions, each of which will be
assigned to a worker for processing. Hyracks users dictate
the data processing by implementing the MapOperator



1 // The Map ITask for Hyracks
2 class MapOperator extends ITask
3 implements HyracksOperator {
4 MapPartition output;
5 void initialize() {
6 // Create output partition
7 output = new MapPartition();
8 }
9 void interrupt() {

10 // The output can be sent to shuffling at any time
11 Hyracks.pushToShuffle(output.getData());
12 PartitionManager.release(output);
13 }
14 void cleanup() {
15 Hyracks.pushToShuffle(output.getData());
16 }
17 void process(Tuple t) {
18 addWordInMap(output, t.getElement(0));
19 }
20 // A method defined in HyracksOperator
21 void nextFrame(ByteBuffer frame) {
22 // Wrap the buffer into a partition object
23 BufferPartition b = new BufferPartition(frame);
24 // Set input and output
25 MapOperator.setInputType(BufferPartition.class);
26 MapOperator.setOutputType(MapPartition.class);
27 // Push the partition to the queue and run the ITask
28 ITaskScheduler.pushToQueue(b);
29 ITaskScheduler.start();
30 }
31 }

Figure 6. The ITask implementation of the MapOperator
for the WordCount application in Hyracks. (Hyracks class-
es/methods are in green.)

and ReduceOperator, connected by a “hashing” con-
nector. The main entry of each operator’s processing is the
nextFrame method.

The Map operator does local word counting in each data
partition. Its ITask implementation is shown in Figure 6. To
launch ITasks from Hyracks, we only need to write five
lines of code as shown in Lines 21–30 in Figure 6: in the
nextFrame method, we create a BufferPartition ob-
ject using the ByteBuffer provided by the framework,
set the input-output relationship, and start the ITask execu-
tion engine. The nextFrame method will be invoked mul-
tiple times by the Hyracks framework, and hence, multiple
BufferPartition objects will be processed by threads
running MapOperator under the control of the IRS. Upon
memory pressure, the MapPartition object, output , con-
tains a final result, and thus the invocation of interrupt
can directly send it to the shuffle phase (Line 11).

The Reduce operator re-counts words that belong to the
same hash bucket. Figure 7 shows its ITask implementation.
Reduce has a similar implementation to Map. However,
when memory pressure occurs and a Reduce thread is
terminated, output contains intermediate results that are not
immediately useful. Hence, before the thread is terminated,
we tag output with the ID of the channel that the input
ByteBuffer comes from (Lines 11, 15). Because a distinct
channel is used for each hash bucket, tagging facilitates the
future recognition of partial results that belong to the same
hash bucket.

Next, we develop an MITask MergeTask that aggregates
the intermediate results produced by the interrupted Reduce
instances. If a MergeTask instance is interrupted, it would

1 // The Reduce ITask for Hyracks
2 class ReduceOperator extends ITask
3 implements HyracksOperator {
4 MapPartition output;
5 void initialize() {
6 // Create output partition
7 output = new MapPartition();
8 }
9 void interrupt() {

10 // Tag the output with the ID of hash bucket
11 output.setTag(Hyracks.getChannelID());
12 ITaskScheduler.pushToQueue(output);
13 }
14 void cleanup() {
15 output.setTag(Hyracks.getChannelID());
16 ITaskScheduler.pushToQueue(output);
17 }
18 void process(Tuple t) {
19 addWordInMap(output, t.getElement(0));
20 }
21 void nextFrame(ByteBuffer frame) {
22 BufferPartition b = new BufferPartition(frame);
23 // Connect ReduceOperator with MergeTask
24 ReduceOperator.setInputType(BufferPartition.class);
25 ReduceOperator.setOutputType(MapPartition.class);
26 MergeTask.setInputType(MapPartition.class);
27 ITaskScheduler.pushToQueue(b);
28 ITaskScheduler.start();
29 }
30 }
31 // The Merge MITask for Hyracks
32 class MergeTask extends MITask {
33 MapPartition output;
34 void initialize() {
35 // Create output partition
36 output = new MapPartition();
37 }
38 void interrupt() {
39 output.setTag(input.getTag());
40 ITaskScheduler.pushToQueue(output);
41 }
42 void cleanup() {
43 Hyracks.outputToHDFS(output);
44 }
45 void process(Tuple t) {
46 aggregateCount(output, t.element(0), t.element(1));
47 }
48 }

Figure 7. The ITask implementation of the Reduce-
Operator for the WordCount application in Hyracks.

create further intermediate results; since these results are
tagged with the same tag as their input (Line 39), they will
become inputs to MergeTask itself when memory becomes
available in the future.

The careful reader may notice that MergeTask has a
similar flavor to the merge phase proposed in the Map-
Reduce-Merge model [56]. Here the merge task is simply
an example of the more general MITask that does not have
a specific semantics while the merge phase in [56] has a
fixed semantics to merge the reduce results. MITask can be
instantiated to implement any M-to-N connector between
different data partitions. In this work, an MITask assumes
associativity and commutativity among its input partitions
(with the same tag). Because these partitions can be accessed
in an arbitrary order, the MITask may compute wrong results
if some kind of ordering exists among them. Note that
this is a natural requirement for any data-parallel task—any
ordering may create data dependencies, making it difficult to
decompose the input and parallelize the processing.

Note that the code that achieves the core functionality of
the two operators already exists in the original implementa-
tions of their nextFrame method. Turning the two opera-
tors to ITasks requires only lightweight code restructuring.



Hadoop Hadoop is a MapReduce framework in which
tasks only need to extend the Mapper/Reducer abstract
classes, and therefore have narrower semantics than Hyracks
tasks. To enable ITask in Hadoop, we let Mapper and
Reducer extend ITask, so that all user-defined tasks
automatically become ITasks. In addition, the run method in
Mapper/Reducer is modified to become a driver to invoke
the ITask state machine; its original functionality is moved
into the scaleLoop method, as shown in the following
code snippet of Mapper.

1 class Mapper extends ITask {
2 ... // Implementations of the ITask methods.
3 void run() {
4 initialize();
5 if(!scaleLoop()) return;
6 cleanup();
7 }
8 }
9 class MyMapper extends Mapper {

10 void map(T key, K value, ...) {
11 ... // Data processing logic
12 }
13 void process(Tuple t) {
14 map(t.getElement(0), t.getElement(1));
15 }
16 }

Other frameworks It is possible to instantiate ITasks in
other data-parallel frameworks as well, such as Spark [60]
and Dryad [38]. In general, this can be done by embedding
the ITask state machine into the semantics of existing tasks,
an easy effort that can be quickly done by experienced
programmers. Furthermore, the majority of the IRS code can
be reused across frameworks; slight modification is needed
only for the boundary code where the IRS interacts with the
framework.

4.3 Discussion
Through these examples, it is clear to see the necessity
of providing abstractions for developers to reason about
interrupts. In fact, for the three tasks in the Hyracks WC
example, the handling of interrupts is completely different:
when a Map thread is interrupted, the output can be directly
sent to shuffling; when a Reduce thread is interrupted, its
output needs to be tagged with the hash bucket ID so that it
can be appropriately processed by the Merge task; when a
Merge thread is interrupted, its output also needs to be tagged
appropriately so that it will become its own input. Without
the ITask programming model, it is difficult to customize
interrupt handling based on the task semantics.

Our experience shows that the effort of writing ITasks
is small—since the data processing logic already exists,
refactoring a regular task into an ITask usually requires the
developer to manually write less than 100 lines of code. For
example, the ITask version of WC has 309 more lines of code
than its regular counterpart. 226 lines, including function
skeletons and glue code, can be automatically generated by an
IDE or our static analyzer. By default, we employ a third-party
library called Kryo [39] to perform data serialization and
deserialization; the use of this library only requires a few lines
of code for object creation and method calls. The developer

1: /* Monitor */
2: while true do
3: if Long and Useless GC occurs then
4: SIGNALSCHEDULER(“REDUCE”) // §5.2
5: end if
6: if freeHeap ≥ N% ∗ totalHeap then
7: SIGNALSCHEDULER(“GROW”) // §5.2
8: end if
9: end while

10:
11: /* Scheduler */
12: while Message m = LISTENTOMONITOR() do
13: if m == “REDUCE” then
14: SIGNALPARTITIONMANANGER(“SERIALIZE”)
15: while freeHeap < M% ∗ totalHeap do
16: INTERRUPTTASKINSTANCE() // §5.4
17: end while
18: end if
19: if m ==“GROW” then
20: while freeHeap ≥ N% ∗ totalHeap do
21: dp = PM.FINDAVAILABLEPARTITION()
22: INCREASETASKINSTANCE(dp) // §5.4
23: end while
24: end if
25: end while
26:
27: /* Partition Manager */
28: while Message m = LISTENTOSCHEDULER() do
29: if m == “SERIALIZE” then
30: SCANANDDUMP() // §5.3
31: end if
32: end while

Figure 8. The interaction between the monitor, scheduler,
and partition manager.

may also write their own serialization and deserialization
logic to optimize I/O performance.

Many data-parallel tasks are generated from high-level
declarative languages. For example, Hyracks hosts the Aster-
ixDB [1] software stack while Hadoop has a large number
of query languages built on top of it, such as Hive [51] and
Pig Latin [48]. Currently, we rely on developers to manually
port existing tasks to ITasks. Once the usefulness of ITasks is
demonstrated, an important and promising future direction
is to modify the compilers of those high-level languages to
make them automatically generate ITask code.

5. The ITasks Runtime System
Once enabled, the IRS manages task scheduling. The IRS
contains three components: the partition manager, the sched-
uler, and the monitor. It determines (1) when to interrupt or
re-activate an ITask (monitor, §5.2), (2) when to serialize or
deserialize data partitions (partition manager, §5.3) , and (3)
which ITask to interrupt or re-activate (scheduler, §5.4).



5.1 The IRS Overview
The IRS starts with a warm-up phase in which a slow-start
parallelism model is used to gradually scale up the number
of threads: initially one thread is created to run the entry
task; as the task executes, our system gradually increases
the number of threads until it reaches the optimal execution
point. If the heap is sufficiently large, the optimal execution
point is where the number of threads equals the number of
logical cores in the system, which defines the maximum
amount of parallelism one can exploit. Otherwise, the IRS
stops increasing the number of threads at the moment the
available memory size falls below a user-defined threshold
percentage (e.g., N% of the total heap) to guarantee that
the program is executed in a pressure-free environment. The
warm-up phase serves as an initial guard to managing memory
consumption: although the system memory utilization may
change later, the IRS is unlikely to need to tune memory
usage immediately after the program starts.

From the task code, we develop a static analysis that builds
a task graph based on the input/output relationship of the
ITasks in the program. The task graph will be used later to
determine which ITask instances should be interrupted and re-
activated. Figure 8 shows a high-level algorithm explaining
the interaction among the three IRS components.

5.2 Monitor
The IRS monitors the global memory usage and notifies the
scheduler of the system’s memory availability. As discussed
earlier, we design the monitor by focusing on LUGCs. Specif-
ically, we consider a GC as a LUGC if the GC cannot increase
the free memory size above M% of the heap size, where M
is a user-specified parameter. The monitor also watches the
execution to identify periods in which extra memory is avail-
able. These periods occur when the size of free memory is ≥
N% of the heap size. If such a period is detected, the monitor
sends a “GROW” signal (Line 7) to instruct the scheduler to
increase the number of ITask instances. The scheduler then
picks a task, finds a partition object that can serve as its input,
and creates a new thread to run it (Lines 19–24). We used N
= 20 and M = 10 in our experiments and they worked well.

5.3 Partition Manager
Once a partition object is created, such as in the nextFrame
method in Figure 6, it is registered with the partition manager.
The manager puts the object into a global partition queue
(as mentioned earlier) that contains all partially-processed
and unprocessed partitions. These data partitions may be in
serialized or deserialized form. How a partition is serialized
depends on the serialize method defined in the partition
class. While there can be multiple ways to implement the
method, in our current prototype, data serialization writes a
partition to disk and deserialization brings it back to memory.
To avoid thrashing, we keep track of each partition’s latest se-
rialization and deserialization timestamps. A data partition is

not allowed to be serialized if a deserialization of the partition
was performed recently within a given time period, unless
there are no other data partitions with earlier deserialization
timestamps. If thrashing still occurs, the partition manager
notifies the monitor, which then sends a “REDUCE” signal
to the scheduler to terminate threads.

Upon receiving a “REDUCE” signal from the monitor,
the scheduler first checks with the partition manager to see if
it can serialize some data partitions that are associated with
already interrupted tasks (Lines 14, 28–32). In many cases,
this is sufficient to remove memory pressure so that we do
not need to interrupt more tasks. The partition manager uses
the following rules to determine which partitions to serialize
first; background threads then write the data to disk.

– Temporal Locality Rule: Partitions that serve as inputs
to the ITasks that are closer to the currently executed ITask
on the task graph have a higher priority to stay in memory.

– Finish Line Rule: A fast turn-around from the initial
inputs to the final output is a desired property of any system.
To optimize for this property, the inputs to the ITasks that are
closer to the finish line (i.e., lower on the task graph) have a
higher priority to be retained in memory.

5.4 Scheduler
The scheduler determines which ITasks and how many in-
stances of them to run. If serialization done by the partition
manager cannot alleviate the memory pressure, the sched-
uler will reduce the number of task instances (Lines 15–17).
The selection of ITask instances to interrupt is based on the
following three rules:

– MITask First Rule: Threads running MITasks have the
highest priority to continue running. Since an MITask often
performs data merging, terminating the thread would create a
large number of input/output fragments.

– Finish Line Rule: A thread running an ITask closer to
the finish line has a higher priority to continue to run.

– Speed Rule: For a set of threads running the same
ITask, the slowest thread will be terminated first. The pro-
cessing speed of a thread is determined by the number of
scaleLoop iterations executed between two consecutive
memory usage checks (performed by the monitor).

When a thread is selected to be interrupted, for
this thread, the ITaskScheduler.terminate(this)
method call (Line 24 in Figure 4) will return true and its
interrupt method will be executed. The scheduler contin-
ues to terminate threads until the memory usage goes below
the threshold. Upon receiving a “GROW” signal from the
monitor, the scheduler creates a new thread to run an ITask
based on the following two rules (Lines 20–23):

– Spatial Locality Rule: We favor an ITask that has in-
memory inputs. These partitions can be processed first before
the manager needs to load partitions from disk.

– Finish Line Rule: We favor an ITask that is closer to the
finish line. When an ITask is selected and its input partition



Name Data Size MH, RH MM, MR CTime PTime ITime
Map-Side Aggregation (MSA) [13] StackOverflow FD 29GB 1GB, 1GB 6, 6 1047 48 72

In-Map Combiner (IMC) [16] Wikipedia FD 49GB 0.5GB, 1GB 13, 6 5200 337 238
Inverted-Index Building (IIB) [8] Wikipedia FD 49GB 0.5GB, 1GB 13, 6 1322 2568 1210

Word Cooccurrence Matrix (WCM) [15] Wikipedia FD 49GB 0.5GB, 1GB 13, 6 2643 2151 1287
Customer Review Processing (CRP) [10] Wikipedia SP 5GB 1GB, 1GB 6, 6 567 6761 2001

Table 1. Hadoop performance comparisons for five real-world problems we have reproduced: reported are the name of each
program (Name); the dataset used (Data) and its size (Size); the developer-reported Hadoop configuration including the max
heap size for each Map and Reduce task (MH and RH), the max #Mappers and Reducers (MM and MR); the time elapsed before
OME occurs in the original program (CTime in seconds); the time taken for the program to finish when the fix recommended on
StackOverflow was used (PTime in seconds); and finally the running time for its ITask version (ITime in seconds). Highlighted
are the lowest running times for the successful executions. FD and SP represent full dump and sample; the StackOverflow FD
has a total of 25.8M posts, the Wikipedia FD has a total of 4.7M articles; Wikipedia SP is a sample of Wikipedia FD with 490K
articles. In these experiments, the HDFS block size is 128MB.

is on disk, the partition manager loads the partition back into
memory transparently to the scheduler.

6. Evaluation
We have implemented the ITask library and the IRS on
Hadoop and Hyracks. These implementations have approx-
imately 30,000 lines of Java code. We ran Hadoop and
Hyracks on a 11-node Amazon EC2 cluster. Each node
(a c3.2x large instance) has 2 quad-core Intel Xeon E5-
2680 2.80GHz processors, 15GB of RAM, and one RAID-
0 comprised of 2 80GB SSDs. The cluster runs Linux
3.10.35 with enhanced networking performance. We used
Java HotSpot(TM) 64-bit Server VM (build 24.71-b01) for
all experiments. The state-of-the-art parallel generational
garbage collector was used.

Methodology Since Hadoop is a popular data-parallel
framework that has many OMEs reported on StackOverflow,
we focus our first set of experiments (§6.1) on reproducing
real-world problems in Hadoop and understanding whether
the ITask implementations can help these programs survive
OMEs and successfully process their entire datasets. The
second set of experiments (§6.2) focuses on comparing per-
formance and scalability between the ITask programs and
their original versions on Hyracks over various heap config-
urations and data sizes. For both Hadoop and Hyracks, we
used their latest versions (2.6.0 and 0.2.14) in our experi-
ments. YARN was enabled when Hadoop was run.

6.1 ITasks in Hadoop
We have successfully reproduced and implemented ITasks
for 13 problems among the 73 problems we have studied.
On average, it took us about a week to set up a distributed
configuration as described on StackOverflow, manifest the
problem, understand its semantics, and develop its ITask ver-
sion. For all of these 13 problems [5–17], their ITask versions
successfully survived memory pressure and processed the
given datasets. Due to space limitations, we report detailed
experimental results for a diverse array of 5 problems.

Table 1 shows these 5 problems and the configurations in
which they manifest. Time elapsed before each program ran
out of memory is also reported (in Column CTime). For each
problem, we carefully read its recommended fixes on Stack-
Overflow. For all the problems but CRP, the recommended
fixes were changing parameters (# Map/Reduce workers on
each node or task granularity). After a long and tedious tuning
process, we observed that reducing worker numbers and/or
sizes of data splits was indeed helpful. For these four prob-
lems, we ended up finding configurations under which the
programs could successfully run to the end. The shortest run-
ning time under different working configurations we found is
reported in Column PTime. For CRP, since the recommended
fix was to break long sentences, we developed a tool that auto-
matically breaks sentences whose length exceeds a threshold.
Since we are not experts in natural language processing, this
tool broke sentences in a naı̈ve way and might be improved
when considering domain knowledge.

The ITask versions of these problems were executed under
the same Hadoop configuration as their original versions (as
shown in Table 1). Their running time is shown in Section
ITime. Comparing PTime and ITime, we can observe that the
ITask versions have much better performance (i.e., on average
2× faster) than manually-tuned versions in most cases. The
only exception is for MSA, where its ITime is 1.5× longer
than PTime. An investigation identified the reason: since the
first Map task loads a very large table to perform hash join,
the program has to be executed with only a small degree
of parallelism. Manual tuning sets the maximum number of
workers to 1 thus paying no additional runtime cost while
its ITask version alternates the number of workers between
1 and 2—the tracking overhead cannot be offset by the
exploited parallelism. Another observation is that CTime may
be much longer than PTime and ITime. This is because these
programs all suffered from significant GC overhead as well
as many restarts before YARN eventually gave up retrying
and reported the crash.

Memory savings breakdown Table 2 shows a detailed
breakdown of memory savings from releasing various parts



Name Processed Final Intermediate Lazy
Input Results Results Serialization

MSA 14.9K 33.7G 0 6.0G
IMC 18.4K 23.1G 0 0

IIB 70.1M 0 7.1G 2.3G
WCM 192.6M 0 14.3G 1.5G
CRP 1.0K 1.2G 112.8M 0

Table 2. A detailed breakdown of memory savings from
releasing different parts of the memory consumption.

Size #Vertices #Edges
72GB 1,413,511,390 8,050,112,169
44GB 992,128,706 4,474,491,119
27GB 587,703,486 2,441,014,870
14GB 143,060,913 1,470,129,872
10GB 75,605,388 1,082,093,483

3GB 24,973,544 313,833,543

Table 3. The inputs for WC, HS, and II: the Yahoo! Webmap
(72GB) and its subgraphs.

of an ITask’s consumed memory. Note that different pro-
grams have different semantics and therefore they benefit
from different optimizations. For instance, the OME in MSA
occurs in a Map task; the task has an extremely large key-
value buffer, which contains final results that can be pushed
to the next stage. Hence, MSA benefits mostly from pushing
out and releasing final results. As another example, WCM
crashes in a Reduce task; therefore, it has large amounts of
intermediate results that can be swapped out and merged later.
These promising results clearly suggest that ITask is effective
in reducing memory pressure for programs with different
semantics and processing different datasets.

With these programs, we have also compared ITask execu-
tions with naı̈ve techniques that (1) kill a task instance upon
memory pressure and later reprocess the same data partition
from scratch (without using ITasks) and (2) randomly pick
threads to terminate and data partitions to resume (without us-
ing our priority rules in §5.4). The results show that the ITask
executions are up to 5× faster than these naı̈ve techniques.
Details of the comparison are omitted.

6.2 ITasks in Hyracks
The goal of this set of experiments is to understand the
improvement in performance and scalability ITask provides
for a regular data-parallel program. The 11-node cluster was
still used; unless specified, each node used a 12GB heap as
the default configuration.

Benchmarks We selected the following five already hand-
optimized applications from Hyracks’ code repository and
ported their tasks to ITasks. These programs include word
count (WC), heap sort (HS), inverted index (II), hash join
(HJ), and group-by (GR). Note that these applications were
selected because (1) they provide a basis for many high-level
applications built on top of Hyracks, such as AsterixDB [1,
20] and Preglix [27]; and (2) they were used extensively in

Scale Size #Customer #Order #LineItem
150× 150.4GB 2.25×107 2.25×108 9.00×108

100× 99.8GB 1.50×107 1.50×108 6.00×108

50× 49.6GB 7.50×106 7.50×107 3.00×108

30× 29.7GB 4.50×106 4.50×107 1.80×108

20× 19.7GB 3.00×106 3.00×107 1.20×108

10× 9.8GB 1.50×106 1.50×106 6.00×107

Table 4. The inputs for HJ and GR: TPC-H data.

Name DS #K #T
Word Count (WC) 14GB 2 32KB

Heap Sort (HS) 27GB 6 32KB
Inverted Index (II) 3GB 8 16KB

Hash Join (HJ) 100× 8 32KB
Group-By (GR) 50× 6 16KB

Table 5. The scalability of the original programs under
a 12GB Java heap: DS reports the largest datasets in our
experiments to which the programs scaled; #K and #T report
the numbers of threads and the task granularities for which the
best performance was obtained when processing the datasets
shown under DS.

prior work [22, 24, 25] to evaluate Hyracks and other high-
level applications. Since Hyracks does not allow the use
of Java objects, these programs are already well-tuned and
expected to have high performance.

On average, each program has around 2K lines of Java
code—e.g., the smallest program WC has 550 LOC and the
largest program HJ has 3.2K LOC. It took us one person
week to convert these five programs into ITask programs.

Our datasets came from two sources: the Yahoo
Webmap [55], which is the largest publicly available graph
with 1.4B vertices and 8.0B edges, and the TPC-H data gener-
ator [52], which is the standard data warehousing benchmark
tool popularly used in the data management community. For
TPC-H, we used the following three tables: Customer, Order,
and LineItem. Table 3 and Table 4 show their statistics.

Scalability of the original programs We first ran each
original version with various numbers of threads (between
1 and 8). Detailed performance comparisons among these
configurations are shown in Figure 9. The configurations
in which the program ran out of memory are omitted. In
each graph, bars are grouped under input sizes. From left to
right, they show the execution times with growing numbers
of threads. For each bar, the time is further broken down to
the GC time (the upper part) and the computation time (the
lower part). These graphs clearly demonstrate that increasing
thread number does not always lead to better performance.
For example, for HS and GR at their largest inputs (27GB and
50×, respectively), their fastest executions used 6 threads.

We have also varied task granularities (between 8KB and
128KB). Table 5 summarizes the largest datasets in our ex-
periments to which these programs could scale and the con-
figurations under which the best performance was obtained
over these datasets. Most of these programs suffered from
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(a) WC failed on the 27GB, 44GB and 72GB
datasets.
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(b) HS failed on the 44GB and 72GB datasets.
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(c) II failed on all the datasets except the 3GB one.
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(d) HJ failed on the 150× dataset.

0

100

200

300

400

1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8

10x 20x 30x 50x 100x 150x

E
x
e
c
u

ti
o

n
 T

im
e
 (

S
e
c
o

n
d

s)

Threads

GC Time

Computation Time

Dataset

Group By

(e) GR failed on the 100× and 150× datasets.

Figure 9. Performance changes as we vary thread number in the original programs; the task granularity is 32KB.

significant GC effort when large datasets were processed. For
instance, for HS and GR, their GC time accounts for 49.14%
and 52.27% of their execution time, respectively.

Among the programs, II has the worst scalability due to
the large in-memory maps it maintains: II was only able to
process the smallest dataset (3GB). Even the single-threaded
version of II could not process the 10GB dataset on the cluster.
HJ scales the best: each slave was able to process up to 10GB
input with a 12GB heap.

Performance improvements For each program, we next
compare its ITask version with the original version under
the configuration that yields the best performance (as shown
in Table 5). We have measured both running time and heap
consumption in this experiment. To eliminate the execution
noise on the cluster, we ran the ITask version 5 times with a
12GB heap. Figure 10 reports the geometric means of these
measurements. Bars represent running time of successful
executions and are grouped by input sizes. In each group,
the first/left bar corresponds to the best configuration for the
original program and the second/right bar corresponds to the
ITask version. Each bar is also broken down into GC (the
upper part) and computation time (the lower part). The heap
consumptions are represented by lines, each reporting the
maximum heap usage of the program across all the slaves.

Table 6 summarizes the time and space savings from ITask.
Among the 30 (both failed and successful) executions of these
programs, their ITask versions were faster than their original
versions in 27 of them. The 3 executions (for WC and HS) in
which the ITask version was slower all processed very small
datasets, plus the time differences are negligible (i.e., 1.61%).
The average time reduction ITask has achieved across the

17 successful executions is 44.95%. The majority of these
savings stems from significantly reduced GC costs.

The ITask programs are also memory-efficient. In 23/30
executions, the maximum heap consumption is smaller than
that of the Java version. This is due to IRS’s ability to move
data in and out. However, in the cases that the inputs are
small, the ITask version consumes more memory because of
the tracking/bookkeeping performed in the IRS. The overall
memory space reduction across the executions in which
both versions succeeded is 7.65%; furthermore, the original
programs failed in 13 out of the 30 executions while the ITask
version succeeded in all of them.

Scalability improvements The last column of Table 6
shows how well the ITask programs scale. These measure-
ments are computed as the ratios between the sizes of the
largest inputs the ITask-based and the original programs can
process. As shown in Figure 10, all the ITask programs suc-
cessfully processed all input sizes in our experiments while
none of the original programs could. Even for the highly-
scalable HJ program, its ITask version well outperforms its
original version. Overall, ITask has achieved a 6.29× scalabil-
ity improvement. We performed an additional test on further
larger input sizes to understand the scalability upper bound
of these programs. This experiment shows that the ITask ver-
sions of HJ and GR could successfully process a 600× and
a 250× dataset, respectively. These results indicate that the
scalability improvement ITask provides may be even larger
when bigger datasets are used.

Using different heaps To understand how an ITask pro-
gram behaves under different heaps, we ran WC and II on
the 10GB dataset, under a 12GB, 10GB, 8GB, and 6GB heap.
Their detailed performance is shown in Figure 11 (a) and (b).
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Figure 10. Comparisons between the ITask versions (the second/right bar in each pair) and their Java counterparts with the best
configurations (the first/left bar). Each error bar represents the standard deviation of the times collected from 5 runs.
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Figure 11. (a) and (b) show how performance changes as we vary the heap size; (c) shows how the number of active ITask
instances changes as the execution progresses.

Name #TS %TS #HS %HS Scalability
WC 5/6 39.63% 5/6 13.81% 5.14×
HS 4/6 10.85% 5/6 7.57% 2.67×

II 6/6 27.53% 5/6 -9.28% 24.00×
HJ 6/6 66.45% 3/6 -5.16% 6.00×

GR 6/6 61.35% 5/6 26.62% 5.00×
GeoMean 27/30 44.95% 23/30 7.65% 6.29×

Table 6. A summary of the performance improvements
from ITask: #TS and #HS report ratios at which an ITask
program outperforms its regular counterpart in execution
time and heap consumption, respectively; %TS and %HS
report the ITask’s reductions in time and heap consumption,
respectively, for the inputs both versions have successfully
processed; Scalability reports the ratios between the sizes of
the largest datasets the two versions can scale to.

To summarize, when the input size is fixed, the performance
of an ITask program does not change much with the heap size,
while a Java program can easily crash when the heap size is
reduced. For example, the original program of WC could not

process the 10GB dataset with the 8GB and 6GB heap, while
its ITask version successfully processed the whole dataset
with the 6GB heap, yielding a running time comparable to
that with the 10GB heap. In addition, the GC component is
less than 10% of the total time.

In order to closely examine ITask’s adaptive execution,
we counted the number of active ITask instances during
the execution of WC on the 14GB dataset. Figure 11 (c)
shows how the number of threads changes as the execution
progresses on the cluster. The cluster has a maximum of
80 workers. Threads for Map and Reduce can overlap. The
program finished in 192 seconds and the average number
of active threads on each slave was 3.16. Figure 11 (c)
clearly shows that an ITask execution is very dynamic and
our runtime system can automatically adapt the active worker
numbers to memory availability while keeping as many active
workers as possible. It would be interesting to also measure
the cost of disk I/O. However, we create background threads
for disk operations, making it difficult to separate out the I/O
cost. Writing data partitions occurs simultaneously with the



data processing while reading data can introduce stalls. These
stalls contribute to 5-8% of the execution time.

7. Related Work
Data-parallel systems MapReduce [33] has inspired a body
of research on distributed data-parallel computation, includ-
ing Hyracks [4], Hadoop [21], Spark [60], or Dryad [38]. The
MapReduce model has been extended [56] with Merge to
support joins and adapted to support pipelining [32]. Yu et al.
propose a programming model [57] for distributed aggrega-
tion for data-parallel systems.

A number of high-level declarative languages for
data-parallel computation have been proposed, including
Sawzall [49], Pig Latin [48], SCOPE [28], Hive [51], and
DryadLINQ [58]. All of these frameworks and languages
except SCOPE and Dryad were implemented in JVM-based
languages such as Java and Scala and thus can immediately
benefit from the ITask optimization proposed in this paper.
SCOPE and Dryad were implemented in C#, which also runs
on top of a managed runtime system; we expect the ITask
idea can also be adapted to optimize their applications.

Optimizations of data-parallel systems While there ex-
ists a large body of work on optimizing data-parallel sys-
tems, most existing efforts focus on domain-specific opti-
mizations, including, for example, data pipeline optimiza-
tions [29, 35, 62], query optimizations [32, 46], or shuffling
optimizations [42, 51, 61]. Despite these optimizations, Big
Data performance is still fundamentally limited by memory
inefficiencies inherent in the underlying programming sys-
tems. ITask is the first attempt to help data-parallel tasks
written in a managed language survive memory pressure and
scale to large datasets by providing a programming model for
developers to reason about interrupts and a runtime system
that interrupts tasks and tunes performance.

Cascading [2] is a Java library built on top of Hadoop. It
provides abstractions for developers to explicitly construct
a dataflow graph to ease the challenge of programming
data-parallel tasks. Similarly to Cascading, FlumeJava [29]
is another Java library that provides a set of immutable
parallel collections. These collections present a uniform
abstraction over different data representations and execution
strategies for MapReduce. StarFish [36] is a self-tuning
framework for Hadoop that provides multiple levels of tuning
support. At the heart of the framework is a Just-In-Time
optimizer that profiles Hadoop jobs and adaptively adjusts
various framework parameters and resource allocation. ITasks
perform autotuning in orthogonal way: it is not bound to a
specific framework nor is limited to a specific task semantics.
Instead, it provides a generic way to reduce memory pressure
for a variety of different frameworks and tasks.

Resilient Distributed Datasets (RDD) [59] provides a fault
tolerant abstraction for managing datasets in a distributed en-
vironment. It is similar to ITask in that the physical location
of a data structure is transparent to the developer. However,

ITask scatters data between memory and disk on each ma-
chine while RDD distributes data in the cluster. Moreover,
ITask focuses on enabling managed tasks to survive the pres-
ence of high memory pressure while RDD focuses on data
recovery in the presence of node failures.

Spark [60] implements RDD and divides jobs into
“stages”. While resource contention can be avoided between
stages, memory problems can still occur inside each stage. In
Spark, RDDs can be spilled to disk, but the spilling mecha-
nism is much less flexible than ITask: when spilling is trig-
gered, all RDDs with the same key need to be spilled; partial
spilling is not possible.

Mesos [37] and YARN [3] provide sophisticated resource
management that can intelligently allocate resources among
different compute nodes. Although these job schedulers
have a global view of the resources on the cluster, their
resource allocation is semantics-agnostic and based primarily
on resource monitoring. However, the memory behavior of a
program on each node is very complex and can be affected by
many different factors. Hence, memory pressure still occurs,
impacting application performance and scalability. ITask is
designed to bring the execution back to the safe zone of
memory usage when pressure arrives.

PeriSCOPE [35] is a system that automatically optimizes
programs running on the SCOPE data-parallel system. It
applies compiler-like optimizations on the declarative en-
coding of a program’s pipeline topology. FACADE [47] and
Broom [34] optimize the managed runtime by allocating data
items in regions. While ITask aims to solve a similar mem-
ory problem, it does so by allowing tasks to be interrupted
and using a runtime system to automatically interrupt/resume
tasks, rather than eliminating Java objects.

8. Conclusions
We present interruptible tasks as a systematic approach to
help data-parallel tasks survive memory pressure. ITask con-
tains a novel programming model that can be used by devel-
opers to reason about interrupts as well as a runtime system
that automatically performs interrupts and adaptation. Using
real-world examples and experimental data, we demonstrate
that (1) ITasks can be easily integrated into a distributed
framework and interact seamlessly with the rest of the frame-
work; and (2) the runtime is effective at reducing memory
usage, thereby significantly improving the performance and
scalability of a variety of data-parallel systems.
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