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Abstract
We propose design and training schema to en-
hance capabilities of hypernetworks, extending
their practical impact in both classification and
meta-learning settings. Our improvements stem
from identifying optimization issues with current
hypernetwork architectures: incorrect scale of gra-
dients, lack of effective regularization, and insuf-
ficient momentum control. We craft solutions for
each of these issues, substantially boosting hyper-
network performance. On image classification,
our hypernetwork variants of standard residual
networks achieve improved generalization accu-
racy without incurring any overhead at test time.
In a Model-Agnostic Meta-Learning (MAML)
setting, our hypernetworks outperform standard
residual networks when training and testing tasks
are sampled from different datasets.

1. Introduction
The introduction of AlexNet brought with it a rapid ex-
ploration of CNN architectures leading to improved conver-
gence and generalization (Krizhevsky et al., 2012; Simonyan
& Zisserman, 2014; He et al., 2016; Zhu et al., 2018). These
improved results have been achieved due to the introduction
of network components such as: rectifier activations, batch
normalization, and skip connections (Glorot et al., 2011;
Ioffe & Szegedy, 2015; He et al., 2016). In this work, we use
hypernetworks as components towards building improved
neural architectures.

Hypernetworks are meta networks that generate weights for
a target network to solve a given task. The target network
contains an embedding vector, which is input to the hyper-
network, the hypernetwork generates a set of weights for
the target network. This coupling of the target network with
the hypernetwork enables joint end to end training of both
these networks. Ha et al. (2016) use a linear fully connected
network as a hypernetwork to generate weights for resnets.
The models explored in the paper, while offering signifi-
cant compression, suffer from poor generalization and slow
convergence when compared to standard resnets.

Hypernetwork-based architectures have found applications

in continual learning (von Oswald et al., 2019), neural archi-
tecture search (Brock et al., 2017; Zhang et al., 2018), style
transfer (Karras et al., 2019; Shen et al., 2017), natural lan-
guage processing, (Suarez, 2017), pruning (Liu et al., 2019),
multi-task learning (Pan et al., 2018; Klocek et al., 2019).
So, improving on current hypernetwork architectures would
have immediate benefits and is of independent interest.

Surprisingly, Savarese & Maire (2019) show that using a
simple hypernetwork that only performs a single linear com-
bination actually yields superior performance than Ha et al.
(2016)’s model. While adding non-linearities or more pa-
rameters to hypernetwork increases its capacity, the fact that
it leads to worse performance suggests that optimization
issues exist. This observation is akin to the early days of
deep learning where increased model complexity lead to
performance degradation. Extending the analogy, we be-
lieve that enabling training of deeper hypernetworks could
lead to significant gains in machine learning.

Towards enabling training of more complex hypernetworks,
we identify fundamental optimization issues: incorrect scale
of gradients, lack of effective regularization, and insufficient
momentum control. We craft solutions to ameliorate these
issues and observe that they enable successful training of
convolutional hypernetworks: when generating weights for
a target resnet, we improve on the performance of conven-
tionally trained resnets on standard vision tasks. Henceforth,
we refer to our hypernetwork variants of resnets as hyper-
resnets.

Further, we find an interesting use case for hyperresnets in
the meta-learning setting. Model-Agnostic Meta-Learning
(MAML) is a training routine that is widely used in tackling
various problems: few-shot learning, reinforcement learn-
ing, neural machine translation, (Finn et al., 2017; Gu et al.,
2018). In this work we focus mainly on the few-shot learn-
ing problem, where each class contains only a few training
examples (1 to 5 examples). In particular, when there is
a shift in training and testing distributions, resnets trained
with MAML for few-shot learning exhibit a performance
drop (Chen et al., 2019). We show that we can ameliorate
this issue by simply swapping resnets with hyperresnets in
the MAML routine.

To summarise, the contributions of our paper are :



HyperNetwork Designs for Improved Classification and Robust Meta-Learning

• Equipped with our designed solutions, we are able to
increase the complexity of hypernetworks – from linear
combinations to convolutions – while improving over
standard resnets.

• When training with MAML, we observe that hyperres-
nets are more robust to shifts in training and testing
distributions in comparison to standard resnets.

2. Related Work
2.1. HyperNetworks

The idea of one neural network generating the weights of
another neural network was introduced by Schmidhuber
(1992). This setup was used to deal with temporal sequences,
where the first network provided context dependent weights
for the second network. Further Gomez & Schmidhuber
(2005) provide applications for this setup.

Ha et al. (2016) use a linear two layer fully connected feed
forward network to generate weights for a target resnet, with
the goal of reducing parameters by sharing the hypernet-
work across layers. Each layer in the main network has a low
dimensional embedding, which is mapped by the hypernet-
work to ambient weight space. Although this model provide
significant parameter reduction, it suffers from performance
degradation and slower convergence when compared to stan-
dard resnets.

Chang et al. (2019) identify that hypernetwork-generated
weights are in an incorrect scale, rendering these models
harder for optimization. This results in slower learning and
convergence. They appropriately scale weights of the hyper-
network at initialization to alleviate these issues, resulting in
lower training loss and better convergence. They report that
their initialization scheme does not handle resnets as the
target networks, and provide results only on hypernetworks
generating weights for CNNs. However, as we will see,
our hypernetwork strategies generalize to resnets as target
networks, while providing faster convergence.

Savarese & Maire (2019) suggest a simple linear combi-
nation as a hypernetwork. Each layer contains a trainable
vector that linearly combines a set of trainable parameters
that are shared across layers. As we will see, there are
applications where we are interested in maintaining an hy-
pernetwork while re-training only the embeddings. In this
scenario, the hypernetwork of Savarese & Maire (2019) is
constrained to only generate weights that are linear com-
binations of the previously generated weights, while the
hypernetwork architecture we propose can output weights
of arbitrary degree of freedom.

2.2. Meta learning

Schmidhuber (1987) introduces an algorithm that learns a
learning rule via a genetic algorithm. Since then, various
strategies for learning to learn (meta learning) have been pro-
posed, that use gradient based optimization to learn an up-
date rule for the model (Hochreiter et al., 2001; Andrychow-
icz et al., 2016).

Proposed by Finn et al. (2017), MAML is currently one of
the most prevalent meta-learning algorithms. MAML is a
routine used to learn an initialization with the goal of quickly
converging to a good solution for any given task. MAML
consists of two nested loops: the outer loop finds a meta-
initialization, while the inner loop learns to rapidly adapt
the meta-initialization for the task at hand. A limitation of
MAML is that it does not benefit from increasing the depth
of the network that is being trained, and only uses 4 layer
networks in its experiments.

Sun et al. (2019) present a variant of MAML that employs
pretraining on a large dataset to enable the use of deeper net-
works. Once pretrained, the network is frozen, and during
training with MAML, it only learns a small set of parameters
that scale and shift the frozen pretrained weights.

Rusu et al. (2018) propose a method that learns an encoder
that maps training data into a small embedding vector which,
in turn, is mapped to model parameters via a decoder. The
encoder and decoder parameters are learnt in the outer loop,
while the embedding vector is updated during the inner loop
to enable adaptation for the current task.

Chen et al. (2019) discover that MAML-based algorithms
experience performance drop in few-shot-learning tasks
when training and testing tasks are sampled from differ-
ent datasets.

Raghu et al. (2019) asks a fundamental question on MAML:
is its success due to its ability to find initializations that gen-
eralize to new tasks, or is it that the class-wise features learnt
from the training set are incidentally suitable for classes in
the test set? Their analysis leads to the conclusion that it is
the latter more than the former. This discovery explains the
degradation in performance of MAML models as observed
by Chen et al. (2019): once the distribution of test tasks
change, the features learnt from the training tasks no longer
generalize, yielding a drop in performance.

The ability to adapt to new tasks, or rapid task adaptation, is
essential if we aim to generalize to new tasks that are drawn
from a distribution that differs from the training distribu-
tion. Later in the paper we will see that hyperresnets, when
trained by MAML, are better suited for rapid task adapta-
tion when compared to resnets. (Li et al., 2018) modifies
MAML to get better task adaptation – we note that theirs is
an algorithmic contribution, while ours is an architectural



HyperNetwork Designs for Improved Classification and Robust Meta-Learning

(a) Variant 1: each hypernetwork is shared across all layers in a stage of the resnet.
Hypernetwork 1 generates weights for all the convolutional layers in stage 1, while
hypernetwork 2 does the same for stage 2.

(b) Variant 2: there is an independent hyper-
network (HN) associated to each layer in the
model.

Figure 1. Illustration of the two hypernetwork sharing variants. E1 to E8 are the embeddings of each layer, and W1 to W8 are the weights
generated by the respective hypernetworks. Model parameters are depicted in blue, while generated weights are in red. Skip connection
between layers are omitted for clarity.

one.

3. Improving HyperNetworks
In what follows, we identify and describe shortcomings in
both design and training of existing hypernetwork-based
architectures.

HyperNetwork Sharing Scheme: in Ha et al. (2016), the
hypernetwork is shared across all the layers of the target
resnet. This sharing scheme leads to the hypernetwork re-
ceiving gradient contributions from all layers of the network,
making optimization harder as gradients from different lay-
ers are likely in different scales. This calls for a need to use
Adam (Kingma & Ba, 2014) to optimize the hypernetwork
parameters, as it enables appropriate scaling of gradients.

We propose two hypernetwork sharing schemes: sharing
the hypernetwork across all layers in each stage of the tar-
get resnet (variant 1), and not sharing the hypernetwork at
all (variant 2) i.e. each layer of the target resnet has an
independent hypernetwork. Figure 1 illustrates the two vari-
ants. These hypernetwork sharing schemes have crucial
implications: in variant 1, the number of layers whose error
contribute to the gradient of the hypernetwork is reduced by
a factor of 3; in variant 2, only a single layer contributes to
the gradient of each hypernetwork. This balances the scale
of the gradient updates, enabling us to use SGD, which
helps our cause as it is believed to yield better generaliza-
tion (Wilson et al., 2017).

HyperNetwork and Embedding Design: using a linear
feed-forward network as a hypernetwork does not allow
for large embeddings, as it would significantly increase the

number of parameters in the hypernetwork. Ha et al. (2016)
use only an embedding of size 64 to generate weights for a
layer of shape 16× 16× 3× 3. This essentially constraints
the generated weights to have 64 degrees of freedom. On the
other hand, when conventionally trained, the layer would
have 2304 degrees of freedom. Here, by degrees of freedom
we refer to the notion defined in Ha et al. (2016).

In light of this, we turn to convolutional layers as they are
more parameter efficient than fully-connected counterparts.
In particular, the parameter count of convolutional layers is
independent of the spatial resolution of the input, enabling
us to use embeddings with arbitrarily large spatial resolution.
Therefore, in this work we consider a hypernetwork that is
a 1-layer convolutional network.

To generate weights for a layer Li in the target network, we
associate Li with an embedding of shape Cout × d× k× k.
Further, the hypernetwork connected to Li will consist of a
convolutional layer with a filter of shape Cin × d× k × k.
In this setup the output of the hypernetwork will have the
shape Cout×Cin×k×k. Here, Cin and Cout are the input
and output number of channels of the layer Li, and k is the
size of the kernel. While d can be any integer, for most of
our experiments we set d = Cin. We note that this design
removes the constraint on the degrees of freedom on the
generated weights.

Converting HyperResNets to ResNets: our design choice
doubles the number of trainable parameters with respect to
standard networks. However, once the hyperresnet has been
trained, we can convert it to a standard resnet to decrease
the number of parameters and fasten its inference time. To
do this, it suffices to collect and store the weights generated
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(a) E is the embedding belonging to
conv2 in stage 1 block 1 of the hyper-
resnet.

(b) E is the embedding belonging to
conv2 in stage 1 block 1 of the hyper-
resnet.

(c) E is the embedding belonging to
conv2 in stage 1 block 1 of the hyper-
resnet.

Figure 2. Plots showing ratio of embedding norm to its gradient norm for embeddings in different stages of the hyperresnet.

for each layer by its associated hypernetwork. Once this is
done, maintaining the hypernetworks and the embeddings
is no longer necessary. If model compression is desired, we
use a scheme that is discussed in Section 5.3.

Correcting the Scale of HyperNetwork’s Gradients: we
investigate the slow convergence of hypernetworks by mea-
suring the ratio between a parameter’s norm and its gradi-
ent’s norm. The plots of these ratios are given in Figure 2.
The plots show that for a given parameter P , ||P ||||∇P || is large
when compared to ratios reported in You et al. (2017) for
convolutional layers of AlexNet – this implies that parame-
ters don’t move significantly from initialization. Moreover,
we observe that this ratio is large even in the early phases
of training, possibly explaining the poor convergence and
generalization we observed.

We discover that this issue can be easily avoided by restrict-
ing the convolution to only perform affine operations. This
can be done by simply removing the bias term from the
convolutional layers. In Figure 2, we see that the ratio is de-
creased during the beginning of training, implying that the
parameter updates are properly scaled. We further observe
that the ratio increases when the learning rate is decayed:
a desired behavior as we want to network parameters to
change less towards the end of training.

Regularizing HyperResNets: for standard networks,
weight decay on the model parameters has been the typ-
ical choice of regularization. In our experiments we find
that this approach of regularization does not lead to im-
proved generalization. Instead, we regularizing the 2-norm
of the generated weights, or the output of the hypernetworks,
which are analogous to the weights in the standard resnet.
As we will later see, this improves classification perfor-
mance of hyperresets. Further, we do not regularize the
embeddings and the hypernetwork. Momentum Control:
standard networks benefit from Stochastic Weight Averag-
ing (SWA), where the current iterate depends on the current

gradient as well as an exponential average maintained across
all the iterates (Izmailov et al., 2018). The exponential av-
erage acts as a momentum term, and prevents the current
iterate from changing drastically due to noisy gradients.

The predicted weights of the hyperresnets depend on both
the embedding and the hypernetwork weights. Hence, the
ill effects of noisy gradients could possibly get compounded.
We apply SWA training to embeddings and the hypernet-
work weights, and we observe that hyperresnets benefit
more from SWA than standard resnets.

4. HyperNetwork Training via MAML
4.1. Background: Model Agnostic Meta Learning for

Few-shot learning

The main objective of MAML is to learn a meta initialization
capable of rapid task adaptation. In other words, learn an
initialization such that given a new task, the network can
rapidly converge to a good solution.

While training for few-shot learning, the algorithm samples
a batch of tasks T1 to Tn, from a distribution of tasks P(T ).
This batch is called a meta-batch. Each task Ti consists of
two splits T tri =

{
Xtr
i , Y

tr
i } and T tei =

{
Xte
i , Y

te
i }. Xtr

i

and Xte
i are a collection of samples, while Y tri and Y tei are

the corresponding labels. T tri and T tei are called the train
and test split of task Ti.

MAML Stage 1: For each task Ti in the meta batch, the
model θ is updated to θi by minimizing on the loss in-
curred on T tri , as shown in equation 1 . This gives us a
set of models S = {θ1, θ2, ..., θn}. The loss on T tri is given
byLT tr

i
(fθi) = L(fθi(T

tr
i ), Y tri ), where L is a standard

loss such as cross entropy loss, and fθi is a model with
parameters θi.

θi = θ − α∇θLT tr
i
(fθ) (1)

α is the learning rate of the inner loop.
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MAML Stage 2: For each θi ∈ S, we compute the cor-
responding loss LT te

i
(fθ) = L(fθi(T

te
i ), Y tei ). Then we

optimize on these losses to update θ to θnext as given by
equation 2.

θnext = θ − β∇θ
n∑
i=1

LT te
i
(fθi) (2)

β is the learning rate in the outer loop. Training continues by
sampling another meta batch from the same distribution of
tasks P(T ), and the above explained procedure is applied to
θnext. Here, θ is updated so as to minimize

∑
T te
i
LT te

i
(fθi),

thereby learning an initialization that can rapidly converge
to a good solution. The routine is summarized in algorithm
1

Algorithm 1 MAML Routine

Require: Collection of tasks T1, T2 · · ·Tn.
Require: Hyperparameters α and β.

1: Initialize network θ
2: while not done do
3: Sample a batch of tasks B = {T1, T2, · · · , Tk}
4: for all Ti ∈ B do
5: Compute LT tr

i
(fθ)

6: Update θi = θ − α∇θLT tr
i
(fθ)

7: end for
8: Update θ = θ − β∇θ

∑
T te
i
LT te

i
(fθi)

9: end while
10: return θ

Algorithm 2 Training HyperResNets via MAML Routine

Require: Collection of tasks T1, T2 · · ·Tn
Require: Pre-trained network θ = {θE , θH , θC}. Where

θE , θH , θC are embedding, hypernetwork, and classifier
parameters.

Require: Hyperparameters α and β.
1: while not done do
2: Sample a batch of tasks B = {T1, T2, · · · , Tk}
3: for all Ti ∈ B do
4: Compute LT tr

i
(fθ)

5: Update θiH = θH − α∇θHLT tr
i
(fθ)

6: Update θiC = θC − α∇θCLT tr
i
(fθ)

7: θi = {θiE , θH , θiC}
8: end for
9: Update θH′ = θH − β∇θH

∑
T te
i
LT te

i
(fθi)

10: Update θC′ = θC − β∇θC
∑
T te
i
LT te

i
(fθi)

11: Update θ = {θE , θH′ , θC′}
12: end while
13: return θ

Model C10 C100
Hyper-WRN-40-2 (2) W Bias 91.89 68.15

Hyper-WRN-40-2 (2) W/O Bias 93.99 73.42
Hyper-WRN-28-4 (2) W Bias 92.96 70.73

Hyper-WRN-28-4 (2) W/O Bias 94.72 76.03

Table 1. CIFAR classification accuracies. Improved generalization
in hyperwideresnets of variant 2 after removing the bias in the
hypernetwork.

4.2. MAML based training for HyperNetworks

Pre-training Phase: training deep networks with standard
initialization via the MAML routine leads to near chance
performance. The standard practice to overcome this issue
is to use a model pre-trained on large data as an initialization
for the meta-training phase (Sun et al., 2019). Following
standard practice we pre-train hyperresnets on a large dataset
as well. After pre-training, the classifier layer of the pre-
trained network is replaced by a randomly initialized linear
layer.

Meta-training Phase: Algorithm 2 provides a routine to
train hyperresnet variant 1 via MAML. This is similar to
resnet training via MAML, the essential change is that in-
stead of training all the model parameters in both the loops
we do the following: the embedding parameters are trained
in the inner loop, while the hypernetwork parameters are
trained in the outer loop. The classifier is updated in both
the loops.

The training of hypernetworks in the outer loop results in the
hypernetwork getting its weights updated by gradients from
all the tasks in the meta-batch. Enabling the hypernetworks
to generate weights that are useful for a collection of tasks,
ultimately regularizing the model. Further, in hyperesnet
variant 1 there are more embedding parameters than hyper-
network parameters. So, by updating the embeddings in the
inner loop, we ensure that the network is tuned for the task
at hand.

5. Experiments
5.1. Image Classification on CIFAR

CIFAR Dataset: CIFAR10 (C10) and CIFAR100 (C100)
are standard image classification datasets that are frequently
used to benchmark classification capabilities of neural net-
works (Krizhevsky et al., 2009). C10 consists of a 10-way
classification problem where each class contains 5000 train-
ing and 1000 testing images. C100 is a 100-way classifi-
cation problem, where each class containing 500 training
and 100 testing images. The images in C10 and C100 are of
shape 32 × 32 pixels.

Results: Table 1 shows that the removal of bias in the
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Model C10 C100
Hyper-WRN-40-2 (2) W/O Reg 93.99 73.42

Hyper-WRN-40-2 (2) W Reg 95.20 76.77
Hyper-WRN-28-4 (2) W/O Reg 94.72 76.03

Hyper-WRN-28-4 (2) W Reg 95.9 79.20

Table 2. CIFAR Classification accuracies. Improved generalization
in hyperwideresnets of variant 2 after regularizing the output of
the hypernetwork.

hypernetwork improves classification accuracy significantly
across all architectures. Further, in Figure 3, we see that
removing the bias also improves convergence when training
hyperwideresnets. In Table 2, we see that performance
gains are obtained by regularizing the generated weights
of the hypernetwork. These improvements in classification
accuracy over the vanilla hypernetwork architectures clearly
underline the efficacy of our design and training strategies.

From Tables 3 and 4, we see that variant 2 of hyperresnets
and hyperwideresnets outperform resnets and wideresnets
on both CIFAR datasets across varying depths and widths,
while variant 1 performs comparably. On C100, variant 2 im-
proves over the baseline by around absolute 0.60% for most
architectures. While the improvements on C10 are small in
magnitude, they have significance when compared to the
performance of their deeper counterparts. For instance, on
C10, HyperResnet-18 (variant 2) outperforms ResNet34.
Similarly, HyperWideResNet28-4 (variant 2) performs com-
parably with WideResNets100-4. This suggests that, at least
on CIFAR, allocating parameters to hypernetworks is more
beneficial than increasing the depth of the network.

From Table 5, on C10 we observe that HyperResNet-28-4
improves its performance gap over ResNet-28-4 from 0.25%
to 0.40% with SWA training. Further, on C100, it improves
from 0.60% to 0.85%.

Experimental details: we train all the models with the
same standard hyperparameters as done in Zagoruyko &
Komodakis (2016). We train with SGD for 200 epochs,
using 0.9 as momentum and an initial learning rate of 0.1.
We decay the learning rate by a factor of 5 at epochs 60,
120, and 160. For the standard wideresnets and resnets we
apply weight decay of 5 ×10−4, and for the corresponding
hypernetwork variants we regularize the activations with a
regularization penalty of 6.25 ×10−5, found through min-
imal tuning. All results are averages of 3 runs, and are
accuracies on the validation set. The wideresnet architec-
ture is the same as Zagoruyko & Komodakis (2016), while
the resnet architecture is the same as (DeVries & Taylor,
2017).

Model C10 C100 Train
Params

Test
Params

WRN-40-2 94.80 76.06 2.2 M 2.2 M
Hyper-WRNet-40-2 (1) 95 75.70 2.4 M 2.2 M
Hyper-WRN-40-2 (2) 95.20 76.77 4.17 M 2.2 M

WRN-28-4 95.65 78.62 5.8 M 5.8 M
Hyper-WRN-28-4 (1) 95.65 78.49 6.6 M 5.8 M
Hyper-WRN-28-4 (2) 95.9 79.20 10.3 M 5.8 M

WRN-100-4 95.9 79.23 24.4 M 24.4 M

Table 3. CIFAR classification accuracies. Hyperwideresnet Variant
2 improves on standard wideresnets. Hyperwideresnet variant 1
provides comparable performance with wideresnets. After train-
ing, we can convert hyperwideresnets into standard wideresnets
allowing these higher-accuracy versions to be deployed without
any parameter overhead.

Model C10 C100 ImageNet Train
Params

Test
Params

ResNet-18 95.27 77.92 70.05 11.1 M 11.1 M
HyperResNet-18 (2) 95.52 78.81 70.01 21.4 M 11.1 M

ResNet-34 95.34 79 73.58 21.3 M 21.3 M
HyperResNet-34 (2) 95.62 79.30 73.87 41.6 M 21.3 M

Table 4. Identical as Table 3, but hypernetwork re-
parameterizations are applied to resnets.

Model C10 C100 Train
params

Test
params

WRN-28-4 + SWA 95.86 80.76 5.8 M 5.8 M
Hyper-WRN-28-4 +SWA (2) 96.35 81.59 10.3 M 5.8 M

Table 5. Classification accuracies on CIFAR. With 300 epochs of
SWA training, variant 2 of HyperWideResNet-28-4 benefits more
from SWA than WideResNet-28-4.

5.2. Image classification on ImageNet

ImageNet is a challenging large scale dataset that consists of
1.2M training images and 50,000 validation images sampled
from 1,000 different classes.

The ImageNet results on Table 4 show minor improve-
ments on resnet-34, while showing no improvement on
resnet-18. We observe that the hyperresnet models converge
quickly, for instance with 70 % training budget hyperresnet-
34 achieves the similar performance to resnet-34. Similar
behaviour is seen with hyperresnet-18 as well.

Experimental Details: We train our networks on ImageNet
following (Savarese & Maire, 2019). We train the network
with SGD for 100 epochs, using 0.9 as momentum, and
an initial learning rate of 0.1. We decay the learning rate
by with a factor of 10 every 30 epochs. We use a weight
decay of ×10−4 for the resnets, while we use a regulariza-
tion constant of 6.25 ×10−5 for hyperresnets. The resnet
architecture used is the same as He et al. (2016).
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Figure 3. Validation curves for different models trained on CIFAR-
10. HyperWRN-28-4 converges significantly faster and achieves
better performance when the hypernetwork has its outputs regular-
ized and when it has no bias.

Model C10 C100 Params
WideResNet-28-4 95.65 78.62 5.8 M
WideResNet-10-4 92.32 71.49 1.22M

HyperWideResNet-28-4 (C) 94.71 74.91 1.22 M

Table 6. Classification accuracies on CIFAR. Our compression
scheme offers significant parameter reduction, while outperform-
ing baseline models with comparable number of parameters. (C)
here stands for model compressed via our scheme.

5.3. Network Compression:

In variant 1, we observe that training only the hypernet-
works while keeping the embeddings constant enables hy-
perwideresnets to achieve classification performance close
to the setup where both embeddings and hypernetworks
are trained. This observation offers a natural way to com-
press these neural models. We generate the embeddings
using standard initialization schemes and save the random
seed that generated it. Then, we only train the hypernet-
work, and save only the hypernetwork parameters. This
results in significant parameter reduction as given in Table 6.
Moreover, we observe that our compressed versions of deep
networks perform significantly better than smaller networks
with comparable number of parameters.

5.4. Meta Learning Experiments

Our meta learning experiments are designed to measure
the task adaptation capability of models when there is a
distribution shift between the training and testing data. We
use performance in few-shot learning as the candidate task
for our Meta-Learning experiments.

Datasets:

5.4.1. MINIIMAGENET

It is a subset of the popular ImageNet dataset. Originally
proposed by Vinyals et al. (2016), the dataset consists of

Model 1-shot 5-way 5-shot 5-way
ResNet-12 57.65 74.33

HyperResNet-12 58 73

Table 7. 1-shot and 5-shot accuracies on 5-way MiniImageNet
tasks, when pre-training, meta training and meta testing are done
on appropriate splits of MiniImageNet. HyperResNet-12 performs
comparably to ResNet-12.

100 classes in total, with 64 train classes, 16 val classes and
20 test classes. Each class consists of 600 color images with
each image being 84 x 84 in size.

5.4.2. FEWSHOT-CIFAR100

It is one of the most standard few-shot learning benchmarks.
It is based off of the CIFAR100 dataset. The train/val/test
splits are proposed by Oreshkin et al. (2018). For our ex-
periments we only use the train split of Fewshot-CIFAR100,
and it contains 60 classes.

Experimental Details: We evaluate our models on 1-shot
and 5-shot 5-way classification problems. In 1-shot classifi-
cation, we have 1 training example per class. Following Sun
et al. (2019), we use batch gradient descent as the optimizer
in the inner loop, with a learning rate of 0.01, and the outer
loop is optimized by Adam with an initial learning rate of
0.001. We decay this learning rate by half every 1000 itera-
tions to 0.0001. We use a meta-batch size of 4. Each task
contains 15 test samples per class.

Experiments on the standard Setting: Few-shot learning
models are evaluated by training on the 64-class train split
of MiniImageNet and are evaluated on the 20 class split of
MiniImageNet. Table 7, evaluates models in this scenario,
we see that in 1-shot tasks hyperresnets do marginally better
than resnets and in 5-shot tasks resnets do better than hy-
perresnets. In this canonical case there is little distribution
shift between the train and test split as both are part of the
same dataset. Hence it is not a good measure of the rapid
adaptation capabilities of meta learning models.

Realistic and Robust Setting: In order to force a signifi-
cant distribution shift between the training and testing tasks,
we train our meta-learning algorithm by sampling few-shot
tasks from the train split of few-shot CIFAR, and evaluate
on the test split of MiniImageNet. We believe this a more
realistic case as finding training data whose distribution is
similar to the testing data is not always likely in few-shot
learning scenarios as we are already suffering from lack of
data.

Table 8 shows that hyperwideresnets outperform wideres-
nets significantly on both 1-shot and 5-shot tasks. Clearly
showing that hyperwideresnets are more capable of rapid
adaptation as compared to wideresnets. In the following
section we provide further experimental evidence suggest-



HyperNetwork Designs for Improved Classification and Robust Meta-Learning

(a) Average inner loop movement for the
first convolution in block 2 of stage 1

(b) Average inner loop movement for the
second convolution in block 2 of stage 2

(c) Average inner loop movement for the
second convolution in block 4 of stage 3

Figure 4. Blue line measures the average inner loop movement of the predicted weights by the hypernetwork in the inner loop, while the
orange line measures the same for the weights of the resnet model in the inner loop. Observe that the hypernetwork predicted weights are
analogous to the weight of the resnet model. We observe more movement in the hypernetwork predicted weights by orders of magnitude
than the resnet weights, with increasing depth.

Model 1-shot 5-shot
WideResNet-16-4 40.75 53.2

HyperWideResNet-16-4 (1) 43.17 58.66
WideResNet-28-4 39.65 49.8

HyperWideResNet-28-4 (1) 43.56 58.3

Table 8. 1-shot and 5-shot accuracies on 5-way MiniImageNet
tasks, when pre-training and meta training are done on train split
of few-shot CIFAR, and meta testing is done on MiniImageNet test
split. Hyperwideresnets outperform their wideresnet counterparts
significantly.

ing that hyperesnets are capable of rapid task adaptation.
Further in table 8, we notice that deeper networks do poorly
than their shallow counterparts, this is observed by several
other works as well (Chen et al., 2019). But, we observe
that the performance degradation with increased depth is
more significant with the baseline wideresnets than the hy-
perwideresnets. Finally, in Figure 5, we observe that hy-
perresnets achieve superior convergence to resnets on these
cross domain tasks.

Efficient Weight Movement: Task specific information is
used only in the inner loop of MAML, hence the inner loop
is essential for adaptation to a new task. For each meta-
batch, we compute the average weight movement of resnet
parameters in the inner loop in the following way. For each
task in the meta batch, we compute norm of the difference
between the weights at the beginning of the task and end of
the task, finally we average this term across all the tasks in
that meta-batch.

For hyperwideresnets, instead of calculating the difference
in model parameters, we calculate the difference between
the generated weight before and after the inner loop. We
observe from figure 4, that the generated weights of the
hyperwideresnet move more than the resnets by orders of
magnitude. We believe that movement of weights in the

Figure 5. Validation curves on 1-shot and 5-shot tasks, with exper-
imental setup similar to Table 8. HyperNetwork-28-4 trained with
MAML shows superior convergence.

inner loop, enables the network to get task specific informa-
tion, and consequently be capable of rapid task adaptation.

6. Discussion
The early times of deep learning were marked with numer-
ous obstacles that hindered the training of deep networks.
Design and modeling choices such as rectifier activations,
batch normalization, and skip connections, have since then
enabled the training of powerful neural models. In a similar
vein, we believe hypernetworks are a design choice towards
superior neural models. This belief is based on our improved
classification and robust meta learning results. However,
akin to the earlier days of deep learning, complex hyper-
networks cannot be properly trained yet. Here, we make
useful contributions by proposing strategies for successfully
training a one convolutional hypernetwork. With this work,
we hope to increase interest in hypernetworks as a fruitful
object of study, since arbitrarily complex hypernetworks can
further advance progress towards superior neural network
models.
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