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Abstract

The significant growth in computational power of
modern Graphics Processing Units (GPUs) coupled
with the advent of general purpose programming envi-
ronments like NVIDIA’s CUDA, has seen GPUs emerg-
ing as a very popular parallel computing platform.
Till recently, there has not been a performance model
for GPGPUs. The absence of such a model makes it
difficult to definitively assess the suitability of the GPU
for solving a particular problem and is a significant
impediment to the mainstream adoption of GPUs as a
massively parallel (super)computing platform.
In this paper we present a performance prediction

model for the CUDA GPGPU platform. This model
encompasses the various facets of the GPU architec-
ture like scheduling, memory hierarchy, and pipelining
among others. We also perform experiments that demon-
strate the effects of various memory access strategies.
The proposed model can be used to analyze pseudo code
for a CUDA kernel to obtain a performance estimate,
in a way that is similar to performing asymptotic
analysis. We illustrate the usage of our model and its
accuracy with three case studies: matrix multiplication,
list ranking, and histogram generation.

1. Introduction

Over the past decade, the processing power of
the Graphics Processing Units (GPUs) has increased
tremendously. The latest GPU from Nvidia, GeForce
GTX280, has a raw computing power of close to one
TFLOP at a cost of about $400. Given this enormous
computational power, researchers have started looking
at ways to utilize this efficiently for non-graphics based
applications also. This is termed as GPGPU (General
Purpose Graphics Processing Units).

To this end, Nvidia now supports a C like program-
ming language called CUDA [19] (Compute Unified
Device Architecture) that allows a programmer to ex-
plicitly request that certain portions of the code be run
on the GPU 1.

1. Another popular vendor of GPUs, AMD similarly supports a
combination of a low-level interface, the Compute Abstraction Layer
(CAL) and extensions to Brook.

The advent of CUDA has led to several high-speed
implementations on the GPU. A few prominent ones
are mentioned below. Image processing and filtering
algorithms are studied in [13], [27], [17]. Graph al-
gorithms such as BFS, shortest paths, graph cuts, etc.
for large graphs are reported on the GPU [26], [10].
Data parallel primitives such as parallel-prefix scan[24],
[18], reduction, and sorting [24] have also been studied.
GPUs have also been used to implement numerical
algorithms such as the FFT [8].

Speed-up of the order of 200 over conventional CPU
implementations are reported for certain problems such
as the n-body simulation[17, Chapter 31]. At the other
extreme, there are problems where the best reported
speedup is just about 3 [15]. While the speed-up re-
ported does depend on the hardware available at the
time it is reported, it is in general not possible to explain
the origins of the speed-ups or the varying perfor-
mance across different problems. Also the relationship
between different facets of these implementations is
not clearly understood. As such it is hard to adopt a
structured approach to optimize these implementations.
These problems are compounded by the fact that leading
manufacturers of GPUs do not divulge detailed low-
level architectural details of their product.

Thus, there is a significant need to understand the
computational abilities of modern-day GPUs so as to
use them efficiently. When one considers multiprocessor
architectures, there are several issues that one has to
contend with apart from computations, viz. the memory
hierarchy, the interprocess communication, synchroniza-
tion, and the like. When working at a purely algorithmic
level, and ignoring the effects of memory hierarchy, cost
of synchronization, etc., the PRAM model [5] has been
a highly successful model and can give tight asymptotic
bounds on the runtime and the total work done. But,
the abstraction of the PRAM model does not help one
to choose a right algorithm for a given architecture,
for example the GPU. Hence, it is of interest to see
how much of architectural details should be modeled
carefully so that one can work at a level of abstraction
that can be used to analyze algorithms and at the same
time make reasonably accurate claims.

The benefits of such a model are manifold, some of
which are given below. Firstly, it helps augment the
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PRAM model to understand the limits of parallelizabil-
ity of algorithms on the GPUs. A second benefit is to
provide an informative profile of a GPU program so
as to be able to identify bottlenecks. As in the case of
sequential architectures, we feel that a good simulator
is the need of the hour when one wishes to evaluate the
effect of certain design choices for future versions of
GPUs. Our model can help efforts in this direction.

In this paper, we propose a model for the same. Our
model coupled with relevant case-studies shall formalize
several aspects of GPU programming that serves to
bridge the gap between the algorithmic developments
and the application engineering. The focus of our work
is to explain the behavior of the GPU and additionally
understand the nature of problems that scale well on the
GPU. Using our model, one can make educated claims
about a program in execution on the GPU.

1.1. Related Work

The parallel algorithms community has developed
several models to design and analyze parallel algorithms
such as the network model [14], the PRAM model [5],
the Log-P model [4], the QRQW model [6], [7], among
others. These models help the algorithm designer to
exploit the parallelism in the problem. However, as these
are mostly architecture independent they fail to help
the algorithm designer leverage any specific advantages
offered by the architecture or work around the ill-effects
of any architectural limitations on the performance of
the algorithm.

As far as modeling for performance on multipro-
cessor architectures is concerned, there is very little
reported work. In [22], the authors discuss the parameter
space and present ways to prune the size of such a space
and get a highly optimized code. The result is a gain of
about 17% for a particular medical imaging application
[22]. However, our work does not target code or runtime
optimizations. An extension of this work appears in [23]
where the authors consider the multi-GPU design space
optimization. However, they need a model to predict the
baseline implementation on a single GPU. Our work
can exactly fill that need. So we place our work as
complementary to that of [23].

A model similar to ours appears in [16] where also
the authors rely on separating memory and compute
requirements. But their model is applicable only for a
class of programs called ”Iterative Stencil Loops”. Very
recently, Hong and Kim independently presented a work
[12] that also predicts the runtime of a kernel on the
GPU. They consider a set of 23 parameters that can be
used to predict the runtime of a kernel on the GPU.
Despite a similar approach, we find a few differences.
Firstly, they do not try to model the GPU in terms of
already exisitng parallel models. We feel that this is
important so that the already avaialble knowledge base
can be reused. Secondly, as we relate the GPU to the

BSP model, we are naturally able to model an entire
program instead of a single kernel.

1.2. Our Results

In this paper, we propose a fairly complete perfor-
mance model for the Nvidia GPU. Our model tries to
abstract the GPU computational model by considering
important features of the present generation Nvidia GPU
GTX 280. We use a combination of the BSP model of
Valiant [25], the PRAM model of Fortune and Wyllie
[5], and the extension to PRAM model proposed by
Gibbons et al. called the QRQW model [7]. We note that
none of the models individually can explain the behavior
of a GPU. We also note that slight modifications are
required to these models to model GPU computations
accurately.

The proposed model outlines the relationship between
the various components of the GPU architecture like the
number of cores, effects of memory latency, memory
access conflicts, cost of computing, scheduling, pipelin-
ing, etc. This model can be used to analyze pseudo-code
for a CUDA kernel and finally predict the performance,
almost analogous to the way asymptotic analysis is
carried out in the case of sequential computing.

We devise experiments that showcase the effects
of memory access related issues like coalescing and
bank conflicts and the corresponding latency penalties
incurred. We further demonstrate the use of our model
on three real-world parallel algorithms - matrix multi-
plication, list ranking, and histogram generation. These
case studies have been chosen so that one of them is
compute intensive, one is (global) memory intensive,
and one is shared memory based. Thus, these three case
studies cover the entire scope of the proposed model.

1.3. Organization of the Paper

The rest of the paper is organized as follows. In
Section 2, we provide a basic introduction to the GPU
computational model. In Section 3 we describe the
proposed performance model. Section 4 corroborates
the proposed model using targeted experiments. This is
followed by three case studies in Section 5. The paper
ends with some concluding remarks after mentioning a
few limitations of our model.

2. GPU Architecture and CUDA

Nvidia’s unified architecture (see also Figure 1) for its
current line of GPUs supports both graphics and general
computing. In general purpose computing, the GPU is
viewed as a massively multi-threaded architecture con-
taining hundreds of processing elements (cores). Each
core comes with a four stage pipeline. Eight cores, also
known as Symmetric Processors (SPs) are grouped in an
SIMD fashion into a Symmetric Multiprocessor (SM), so
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that each core in an SM executes the same instruction.
The GTX280 has 30 such SMs, which makes for a
total of 240 processing cores. Each core can store a
number of thread contexts. Data fetch latencies are
tolerated by switching between threads. Nvidia features
a zero-overhead scheduling system by quick switching
of thread contexts in the hardware.

The CUDA API allows a user to create large number
of threads to execute code on the GPU. Threads are
also grouped into blocks and blocks make up a grid.
Blocks are serially assigned for execution on each SM.
The blocks themselves are divided into SIMD groups
called warps, each containing 32 threads on current
hardware. An SM executes one warp at a time. CUDA
has a zero overhead scheduling which enables warps
that are stalled on a memory fetch to be swapped for
another warp.

The GPU also has various memory types at each
level. A set of 32-bit registers is evenly divided among
the threads in each SM. 16 KB of shared memory per
SM acts as a user-managed cache and is available for all
the threads in a Block. The GTX 280 is equipped with
1 GB of off-chip global memory which can be accessed
by all the threads in the grid, but may incur hundreds of
cycles of latency for each fetch/store. Global memory
can also be accessed through two read-only caches
known as the constant memory and texture memory for
efficient access for each thread of a warp.

Computations that are to be performed on the GPU
are specified in the code as explicit kernels. Prior to
launching a kernel, all the data required for the computa-
tion must be transferred from the host (CPU) memory to
the GPU global memory. A kernel invocation will hand
over the control to the GPU, and the specified GPU code
will be executed on this data. Barrier synchronization
for all the threads in a block can be defined by the
user in the kernel code. Apart from this, all the threads
launched in a grid are independent and their execution
or ordering cannot be controlled by the user. Global
synchronization of all threads can only be performed
across separate kernel launches. For more details, we
refer the interested reader to [19], [18].

3. Our Performance Model for the GPU

The model we present for the GPU is a combination
of known models of parallel computation. Given the
complex architecture of the GPU, it turns out that none
of these models suffice individually and a combination
of them along with a few extensions is required. The
models we use are:

• The BSP model of Valiant [25],
• The PRAM model of Fortune and Wylie [5], and
• The QRQW model of Gibbons, Matias, and Ra-

machandran [6], [7].
In the following we describe our modeling of the

GPU using the above three models.

3.1. Synchronization Model

As discussed in Section 2, CUDA programs are writ-
ten in units called kernels. Threads start synchronously
at the beginning of each kernel and are synchronized
at the end of each kernel. Thus, the basic unit of
synchronization in a CUDA program is the kernel. This
fits the BSP model of parallel computing quite closely,
with an implicit call to synchronize at the end of each
kernel. Notice however that while in the BSP model,
synchronization is at regular intervals of L time units,
our model does away with this requirement. Given the
lack of any routing infrastructure in the GPU, we rely on
the BSP model only as far as the notion of super-steps
[25] is concerned.

A further facet of the GPU is that threads in a block
can all be synchronized explicitly within a kernel by a
call to the primitive __syncthreads(). This puts
a barrier for threads in a block and it is guaranteed that
executing this call and thereby synchronizing threads in
a block takes 4 cycles, plus additional wait time depend-
ing on the circumstances. But this being an explicit and
optional call, threads need not be synchronized every 4
cycles.

It thus implies that the time taken by a GPU program
can be expressed as the sum of the times taken by the
super-steps, or kernels. For the sake of simplicity, we
ignore the effect of intra-kernel synchronization steps
such as __syncthreads() on the overall runtime.

3.2. GPU a. la. (QRQW) PRAM

The other parts of the GPU model are not as straight-
forward. We will propose a model for the GPU that
accounts for its memory hierarchy along with compu-
tation.

The PRAM model is an extension of the traditional
RAM model for sequential computation. (See Fortune
and Wyllie [5] for an elaborate description). It does
not distinguish between memory access operations and
computational operations and assumes that both cost
a unit of time. It also ignores other costs such as
synchronization. However, present parallel computer
architectures, including the GPU, have a deep memory
hierarchy and/or significantly complex memory access
model. Hence, it is required to address the cost of mem-
ory accesses and computational operations separately.

3.2.1. Cost of Computation. Notice that the funda-
mental element of computation in a GPU program is a
thread in a kernel. A thread can be viewed as performing
some memory reads, computations, and memory writes.
To look at the cost of computation is by far the easiest.
For a crude estimate one can simply treat all operations
uniformly and for a unit time, or same number of cycles
[16]. However, the GPU is not a very versatile architec-
ture. The time taken by computational operations can
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Figure 1. The CUDA Computation Model.

vary from 4 cycles for a simple addition to 16 cycles
for a 32-bit integer multiplication and many more for
an integer modulus. Thus, to get better results, one has
to consider the cycle requirement of the computational
operations in a thread.

Hence, in our model, we propose to arrive at the
cycles required by the computation in a thread. For this,
we can use published architectural details to see the
cycles required by each operation and add them up. For
example, if a thread has two integer additions and two
multiplications, then it requires 2 ·4+2 ·16 = 72 cycles
[19]. The number of cycles can also be obtained as a
function of the input size as is done in typical asymp-
totic analysis. Obtained in this fashion, let Ncomp be
the cycles required for computation in a thread.

3.2.2. Cost of Memory Accesses. There is a deep
memory hierarchy in the GPU with a large variation in
the access time for each level of the memory hierarchy.
See Figure 1 for the available memory hierarchy. Hence,
to estimate the time taken by a thread to read global
memory, one has to be more careful. Two important
members of this hierarchy are the global memory and
the shared memory. We first consider memory accesses
to global memory and then focus on the shared memory.

Accessing Global Memory. Reading/writing
from/to a cell from the global memory has a cost of
400–600 cycles [19]. In our work, we take the average
value of 500 cycles per read.

The above does not account for any cache or cache-
like effects. The effect of spatial and temporal locality
on caches in sequential computation is well understood.
However, there the situation is simple as one is inter-
ested in the locality exhibited by a single program in
its memory accesses. With parallel architectures such as
the GPU, it is however dependent also on the locality
exhibited by a set of concurrently executing threads.

Recall that on the GPU, threads are executed as
a batch called a warp. GPU accesses global memory
in contiguous chunks of 128 Bytes called a segment.

Threads in a half-warp, i.e., half the number of threads
in a warp, that are concurrently under execution benefit
from inter-thread spatial locality if they access locations
within a segment. In this case, one transaction of reading
a segment from the global memory suffices to serve
all the threads in the half-warp that exhibit inter-thread
spatial locality. If a transaction benefits t threads in
warp, then the average access cost per access for these
t threads in this situation can be taken to be 500+t

t
.

This phenomenon of benefiting from inter-thread lo-
cality is called in the GPU parlance as coalesced reads.
The effect of coalescing on data accesses is significant
enough, up to a factor or 16 when 32 threads benefit
from the coalescing effect. Hence, many works reported
in the literature devote enough attention to optimize the
program to benefit from coalescing effects (see e.g.,
[24], [9]).

When a thread in a half-warp accessing cells in
the global memory does not benefit from inter-thread
spatial locality, the access time is as high as 500 cycles
per access. Here, each access translates to a separate
transaction to the global memory. This is called a non-
coalesced read in the GPU parlance and can have a
significant impact of the performance of a program
executing on the GPU.

Accessing Shared Memory. GPU provides a
shared memory for threads which is ideally useful for
frequently accessed variables that are needed by threads.
This is a low-access cost memory in the hierarchy, about
4 cycles per access, but comes with several restrictions.
Shared memory is of very small size (16 KB per SM)
and has to be shared over all threads scheduled on an
SM. Furthermore, if more than one thread is accessing
the same bank in the shared memory at the same time,
this results in a memory contention, which can increase
the access cost.

In the case of a memory contention, the GPU behav-
ior is close to that of a QRQW Asynchronous PRAM
model [6], [7] with a linear cost function. If there are
t threads in a warp in contention, the access cost is 4t
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cycles. However, the QRQW model as proposed in [7] is
a purely shared memory based model like the PRAM.
So the QRQW model alone cannot explain the GPU
model in its entirety as it ignores other factors such as
synchronization.

We add that, if the accesses made by threads are not
deterministic, but are randomized, then one can consider
the expected number of conflicts and conflicts with high
probability to estimate the cost of accesses to the shared
memory.

Finally, let Nmemory be the number of cycles re-
quired for all the memory accesses by a thread. This
number includes the cost of both global memory and
shared memory accesses by a thread in a kernel.

3.3. Effect of Scheduling

The above model of separating memory accesses
and computations works as far as a single thread
is concerned. However, parallel architectures employ
scheduling to hide the memory latency. It can also be
inferred that the actual scheduling employed will be pre-
emptive in nature. More details about the effect and
nature of scheduling can be obtained only by knowing
the actual scheduling performed inside the GPU. This,
unfortunately, is not public knowledge.

Hence, we take the following approach. Let C(T )
denote the number of cycles required by a thread.
The best effect of scheduling is to completely hide
latencies. So the number of cycles required by a thread
is C(T ) = max{Ncomp, Nmemory}. We call this the
MAX model. If scheduling does not help at all in
latency hiding, then the number of cycles required by a
thread is C(T ) = Ncomp +Nmemory. We call this the
SUM model. In either case, the presence of a 4-stage
pipeline in each core of the GPU has its own effect
which is analyzed in the following.

3.4. The Overall Model

We now combine the ideas from the above sections to
estimate the time taken by a program P in execution on
the GPU. The BSP model allows us to look at time as
the sum of the times across various kernels. Thus, given
a CUDA program P with r kernels K1,K2, · · · ,Kr,
the time taken is

∑r

i=1 T (Ki) sec. where T (Ki) gives
the time taken by kernel Ki. Thus, we have:

T (P ) =
r∑

i=1

T (Ki) sec. (1)

For a kernel K, we now have to consider the GPU
execution model. Recall that blocks are assigned to SMs
and let each block consist of Nw warps. Each warp
consists of Nt threads and threads in each warp are
executed in parallel. Though it is possible that each SM
gets blocks in a batch of up to 8 blocks so as to hide idle

times, this is equivalent to having all blocks execute in
a serial order for the purposes of estimating the runtime.
One has to also consider the fact that each of the Nc

cores (or SPs) in an SM on the GPU has a D-deep
pipeline that has the effect of executing D threads in
parallel.

In addition, it is also required to estimate the cycle
requirement of a single thread. This can be done by
estimating the compute and memory access times as
discussed in Sections 3.2.1 and 3.2.2. We take the
approach that the number of cycles required by a kernel
is the maximum required by some thread in that kernel.
Let the maximum number of cycles required by any
thread executing the kernel K be CT (K). Thus, CT (K)
can be expressed as the maximum over all C(T ) for T
a thread executing the kernel K. Therefore,

CT (K) = max
T

C(T ). (2)

Notice that if we are using the MAX (SUM) model,
then the CT (K) term in the above should be obtained
using the MAX (resp. SUM) model .

Finally, the time taken for executing kernel K is
estimated as follows. Let NB(K) be the number of
blocks assigned to each SM in sequence in the kernel
K, Nw(K) be the number of warps in each block in the
kernel K, Nt(K) be the number of threads in a warp
in the kernel K. Then, the number of cycles required
for the kernel K, denoted C(K) is:

C(K) = NB(K) · Nw(K) · Nt(K) · CT (K) ·
1

NC · D
(3)

To convert the cycles required to time in seconds, we
have to multiply Equation (3) by the clock rate of the
GPU as in the equation below, where R is the clock
rate of a GPU core.

T (K) =
C(K)

R
sec. (4)

Since it is possible to have a different structure on
the number of blocks, number of warps per block etc. in
each kernel, we parameterize these quantities according
to the kernel.

To illustrate Equations (3, 4), Figure 2 is useful. Each
of the SMs in the GPU get multiple blocks of a kernel.
In the picture we consider NB = 8. Each of these blocks
are executed on an SM by considering each block as a
set of Nw warps. Each warp is then treated as a set of Nt

threads. It is these threads that are essentially executed
in parallel on the Nc cores of the SM. In Figure 2, we
have used Nw = 16, Nc = 8, and Nt = 32.

Unlike sequential computation, there is another ele-
ment that has an impact on the performance of GPU
programs. Multiprocessors employ time-sharing as a
latency hiding technique. Within the context of the
GPU, this time-sharing is in the form of each SM
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Figure 2. The threads in a warp are executed in parallel. Groups of warps are arranged into block and
blocks are assigned to SMs.

handling more than one block of threads at the same
time. To model this situation and its effect, let us assume
that each SM gets b blocks that it can time-share. Notice
that when we use the MAX or the sum model to estimate
the time taken by a kernel, all the b blocks then require
b times the time taken by a single block. The number of
blocks assigned sequentially to an SM NB effectively
reduces by a factor of b. So there is no net effect of
time sharing as long as latencies are hidden well. So,
our Equation (4) stands good even in the case of time
sharing.

Parameter Definition
Nw Number of warps per block
Nt Number of threads per warp = 32
D Pipeline depth of a core
Nc Number of cores per SM
Ki Kernel i on the GPU

Ct(K)
Max. number of cycles
required by any thread in kernel K

R Clock rate of GPU
T (K) Time taken by a kernel K

Table 1. List of Parameters in our Model

3.5. A Few Reflections on the Model

At this stage we find it pertinent to discuss two issues
related to the model. The first question the reader is
likely to have is: “Is it required to model at such a low
level where one has to count the number of cycles for
each operation?”.

The performance of a CUDA kernel can vary drasti-
cally with small changes in memory access strategies.
Using shared memory may yield up to 20 times better
performance than using global memory and using coa-
lesced global memory accesses may result in as much
as 5 times performance increase over non-coalesced
access. Arithmetic operations also have highly varying

cycle requirement such as 4 cycles for operations like
integer addition to 48 cycles for integer modulus [19].
Any model that does not capture these changes is
unlikely to be accurate.

The second question that a reader would have is:
“How difficult is it to perform such an analysis?”. In
our view, performing such an analysis for arithmetic
operations would be not be significantly harder than
performing an asymptotic analysis. Unlike other archi-
tectures, the GPU does not have any sort of implicit
caching across different types of memories. Storing data
in a particular type of memory, and then, the strategy to
access it is the explicit choice of the user. As there is no
scope for issues like cache misses, analyzing memory
access patterns in our model is no easier or harder than
it is in the case of asymptotic analysis.

4. Corroborating the Model
We show the results of some basic experiments that

corroborate our model. The first experiment deals with
effects of memory coalescing and the second deals with
memory bank conflicts.

4.1. Experiment 1: Coalesced/Non-coalesced
Access

We set up an experiment that controls how many
threads in a warp can benefit from a coalesced access.
This is controlled by the parameter stride in the code
Listing 1. (see Appendix A). stride denotes the gap
between the elements that are accessed in sequence by a
single thread. Hence, threads in a half-warp can benefit
from a coalesced access if the value of stride is
large. For example, when stride = 32, each thread
of a warp gets consecutive elements, which ensures
complete coalescing. When the stride is 1, each
thread across a warp gets elements that are displaced by
32, hence is guaranteed to be completely non-coalesced
and requires 16 memory transactions to be serviced for
a half-warp. In order to ensure a fair comparison, in our
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code, the number of accesses by a thread is independent
of stride.

In the code given in Listing 1, the amount of com-
putation per iteration is very small compared to the
memory access latency for stride = 1. However,
as we increase the value of stride, memory access
and computation take about the same number of cycles.
Using the MAX model, we predict the runtime of this
kernel and plot it along with the actual runtime in Figure
3(a) plots the program runtime for various values of
stride. It must be noted that a purely memory access
base code, i.e., with little compute, is difficult to model
due to limited knowledge about the memory access
hardware.

4.2. Experiment 2: Understanding access con-
flicts

In this experiment, keeping the overall structure of the
global accesses as in Experiment 1, each thread now
writes an element to the shared memory. The access
pattern to the shared memory is controlled by a variable
bank which can be given a value between 0 to 16. With
a larger value of bank we can thus increase the number
of bank conflicts.

The kernel in Listing 2 (in Appendix A) has about
16 cycles of compute per iteration and there are 64000
iterations. The number of cycles required for memory
is about bank×4 per iteration. The actual runtime and
the runtime predicted by our model is plotted in Figure
3(b). As can be seen, there is indeed a linear dependency
on the number of conflicts and the program runtime.

5. Case Studies

In this section, we further validate our model by
considering non-trivial problems as case studies. The
case studies we consider are matrix multiplication, list
ranking, and histogram generation. These case studies
cover all the features of our model. The matrix mul-
tiplication kernel is compute intensive, the list ranking
kernel is global memory intensive and is a popular case
study for irregular algorithms. The histogram kernel
makes use of shared memory resulting in bank conflicts.
Hence, the choice of our case studies is justified. As
only a single kernel is anaylzed in each of our case
studies, for simplicity, we drop the parameter K in
quantities such as NB(K) and simply write NB .

5.1. Case Study 1: Matrix Multiplication

Matrix multiplication is a highly popular problem
in parallel computing with several applications. The
algorithm considered here [19, Chapter 6] launches
one thread per element of the product matrix C in
A × B = C. To improve data locality, we can keep a
block of rows from the matrix A and a block of columns
from the matrix B in the shared memory. These blocks

can be multiplied to get partial results. As the access
to elements in the shared memory can be made to be
non-conflicting, by choosing the access pattern carefully
[19], the algorithm benefits from fast accesses to the
shared memory as well as maintaining coalesced access
from global memory.

For multiplying matrices of size N × N , the total
number of blocks is N

2

256
with each block consisting of

Nw = 8 warps with each warp consisting of Nt = 32
threads. So each SM gets NB = N2/(256 · 30) blocks.

As per the implementation above [19], the work done
per block/thread scales with the number of rows and
columns. The dimensions of a thread block are 16×16.
Each thread then loads a value from matrices A and B
into shared memory, iteratively computes each element
of Csub and writes it back to memory. This requires N

16

iterations for each thread. The number of computation
cycles required per thread for a matrix of N rows and N
columns can be counted to be Ncomp = 760N/16.As
each thread performs three global and two shared mem-
ory accesses per element computed, the cycles spent in
memory operations in this thread can be counted to be
Nmemory = 240N/16.

Thus, when using the MAX model, the com-
pute time dominates the memory time. Let CT =
max{Ncomp, Nmemory}. Using Equation 4, the total
time required for multiplying the matrices under the
MAX model is:⌈

N2

256 · 30

⌉
· 8 · 32 ·

760N

16
·

1

32 × 1.3 × 109
sec.

At N = 128, the estimated time using the MAX
model comes to around 0.11 ms which compares fa-
vorably with the actual time of 0.16 ms. The predicted
run time of this algorithm for both the SUM and MAX
models for various values of N are plotted in Figure
4(a). Matrix multiplication requires block synchroniza-
tion which is difficult to predict and hence there is a
some deviation from the actual runtime.

5.2. Case Study 2: List Ranking

In parallel computing, list ranking is one of the funda-
mental operations with applications to several problems.
While list ranking does not figure at all as an important
problem in sequential computing, the difficulty of the
problem in parallel computing is recognized early by
Wyllie [14]. Using various techniques, several algo-
rithms to solve this problem are proposed [11], [1], [3].

For symmetric multiprocessors, Hellman and JàJà
[11] proposed an algorithm for list ranking that has
a runtime of O(log N) for a list of N elements with
high probability, when the number of processors is
small compared to the size of the input. Their algorithm
suggests that the N/p sublists are ranked locally and
a list of size N/p be ranked sequentially. Several im-
plementations of this algorithm are reported on various
multi-core architectures
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Figure 3. Studies to corroborate the model.
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Figure 4. Figure (a) shows the estimated and actual times of the matrix multiplication kernel on square
matrices of size 26 × 26 to 211 × 211. Figure (b) shows the estimated and the actual time taken by the list
ranking kernel on lists of size varying from 218 elements to 222 elements.

including the most recent one on the Cell BE [2].
A recursive variant of the algorithm, developed for

GPU, proceeds as follows [21]. Initially, p splitters
(local leaders) are chosen at equi-distant points in the
successor array. Using these splitters, elements of the
list are ranked locally so that each splitter ranks the el-
ements till the next splitter is reached. Now, recursively,
the list of splitters is ranked. Finally, the (global) ranks
are computed using the local rank and the rank of the
splitter to which the element belongs.

In this case study, we focus on the local ranking
aspect of the recursive variant of the Hellman-JàJà [11]
algorithm. During the local ranking phase, it can be
noticed that the elements accessed each thread exhibit
no particular spatial locality. Hence, this kernel falls
under the simple model of the GPU as a PRAM with
non-coalesced accesses to the global memory. For a
cmplete discussion, we refer the reader to [21].

With N elements and p = N

log N
splitters, we require

N

log N
threads. These threads are grouped into N

512 log N

blocks of 512 threads each. Of these at most NB =⌈
N

512·30·log N

⌉
blocks are assigned to any single SM on

the GPU. Each of these blocks consists of Nw = 16

warps of Nt = 32 threads each.

Given a random list as an input, it is likely that
some threads process more elements compared to other
threds. Typically, the most likely size of the sublist was
observed to be 4 log N elements, which also confirms to
known results on probability. The memory cycles taken
by a thread can be computed as follows. Each thread
involves three reads/writes to the global memory for
each element that this thread is traversing. All these ac-
cesses tend to be non-coalesced. So, with about 4 log N
elements per sublist, Nmemory = 4 log N · 3 · 500. The
compute in each thread is very minimal. So we ignore
this completely and set CT (K) = Nmemory in both
the SUM and the MAX models.

The overall time taken by the kernel to compute the
local ranks for each sublist can then be computed using
Equation 4 as:⌈

N

512 · 30 · log N

⌉
·16·

32

8 × 4
·4 log N ·3·500·

1

1.3 × 109
sec.

For N = 222 we get the time per SM to be ≈ 21.0
millisecond. This compares favorably with the actual
time of 24 millisecond for N = 222. Figure 4(b) shows
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the comparison of the estimate and the actual times over
various list sizes, ranging from 256 K to 4 M elements.
We note that since the computation in each thread is
very minimal compared to the memory access cost, the
models MAX and SUM exhibit identical behavior. So
we show only the estimates from the MAX model.

5.3. Case Study 3: Histogram Generation

Counting elements of the same category is a common
problem spreading across a wide variety of applications.
It is one of the basic primitives in the field of statistics,
image processing, and data engineering. Let N observa-
tions be chosen independently and uniformly at random
between 1 through B, both inclusive. Let us assume that
these N observations are to be placed into B bins.

In this case study we test our model against the
shared memory access patterns. Each block loads its
share of input data one by one from the global memory
in a coalesced manner and updates the histogram in
the shared memory. When the block has gone through
all its data, the shared memory histogram is copied to
the global memory in a coalesced manner. These local
histograms can then be added together to obtain the
global histogram. See [20] for more details. In this
case study, we only compare the estimates from our
model with that of the actual time for computing the
local histograms. Obtaining the global histogram from
these local histograms is an easy operation and hence
is omitted from the timing analysis.

For correctness, threads in a block should compute
the local histogram of the block using atomic opera-
tions. However, our model at this point does not account
for atomic operations. Hence, for the purposes of this
case study, we let all these increment operations conflict
in the shared memory. We thus time the kernel ignoring
the correctness of the result.

In our implementation [20], each thread builds the
local histogram of N/(1920 × 256) elements into 256
bins. This involves reading each element from the global
memory in a coalesced manner and updating the count
in the appropriate bin in the shared memory. Thus, the
amount of compute and the memory access per element
is very small.

Using the model described in Section 3, we obtained
the estimates for the runtime according to both the MAX
and the SUM variants. The actual and the estimated
times are plotted in Figure 5. The plot suggests that
latency hiding works very well in this kernel as the
MAX model closely predicts the runtime.

6. Limitations of Our Model

Our model however has a few limitations. Our model
does not consider the effect of intra-block synchroniza-
tion calls such as __syncthreads(). However, the
model can be extended for this by treating each kernel
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Figure 5. The estimated and the actual runtime of
the histogram kernel on various input sizes.

as being composed of sub-kernels separated by calls
to __syncthreads(). Our model at present does
not handle atomic operations. These are to be handled
by serializing the threads participating in the atomic
operation. Also, we did not specifically mention the
effect of computational divergence among threads in a
warp. Presently, we considered only two members of
the memory hierarchy and did not consider accesses to
texture memory and shader memory.

Bringing these parameters into a future model re-
quires a better understanding of the architecture and the
scheduling aspects of the GPU.

7. Conclusions

In this paper we proposed a performance model for
the Nvidia GPU by using popular models in the parallel
algorithm community. Our effort is a step to bridge
the gap between the theory and practice of parallel
programming on the GPU. In future, we wish to use
this model to develop a simulator for the GPU that can
ease further architectural developments of GPGPU.
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Appendix

Algorithm 1 Global Memory Benchmark
Input: Number of elements N , stride, offset, and
array A in global memory

1: Calculate no. of elements per thread, Nthread

2: Calculate this thread’s data range using stride and
offset

3: while index is in range do
4: Read A[index] in register R
5: Increment R and store back in A[index];
6: index = index + stride
7: end while

Algorithm 2 Shared Memory Benchmark
Input: Number of elements N , stride, offset, bank,
array A in global memory and array B in shared
memory

1: Calculate no. of elements per thread, Nthread

2: Calculate this thread’s data range using stride and
offset

3: while index is in range do
4: for i = 0 to 10000 do
5: Read A[index] and store in
6: B[IDthread × bank (mod sizeblock)]
7: end for
8: end while
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